A novel method for lithium-ion battery state of energy and state of power estimation based on multi-time-scale filter

•The equivalent circuit model is estimated for battery states estimation.•Battery peak current is analyzed by multi-constrained conditions.•A novel multi-time-scale observer is used to estimate SOE and SOP concurrently.•The accuracy of the proposed method is verified under different conditions. The...

Full description

Saved in:
Bibliographic Details
Published inApplied energy Vol. 216; pp. 442 - 451
Main Authors Zhang, Xu, Wang, Yujie, Wu, Ji, Chen, Zonghai
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.04.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •The equivalent circuit model is estimated for battery states estimation.•Battery peak current is analyzed by multi-constrained conditions.•A novel multi-time-scale observer is used to estimate SOE and SOP concurrently.•The accuracy of the proposed method is verified under different conditions. The battery state of energy and state of power are two important parameters in battery usage. The state of energy represents the residual energy storage in battery and the state of power represents the ability of battery discharge/charge. To estimate the two states with high accuracy, the characteristics of battery maximum available capacity and open-circuit voltage are analyzed under different working temperatures. Meanwhile, the equivalent circuit model of the battery is employed to embody the battery dynamic performance. To improve the accuracy of the battery states estimation, the multi-time-scale filter is applied in battery model parameters identification and battery states prediction. Besides, the state of power is analyzed by multi-constrained conditions to ensure battery work with safety. The proposed approach is verified by experiments operated on lithium-ion battery under new European driving cycle profiles and dynamic test profiles. The experimental results indicate the proposed method can estimate the battery states with high accuracy for actual application. In addition, the factors affecting the change of battery states are analyzed.
AbstractList •The equivalent circuit model is estimated for battery states estimation.•Battery peak current is analyzed by multi-constrained conditions.•A novel multi-time-scale observer is used to estimate SOE and SOP concurrently.•The accuracy of the proposed method is verified under different conditions. The battery state of energy and state of power are two important parameters in battery usage. The state of energy represents the residual energy storage in battery and the state of power represents the ability of battery discharge/charge. To estimate the two states with high accuracy, the characteristics of battery maximum available capacity and open-circuit voltage are analyzed under different working temperatures. Meanwhile, the equivalent circuit model of the battery is employed to embody the battery dynamic performance. To improve the accuracy of the battery states estimation, the multi-time-scale filter is applied in battery model parameters identification and battery states prediction. Besides, the state of power is analyzed by multi-constrained conditions to ensure battery work with safety. The proposed approach is verified by experiments operated on lithium-ion battery under new European driving cycle profiles and dynamic test profiles. The experimental results indicate the proposed method can estimate the battery states with high accuracy for actual application. In addition, the factors affecting the change of battery states are analyzed.
The battery state of energy and state of power are two important parameters in battery usage. The state of energy represents the residual energy storage in battery and the state of power represents the ability of battery discharge/charge. To estimate the two states with high accuracy, the characteristics of battery maximum available capacity and open-circuit voltage are analyzed under different working temperatures. Meanwhile, the equivalent circuit model of the battery is employed to embody the battery dynamic performance. To improve the accuracy of the battery states estimation, the multi-time-scale filter is applied in battery model parameters identification and battery states prediction. Besides, the state of power is analyzed by multi-constrained conditions to ensure battery work with safety. The proposed approach is verified by experiments operated on lithium-ion battery under new European driving cycle profiles and dynamic test profiles. The experimental results indicate the proposed method can estimate the battery states with high accuracy for actual application. In addition, the factors affecting the change of battery states are analyzed.
Author Chen, Zonghai
Wu, Ji
Wang, Yujie
Zhang, Xu
Author_xml – sequence: 1
  givenname: Xu
  surname: Zhang
  fullname: Zhang, Xu
– sequence: 2
  givenname: Yujie
  orcidid: 0000-0001-5722-2673
  surname: Wang
  fullname: Wang, Yujie
– sequence: 3
  givenname: Ji
  surname: Wu
  fullname: Wu, Ji
– sequence: 4
  givenname: Zonghai
  orcidid: 0000-0001-9312-9089
  surname: Chen
  fullname: Chen, Zonghai
  email: chenzh@ustc.edu.cn
BookMark eNqFkE1r3DAQhkVJoJuPv1B07MXujGxpbeihIfQLAr20Z6HKo0SLbG0lOWX_fZW6pdBLTpKGed7RPBfsbIkLMfYKoUVA9ebQmiMtlO5PrQAcWhAt4v4F2-GwF82IOJyxHXSgGqFwfMkucj4AgEABO7be8CU-UuAzlYc4cRcTD748-HVufFz4d1MKpRPPxRTi0fFtEjfL9K92jD8pccrFz6ZsVKaJ18u8huKbWqcmWxOIOx9q3hU7dyZkuv5zXrJvH95_vf3U3H35-Pn25q6xvYTSiHEaJ4UdOegcjkYqZ3HspalPBQMY2VkJiqycyPVOCWutrHv1HXYjWtldstdb7jHFH2v9oJ59thSCWSiuWQvo5dAptR9r69ut1aaYcyKnrS-_tynJ-KAR9JNtfdB_besn2xqErrYrrv7Dj6naSKfnwXcbSNXDo6eks_W0WJp8Ilv0FP1zEb8ANdChxw
CitedBy_id crossref_primary_10_1016_j_est_2025_115350
crossref_primary_10_3390_en15124227
crossref_primary_10_3390_pr11082449
crossref_primary_10_1016_j_apenergy_2024_124086
crossref_primary_10_1016_j_enconman_2018_10_082
crossref_primary_10_1016_j_geits_2024_100192
crossref_primary_10_1016_j_apenergy_2024_125130
crossref_primary_10_1016_j_energy_2020_116944
crossref_primary_10_1109_ACCESS_2021_3102607
crossref_primary_10_1016_j_est_2023_109071
crossref_primary_10_3390_vehicles4010001
crossref_primary_10_1002_smtd_202301021
crossref_primary_10_1016_j_est_2023_107083
crossref_primary_10_1146_annurev_control_053018_023643
crossref_primary_10_1016_j_apenergy_2023_122225
crossref_primary_10_1016_j_est_2023_109146
crossref_primary_10_1016_j_asej_2023_102429
crossref_primary_10_1016_j_geits_2024_100236
crossref_primary_10_3390_app10196637
crossref_primary_10_1016_j_energy_2024_132161
crossref_primary_10_1007_s43236_022_00523_w
crossref_primary_10_1016_j_est_2022_104538
crossref_primary_10_1002_er_6823
crossref_primary_10_1016_j_apenergy_2021_118114
crossref_primary_10_1016_j_energy_2022_125736
crossref_primary_10_3390_pr12091806
crossref_primary_10_1002_er_7874
crossref_primary_10_1016_j_est_2022_106049
crossref_primary_10_1016_j_est_2021_102387
crossref_primary_10_33961_jecst_2024_00724
crossref_primary_10_3390_asi4040078
crossref_primary_10_3390_wevj12030108
crossref_primary_10_1016_j_surfin_2023_102744
crossref_primary_10_3390_sym17030321
crossref_primary_10_1016_j_energy_2024_130764
crossref_primary_10_1109_ACCESS_2021_3068776
crossref_primary_10_3390_electronics9101737
crossref_primary_10_1016_j_est_2023_108041
crossref_primary_10_1016_j_jclepro_2022_132742
crossref_primary_10_1016_j_jpowsour_2019_05_092
crossref_primary_10_1016_j_est_2022_104628
crossref_primary_10_1252_jcej_20we039
crossref_primary_10_1007_s42154_023_00271_y
crossref_primary_10_1016_j_apenergy_2022_119179
crossref_primary_10_1016_j_est_2023_107159
crossref_primary_10_3390_batteries8070069
crossref_primary_10_3390_pr12102166
crossref_primary_10_3390_en16073002
crossref_primary_10_1002_ese3_478
crossref_primary_10_1016_j_apenergy_2022_119789
crossref_primary_10_1016_j_energy_2019_01_054
crossref_primary_10_1016_j_rser_2019_109334
crossref_primary_10_1016_j_jiec_2018_11_034
crossref_primary_10_1149_1945_7111_acdf8a
crossref_primary_10_1016_j_apenergy_2020_115504
crossref_primary_10_1002_batt_202300152
crossref_primary_10_1021_acsomega_3c00266
crossref_primary_10_1016_j_rser_2023_113978
crossref_primary_10_20964_2020_02_34
crossref_primary_10_3390_en12193621
crossref_primary_10_1016_j_apenergy_2018_08_022
crossref_primary_10_1016_j_est_2024_111283
crossref_primary_10_1016_j_est_2024_114078
crossref_primary_10_1002_ese3_362
crossref_primary_10_1109_ACCESS_2019_2959396
crossref_primary_10_1088_1742_6596_2656_1_012023
crossref_primary_10_1002_er_7053
crossref_primary_10_1016_j_energy_2021_121754
crossref_primary_10_1016_j_jpowsour_2018_06_034
crossref_primary_10_1016_j_jpowsour_2021_229894
crossref_primary_10_1109_ACCESS_2020_2993930
crossref_primary_10_1016_j_est_2023_106930
crossref_primary_10_1016_j_rico_2022_100168
crossref_primary_10_1016_j_est_2020_101489
crossref_primary_10_1109_TVT_2021_3051655
crossref_primary_10_1016_j_est_2021_102440
crossref_primary_10_1016_j_apenergy_2022_120307
crossref_primary_10_1088_1742_6596_1754_1_012069
crossref_primary_10_1109_TIE_2020_3028799
crossref_primary_10_1016_j_energy_2019_03_176
crossref_primary_10_1109_ACCESS_2018_2837036
crossref_primary_10_1109_TIA_2023_3258927
crossref_primary_10_1016_j_est_2024_112107
crossref_primary_10_1016_j_est_2024_114446
crossref_primary_10_1002_ese3_694
crossref_primary_10_3390_batteries9020131
crossref_primary_10_34133_2022_9898147
crossref_primary_10_1007_s40435_023_01329_9
crossref_primary_10_1016_j_est_2021_102728
crossref_primary_10_3390_inventions8030074
crossref_primary_10_1016_j_est_2020_101459
crossref_primary_10_1002_cta_4064
Cites_doi 10.1016/j.jpowsour.2014.07.107
10.1016/j.apenergy.2008.11.021
10.1016/j.jpowsour.2015.11.087
10.1016/j.energy.2013.10.027
10.1016/j.apenergy.2015.03.110
10.1016/j.apenergy.2017.03.079
10.1016/j.apenergy.2016.05.065
10.1016/j.apenergy.2016.02.141
10.1016/j.jpowsour.2017.01.054
10.1149/1.3414008
10.1016/j.jpowsour.2015.04.148
10.1016/j.jpowsour.2017.11.068
10.1016/j.energy.2015.07.120
10.1016/j.apenergy.2015.09.092
10.1016/j.apenergy.2016.01.010
10.1016/j.apenergy.2013.04.005
10.1016/j.jpowsour.2015.10.011
10.1016/j.apenergy.2016.06.031
10.1016/j.energy.2016.05.047
10.1109/TVT.2011.2158565
10.2172/889934
10.1016/j.apenergy.2015.04.062
10.1016/j.jpowsour.2015.01.154
10.1016/j.apenergy.2016.05.081
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright_xml – notice: 2018 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2018.02.117
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
EndPage 451
ExternalDocumentID 10_1016_j_apenergy_2018_02_117
S0306261918302484
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
AAHBH
AAQXK
AATTM
AAXKI
AAYOK
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
SSH
WUQ
ZY4
7S9
L.6
ID FETCH-LOGICAL-c450t-29d9d613ef03f19a56fc1945a03f6080a53c506ec5def4f62ccc5212431391c53
IEDL.DBID .~1
ISSN 0306-2619
IngestDate Fri Jul 11 08:24:20 EDT 2025
Tue Jul 01 02:53:23 EDT 2025
Thu Apr 24 22:55:48 EDT 2025
Fri Feb 23 02:46:54 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Lithium-ion battery
Multi-time-scale observer
Peak power
Multi-constraints
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c450t-29d9d613ef03f19a56fc1945a03f6080a53c506ec5def4f62ccc5212431391c53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5722-2673
0000-0001-9312-9089
PQID 2045836679
PQPubID 24069
PageCount 10
ParticipantIDs proquest_miscellaneous_2045836679
crossref_citationtrail_10_1016_j_apenergy_2018_02_117
crossref_primary_10_1016_j_apenergy_2018_02_117
elsevier_sciencedirect_doi_10_1016_j_apenergy_2018_02_117
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-04-15
PublicationDateYYYYMMDD 2018-04-15
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-15
  day: 15
PublicationDecade 2010
PublicationTitle Applied energy
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Mamadou, Delaille, Lemaire-Potteau (b0010) 2010; 25
Zhang, Wang, Liu (b0120) 2017; 343
Feng, Yang, Zhao (b0075) 2015; 281
Liu, Ouyang, Lu (b0100) 2015; 149
Li, Wang, Gong (b0090) 2016; 109
Ng, Moo, Chen (b0085) 2009; 86
Lin, Mu, Xiong (b0080) 2016; 166
Lin, Mu, Xiong (b0025) 2017; 194
Wang, Zhang, Chen (b0055) 2016; 305
Zhang, Wang, Liu (b0105) 2018; 376
Zhang, Shi, Ma (b0030) 2015; 289
Dong, Chen, Wei (b0050) 2016; 301
Wang, Chen, Zhang (b0095) 2017; 194
He, Zhang, Xiong (b0040) 2015; 151
Burgos-Mellado, Orchard, Kazerani (b0065) 2016; 161
Tang, Liu, Lv (b0110) 2017; 204
Delgarm, Sajadi, Kowsary (b0115) 2016; 170
Liu, Wu, Zhang (b0035) 2014; 270
Zheng, Zhu, Wang (b0045) 2016; 178
Stockar, Marano, Canova (b0020) 2011; 60
Doughty DH, Crafts CC. Electrical energy storage system abuse test manual for electric and hybrid electric vehicle applications; 2006.
Vikström, Davidsson, Höök (b0005) 2013; 110
Dong, Zhang, Zhang (b0015) 2015; 90
Xiong, Sun, He (b0070) 2013; 63
Feng (10.1016/j.apenergy.2018.02.117_b0075) 2015; 281
Ng (10.1016/j.apenergy.2018.02.117_b0085) 2009; 86
Liu (10.1016/j.apenergy.2018.02.117_b0035) 2014; 270
Burgos-Mellado (10.1016/j.apenergy.2018.02.117_b0065) 2016; 161
Lin (10.1016/j.apenergy.2018.02.117_b0080) 2016; 166
Wang (10.1016/j.apenergy.2018.02.117_b0095) 2017; 194
Dong (10.1016/j.apenergy.2018.02.117_b0050) 2016; 301
Dong (10.1016/j.apenergy.2018.02.117_b0015) 2015; 90
Stockar (10.1016/j.apenergy.2018.02.117_b0020) 2011; 60
Zheng (10.1016/j.apenergy.2018.02.117_b0045) 2016; 178
Xiong (10.1016/j.apenergy.2018.02.117_b0070) 2013; 63
Liu (10.1016/j.apenergy.2018.02.117_b0100) 2015; 149
Vikström (10.1016/j.apenergy.2018.02.117_b0005) 2013; 110
10.1016/j.apenergy.2018.02.117_b0060
Wang (10.1016/j.apenergy.2018.02.117_b0055) 2016; 305
Delgarm (10.1016/j.apenergy.2018.02.117_b0115) 2016; 170
Lin (10.1016/j.apenergy.2018.02.117_b0025) 2017; 194
Li (10.1016/j.apenergy.2018.02.117_b0090) 2016; 109
Mamadou (10.1016/j.apenergy.2018.02.117_b0010) 2010; 25
Tang (10.1016/j.apenergy.2018.02.117_b0110) 2017; 204
Zhang (10.1016/j.apenergy.2018.02.117_b0030) 2015; 289
Zhang (10.1016/j.apenergy.2018.02.117_b0120) 2017; 343
He (10.1016/j.apenergy.2018.02.117_b0040) 2015; 151
Zhang (10.1016/j.apenergy.2018.02.117_b0105) 2018; 376
References_xml – volume: 109
  start-page: 933
  year: 2016
  end-page: 946
  ident: b0090
  article-title: A combination Kalman filter approach for state of charge estimation of lithium-ion battery considering model uncertainty
  publication-title: Energy
– volume: 63
  start-page: 295
  year: 2013
  end-page: 308
  ident: b0070
  article-title: A data-driven adaptive state of charge and power capability joint estimator of lithium-ion polymer battery used in electric vehicles
  publication-title: Energy
– volume: 281
  start-page: 192
  year: 2015
  end-page: 203
  ident: b0075
  article-title: Online identification of lithium-ion battery parameters based on an improved equivalent-circuit model and its implementation on battery state-of-power prediction
  publication-title: J Power Sources
– volume: 166
  start-page: 76
  year: 2016
  end-page: 83
  ident: b0080
  article-title: A novel multi-model probability battery state of charge estimation approach for electric vehicles using H-infinity algorithm
  publication-title: Appl Energy
– volume: 90
  start-page: 879
  year: 2015
  end-page: 888
  ident: b0015
  article-title: A method for state of energy estimation of lithium-ion batteries based on neural network model
  publication-title: Energy
– volume: 376
  start-page: 191
  year: 2018
  end-page: 199
  ident: b0105
  article-title: A novel approach of battery pack state of health estimation using artificial intelligence optimization algorithm
  publication-title: J Power Sources
– volume: 270
  start-page: 151
  year: 2014
  end-page: 157
  ident: b0035
  article-title: A method for state of energy estimation of lithium-ion batteries at dynamic currents and temperatures
  publication-title: J Power Sources
– volume: 86
  start-page: 1506
  year: 2009
  end-page: 1511
  ident: b0085
  article-title: Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries
  publication-title: Appl Energy
– volume: 149
  start-page: 297
  year: 2015
  end-page: 314
  ident: b0100
  article-title: A highly accurate predictive-adaptive method for lithium-ion battery remaining discharge energy prediction in electric vehicle applications
  publication-title: Appl Energy
– volume: 25
  start-page: 105
  year: 2010
  end-page: 112
  ident: b0010
  article-title: The state-of-energy: a new criterion for the energetic performances evaluation of electrochemical storage devices
  publication-title: ECS Trans
– volume: 301
  start-page: 277
  year: 2016
  end-page: 286
  ident: b0050
  article-title: An online model-based method for state of energy estimation of lithium-ion batteries using dual filters
  publication-title: J Power Sources
– volume: 60
  start-page: 2949
  year: 2011
  end-page: 2962
  ident: b0020
  article-title: Energy-optimal control of plug-in hybrid electric vehicles for real-world driving cycles
  publication-title: IEEE Trans Veh Technol
– volume: 289
  start-page: 50
  year: 2015
  end-page: 62
  ident: b0030
  article-title: Adaptive unscented Kalman filter based state of energy and power capability estimation approach for lithium-ion battery
  publication-title: J Power Sources
– volume: 170
  start-page: 293
  year: 2016
  end-page: 303
  ident: b0115
  article-title: Multi-objective optimization of the building energy performance: a simulation-based approach by means of particle swarm optimization (PSO)
  publication-title: Appl Energy
– volume: 305
  start-page: 80
  year: 2016
  end-page: 88
  ident: b0055
  article-title: An adaptive remaining energy prediction approach for lithium-ion batteries in electric vehicles
  publication-title: J Power Sources
– volume: 343
  start-page: 216
  year: 2017
  end-page: 225
  ident: b0120
  article-title: A novel approach of remaining discharge energy prediction for large format lithium-ion battery pack
  publication-title: J Power Sources
– volume: 110
  start-page: 252
  year: 2013
  end-page: 266
  ident: b0005
  article-title: Lithium availability and future production outlooks
  publication-title: Appl Energy
– volume: 178
  start-page: 1
  year: 2016
  end-page: 8
  ident: b0045
  article-title: Novel methods for estimating lithium-ion battery state of energy and maximum available energy
  publication-title: Appl Energy
– reference: Doughty DH, Crafts CC. Electrical energy storage system abuse test manual for electric and hybrid electric vehicle applications; 2006.
– volume: 151
  start-page: 41
  year: 2015
  end-page: 48
  ident: b0040
  article-title: A novel Gaussian model based battery state estimation approach: state-of-Energy
  publication-title: Appl Energy
– volume: 194
  start-page: 688
  year: 2017
  end-page: 695
  ident: b0095
  article-title: On-line remaining energy prediction: A case study in embedded battery management system
  publication-title: Appl Energy
– volume: 161
  start-page: 349
  year: 2016
  end-page: 363
  ident: b0065
  article-title: Particle-filtering-based estimation of maximum available power state in Lithium-Ion batteries
  publication-title: Appl Energy
– volume: 204
  start-page: 1275
  year: 2017
  end-page: 1283
  ident: b0110
  article-title: Observer based battery SOC estimation: Using multi-gain-switching approach
  publication-title: Appl Energy
– volume: 194
  start-page: 560
  year: 2017
  end-page: 568
  ident: b0025
  article-title: Multi-model probabilities based state fusion estimation method of lithium-ion battery for electric vehicles: state-of-energy
  publication-title: Appl Energy
– volume: 270
  start-page: 151
  year: 2014
  ident: 10.1016/j.apenergy.2018.02.117_b0035
  article-title: A method for state of energy estimation of lithium-ion batteries at dynamic currents and temperatures
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2014.07.107
– volume: 86
  start-page: 1506
  issue: 9
  year: 2009
  ident: 10.1016/j.apenergy.2018.02.117_b0085
  article-title: Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2008.11.021
– volume: 305
  start-page: 80
  year: 2016
  ident: 10.1016/j.apenergy.2018.02.117_b0055
  article-title: An adaptive remaining energy prediction approach for lithium-ion batteries in electric vehicles
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2015.11.087
– volume: 63
  start-page: 295
  year: 2013
  ident: 10.1016/j.apenergy.2018.02.117_b0070
  article-title: A data-driven adaptive state of charge and power capability joint estimator of lithium-ion polymer battery used in electric vehicles
  publication-title: Energy
  doi: 10.1016/j.energy.2013.10.027
– volume: 149
  start-page: 297
  year: 2015
  ident: 10.1016/j.apenergy.2018.02.117_b0100
  article-title: A highly accurate predictive-adaptive method for lithium-ion battery remaining discharge energy prediction in electric vehicle applications
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.03.110
– volume: 204
  start-page: 1275
  year: 2017
  ident: 10.1016/j.apenergy.2018.02.117_b0110
  article-title: Observer based battery SOC estimation: Using multi-gain-switching approach
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.03.079
– volume: 194
  start-page: 560
  year: 2017
  ident: 10.1016/j.apenergy.2018.02.117_b0025
  article-title: Multi-model probabilities based state fusion estimation method of lithium-ion battery for electric vehicles: state-of-energy
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.05.065
– volume: 170
  start-page: 293
  year: 2016
  ident: 10.1016/j.apenergy.2018.02.117_b0115
  article-title: Multi-objective optimization of the building energy performance: a simulation-based approach by means of particle swarm optimization (PSO)
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.02.141
– volume: 343
  start-page: 216
  year: 2017
  ident: 10.1016/j.apenergy.2018.02.117_b0120
  article-title: A novel approach of remaining discharge energy prediction for large format lithium-ion battery pack
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2017.01.054
– volume: 25
  start-page: 105
  issue: 35
  year: 2010
  ident: 10.1016/j.apenergy.2018.02.117_b0010
  article-title: The state-of-energy: a new criterion for the energetic performances evaluation of electrochemical storage devices
  publication-title: ECS Trans
  doi: 10.1149/1.3414008
– volume: 289
  start-page: 50
  year: 2015
  ident: 10.1016/j.apenergy.2018.02.117_b0030
  article-title: Adaptive unscented Kalman filter based state of energy and power capability estimation approach for lithium-ion battery
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2015.04.148
– volume: 376
  start-page: 191
  year: 2018
  ident: 10.1016/j.apenergy.2018.02.117_b0105
  article-title: A novel approach of battery pack state of health estimation using artificial intelligence optimization algorithm
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2017.11.068
– volume: 90
  start-page: 879
  year: 2015
  ident: 10.1016/j.apenergy.2018.02.117_b0015
  article-title: A method for state of energy estimation of lithium-ion batteries based on neural network model
  publication-title: Energy
  doi: 10.1016/j.energy.2015.07.120
– volume: 161
  start-page: 349
  year: 2016
  ident: 10.1016/j.apenergy.2018.02.117_b0065
  article-title: Particle-filtering-based estimation of maximum available power state in Lithium-Ion batteries
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.09.092
– volume: 166
  start-page: 76
  year: 2016
  ident: 10.1016/j.apenergy.2018.02.117_b0080
  article-title: A novel multi-model probability battery state of charge estimation approach for electric vehicles using H-infinity algorithm
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.01.010
– volume: 110
  start-page: 252
  year: 2013
  ident: 10.1016/j.apenergy.2018.02.117_b0005
  article-title: Lithium availability and future production outlooks
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2013.04.005
– volume: 301
  start-page: 277
  year: 2016
  ident: 10.1016/j.apenergy.2018.02.117_b0050
  article-title: An online model-based method for state of energy estimation of lithium-ion batteries using dual filters
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2015.10.011
– volume: 178
  start-page: 1
  year: 2016
  ident: 10.1016/j.apenergy.2018.02.117_b0045
  article-title: Novel methods for estimating lithium-ion battery state of energy and maximum available energy
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.06.031
– volume: 109
  start-page: 933
  year: 2016
  ident: 10.1016/j.apenergy.2018.02.117_b0090
  article-title: A combination Kalman filter approach for state of charge estimation of lithium-ion battery considering model uncertainty
  publication-title: Energy
  doi: 10.1016/j.energy.2016.05.047
– volume: 60
  start-page: 2949
  issue: 7
  year: 2011
  ident: 10.1016/j.apenergy.2018.02.117_b0020
  article-title: Energy-optimal control of plug-in hybrid electric vehicles for real-world driving cycles
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2011.2158565
– ident: 10.1016/j.apenergy.2018.02.117_b0060
  doi: 10.2172/889934
– volume: 151
  start-page: 41
  year: 2015
  ident: 10.1016/j.apenergy.2018.02.117_b0040
  article-title: A novel Gaussian model based battery state estimation approach: state-of-Energy
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.04.062
– volume: 281
  start-page: 192
  year: 2015
  ident: 10.1016/j.apenergy.2018.02.117_b0075
  article-title: Online identification of lithium-ion battery parameters based on an improved equivalent-circuit model and its implementation on battery state-of-power prediction
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2015.01.154
– volume: 194
  start-page: 688
  year: 2017
  ident: 10.1016/j.apenergy.2018.02.117_b0095
  article-title: On-line remaining energy prediction: A case study in embedded battery management system
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.05.081
SSID ssj0002120
Score 2.532232
Snippet •The equivalent circuit model is estimated for battery states estimation.•Battery peak current is analyzed by multi-constrained conditions.•A novel...
The battery state of energy and state of power are two important parameters in battery usage. The state of energy represents the residual energy storage in...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 442
SubjectTerms electric power
energy
lithium batteries
Lithium-ion battery
methodology
Multi-constraints
Multi-time-scale observer
Peak power
prediction
temperature
Title A novel method for lithium-ion battery state of energy and state of power estimation based on multi-time-scale filter
URI https://dx.doi.org/10.1016/j.apenergy.2018.02.117
https://www.proquest.com/docview/2045836679
Volume 216
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA-iFz2IX8P5RQSv2Zo26drjGBtT0YsOdgttmuDG7IbbBC_-7b6Xtm6KsIO3JiQl5CXv_dr33u8RcuNlEQ-N9pin_YyJNE1ZDG3mCyul1Rh6jP87Hh7D_kDcDeVwi3SqXBgMqyx1f6HTnbYue5rlbjZno1HzCdEu4n-OFFYiQk5QIVp4yhufqzAPv6RmhMEMR69lCY8bycy4DDsM8YqQu5O7wmV_GqhfqtrZn94B2S-BI20XazskWyY_IntrdIJHpNZdZa3B0PLazo_Jsk3z6buZ0KJeNAWgSgF-v4yWrwzkQlNHsvlBXXYRnVparJcmebbqm2E9NYqkHEW2I0UDmFF4cEGJDKvUszmI3FA7Qh_8CRn0us-dPivrLTAtpLdgfpzFGZh3Y73A8jiRodU8FjKBZgjIMpGBlh5IUmbGChv6WmtM_QUMEsRcy6BGtvNpbk4JTSOuOSZjWRmIFLSCAd3gt3QEn3waQFudyGqTlS7JyLEmxkRVUWdjVQlHoXCU5yMveZ00v-fNCjqOjTPiSobqx8FSYDM2zr2uhK7g1qErJcnNdDlXvvM3h2ErPvvH-8_JLrbQOcXlBdlevC3NJWCcRXrlDvEV2Wnf3vcfvwCupv2R
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4hOBQOiFIQz9aVytFs4rWzyYEDakFLeVwAiZtJHFtdtM2u2N1WXPhT_EFmHKcLqBIHxC124mjkmcyMMzPfAHyLyjROrIl4ZETJZVEUPMMxF9Ip5QylHtP_jtOzpHspf16pqxl4aGphKK0y6P5ap3ttHWZaYTdbw16vdU7eLvn_MUFYyVSGzMpje_cXz22jvaMfyOQdIQ4PLr53eWgtwI1U0ZiLrMxKtGTWRW0XZ7lKnMHjvMpxmKATlau2URESrUrrpEuEMYaqXNHctrPYUKsI1PtzEtUFtU3YvZ_mlYiABYnUcSLvSVnyzW4-tL6kj3LKUgILjX2ntP9axBe2wRu8wyVYDJ4q26834yPM2GoZFp7gFy7D6sG0TA4fDXpi9Akm-6wa_LF9VjeoZugZM_T3f_UmvzkKAis8qucd8-VMbOBYTS_Lq3I6N6QGboxQQOrySkYWt2R44bMgOc5bPkIZs8z1KOi_ApfvwoVVmK0GlV0DVqSxian6y6m2LFANWVRGomNSPGMa9BLXQTWbrE1AP6cmHH3dpLnd6IY5mpijI0FA6OvQ-rduWON_vLoia3ion0myRiP16tqvDdM1fuYUu8krO5iMtPAB7iTpZBtveP8X-NC9OD3RJ0dnx5swT3coMharLZgd307sNjpY4-KzF2gG1-_9BT0CCYw4KA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+method+for+lithium-ion+battery+state+of+energy+and+state+of+power+estimation+based+on+multi-time-scale+filter&rft.jtitle=Applied+energy&rft.au=Zhang%2C+Xu&rft.au=Wang%2C+Yujie&rft.au=Wu%2C+Ji&rft.au=Chen%2C+Zonghai&rft.date=2018-04-15&rft.issn=0306-2619&rft.volume=216&rft.spage=442&rft.epage=451&rft_id=info:doi/10.1016%2Fj.apenergy.2018.02.117&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apenergy_2018_02_117
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon