sMRT: Multi-Resident Tracking in Smart Homes With Sensor Vectorization

Smart homes equipped with anonymous binary sensors offer a low-cost, unobtrusive solution that powers activity-aware applications, such as building automation, health monitoring, behavioral intervention, and home security. However, when multiple residents are living in a smart home, associating sens...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 43; no. 8; pp. 2809 - 2821
Main Authors Wang, Tinghui, Cook, Diane J.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.08.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Smart homes equipped with anonymous binary sensors offer a low-cost, unobtrusive solution that powers activity-aware applications, such as building automation, health monitoring, behavioral intervention, and home security. However, when multiple residents are living in a smart home, associating sensor events with the corresponding residents can pose a major challenge. Previous approaches to multi-resident tracking in smart homes rely on extra information, such as sensor layouts, floor plans, and annotated data, which may not be available or inconvenient to obtain in practice. To address those challenges in real-life deployment, we introduce the sMRT algorithm that simultaneously tracks the location of each resident and estimates the number of residents in the smart home, without relying on ground-truth annotated sensor data or other additional information. We evaluate the performance of our approach using two smart home datasets recorded in real-life settings and compare sMRT with two other methods that rely on sensor layout and ground truth-labeled sensor data.
AbstractList Smart homes equipped with anonymous binary sensors offer a low-cost, unobtrusive solution that powers activity-aware applications such as building automation, health monitoring, behavioral intervention and home security. However, when there are multiple residents living in the smart home, the data association between sensor events and residents can pose a major challenge. Previous approaches to multi-resident tracking in smart homes rely on extra information, such as sensor layout, floor plan and annotated data, which may not be available or inconvenient to obtain in practice. To address those challenges in real-life deployment, we introduce the sMRT algorithm that simultaneously tracks the location of each resident and estimates the number of residents in the smart home, without relying on ground-truth annotated sensor data or other additional information. We evaluate the performance of our approach using two smart home datasets recorded in real-life settings and compare sMRT with two other methods that rely on sensor layout and ground truth-labeled sensor data.
Smart homes equipped with anonymous binary sensors offer a low-cost, unobtrusive solution that powers activity-aware applications, such as building automation, health monitoring, behavioral intervention, and home security. However, when multiple residents are living in a smart home, associating sensor events with the corresponding residents can pose a major challenge. Previous approaches to multi-resident tracking in smart homes rely on extra information, such as sensor layouts, floor plans, and annotated data, which may not be available or inconvenient to obtain in practice. To address those challenges in real-life deployment, we introduce the sMRT algorithm that simultaneously tracks the location of each resident and estimates the number of residents in the smart home, without relying on ground-truth annotated sensor data or other additional information. We evaluate the performance of our approach using two smart home datasets recorded in real-life settings and compare sMRT with two other methods that rely on sensor layout and ground truth-labeled sensor data.
Smart homes equipped with anonymous binary sensors offer a low-cost, unobtrusive solution that powers activity-aware applications, such as building automation, health monitoring, behavioral intervention, and home security. However, when multiple residents are living in a smart home, associating sensor events with the corresponding residents can pose a major challenge. Previous approaches to multi-resident tracking in smart homes rely on extra information, such as sensor layouts, floor plans, and annotated data, which may not be available or inconvenient to obtain in practice. To address those challenges in real-life deployment, we introduce the sMRT algorithm that simultaneously tracks the location of each resident and estimates the number of residents in the smart home, without relying on ground-truth annotated sensor data or other additional information. We evaluate the performance of our approach using two smart home datasets recorded in real-life settings and compare sMRT with two other methods that rely on sensor layout and ground truth-labeled sensor data.Smart homes equipped with anonymous binary sensors offer a low-cost, unobtrusive solution that powers activity-aware applications, such as building automation, health monitoring, behavioral intervention, and home security. However, when multiple residents are living in a smart home, associating sensor events with the corresponding residents can pose a major challenge. Previous approaches to multi-resident tracking in smart homes rely on extra information, such as sensor layouts, floor plans, and annotated data, which may not be available or inconvenient to obtain in practice. To address those challenges in real-life deployment, we introduce the sMRT algorithm that simultaneously tracks the location of each resident and estimates the number of residents in the smart home, without relying on ground-truth annotated sensor data or other additional information. We evaluate the performance of our approach using two smart home datasets recorded in real-life settings and compare sMRT with two other methods that rely on sensor layout and ground truth-labeled sensor data.
Author Wang, Tinghui
Cook, Diane J.
Author_xml – sequence: 1
  givenname: Tinghui
  orcidid: 0000-0001-6339-9424
  surname: Wang
  fullname: Wang, Tinghui
  email: tinghui.wang@wsu.edu
  organization: School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, USA
– sequence: 2
  givenname: Diane J.
  orcidid: 0000-0002-4441-7508
  surname: Cook
  fullname: Cook, Diane J.
  email: cook@eecs.wsu.edu
  organization: School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32070942$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1PFTEUxRuDkcfHP6CJmcSNm3nefkw_XJAQIkLCiwQeumw6nQ4U57XYzpjoX2_hPYiycHUXPb9zT-_ZQVshBofQawxzjEF9WJ4fLk7nBAjMiRK0EfgFmhHMoVZEkS00A8xJLSWR22gn51sAzBqgr9A2JSBAMTJDx3lxsfxYLaZh9PWFy75zYayWydjvPlxXPlSXK5PG6iSuXK6--fGmunQhx1R9dXaMyf82o49hD73szZDd_mbuoqvjT8ujk_rsy-fTo8Oz2pbNY00EiL6TvaWiBeFcC8QI4B1TnONOst462kDDhcGq63HLekEx6U2jAHjbWLqLDta-d1O7cp0tYZMZ9F3yJeUvHY3X_74Ef6Ov408tGKGC82LwfmOQ4o_J5VGvfLZuGExwccqa0EY2kgFnRfrumfQ2TimU72nSMMEZU5gW1du_Ez1FeTxxEci1wKaYc3K9tn58OFoJ6AeNQd-3qR_a1Pdt6k2bBSXP0Ef3_0Jv1pB3zj0BUilJlaJ_AKmqqfE
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1109_JSEN_2020_3020401
crossref_primary_10_1109_TNNLS_2023_3339786
crossref_primary_10_1109_JSEN_2022_3161797
crossref_primary_10_1109_TIA_2022_3223347
crossref_primary_10_1016_j_procs_2022_03_007
crossref_primary_10_1109_TKDE_2024_3386794
crossref_primary_10_1109_TETC_2021_3072980
crossref_primary_10_3390_e22080845
crossref_primary_10_1016_j_ifacol_2021_11_286
crossref_primary_10_1109_ACCESS_2022_3208686
crossref_primary_10_1016_j_eswa_2024_126178
crossref_primary_10_1109_JIOT_2022_3204359
Cites_doi 10.1109/MIS.2010.112
10.1109/TMC.2016.2599158
10.1145/2783258.2783408
10.1016/j.jbi.2018.03.009
10.3233/AIS-2009-0041
10.1109/TSG.2012.2214407
10.1109/AINAW.2007.209
10.1109/ICDCS.2012.76
10.1145/2632951.2632959
10.1109/CoASE.2015.7294061
10.1109/JBHI.2015.2512273
10.1109/TBME.2009.2036732
10.1109/TKDE.2017.2750669
10.1109/TIP.2015.2404034
10.3390/en9080624
10.1109/TCSVT.2018.2817609
10.1093/oso/9780190234737.003.0017
10.1049/cp:20081164
10.1007/978-3-642-13022-9_42
10.1109/JTEHM.2016.2579638
10.1109/TSP.2006.881190
10.1109/LCOMM.2016.2619700
10.2991/ijcis.10.1.88
10.1007/978-3-319-46843-3_4
10.3390/s17040737
10.1007/11428572_5
10.1016/j.knosys.2017.01.025
10.1016/j.engappai.2013.08.004
10.1109/TPAMI.2013.220
10.1016/j.knosys.2012.08.020
10.1109/TSMCB.2008.923526
10.3233/THC-130734
10.3115/v1/D14-1162
10.1016/j.ijmedinf.2016.04.007
10.1016/j.pmcj.2012.07.003
10.1016/j.apenergy.2017.11.055
10.1109/JBHI.2018.2833618
10.1109/THMS.2016.2641388
10.1007/s00779-014-0820-1
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
5PM
DOI 10.1109/TPAMI.2020.2973571
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
Technology Research Database

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 2821
ExternalDocumentID PMC7423766
32070942
10_1109_TPAMI_2020_2973571
8998399
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GrantInformation_xml – fundername: National Science Foundation
  grantid: 1543656
  funderid: 10.13039/100000001
– fundername: NIA NIH HHS
  grantid: R01 AG065218
– fundername: NIBIB NIH HHS
  grantid: R01 EB009675
– fundername: NINR NIH HHS
  grantid: R01 NR016732
– fundername: NIBIB NIH HHS
  grantid: R25 EB024327
– fundername: NIBIB NIH HHS
  grantid: R01 EB015853
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
5VS
9M8
AAYOK
AAYXX
ABFSI
ADRHT
AETEA
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
FA8
H~9
IBMZZ
ICLAB
IFJZH
RIG
RNI
RZB
VH1
XJT
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
5PM
ID FETCH-LOGICAL-c450t-2707fd8fc37b07eeb02a706d49661d84fce350567a19df1b4f7312fa59006b5c3
IEDL.DBID RIE
ISSN 0162-8828
1939-3539
IngestDate Thu Aug 21 18:28:31 EDT 2025
Fri Jul 11 04:10:59 EDT 2025
Mon Jun 30 06:28:01 EDT 2025
Mon Jul 21 06:01:42 EDT 2025
Thu Apr 24 23:06:46 EDT 2025
Tue Jul 01 03:18:25 EDT 2025
Wed Aug 27 02:26:41 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c450t-2707fd8fc37b07eeb02a706d49661d84fce350567a19df1b4f7312fa59006b5c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4441-7508
0000-0001-6339-9424
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7423766
PMID 32070942
PQID 2547644913
PQPubID 85458
PageCount 13
ParticipantIDs pubmed_primary_32070942
crossref_citationtrail_10_1109_TPAMI_2020_2973571
ieee_primary_8998399
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7423766
proquest_miscellaneous_2358584064
proquest_journals_2547644913
crossref_primary_10_1109_TPAMI_2020_2973571
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref11
ref32
ref10
ref2
ref1
ref39
ref17
ref38
ref16
ref19
ref18
crandall (ref33) 2011
ref24
ref23
gutmann (ref42) 2010
ref26
ref25
ref20
ref41
ref22
ref21
ref43
müller (ref34) 2016; 9
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
goodman (ref40) 2013
ref5
References_xml – ident: ref9
  doi: 10.1109/MIS.2010.112
– ident: ref26
  doi: 10.1109/TMC.2016.2599158
– ident: ref12
  doi: 10.1145/2783258.2783408
– ident: ref13
  doi: 10.1016/j.jbi.2018.03.009
– ident: ref32
  doi: 10.3233/AIS-2009-0041
– ident: ref28
  doi: 10.1109/TSG.2012.2214407
– ident: ref18
  doi: 10.1109/AINAW.2007.209
– ident: ref38
  doi: 10.1109/ICDCS.2012.76
– ident: ref37
  doi: 10.1145/2632951.2632959
– ident: ref36
  doi: 10.1109/CoASE.2015.7294061
– ident: ref14
  doi: 10.1109/JBHI.2015.2512273
– ident: ref17
  doi: 10.1109/TBME.2009.2036732
– ident: ref10
  doi: 10.1109/TKDE.2017.2750669
– ident: ref2
  doi: 10.1109/TIP.2015.2404034
– ident: ref27
  doi: 10.3390/en9080624
– ident: ref1
  doi: 10.1109/TCSVT.2018.2817609
– ident: ref20
  doi: 10.1093/oso/9780190234737.003.0017
– ident: ref31
  doi: 10.1049/cp:20081164
– ident: ref30
  doi: 10.1007/978-3-642-13022-9_42
– ident: ref16
  doi: 10.1109/JTEHM.2016.2579638
– ident: ref43
  doi: 10.1109/TSP.2006.881190
– ident: ref25
  doi: 10.1109/LCOMM.2016.2619700
– ident: ref35
  doi: 10.2991/ijcis.10.1.88
– ident: ref22
  doi: 10.1007/978-3-319-46843-3_4
– ident: ref21
  doi: 10.3390/s17040737
– start-page: 297
  year: 2010
  ident: ref42
  article-title: Noise-contrastive estimation: A new estimation principle for unnormalized statistical models
  publication-title: Proc Int Conf Artif Intell Statist
– ident: ref29
  doi: 10.1007/11428572_5
– ident: ref7
  doi: 10.1016/j.knosys.2017.01.025
– ident: ref11
  doi: 10.1016/j.engappai.2013.08.004
– ident: ref3
  doi: 10.1109/TPAMI.2013.220
– ident: ref39
  doi: 10.1016/j.knosys.2012.08.020
– ident: ref4
  doi: 10.1109/TSMCB.2008.923526
– volume: 9
  start-page: 20
  year: 2016
  ident: ref34
  article-title: Multi-target data association in binary sensor networks for ambulant care support
  publication-title: International Journal On Advances in Networks and Services
– ident: ref19
  doi: 10.3233/THC-130734
– ident: ref41
  doi: 10.3115/v1/D14-1162
– start-page: 111
  year: 2011
  ident: ref33
  article-title: Tracking systems for multiple smart home residents
  publication-title: Human Behavior Recognition Technologies Intelligent Applications for Monitoring and Security
– ident: ref15
  doi: 10.1016/j.ijmedinf.2016.04.007
– year: 2013
  ident: ref40
  publication-title: Mathematics of Data Fusion
– ident: ref8
  doi: 10.1016/j.pmcj.2012.07.003
– ident: ref24
  doi: 10.1016/j.apenergy.2017.11.055
– ident: ref5
  doi: 10.1109/JBHI.2018.2833618
– ident: ref6
  doi: 10.1109/THMS.2016.2641388
– ident: ref23
  doi: 10.1007/s00779-014-0820-1
SSID ssj0014503
Score 2.4904072
Snippet Smart homes equipped with anonymous binary sensors offer a low-cost, unobtrusive solution that powers activity-aware applications, such as building automation,...
Smart homes equipped with anonymous binary sensors offer a low-cost, unobtrusive solution that powers activity-aware applications such as building automation,...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2809
SubjectTerms Algorithms
Artificial Intelligence
Building automation
Data models
Environment Design
Equipment Design
Floorplans
Hidden Markov models
Humans
Layout
Layouts
Monitoring
Monitoring, Ambulatory
multi-resident tracking
multi-target Bayes filter
Pattern Recognition, Automated
sensor networks
Sensors
Smart buildings
Smart home
Smart homes
Smart houses
Structural health monitoring
time series
Tracking
Title sMRT: Multi-Resident Tracking in Smart Homes With Sensor Vectorization
URI https://ieeexplore.ieee.org/document/8998399
https://www.ncbi.nlm.nih.gov/pubmed/32070942
https://www.proquest.com/docview/2547644913
https://www.proquest.com/docview/2358584064
https://pubmed.ncbi.nlm.nih.gov/PMC7423766
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0BJ3ooBfoRCpWRuNEstuPEpDdUdQVIW1WwtNyi2LHFqm0WsdlLf31nnA-xCFW9RYoTJZmZ-D17Zh7AkRGJNR7j2yBWjVVa4X8QgUCM_2Nd5VwaE-rWJl-z8xt1eZversHHoRbGOReSz9yIDsNefjW3S1oqOyFugBPqOqwjcWtrtYYdA5UGFWREMBjhSCP6Ahmen0y_nU0ukApKPiKlplSTPEwi0dlzJVfmoyCw8hzWfJoy-WgOGm_BpH_6NvXk52jZmJH986Sx4_--3it42YFRdtZ6zzasuXoHtnqhB9bF_Q68eNS1cBfGi8nV9BMLpbvxlSO9z7phOOlZWnZns5pd_0aHZKTAvmA_Zs0du0ayPH9g38MWQVf5-Rpuxl-mn8_jTo4htvhxG6pc07469TbRhmvnDJel5lmlkDGJ6lR56xLCU7oUeeWFUV4nQvqSdEkzk9rkDWzU89q9A-a1LZUQZW4RInhXGe4k3smUiAdLnskIRG-Uwna9ykky41cROAvPi2DTgmxadDaN4Hi45r7t1PHP0btkgGFk9-0j2O9tX3TBvCiQQ2uEjblIIjgcTmMY0t5KWbv5EsckyLuQLGcqgretqwz37l0tAr3iRMMAavG9eqae3YVW3zpkLWV7zz_te9iUlGIT8hH3YaN5WLoDxEiN-RCC4y8kNAti
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6VcgAOLbRAUwoYCU4oW9tx4g0ShwpY7dJuhdot7S3EjqOuCtmqyaqCZ-FVeDfGzo-6VcWtErdIcazEnhl_k_n5AF4rFmiVo34rxKq-CDO0gwgEfLTHMospV8rVrY33o-GR-HwSnizB764Wxhjjks9Mz166WH4203P7q2zb-gZ4oDYplLvm5yU6aOX70UfczTecDz5NPgz9hkPA1yKklS23knnWz3UgFZXGKMpTSaNMIMxnWV_k2gQWBMiUxVnOlMhlwHieWjLNSIU6wHnvwF3EGSGvq8O6GAXOH9Sdw9GmoOPSluTQeHvyZWc8QueT057lhgqlJaQJOKpXLPjCCegoXW5Ct9eTNK-ceoNV-NOuV53sctabV6qnf11rJfm_LuhDWGngNtmp9eMRLJliDVZbKgvSWLY1eHClL-M6DMrxweQdccXJ_oGxjKZFRfBY1zawQKYFOfyBKkcsx3xJjqfVKTk0RTm7IF9dEKSpbX0MR7fybU9guZgVZgNILnUqGEtjjSAoN5mihuNMKkXEm9KIe8BaIUh0043dkoJ8T5xXRuPEyVBiZShpZMiDt90z53Uvkn-OXrcb3o1s9tqDrVbWksZclQkPhURgHLPAg1fdbTQ0NnqUFmY2xzEBepZ9xH_Cg6e1aHZzt6LtgVwQ2m6AbWK-eKeYnrpm5tLlZUWbN7_tS7g3nIz3kr3R_u4zuM9tQpHLvtyC5epibp4jIqzUC6eYBL7dtuD-BQggZ_E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=sMRT%3A+Multi-Resident+Tracking+in+Smart+Homes+With+Sensor+Vectorization&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Wang%2C+Tinghui&rft.au=Cook%2C+Diane+J.&rft.date=2021-08-01&rft.pub=IEEE&rft.issn=0162-8828&rft.volume=43&rft.issue=8&rft.spage=2809&rft.epage=2821&rft_id=info:doi/10.1109%2FTPAMI.2020.2973571&rft_id=info%3Apmid%2F32070942&rft.externalDocID=8998399
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon