sMRT: Multi-Resident Tracking in Smart Homes With Sensor Vectorization
Smart homes equipped with anonymous binary sensors offer a low-cost, unobtrusive solution that powers activity-aware applications, such as building automation, health monitoring, behavioral intervention, and home security. However, when multiple residents are living in a smart home, associating sens...
Saved in:
Published in | IEEE transactions on pattern analysis and machine intelligence Vol. 43; no. 8; pp. 2809 - 2821 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.08.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Smart homes equipped with anonymous binary sensors offer a low-cost, unobtrusive solution that powers activity-aware applications, such as building automation, health monitoring, behavioral intervention, and home security. However, when multiple residents are living in a smart home, associating sensor events with the corresponding residents can pose a major challenge. Previous approaches to multi-resident tracking in smart homes rely on extra information, such as sensor layouts, floor plans, and annotated data, which may not be available or inconvenient to obtain in practice. To address those challenges in real-life deployment, we introduce the sMRT algorithm that simultaneously tracks the location of each resident and estimates the number of residents in the smart home, without relying on ground-truth annotated sensor data or other additional information. We evaluate the performance of our approach using two smart home datasets recorded in real-life settings and compare sMRT with two other methods that rely on sensor layout and ground truth-labeled sensor data. |
---|---|
AbstractList | Smart homes equipped with anonymous binary sensors offer a low-cost, unobtrusive solution that powers activity-aware applications such as building automation, health monitoring, behavioral intervention and home security. However, when there are multiple residents living in the smart home, the data association between sensor events and residents can pose a major challenge. Previous approaches to multi-resident tracking in smart homes rely on extra information, such as sensor layout, floor plan and annotated data, which may not be available or inconvenient to obtain in practice. To address those challenges in real-life deployment, we introduce the sMRT algorithm that simultaneously tracks the location of each resident and estimates the number of residents in the smart home, without relying on ground-truth annotated sensor data or other additional information. We evaluate the performance of our approach using two smart home datasets recorded in real-life settings and compare sMRT with two other methods that rely on sensor layout and ground truth-labeled sensor data. Smart homes equipped with anonymous binary sensors offer a low-cost, unobtrusive solution that powers activity-aware applications, such as building automation, health monitoring, behavioral intervention, and home security. However, when multiple residents are living in a smart home, associating sensor events with the corresponding residents can pose a major challenge. Previous approaches to multi-resident tracking in smart homes rely on extra information, such as sensor layouts, floor plans, and annotated data, which may not be available or inconvenient to obtain in practice. To address those challenges in real-life deployment, we introduce the sMRT algorithm that simultaneously tracks the location of each resident and estimates the number of residents in the smart home, without relying on ground-truth annotated sensor data or other additional information. We evaluate the performance of our approach using two smart home datasets recorded in real-life settings and compare sMRT with two other methods that rely on sensor layout and ground truth-labeled sensor data. Smart homes equipped with anonymous binary sensors offer a low-cost, unobtrusive solution that powers activity-aware applications, such as building automation, health monitoring, behavioral intervention, and home security. However, when multiple residents are living in a smart home, associating sensor events with the corresponding residents can pose a major challenge. Previous approaches to multi-resident tracking in smart homes rely on extra information, such as sensor layouts, floor plans, and annotated data, which may not be available or inconvenient to obtain in practice. To address those challenges in real-life deployment, we introduce the sMRT algorithm that simultaneously tracks the location of each resident and estimates the number of residents in the smart home, without relying on ground-truth annotated sensor data or other additional information. We evaluate the performance of our approach using two smart home datasets recorded in real-life settings and compare sMRT with two other methods that rely on sensor layout and ground truth-labeled sensor data.Smart homes equipped with anonymous binary sensors offer a low-cost, unobtrusive solution that powers activity-aware applications, such as building automation, health monitoring, behavioral intervention, and home security. However, when multiple residents are living in a smart home, associating sensor events with the corresponding residents can pose a major challenge. Previous approaches to multi-resident tracking in smart homes rely on extra information, such as sensor layouts, floor plans, and annotated data, which may not be available or inconvenient to obtain in practice. To address those challenges in real-life deployment, we introduce the sMRT algorithm that simultaneously tracks the location of each resident and estimates the number of residents in the smart home, without relying on ground-truth annotated sensor data or other additional information. We evaluate the performance of our approach using two smart home datasets recorded in real-life settings and compare sMRT with two other methods that rely on sensor layout and ground truth-labeled sensor data. |
Author | Wang, Tinghui Cook, Diane J. |
Author_xml | – sequence: 1 givenname: Tinghui orcidid: 0000-0001-6339-9424 surname: Wang fullname: Wang, Tinghui email: tinghui.wang@wsu.edu organization: School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, USA – sequence: 2 givenname: Diane J. orcidid: 0000-0002-4441-7508 surname: Cook fullname: Cook, Diane J. email: cook@eecs.wsu.edu organization: School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32070942$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1PFTEUxRuDkcfHP6CJmcSNm3nefkw_XJAQIkLCiwQeumw6nQ4U57XYzpjoX2_hPYiycHUXPb9zT-_ZQVshBofQawxzjEF9WJ4fLk7nBAjMiRK0EfgFmhHMoVZEkS00A8xJLSWR22gn51sAzBqgr9A2JSBAMTJDx3lxsfxYLaZh9PWFy75zYayWydjvPlxXPlSXK5PG6iSuXK6--fGmunQhx1R9dXaMyf82o49hD73szZDd_mbuoqvjT8ujk_rsy-fTo8Oz2pbNY00EiL6TvaWiBeFcC8QI4B1TnONOst462kDDhcGq63HLekEx6U2jAHjbWLqLDta-d1O7cp0tYZMZ9F3yJeUvHY3X_74Ef6Ov408tGKGC82LwfmOQ4o_J5VGvfLZuGExwccqa0EY2kgFnRfrumfQ2TimU72nSMMEZU5gW1du_Ez1FeTxxEci1wKaYc3K9tn58OFoJ6AeNQd-3qR_a1Pdt6k2bBSXP0Ef3_0Jv1pB3zj0BUilJlaJ_AKmqqfE |
CODEN | ITPIDJ |
CitedBy_id | crossref_primary_10_1109_JSEN_2020_3020401 crossref_primary_10_1109_TNNLS_2023_3339786 crossref_primary_10_1109_JSEN_2022_3161797 crossref_primary_10_1109_TIA_2022_3223347 crossref_primary_10_1016_j_procs_2022_03_007 crossref_primary_10_1109_TKDE_2024_3386794 crossref_primary_10_1109_TETC_2021_3072980 crossref_primary_10_3390_e22080845 crossref_primary_10_1016_j_ifacol_2021_11_286 crossref_primary_10_1109_ACCESS_2022_3208686 crossref_primary_10_1016_j_eswa_2024_126178 crossref_primary_10_1109_JIOT_2022_3204359 |
Cites_doi | 10.1109/MIS.2010.112 10.1109/TMC.2016.2599158 10.1145/2783258.2783408 10.1016/j.jbi.2018.03.009 10.3233/AIS-2009-0041 10.1109/TSG.2012.2214407 10.1109/AINAW.2007.209 10.1109/ICDCS.2012.76 10.1145/2632951.2632959 10.1109/CoASE.2015.7294061 10.1109/JBHI.2015.2512273 10.1109/TBME.2009.2036732 10.1109/TKDE.2017.2750669 10.1109/TIP.2015.2404034 10.3390/en9080624 10.1109/TCSVT.2018.2817609 10.1093/oso/9780190234737.003.0017 10.1049/cp:20081164 10.1007/978-3-642-13022-9_42 10.1109/JTEHM.2016.2579638 10.1109/TSP.2006.881190 10.1109/LCOMM.2016.2619700 10.2991/ijcis.10.1.88 10.1007/978-3-319-46843-3_4 10.3390/s17040737 10.1007/11428572_5 10.1016/j.knosys.2017.01.025 10.1016/j.engappai.2013.08.004 10.1109/TPAMI.2013.220 10.1016/j.knosys.2012.08.020 10.1109/TSMCB.2008.923526 10.3233/THC-130734 10.3115/v1/D14-1162 10.1016/j.ijmedinf.2016.04.007 10.1016/j.pmcj.2012.07.003 10.1016/j.apenergy.2017.11.055 10.1109/JBHI.2018.2833618 10.1109/THMS.2016.2641388 10.1007/s00779-014-0820-1 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 5PM |
DOI | 10.1109/TPAMI.2020.2973571 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | Technology Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 2160-9292 1939-3539 |
EndPage | 2821 |
ExternalDocumentID | PMC7423766 32070942 10_1109_TPAMI_2020_2973571 8998399 |
Genre | orig-research Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GrantInformation_xml | – fundername: National Science Foundation grantid: 1543656 funderid: 10.13039/100000001 – fundername: NIA NIH HHS grantid: R01 AG065218 – fundername: NIBIB NIH HHS grantid: R01 EB009675 – fundername: NINR NIH HHS grantid: R01 NR016732 – fundername: NIBIB NIH HHS grantid: R25 EB024327 – fundername: NIBIB NIH HHS grantid: R01 EB015853 |
GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB ~02 5VS 9M8 AAYOK AAYXX ABFSI ADRHT AETEA AETIX AGSQL AI. AIBXA ALLEH CITATION FA8 H~9 IBMZZ ICLAB IFJZH RIG RNI RZB VH1 XJT CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 5PM |
ID | FETCH-LOGICAL-c450t-2707fd8fc37b07eeb02a706d49661d84fce350567a19df1b4f7312fa59006b5c3 |
IEDL.DBID | RIE |
ISSN | 0162-8828 1939-3539 |
IngestDate | Thu Aug 21 18:28:31 EDT 2025 Fri Jul 11 04:10:59 EDT 2025 Mon Jun 30 06:28:01 EDT 2025 Mon Jul 21 06:01:42 EDT 2025 Thu Apr 24 23:06:46 EDT 2025 Tue Jul 01 03:18:25 EDT 2025 Wed Aug 27 02:26:41 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c450t-2707fd8fc37b07eeb02a706d49661d84fce350567a19df1b4f7312fa59006b5c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4441-7508 0000-0001-6339-9424 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7423766 |
PMID | 32070942 |
PQID | 2547644913 |
PQPubID | 85458 |
PageCount | 13 |
ParticipantIDs | pubmed_primary_32070942 crossref_citationtrail_10_1109_TPAMI_2020_2973571 ieee_primary_8998399 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7423766 proquest_miscellaneous_2358584064 proquest_journals_2547644913 crossref_primary_10_1109_TPAMI_2020_2973571 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-01 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
PublicationTitleAbbrev | TPAMI |
PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref11 ref32 ref10 ref2 ref1 ref39 ref17 ref38 ref16 ref19 ref18 crandall (ref33) 2011 ref24 ref23 gutmann (ref42) 2010 ref26 ref25 ref20 ref41 ref22 ref21 ref43 müller (ref34) 2016; 9 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 goodman (ref40) 2013 ref5 |
References_xml | – ident: ref9 doi: 10.1109/MIS.2010.112 – ident: ref26 doi: 10.1109/TMC.2016.2599158 – ident: ref12 doi: 10.1145/2783258.2783408 – ident: ref13 doi: 10.1016/j.jbi.2018.03.009 – ident: ref32 doi: 10.3233/AIS-2009-0041 – ident: ref28 doi: 10.1109/TSG.2012.2214407 – ident: ref18 doi: 10.1109/AINAW.2007.209 – ident: ref38 doi: 10.1109/ICDCS.2012.76 – ident: ref37 doi: 10.1145/2632951.2632959 – ident: ref36 doi: 10.1109/CoASE.2015.7294061 – ident: ref14 doi: 10.1109/JBHI.2015.2512273 – ident: ref17 doi: 10.1109/TBME.2009.2036732 – ident: ref10 doi: 10.1109/TKDE.2017.2750669 – ident: ref2 doi: 10.1109/TIP.2015.2404034 – ident: ref27 doi: 10.3390/en9080624 – ident: ref1 doi: 10.1109/TCSVT.2018.2817609 – ident: ref20 doi: 10.1093/oso/9780190234737.003.0017 – ident: ref31 doi: 10.1049/cp:20081164 – ident: ref30 doi: 10.1007/978-3-642-13022-9_42 – ident: ref16 doi: 10.1109/JTEHM.2016.2579638 – ident: ref43 doi: 10.1109/TSP.2006.881190 – ident: ref25 doi: 10.1109/LCOMM.2016.2619700 – ident: ref35 doi: 10.2991/ijcis.10.1.88 – ident: ref22 doi: 10.1007/978-3-319-46843-3_4 – ident: ref21 doi: 10.3390/s17040737 – start-page: 297 year: 2010 ident: ref42 article-title: Noise-contrastive estimation: A new estimation principle for unnormalized statistical models publication-title: Proc Int Conf Artif Intell Statist – ident: ref29 doi: 10.1007/11428572_5 – ident: ref7 doi: 10.1016/j.knosys.2017.01.025 – ident: ref11 doi: 10.1016/j.engappai.2013.08.004 – ident: ref3 doi: 10.1109/TPAMI.2013.220 – ident: ref39 doi: 10.1016/j.knosys.2012.08.020 – ident: ref4 doi: 10.1109/TSMCB.2008.923526 – volume: 9 start-page: 20 year: 2016 ident: ref34 article-title: Multi-target data association in binary sensor networks for ambulant care support publication-title: International Journal On Advances in Networks and Services – ident: ref19 doi: 10.3233/THC-130734 – ident: ref41 doi: 10.3115/v1/D14-1162 – start-page: 111 year: 2011 ident: ref33 article-title: Tracking systems for multiple smart home residents publication-title: Human Behavior Recognition Technologies Intelligent Applications for Monitoring and Security – ident: ref15 doi: 10.1016/j.ijmedinf.2016.04.007 – year: 2013 ident: ref40 publication-title: Mathematics of Data Fusion – ident: ref8 doi: 10.1016/j.pmcj.2012.07.003 – ident: ref24 doi: 10.1016/j.apenergy.2017.11.055 – ident: ref5 doi: 10.1109/JBHI.2018.2833618 – ident: ref6 doi: 10.1109/THMS.2016.2641388 – ident: ref23 doi: 10.1007/s00779-014-0820-1 |
SSID | ssj0014503 |
Score | 2.4904072 |
Snippet | Smart homes equipped with anonymous binary sensors offer a low-cost, unobtrusive solution that powers activity-aware applications, such as building automation,... Smart homes equipped with anonymous binary sensors offer a low-cost, unobtrusive solution that powers activity-aware applications such as building automation,... |
SourceID | pubmedcentral proquest pubmed crossref ieee |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2809 |
SubjectTerms | Algorithms Artificial Intelligence Building automation Data models Environment Design Equipment Design Floorplans Hidden Markov models Humans Layout Layouts Monitoring Monitoring, Ambulatory multi-resident tracking multi-target Bayes filter Pattern Recognition, Automated sensor networks Sensors Smart buildings Smart home Smart homes Smart houses Structural health monitoring time series Tracking |
Title | sMRT: Multi-Resident Tracking in Smart Homes With Sensor Vectorization |
URI | https://ieeexplore.ieee.org/document/8998399 https://www.ncbi.nlm.nih.gov/pubmed/32070942 https://www.proquest.com/docview/2547644913 https://www.proquest.com/docview/2358584064 https://pubmed.ncbi.nlm.nih.gov/PMC7423766 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0BJ3ooBfoRCpWRuNEstuPEpDdUdQVIW1WwtNyi2LHFqm0WsdlLf31nnA-xCFW9RYoTJZmZ-D17Zh7AkRGJNR7j2yBWjVVa4X8QgUCM_2Nd5VwaE-rWJl-z8xt1eZversHHoRbGOReSz9yIDsNefjW3S1oqOyFugBPqOqwjcWtrtYYdA5UGFWREMBjhSCP6Ahmen0y_nU0ukApKPiKlplSTPEwi0dlzJVfmoyCw8hzWfJoy-WgOGm_BpH_6NvXk52jZmJH986Sx4_--3it42YFRdtZ6zzasuXoHtnqhB9bF_Q68eNS1cBfGi8nV9BMLpbvxlSO9z7phOOlZWnZns5pd_0aHZKTAvmA_Zs0du0ayPH9g38MWQVf5-Rpuxl-mn8_jTo4htvhxG6pc07469TbRhmvnDJel5lmlkDGJ6lR56xLCU7oUeeWFUV4nQvqSdEkzk9rkDWzU89q9A-a1LZUQZW4RInhXGe4k3smUiAdLnskIRG-Uwna9ykky41cROAvPi2DTgmxadDaN4Hi45r7t1PHP0btkgGFk9-0j2O9tX3TBvCiQQ2uEjblIIjgcTmMY0t5KWbv5EsckyLuQLGcqgretqwz37l0tAr3iRMMAavG9eqae3YVW3zpkLWV7zz_te9iUlGIT8hH3YaN5WLoDxEiN-RCC4y8kNAti |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6VcgAOLbRAUwoYCU4oW9tx4g0ShwpY7dJuhdot7S3EjqOuCtmqyaqCZ-FVeDfGzo-6VcWtErdIcazEnhl_k_n5AF4rFmiVo34rxKq-CDO0gwgEfLTHMospV8rVrY33o-GR-HwSnizB764Wxhjjks9Mz166WH4203P7q2zb-gZ4oDYplLvm5yU6aOX70UfczTecDz5NPgz9hkPA1yKklS23knnWz3UgFZXGKMpTSaNMIMxnWV_k2gQWBMiUxVnOlMhlwHieWjLNSIU6wHnvwF3EGSGvq8O6GAXOH9Sdw9GmoOPSluTQeHvyZWc8QueT057lhgqlJaQJOKpXLPjCCegoXW5Ct9eTNK-ceoNV-NOuV53sctabV6qnf11rJfm_LuhDWGngNtmp9eMRLJliDVZbKgvSWLY1eHClL-M6DMrxweQdccXJ_oGxjKZFRfBY1zawQKYFOfyBKkcsx3xJjqfVKTk0RTm7IF9dEKSpbX0MR7fybU9guZgVZgNILnUqGEtjjSAoN5mihuNMKkXEm9KIe8BaIUh0043dkoJ8T5xXRuPEyVBiZShpZMiDt90z53Uvkn-OXrcb3o1s9tqDrVbWksZclQkPhURgHLPAg1fdbTQ0NnqUFmY2xzEBepZ9xH_Cg6e1aHZzt6LtgVwQ2m6AbWK-eKeYnrpm5tLlZUWbN7_tS7g3nIz3kr3R_u4zuM9tQpHLvtyC5epibp4jIqzUC6eYBL7dtuD-BQggZ_E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=sMRT%3A+Multi-Resident+Tracking+in+Smart+Homes+With+Sensor+Vectorization&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Wang%2C+Tinghui&rft.au=Cook%2C+Diane+J.&rft.date=2021-08-01&rft.pub=IEEE&rft.issn=0162-8828&rft.volume=43&rft.issue=8&rft.spage=2809&rft.epage=2821&rft_id=info:doi/10.1109%2FTPAMI.2020.2973571&rft_id=info%3Apmid%2F32070942&rft.externalDocID=8998399 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |