A novel method for lithium-ion battery state of energy and state of power estimation based on multi-time-scale filter
•The equivalent circuit model is estimated for battery states estimation.•Battery peak current is analyzed by multi-constrained conditions.•A novel multi-time-scale observer is used to estimate SOE and SOP concurrently.•The accuracy of the proposed method is verified under different conditions. The...
Saved in:
Published in | Applied energy Vol. 216; pp. 442 - 451 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.04.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The equivalent circuit model is estimated for battery states estimation.•Battery peak current is analyzed by multi-constrained conditions.•A novel multi-time-scale observer is used to estimate SOE and SOP concurrently.•The accuracy of the proposed method is verified under different conditions.
The battery state of energy and state of power are two important parameters in battery usage. The state of energy represents the residual energy storage in battery and the state of power represents the ability of battery discharge/charge. To estimate the two states with high accuracy, the characteristics of battery maximum available capacity and open-circuit voltage are analyzed under different working temperatures. Meanwhile, the equivalent circuit model of the battery is employed to embody the battery dynamic performance. To improve the accuracy of the battery states estimation, the multi-time-scale filter is applied in battery model parameters identification and battery states prediction. Besides, the state of power is analyzed by multi-constrained conditions to ensure battery work with safety. The proposed approach is verified by experiments operated on lithium-ion battery under new European driving cycle profiles and dynamic test profiles. The experimental results indicate the proposed method can estimate the battery states with high accuracy for actual application. In addition, the factors affecting the change of battery states are analyzed. |
---|---|
AbstractList | •The equivalent circuit model is estimated for battery states estimation.•Battery peak current is analyzed by multi-constrained conditions.•A novel multi-time-scale observer is used to estimate SOE and SOP concurrently.•The accuracy of the proposed method is verified under different conditions.
The battery state of energy and state of power are two important parameters in battery usage. The state of energy represents the residual energy storage in battery and the state of power represents the ability of battery discharge/charge. To estimate the two states with high accuracy, the characteristics of battery maximum available capacity and open-circuit voltage are analyzed under different working temperatures. Meanwhile, the equivalent circuit model of the battery is employed to embody the battery dynamic performance. To improve the accuracy of the battery states estimation, the multi-time-scale filter is applied in battery model parameters identification and battery states prediction. Besides, the state of power is analyzed by multi-constrained conditions to ensure battery work with safety. The proposed approach is verified by experiments operated on lithium-ion battery under new European driving cycle profiles and dynamic test profiles. The experimental results indicate the proposed method can estimate the battery states with high accuracy for actual application. In addition, the factors affecting the change of battery states are analyzed. The battery state of energy and state of power are two important parameters in battery usage. The state of energy represents the residual energy storage in battery and the state of power represents the ability of battery discharge/charge. To estimate the two states with high accuracy, the characteristics of battery maximum available capacity and open-circuit voltage are analyzed under different working temperatures. Meanwhile, the equivalent circuit model of the battery is employed to embody the battery dynamic performance. To improve the accuracy of the battery states estimation, the multi-time-scale filter is applied in battery model parameters identification and battery states prediction. Besides, the state of power is analyzed by multi-constrained conditions to ensure battery work with safety. The proposed approach is verified by experiments operated on lithium-ion battery under new European driving cycle profiles and dynamic test profiles. The experimental results indicate the proposed method can estimate the battery states with high accuracy for actual application. In addition, the factors affecting the change of battery states are analyzed. |
Author | Chen, Zonghai Wu, Ji Wang, Yujie Zhang, Xu |
Author_xml | – sequence: 1 givenname: Xu surname: Zhang fullname: Zhang, Xu – sequence: 2 givenname: Yujie orcidid: 0000-0001-5722-2673 surname: Wang fullname: Wang, Yujie – sequence: 3 givenname: Ji surname: Wu fullname: Wu, Ji – sequence: 4 givenname: Zonghai orcidid: 0000-0001-9312-9089 surname: Chen fullname: Chen, Zonghai email: chenzh@ustc.edu.cn |
BookMark | eNqFkE1r3DAQhkVJoJuPv1B07MXujGxpbeihIfQLAr20Z6HKo0SLbG0lOWX_fZW6pdBLTpKGed7RPBfsbIkLMfYKoUVA9ebQmiMtlO5PrQAcWhAt4v4F2-GwF82IOJyxHXSgGqFwfMkucj4AgEABO7be8CU-UuAzlYc4cRcTD748-HVufFz4d1MKpRPPxRTi0fFtEjfL9K92jD8pccrFz6ZsVKaJ18u8huKbWqcmWxOIOx9q3hU7dyZkuv5zXrJvH95_vf3U3H35-Pn25q6xvYTSiHEaJ4UdOegcjkYqZ3HspalPBQMY2VkJiqycyPVOCWutrHv1HXYjWtldstdb7jHFH2v9oJ59thSCWSiuWQvo5dAptR9r69ut1aaYcyKnrS-_tynJ-KAR9JNtfdB_besn2xqErrYrrv7Dj6naSKfnwXcbSNXDo6eks_W0WJp8Ilv0FP1zEb8ANdChxw |
CitedBy_id | crossref_primary_10_1016_j_est_2025_115350 crossref_primary_10_3390_en15124227 crossref_primary_10_3390_pr11082449 crossref_primary_10_1016_j_apenergy_2024_124086 crossref_primary_10_1016_j_enconman_2018_10_082 crossref_primary_10_1016_j_geits_2024_100192 crossref_primary_10_1016_j_apenergy_2024_125130 crossref_primary_10_1016_j_energy_2020_116944 crossref_primary_10_1109_ACCESS_2021_3102607 crossref_primary_10_1016_j_est_2023_109071 crossref_primary_10_3390_vehicles4010001 crossref_primary_10_1002_smtd_202301021 crossref_primary_10_1016_j_est_2023_107083 crossref_primary_10_1146_annurev_control_053018_023643 crossref_primary_10_1016_j_apenergy_2023_122225 crossref_primary_10_1016_j_est_2023_109146 crossref_primary_10_1016_j_asej_2023_102429 crossref_primary_10_1016_j_geits_2024_100236 crossref_primary_10_3390_app10196637 crossref_primary_10_1016_j_energy_2024_132161 crossref_primary_10_1007_s43236_022_00523_w crossref_primary_10_1016_j_est_2022_104538 crossref_primary_10_1002_er_6823 crossref_primary_10_1016_j_apenergy_2021_118114 crossref_primary_10_1016_j_energy_2022_125736 crossref_primary_10_3390_pr12091806 crossref_primary_10_1002_er_7874 crossref_primary_10_1016_j_est_2022_106049 crossref_primary_10_1016_j_est_2021_102387 crossref_primary_10_33961_jecst_2024_00724 crossref_primary_10_3390_asi4040078 crossref_primary_10_3390_wevj12030108 crossref_primary_10_1016_j_surfin_2023_102744 crossref_primary_10_3390_sym17030321 crossref_primary_10_1016_j_energy_2024_130764 crossref_primary_10_1109_ACCESS_2021_3068776 crossref_primary_10_3390_electronics9101737 crossref_primary_10_1016_j_est_2023_108041 crossref_primary_10_1016_j_jclepro_2022_132742 crossref_primary_10_1016_j_jpowsour_2019_05_092 crossref_primary_10_1016_j_est_2022_104628 crossref_primary_10_1252_jcej_20we039 crossref_primary_10_1007_s42154_023_00271_y crossref_primary_10_1016_j_apenergy_2022_119179 crossref_primary_10_1016_j_est_2023_107159 crossref_primary_10_3390_batteries8070069 crossref_primary_10_3390_pr12102166 crossref_primary_10_3390_en16073002 crossref_primary_10_1002_ese3_478 crossref_primary_10_1016_j_apenergy_2022_119789 crossref_primary_10_1016_j_energy_2019_01_054 crossref_primary_10_1016_j_rser_2019_109334 crossref_primary_10_1016_j_jiec_2018_11_034 crossref_primary_10_1149_1945_7111_acdf8a crossref_primary_10_1016_j_apenergy_2020_115504 crossref_primary_10_1002_batt_202300152 crossref_primary_10_1021_acsomega_3c00266 crossref_primary_10_1016_j_rser_2023_113978 crossref_primary_10_20964_2020_02_34 crossref_primary_10_3390_en12193621 crossref_primary_10_1016_j_apenergy_2018_08_022 crossref_primary_10_1016_j_est_2024_111283 crossref_primary_10_1016_j_est_2024_114078 crossref_primary_10_1002_ese3_362 crossref_primary_10_1109_ACCESS_2019_2959396 crossref_primary_10_1088_1742_6596_2656_1_012023 crossref_primary_10_1002_er_7053 crossref_primary_10_1016_j_energy_2021_121754 crossref_primary_10_1016_j_jpowsour_2018_06_034 crossref_primary_10_1016_j_jpowsour_2021_229894 crossref_primary_10_1109_ACCESS_2020_2993930 crossref_primary_10_1016_j_est_2023_106930 crossref_primary_10_1016_j_rico_2022_100168 crossref_primary_10_1016_j_est_2020_101489 crossref_primary_10_1109_TVT_2021_3051655 crossref_primary_10_1016_j_est_2021_102440 crossref_primary_10_1016_j_apenergy_2022_120307 crossref_primary_10_1088_1742_6596_1754_1_012069 crossref_primary_10_1109_TIE_2020_3028799 crossref_primary_10_1016_j_energy_2019_03_176 crossref_primary_10_1109_ACCESS_2018_2837036 crossref_primary_10_1109_TIA_2023_3258927 crossref_primary_10_1016_j_est_2024_112107 crossref_primary_10_1016_j_est_2024_114446 crossref_primary_10_1002_ese3_694 crossref_primary_10_3390_batteries9020131 crossref_primary_10_34133_2022_9898147 crossref_primary_10_1007_s40435_023_01329_9 crossref_primary_10_1016_j_est_2021_102728 crossref_primary_10_3390_inventions8030074 crossref_primary_10_1016_j_est_2020_101459 crossref_primary_10_1002_cta_4064 |
Cites_doi | 10.1016/j.jpowsour.2014.07.107 10.1016/j.apenergy.2008.11.021 10.1016/j.jpowsour.2015.11.087 10.1016/j.energy.2013.10.027 10.1016/j.apenergy.2015.03.110 10.1016/j.apenergy.2017.03.079 10.1016/j.apenergy.2016.05.065 10.1016/j.apenergy.2016.02.141 10.1016/j.jpowsour.2017.01.054 10.1149/1.3414008 10.1016/j.jpowsour.2015.04.148 10.1016/j.jpowsour.2017.11.068 10.1016/j.energy.2015.07.120 10.1016/j.apenergy.2015.09.092 10.1016/j.apenergy.2016.01.010 10.1016/j.apenergy.2013.04.005 10.1016/j.jpowsour.2015.10.011 10.1016/j.apenergy.2016.06.031 10.1016/j.energy.2016.05.047 10.1109/TVT.2011.2158565 10.2172/889934 10.1016/j.apenergy.2015.04.062 10.1016/j.jpowsour.2015.01.154 10.1016/j.apenergy.2016.05.081 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd |
Copyright_xml | – notice: 2018 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.apenergy.2018.02.117 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1872-9118 |
EndPage | 451 |
ExternalDocumentID | 10_1016_j_apenergy_2018_02_117 S0306261918302484 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- AAHBH AAQXK AATTM AAXKI AAYOK AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW SSH WUQ ZY4 7S9 L.6 |
ID | FETCH-LOGICAL-c450t-29d9d613ef03f19a56fc1945a03f6080a53c506ec5def4f62ccc5212431391c53 |
IEDL.DBID | .~1 |
ISSN | 0306-2619 |
IngestDate | Fri Jul 11 08:24:20 EDT 2025 Tue Jul 01 02:53:23 EDT 2025 Thu Apr 24 22:55:48 EDT 2025 Fri Feb 23 02:46:54 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Lithium-ion battery Multi-time-scale observer Peak power Multi-constraints |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c450t-29d9d613ef03f19a56fc1945a03f6080a53c506ec5def4f62ccc5212431391c53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5722-2673 0000-0001-9312-9089 |
PQID | 2045836679 |
PQPubID | 24069 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2045836679 crossref_citationtrail_10_1016_j_apenergy_2018_02_117 crossref_primary_10_1016_j_apenergy_2018_02_117 elsevier_sciencedirect_doi_10_1016_j_apenergy_2018_02_117 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-04-15 |
PublicationDateYYYYMMDD | 2018-04-15 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Applied energy |
PublicationYear | 2018 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Mamadou, Delaille, Lemaire-Potteau (b0010) 2010; 25 Zhang, Wang, Liu (b0120) 2017; 343 Feng, Yang, Zhao (b0075) 2015; 281 Liu, Ouyang, Lu (b0100) 2015; 149 Li, Wang, Gong (b0090) 2016; 109 Ng, Moo, Chen (b0085) 2009; 86 Lin, Mu, Xiong (b0080) 2016; 166 Lin, Mu, Xiong (b0025) 2017; 194 Wang, Zhang, Chen (b0055) 2016; 305 Zhang, Wang, Liu (b0105) 2018; 376 Zhang, Shi, Ma (b0030) 2015; 289 Dong, Chen, Wei (b0050) 2016; 301 Wang, Chen, Zhang (b0095) 2017; 194 He, Zhang, Xiong (b0040) 2015; 151 Burgos-Mellado, Orchard, Kazerani (b0065) 2016; 161 Tang, Liu, Lv (b0110) 2017; 204 Delgarm, Sajadi, Kowsary (b0115) 2016; 170 Liu, Wu, Zhang (b0035) 2014; 270 Zheng, Zhu, Wang (b0045) 2016; 178 Stockar, Marano, Canova (b0020) 2011; 60 Doughty DH, Crafts CC. Electrical energy storage system abuse test manual for electric and hybrid electric vehicle applications; 2006. Vikström, Davidsson, Höök (b0005) 2013; 110 Dong, Zhang, Zhang (b0015) 2015; 90 Xiong, Sun, He (b0070) 2013; 63 Feng (10.1016/j.apenergy.2018.02.117_b0075) 2015; 281 Ng (10.1016/j.apenergy.2018.02.117_b0085) 2009; 86 Liu (10.1016/j.apenergy.2018.02.117_b0035) 2014; 270 Burgos-Mellado (10.1016/j.apenergy.2018.02.117_b0065) 2016; 161 Lin (10.1016/j.apenergy.2018.02.117_b0080) 2016; 166 Wang (10.1016/j.apenergy.2018.02.117_b0095) 2017; 194 Dong (10.1016/j.apenergy.2018.02.117_b0050) 2016; 301 Dong (10.1016/j.apenergy.2018.02.117_b0015) 2015; 90 Stockar (10.1016/j.apenergy.2018.02.117_b0020) 2011; 60 Zheng (10.1016/j.apenergy.2018.02.117_b0045) 2016; 178 Xiong (10.1016/j.apenergy.2018.02.117_b0070) 2013; 63 Liu (10.1016/j.apenergy.2018.02.117_b0100) 2015; 149 Vikström (10.1016/j.apenergy.2018.02.117_b0005) 2013; 110 10.1016/j.apenergy.2018.02.117_b0060 Wang (10.1016/j.apenergy.2018.02.117_b0055) 2016; 305 Delgarm (10.1016/j.apenergy.2018.02.117_b0115) 2016; 170 Lin (10.1016/j.apenergy.2018.02.117_b0025) 2017; 194 Li (10.1016/j.apenergy.2018.02.117_b0090) 2016; 109 Mamadou (10.1016/j.apenergy.2018.02.117_b0010) 2010; 25 Tang (10.1016/j.apenergy.2018.02.117_b0110) 2017; 204 Zhang (10.1016/j.apenergy.2018.02.117_b0030) 2015; 289 Zhang (10.1016/j.apenergy.2018.02.117_b0120) 2017; 343 He (10.1016/j.apenergy.2018.02.117_b0040) 2015; 151 Zhang (10.1016/j.apenergy.2018.02.117_b0105) 2018; 376 |
References_xml | – volume: 109 start-page: 933 year: 2016 end-page: 946 ident: b0090 article-title: A combination Kalman filter approach for state of charge estimation of lithium-ion battery considering model uncertainty publication-title: Energy – volume: 63 start-page: 295 year: 2013 end-page: 308 ident: b0070 article-title: A data-driven adaptive state of charge and power capability joint estimator of lithium-ion polymer battery used in electric vehicles publication-title: Energy – volume: 281 start-page: 192 year: 2015 end-page: 203 ident: b0075 article-title: Online identification of lithium-ion battery parameters based on an improved equivalent-circuit model and its implementation on battery state-of-power prediction publication-title: J Power Sources – volume: 166 start-page: 76 year: 2016 end-page: 83 ident: b0080 article-title: A novel multi-model probability battery state of charge estimation approach for electric vehicles using H-infinity algorithm publication-title: Appl Energy – volume: 90 start-page: 879 year: 2015 end-page: 888 ident: b0015 article-title: A method for state of energy estimation of lithium-ion batteries based on neural network model publication-title: Energy – volume: 376 start-page: 191 year: 2018 end-page: 199 ident: b0105 article-title: A novel approach of battery pack state of health estimation using artificial intelligence optimization algorithm publication-title: J Power Sources – volume: 270 start-page: 151 year: 2014 end-page: 157 ident: b0035 article-title: A method for state of energy estimation of lithium-ion batteries at dynamic currents and temperatures publication-title: J Power Sources – volume: 86 start-page: 1506 year: 2009 end-page: 1511 ident: b0085 article-title: Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries publication-title: Appl Energy – volume: 149 start-page: 297 year: 2015 end-page: 314 ident: b0100 article-title: A highly accurate predictive-adaptive method for lithium-ion battery remaining discharge energy prediction in electric vehicle applications publication-title: Appl Energy – volume: 25 start-page: 105 year: 2010 end-page: 112 ident: b0010 article-title: The state-of-energy: a new criterion for the energetic performances evaluation of electrochemical storage devices publication-title: ECS Trans – volume: 301 start-page: 277 year: 2016 end-page: 286 ident: b0050 article-title: An online model-based method for state of energy estimation of lithium-ion batteries using dual filters publication-title: J Power Sources – volume: 60 start-page: 2949 year: 2011 end-page: 2962 ident: b0020 article-title: Energy-optimal control of plug-in hybrid electric vehicles for real-world driving cycles publication-title: IEEE Trans Veh Technol – volume: 289 start-page: 50 year: 2015 end-page: 62 ident: b0030 article-title: Adaptive unscented Kalman filter based state of energy and power capability estimation approach for lithium-ion battery publication-title: J Power Sources – volume: 170 start-page: 293 year: 2016 end-page: 303 ident: b0115 article-title: Multi-objective optimization of the building energy performance: a simulation-based approach by means of particle swarm optimization (PSO) publication-title: Appl Energy – volume: 305 start-page: 80 year: 2016 end-page: 88 ident: b0055 article-title: An adaptive remaining energy prediction approach for lithium-ion batteries in electric vehicles publication-title: J Power Sources – volume: 343 start-page: 216 year: 2017 end-page: 225 ident: b0120 article-title: A novel approach of remaining discharge energy prediction for large format lithium-ion battery pack publication-title: J Power Sources – volume: 110 start-page: 252 year: 2013 end-page: 266 ident: b0005 article-title: Lithium availability and future production outlooks publication-title: Appl Energy – volume: 178 start-page: 1 year: 2016 end-page: 8 ident: b0045 article-title: Novel methods for estimating lithium-ion battery state of energy and maximum available energy publication-title: Appl Energy – reference: Doughty DH, Crafts CC. Electrical energy storage system abuse test manual for electric and hybrid electric vehicle applications; 2006. – volume: 151 start-page: 41 year: 2015 end-page: 48 ident: b0040 article-title: A novel Gaussian model based battery state estimation approach: state-of-Energy publication-title: Appl Energy – volume: 194 start-page: 688 year: 2017 end-page: 695 ident: b0095 article-title: On-line remaining energy prediction: A case study in embedded battery management system publication-title: Appl Energy – volume: 161 start-page: 349 year: 2016 end-page: 363 ident: b0065 article-title: Particle-filtering-based estimation of maximum available power state in Lithium-Ion batteries publication-title: Appl Energy – volume: 204 start-page: 1275 year: 2017 end-page: 1283 ident: b0110 article-title: Observer based battery SOC estimation: Using multi-gain-switching approach publication-title: Appl Energy – volume: 194 start-page: 560 year: 2017 end-page: 568 ident: b0025 article-title: Multi-model probabilities based state fusion estimation method of lithium-ion battery for electric vehicles: state-of-energy publication-title: Appl Energy – volume: 270 start-page: 151 year: 2014 ident: 10.1016/j.apenergy.2018.02.117_b0035 article-title: A method for state of energy estimation of lithium-ion batteries at dynamic currents and temperatures publication-title: J Power Sources doi: 10.1016/j.jpowsour.2014.07.107 – volume: 86 start-page: 1506 issue: 9 year: 2009 ident: 10.1016/j.apenergy.2018.02.117_b0085 article-title: Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries publication-title: Appl Energy doi: 10.1016/j.apenergy.2008.11.021 – volume: 305 start-page: 80 year: 2016 ident: 10.1016/j.apenergy.2018.02.117_b0055 article-title: An adaptive remaining energy prediction approach for lithium-ion batteries in electric vehicles publication-title: J Power Sources doi: 10.1016/j.jpowsour.2015.11.087 – volume: 63 start-page: 295 year: 2013 ident: 10.1016/j.apenergy.2018.02.117_b0070 article-title: A data-driven adaptive state of charge and power capability joint estimator of lithium-ion polymer battery used in electric vehicles publication-title: Energy doi: 10.1016/j.energy.2013.10.027 – volume: 149 start-page: 297 year: 2015 ident: 10.1016/j.apenergy.2018.02.117_b0100 article-title: A highly accurate predictive-adaptive method for lithium-ion battery remaining discharge energy prediction in electric vehicle applications publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.03.110 – volume: 204 start-page: 1275 year: 2017 ident: 10.1016/j.apenergy.2018.02.117_b0110 article-title: Observer based battery SOC estimation: Using multi-gain-switching approach publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.03.079 – volume: 194 start-page: 560 year: 2017 ident: 10.1016/j.apenergy.2018.02.117_b0025 article-title: Multi-model probabilities based state fusion estimation method of lithium-ion battery for electric vehicles: state-of-energy publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.05.065 – volume: 170 start-page: 293 year: 2016 ident: 10.1016/j.apenergy.2018.02.117_b0115 article-title: Multi-objective optimization of the building energy performance: a simulation-based approach by means of particle swarm optimization (PSO) publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.02.141 – volume: 343 start-page: 216 year: 2017 ident: 10.1016/j.apenergy.2018.02.117_b0120 article-title: A novel approach of remaining discharge energy prediction for large format lithium-ion battery pack publication-title: J Power Sources doi: 10.1016/j.jpowsour.2017.01.054 – volume: 25 start-page: 105 issue: 35 year: 2010 ident: 10.1016/j.apenergy.2018.02.117_b0010 article-title: The state-of-energy: a new criterion for the energetic performances evaluation of electrochemical storage devices publication-title: ECS Trans doi: 10.1149/1.3414008 – volume: 289 start-page: 50 year: 2015 ident: 10.1016/j.apenergy.2018.02.117_b0030 article-title: Adaptive unscented Kalman filter based state of energy and power capability estimation approach for lithium-ion battery publication-title: J Power Sources doi: 10.1016/j.jpowsour.2015.04.148 – volume: 376 start-page: 191 year: 2018 ident: 10.1016/j.apenergy.2018.02.117_b0105 article-title: A novel approach of battery pack state of health estimation using artificial intelligence optimization algorithm publication-title: J Power Sources doi: 10.1016/j.jpowsour.2017.11.068 – volume: 90 start-page: 879 year: 2015 ident: 10.1016/j.apenergy.2018.02.117_b0015 article-title: A method for state of energy estimation of lithium-ion batteries based on neural network model publication-title: Energy doi: 10.1016/j.energy.2015.07.120 – volume: 161 start-page: 349 year: 2016 ident: 10.1016/j.apenergy.2018.02.117_b0065 article-title: Particle-filtering-based estimation of maximum available power state in Lithium-Ion batteries publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.09.092 – volume: 166 start-page: 76 year: 2016 ident: 10.1016/j.apenergy.2018.02.117_b0080 article-title: A novel multi-model probability battery state of charge estimation approach for electric vehicles using H-infinity algorithm publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.01.010 – volume: 110 start-page: 252 year: 2013 ident: 10.1016/j.apenergy.2018.02.117_b0005 article-title: Lithium availability and future production outlooks publication-title: Appl Energy doi: 10.1016/j.apenergy.2013.04.005 – volume: 301 start-page: 277 year: 2016 ident: 10.1016/j.apenergy.2018.02.117_b0050 article-title: An online model-based method for state of energy estimation of lithium-ion batteries using dual filters publication-title: J Power Sources doi: 10.1016/j.jpowsour.2015.10.011 – volume: 178 start-page: 1 year: 2016 ident: 10.1016/j.apenergy.2018.02.117_b0045 article-title: Novel methods for estimating lithium-ion battery state of energy and maximum available energy publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.06.031 – volume: 109 start-page: 933 year: 2016 ident: 10.1016/j.apenergy.2018.02.117_b0090 article-title: A combination Kalman filter approach for state of charge estimation of lithium-ion battery considering model uncertainty publication-title: Energy doi: 10.1016/j.energy.2016.05.047 – volume: 60 start-page: 2949 issue: 7 year: 2011 ident: 10.1016/j.apenergy.2018.02.117_b0020 article-title: Energy-optimal control of plug-in hybrid electric vehicles for real-world driving cycles publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2011.2158565 – ident: 10.1016/j.apenergy.2018.02.117_b0060 doi: 10.2172/889934 – volume: 151 start-page: 41 year: 2015 ident: 10.1016/j.apenergy.2018.02.117_b0040 article-title: A novel Gaussian model based battery state estimation approach: state-of-Energy publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.04.062 – volume: 281 start-page: 192 year: 2015 ident: 10.1016/j.apenergy.2018.02.117_b0075 article-title: Online identification of lithium-ion battery parameters based on an improved equivalent-circuit model and its implementation on battery state-of-power prediction publication-title: J Power Sources doi: 10.1016/j.jpowsour.2015.01.154 – volume: 194 start-page: 688 year: 2017 ident: 10.1016/j.apenergy.2018.02.117_b0095 article-title: On-line remaining energy prediction: A case study in embedded battery management system publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.05.081 |
SSID | ssj0002120 |
Score | 2.532232 |
Snippet | •The equivalent circuit model is estimated for battery states estimation.•Battery peak current is analyzed by multi-constrained conditions.•A novel... The battery state of energy and state of power are two important parameters in battery usage. The state of energy represents the residual energy storage in... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 442 |
SubjectTerms | electric power energy lithium batteries Lithium-ion battery methodology Multi-constraints Multi-time-scale observer Peak power prediction temperature |
Title | A novel method for lithium-ion battery state of energy and state of power estimation based on multi-time-scale filter |
URI | https://dx.doi.org/10.1016/j.apenergy.2018.02.117 https://www.proquest.com/docview/2045836679 |
Volume | 216 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA-iFz2IX8P5RQSv2Zo26drjGBtT0YsOdgttmuDG7IbbBC_-7b6Xtm6KsIO3JiQl5CXv_dr33u8RcuNlEQ-N9pin_YyJNE1ZDG3mCyul1Rh6jP87Hh7D_kDcDeVwi3SqXBgMqyx1f6HTnbYue5rlbjZno1HzCdEu4n-OFFYiQk5QIVp4yhufqzAPv6RmhMEMR69lCY8bycy4DDsM8YqQu5O7wmV_GqhfqtrZn94B2S-BI20XazskWyY_IntrdIJHpNZdZa3B0PLazo_Jsk3z6buZ0KJeNAWgSgF-v4yWrwzkQlNHsvlBXXYRnVparJcmebbqm2E9NYqkHEW2I0UDmFF4cEGJDKvUszmI3FA7Qh_8CRn0us-dPivrLTAtpLdgfpzFGZh3Y73A8jiRodU8FjKBZgjIMpGBlh5IUmbGChv6WmtM_QUMEsRcy6BGtvNpbk4JTSOuOSZjWRmIFLSCAd3gt3QEn3waQFudyGqTlS7JyLEmxkRVUWdjVQlHoXCU5yMveZ00v-fNCjqOjTPiSobqx8FSYDM2zr2uhK7g1qErJcnNdDlXvvM3h2ErPvvH-8_JLrbQOcXlBdlevC3NJWCcRXrlDvEV2Wnf3vcfvwCupv2R |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4hOBQOiFIQz9aVytFs4rWzyYEDakFLeVwAiZtJHFtdtM2u2N1WXPhT_EFmHKcLqBIHxC124mjkmcyMMzPfAHyLyjROrIl4ZETJZVEUPMMxF9Ip5QylHtP_jtOzpHspf16pqxl4aGphKK0y6P5ap3ttHWZaYTdbw16vdU7eLvn_MUFYyVSGzMpje_cXz22jvaMfyOQdIQ4PLr53eWgtwI1U0ZiLrMxKtGTWRW0XZ7lKnMHjvMpxmKATlau2URESrUrrpEuEMYaqXNHctrPYUKsI1PtzEtUFtU3YvZ_mlYiABYnUcSLvSVnyzW4-tL6kj3LKUgILjX2ntP9axBe2wRu8wyVYDJ4q26834yPM2GoZFp7gFy7D6sG0TA4fDXpi9Akm-6wa_LF9VjeoZugZM_T3f_UmvzkKAis8qucd8-VMbOBYTS_Lq3I6N6QGboxQQOrySkYWt2R44bMgOc5bPkIZs8z1KOi_ApfvwoVVmK0GlV0DVqSxian6y6m2LFANWVRGomNSPGMa9BLXQTWbrE1AP6cmHH3dpLnd6IY5mpijI0FA6OvQ-rduWON_vLoia3ion0myRiP16tqvDdM1fuYUu8krO5iMtPAB7iTpZBtveP8X-NC9OD3RJ0dnx5swT3coMharLZgd307sNjpY4-KzF2gG1-_9BT0CCYw4KA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+method+for+lithium-ion+battery+state+of+energy+and+state+of+power+estimation+based+on+multi-time-scale+filter&rft.jtitle=Applied+energy&rft.au=Zhang%2C+Xu&rft.au=Wang%2C+Yujie&rft.au=Wu%2C+Ji&rft.au=Chen%2C+Zonghai&rft.date=2018-04-15&rft.issn=0306-2619&rft.volume=216&rft.spage=442&rft.epage=451&rft_id=info:doi/10.1016%2Fj.apenergy.2018.02.117&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apenergy_2018_02_117 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |