Metabolism of Dichloromethylcatechols as Central Intermediates in the Degradation of Dichlorotoluenes by Ralstonia sp. Strain PS12
Article Usage Stats Services JB Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue JB About JB Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commer...
Saved in:
Published in | Journal of Bacteriology Vol. 184; no. 19; pp. 5261 - 5274 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
01.10.2002
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Article Usage Stats
Services
JB
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley
Reddit
StumbleUpon
Twitter
current issue
JB
About
JB
Subscribers
Authors
Reviewers
Advertisers
Inquiries from the Press
Permissions & Commercial Reprints
ASM Journals Public Access Policy
JB
RSS Feeds
1752 N Street N.W. • Washington DC 20036
202.737.3600 • 202.942.9355 fax • journals@asmusa.org
Print ISSN:
0021-9193
Online ISSN:
1098-5530
Copyright © 2014
by the
American Society for Microbiology.
For an alternate route to
JB
.asm.org, visit:
JB
|
---|---|
AbstractList | Ralstonia
sp. strain PS12 is able to use 2,4-, 2,5-, and 3,4-dichlorotoluene as growth substrates. Dichloromethylcatechols are central intermediates that are formed by TecA tetrachlorobenzene dioxygenase-mediated activation at two adjacent unsubstituted carbon atoms followed by TecB chlorobenzene dihydrodiol dehydrogenase-catalyzed rearomatization and then are channeled into a chlorocatechol
ortho
cleavage pathway involving a chlorocatechol 1,2-dioxygenase, chloromuconate cycloisomerase, and dienelactone hydrolase. However, completely different metabolic routes were observed for the three dichloromethylcatechols analyzed. Whereas 3,4-dichloro-6-methylcatechol is quantitatively transformed into one dienelactone (5-chloro-2-methyldienelactone) and thus is degraded via a linear pathway, 3,5-dichloro-2-methylmuconate formed from 4,6-dichloro-3-methylcatechol is subject to both 1,4- and 3,6-cycloisomerization and thus is degraded via a branched metabolic route. 3,6-Dichloro-4-methylcatechol, on the first view, is transformed predominantly into one (2-chloro-3-methyl-
trans
-) dienelactone. In situ
1
H nuclear magnetic resonance analysis revealed the intermediate formation of 2,5-dichloro-4-methylmuconolactone, showing that both 1,4- and 3,6-cycloisomerization occur with this muconate and indicating a degradation of the muconolactone via a reversible cycloisomerization reaction and the dienelactone-forming branch of the pathway. Diastereomeric mixtures of two dichloromethylmuconolactones were prepared chemically to proof such a hypothesis. Chloromuconate cycloisomerase transformed 3,5-dichloro-2-methylmuconolactone into a mixture of 2-chloro-5-methyl-
cis
- and 3-chloro-2-methyldienelactone, affording evidence for a metabolic route of 3,5-dichloro-2-methylmuconolactone via 3,5-dichloro-2-methylmuconate into 2-chloro-5-methyl-
cis
-dienelactone. 2,5-Dichloro-3-methylmuconolactone was transformed nearly exclusively into 2-chloro-3-methyl-
trans
-dienelactone. Article Usage Stats Services JB Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue JB About JB Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy JB RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0021-9193 Online ISSN: 1098-5530 Copyright © 2014 by the American Society for Microbiology. For an alternate route to JB .asm.org, visit: JB Ralstonia sp. strain PS12 is able to use 2,4-, 2,5-, and 3,4-dichlorotoluene as growth substrates. Dichloromethylcatechols are central intermediates that are formed by TecA tetrachlorobenzene dioxygenase-mediated activation at two adjacent unsubstituted carbon atoms followed by TecB chlorobenzene dihydrodiol dehydrogenase-catalyzed rearomatization and then are channeled into a chlorocatechol ortho cleavage pathway involving a chlorocatechol 1,2-dioxygenase, chloromuconate cycloisomerase, and dienelactone hydrolase. However, completely different metabolic routes were observed for the three dichloromethylcatechols analyzed. Whereas 3,4-dichloro-6-methylcatechol is quantitatively transformed into one dienelactone (5-chloro-2-methyldienelactone) and thus is degraded via a linear pathway, 3,5-dichloro-2-methylmuconate formed from 4,6-dichloro-3-methylcatechol is subject to both 1,4- and 3,6-cycloisomerization and thus is degraded via a branched metabolic route. 3,6-Dichloro-4-methylcatechol, on the first view, is transformed predominantly into one (2-chloro-3-methyl-trans-) dienelactone. In situ (1)H nuclear magnetic resonance analysis revealed the intermediate formation of 2,5-dichloro-4-methylmuconolactone, showing that both 1,4- and 3,6-cycloisomerization occur with this muconate and indicating a degradation of the muconolactone via a reversible cycloisomerization reaction and the dienelactone-forming branch of the pathway. Diastereomeric mixtures of two dichloromethylmuconolactones were prepared chemically to proof such a hypothesis. Chloromuconate cycloisomerase transformed 3,5-dichloro-2-methylmuconolactone into a mixture of 2-chloro-5-methyl-cis- and 3-chloro-2-methyldienelactone, affording evidence for a metabolic route of 3,5-dichloro-2-methylmuconolactone via 3,5-dichloro-2-methylmuconate into 2-chloro-5-methyl-cis-dienelactone. 2,5-Dichloro-3-methylmuconolactone was transformed nearly exclusively into 2-chloro-3-methyl-trans-dienelactone. Ralstonia sp. strain PS12 is able to use 2,4-, 2,5-, and 3,4-dichlorotoluene as growth substrates. Dichloromethylcatechols are central intermediates that are formed by TecA tetrachlorobenzene dioxygenase-mediated activation at two adjacent unsubstituted carbon atoms followed by TecB chlorobenzene dihydrodiol dehydrogenase-catalyzed rearomatization and then are channeled into a chlorocatechol ortho cleavage pathway involving a chlorocatechol 1,2-dioxygenase, chloromuconate cycloisomerase, and dienelactone hydrolase. Ralstonia sp. strain PS12 is able to use 2,4-, 2,5-, and 3,4- dichlorotoluene as growth substrates. Dichloromethylcatechols are central intermediates that are formed by TecA tetrachlorobenzene dioxygenase-mediated activation at two adjacent unsubstituted carbon atoms followed by TecB chlorobenzene dihydrodiol dehydrogenase-catalyzed rearomatization and then are channeled into a chlorocatechol ortho cleavage pathway involving a chlorocatechol 1,2-dioxygenase, chloromuconate cycloisomerase, and dienelactone hydrolase. However, completely different metabolic routes were observed for the three dichloromethylcatechols analyzed. Whereas 3,4-dichloro-6-methylcatechol is quantitatively transformed into one dienelactone (5-chloro-2-methyldienelactone) and thus is degraded via a linear pathway, 3,5-dichloro-2-methylmuconate formed from 4,6-dichloro-3-methylcatechol is subject to both 1,4- and 3,6- cycloisomerization and thus is degraded via a branched metabolic route. 3,6- Dichloro-4-methylcatechol, on the first view, is transformed predominantly into one (2-chloro-3-methyl-trans-) dienelactone. In situ super(1)H nuclear magnetic resonance analysis revealed the intermediate formation of 2,5-dichloro-4- methylmuconolactone, showing that both 1,4- and 3,6-cycloisomerization occur with this muconate and indicating a degradation of the muconolactone via a reversible cycloisomerization reaction and the dienelactone-forming branch of the pathway. Diastereomeric mixtures of two dichloromethylmuconolactones were prepared chemically to proof such a hypothesis. Chloromuconate cycloisomerase transformed 3,5-dichloro-2-methylmuconolactone into a mixture of 2-chloro-5- methyl-cis- and 3-chloro-2-methyldienelactone, affording evidence for a metabolic route of 3,5-dichloro-2-methylmuconolactone via 3,5-dichloro-2- methylmuconate into 2-chloro-5-methyl-cis-dienelactone. 2,5-Dichloro-3- methylmuconolactone was transformed nearly exclusively into 2-chloro-3-methyl- trans-dienelactone. Ralstonia sp. strain PS12 is able to use 2,4-, 2,5-, and 3,4-dichlorotoluene as growth substrates. Dichloromethylcatechols are central intermediates that are formed by TecA tetrachlorobenzene dioxygenase-mediated activation at two adjacent unsubstituted carbon atoms followed by TecB chlorobenzene dihydrodiol dehydrogenase-catalyzed rearomatization and then are channeled into a chlorocatechol ortho cleavage pathway involving a chlorocatechol 1,2-dioxygenase, chloromuconate cycloisomerase, and dienelactone hydrolase. However, completely different metabolic routes were observed for the three dichloromethylcatechols analyzed. Whereas 3,4-dichloro-6-methylcatechol is quantitatively transformed into one dienelactone (5-chloro-2-methyldienelactone) and thus is degraded via a linear pathway, 3,5-dichloro-2-methylmuconate formed from 4,6-dichloro-3-methylcatechol is subject to both 1,4- and 3,6-cycloisomerization and thus is degraded via a branched metabolic route. 3,6-Dichloro-4-methylcatechol, on the first view, is transformed predominantly into one (2-chloro-3-methyl-trans-) dienelactone. In situ (1)H nuclear magnetic resonance analysis revealed the intermediate formation of 2,5-dichloro-4-methylmuconolactone, showing that both 1,4- and 3,6-cycloisomerization occur with this muconate and indicating a degradation of the muconolactone via a reversible cycloisomerization reaction and the dienelactone-forming branch of the pathway. Diastereomeric mixtures of two dichloromethylmuconolactones were prepared chemically to proof such a hypothesis. Chloromuconate cycloisomerase transformed 3,5-dichloro-2-methylmuconolactone into a mixture of 2-chloro-5-methyl-cis- and 3-chloro-2-methyldienelactone, affording evidence for a metabolic route of 3,5-dichloro-2-methylmuconolactone via 3,5-dichloro-2-methylmuconate into 2-chloro-5-methyl-cis-dienelactone. 2,5-Dichloro-3-methylmuconolactone was transformed nearly exclusively into 2-chloro-3-methyl-trans-dienelactone.Ralstonia sp. strain PS12 is able to use 2,4-, 2,5-, and 3,4-dichlorotoluene as growth substrates. Dichloromethylcatechols are central intermediates that are formed by TecA tetrachlorobenzene dioxygenase-mediated activation at two adjacent unsubstituted carbon atoms followed by TecB chlorobenzene dihydrodiol dehydrogenase-catalyzed rearomatization and then are channeled into a chlorocatechol ortho cleavage pathway involving a chlorocatechol 1,2-dioxygenase, chloromuconate cycloisomerase, and dienelactone hydrolase. However, completely different metabolic routes were observed for the three dichloromethylcatechols analyzed. Whereas 3,4-dichloro-6-methylcatechol is quantitatively transformed into one dienelactone (5-chloro-2-methyldienelactone) and thus is degraded via a linear pathway, 3,5-dichloro-2-methylmuconate formed from 4,6-dichloro-3-methylcatechol is subject to both 1,4- and 3,6-cycloisomerization and thus is degraded via a branched metabolic route. 3,6-Dichloro-4-methylcatechol, on the first view, is transformed predominantly into one (2-chloro-3-methyl-trans-) dienelactone. In situ (1)H nuclear magnetic resonance analysis revealed the intermediate formation of 2,5-dichloro-4-methylmuconolactone, showing that both 1,4- and 3,6-cycloisomerization occur with this muconate and indicating a degradation of the muconolactone via a reversible cycloisomerization reaction and the dienelactone-forming branch of the pathway. Diastereomeric mixtures of two dichloromethylmuconolactones were prepared chemically to proof such a hypothesis. Chloromuconate cycloisomerase transformed 3,5-dichloro-2-methylmuconolactone into a mixture of 2-chloro-5-methyl-cis- and 3-chloro-2-methyldienelactone, affording evidence for a metabolic route of 3,5-dichloro-2-methylmuconolactone via 3,5-dichloro-2-methylmuconate into 2-chloro-5-methyl-cis-dienelactone. 2,5-Dichloro-3-methylmuconolactone was transformed nearly exclusively into 2-chloro-3-methyl-trans-dienelactone. |
Author | Stefan Kaschabek Walter Reineke Katrin Pollmann Victor Wray Dietmar H. Pieper |
AuthorAffiliation | Department of Environmental Microbiology, 1 Department of Structure Research, GBF-German Research Center for Biotechnology, D-38124 Braunschweig, 3 Chemical Microbiology, Bergische University, Wuppertal, Germany 2 |
AuthorAffiliation_xml | – name: Department of Environmental Microbiology, 1 Department of Structure Research, GBF-German Research Center for Biotechnology, D-38124 Braunschweig, 3 Chemical Microbiology, Bergische University, Wuppertal, Germany 2 |
Author_xml | – sequence: 1 givenname: Katrin surname: Pollmann fullname: Pollmann, Katrin organization: Department of Environmental Microbiology – sequence: 2 givenname: Stefan surname: Kaschabek fullname: Kaschabek, Stefan organization: Chemical Microbiology, Bergische University, Wuppertal, Germany – sequence: 3 givenname: Victor surname: Wray fullname: Wray, Victor organization: Department of Structure Research, GBF-German Research Center for Biotechnology, D-38124 Braunschweig – sequence: 4 givenname: Walter surname: Reineke fullname: Reineke, Walter organization: Chemical Microbiology, Bergische University, Wuppertal, Germany – sequence: 5 givenname: Dietmar H. surname: Pieper fullname: Pieper, Dietmar H. organization: Department of Environmental Microbiology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/12218011$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkstu1DAUhi1URKeFV0AWC3YJPs7FzgIkOuXSqghEYW05jjPxKLEH2wOaLU-OwwzV0E1Xlny-_z_XM3RindUIYSA5AOWvri9y4GUOTV7RGrKKsjKnhNBHaAGkZhnnBT1Bi_QDWQNNcYrOQlgTAmVZ0SfoFCgFTgAW6PcnHWXrRhMm7Hp8adQwOu8mHYfdqGTUanBjwDLgpbbRyxFf2aj9pDuTggEbi-Og8aVeednJaJw9tolu3GqbsHaHv8oxRGeNxGGT49vklbRfboE-RY_7FNPPDu85-v7-3bflx-zm84er5dubTJUViRlwqVXbSVLytmhU17G6Iy1nqq6g5zWnCqhkfa_LsuxoVUHTUlZJXrRA-pKS4hy93vtutm2qX-37ERtvJul3wkkj_o9YM4iV-ymgqIqaJv3Lg967H1sdophMUHocpdVuGwSjhKW07EEwra6pORQJfHEPXLutt2kIglJGeFXXkKDnx2Xf1ftvhwl4sweUdyF43Qtl4t9VzDMeBRAxH424vpgzC2jEfDRiPhoxH00y4PcM7nI8LD10MJjV8Mt4LWSYxLo9xos_HJDTFQ |
CODEN | JOBAAY |
CitedBy_id | crossref_primary_10_1128_mra_00902_24 crossref_primary_10_1080_10934521003772444 crossref_primary_10_1007_s00253_011_3543_5 crossref_primary_10_1128_JB_187_7_2332_2340_2005 crossref_primary_10_1099_mic_0_26054_0 crossref_primary_10_1007_s13765_017_0299_3 crossref_primary_10_1016_j_bcab_2019_101285 |
Cites_doi | 10.1128/jb.175.21.6745-6754.1993 10.1128/JB.184.15.4054-4064.2002 10.1128/JB.182.6.1641-1649.2000 10.1128/aem.55.2.372-379.1989 10.1007/BF00409724 10.1007/BF01278610 10.1128/jb.179.14.4530-4537.1997 10.1074/jbc.270.49.29229 10.1128/AEM.66.8.3187-3193.2000 10.1016/0003-2697(76)90527-3 10.1128/JB.180.9.2337-2344.1998 10.1128/AEM.64.9.3290-3299.1998 10.1111/j.1432-1033.1972.tb01920.x 10.1111/j.1432-1033.1996.00357.x 10.1042/bj1210089 10.1111/j.1574-6968.1985.tb00836.x 10.1128/aem.61.6.2159-2165.1995 10.1111/j.1432-1033.1997.00190.x 10.1128/jb.178.23.6833-6841.1996 10.1021/ja00041a004 10.1128/AEM.67.9.4057-4063.2001 10.1042/bj1740085 10.1042/bj2710529 10.1042/bj1920339 10.1128/JB.181.1.341-346.1999 10.1128/JB.180.2.400-402.1998 10.1515/9783111322926 10.1007/BF00249118 10.1128/jb.177.2.320-325.1995 10.1002/(SICI)1097-0134(19990101)34:1<125::AID-PROT10>3.0.CO;2-Y 10.1007/s002530051438 10.1111/j.1432-1033.1996.00350.x 10.1042/bj1740073 10.1128/jb.171.12.6782-6790.1989 10.1128/JB.181.16.5051-5059.1999 10.1128/jb.176.14.4366-4375.1994 10.1128/AEM.64.1.153-158.1998 10.1128/JB.183.18.5441-5444.2001 10.1128/JB.183.15.4551-4561.2001 10.1042/bj2620303 10.1021/ja00252a034 10.1099/00221287-145-12-3389 10.1128/aem.42.4.737-739.1981 10.1007/BF00696222 10.1128/aem.57.5.1430-1440.1991 10.1021/jo00093a036 10.1128/aem.61.2.443-447.1995 10.1128/jb.145.2.681-686.1981 10.1126/science.3479842 10.1007/BF00249121 10.1128/jb.172.9.5119-5129.1990 10.1128/jb.177.10.2938-2941.1995 10.1111/j.1432-1033.1971.tb01406.x 10.1007/BF00409721 10.1128/JB.184.5.1466-1470.2002 10.1128/JB.182.19.5495-5504.2000 |
ContentType | Journal Article |
Copyright | Copyright American Society for Microbiology Oct 2002 Copyright © 2002, American Society for Microbiology 2002 |
Copyright_xml | – notice: Copyright American Society for Microbiology Oct 2002 – notice: Copyright © 2002, American Society for Microbiology 2002 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1128/JB.184.19.5261-5274.2002 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Virology and AIDS Abstracts Technology Research Database Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts AIDS and Cancer Research Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE Genetics Abstracts Bacteriology Abstracts (Microbiology B) MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1067-8832 1098-5530 |
EndPage | 5274 |
ExternalDocumentID | PMC135362 190437531 12218011 10_1128_JB_184_19_5261_5274_2002 jb_184_19_5261 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 186 18M 1VV 29J 2WC 39C 3O- 4.4 53G 5GY 5RE 5VS 79B 85S 8WZ 9M8 A6W AAGFI AAYXX ABPPZ ACGFO ACGOD ACNCT ACPRK ADBBV ADXHL AENEX AFFDN AFFNX AFRAH AGCDD AGVNZ AI. AIDAL AJUXI ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BKOMP BTFSW C1A CITATION CJ0 CS3 DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HYE HZ~ IH2 KQ8 L7B MVM NHB O9- OHT OK1 P-O P-S P2P PQQKQ QZG RHI RNS RPM RSF RXW TAE TR2 UHB UKR UPT VH1 W8F WH7 WHG WOQ X7M Y6R YQT YR2 YZZ ZCA ZCG ZGI ZXP ZY4 ~02 ~KM ABTAH CGR CUY CVF ECM EIF NPM PKN RHF UCJ VQA YIN 7QL 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c450t-18aecbda048b39cdd76d0b87c651f8682c12a7ffe444d25519b275a83b10f4203 |
ISSN | 0021-9193 |
IngestDate | Thu Aug 21 18:31:52 EDT 2025 Thu Jul 10 18:16:00 EDT 2025 Thu Jul 10 23:09:30 EDT 2025 Mon Jun 30 10:29:43 EDT 2025 Wed Feb 19 02:34:08 EST 2025 Thu Apr 24 23:11:31 EDT 2025 Tue Jul 01 02:44:41 EDT 2025 Wed May 18 15:54:43 EDT 2016 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c450t-18aecbda048b39cdd76d0b87c651f8682c12a7ffe444d25519b275a83b10f4203 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 Corresponding author. Mailing address: Bereich Mikrobiologie, AG Biodegradation, Gesellschaft für Biotechnologische Forschung mbH, Mascheroder Weg 1, D-38124 Braunschweig, Germany. Phone: 49 531 6181 467. Fax: 49 531 6181 467. E-mail: dpi@gbf.de. Present address: TU Bergakademie Freiberg, Interdisziplinäres Ökologisches Zentrum, D-09599 Freiberg, Germany. |
PMID | 12218011 |
PQID | 227085661 |
PQPubID | 40724 |
PageCount | 14 |
ParticipantIDs | crossref_citationtrail_10_1128_JB_184_19_5261_5274_2002 crossref_primary_10_1128_JB_184_19_5261_5274_2002 pubmed_primary_12218011 proquest_miscellaneous_72075517 proquest_miscellaneous_18496813 pubmedcentral_primary_oai_pubmedcentral_nih_gov_135362 proquest_journals_227085661 highwire_asm_jb_184_19_5261 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20021001 2002-10-00 2002-Oct |
PublicationDateYYYYMMDD | 2002-10-01 |
PublicationDate_xml | – month: 10 year: 2002 text: 20021001 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Journal of Bacteriology |
PublicationTitleAlternate | J Bacteriol |
PublicationYear | 2002 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_2_49_2 (e_1_3_2_15_2) 1976; 4 e_1_3_2_28_2 (e_1_3_2_5_2) 1997; 247 (e_1_3_2_11_2) 1989; 262 (e_1_3_2_16_2) 1987; 109 (e_1_3_2_21_2) 1978; 174 (e_1_3_2_59_2) 1980; 192 (e_1_3_2_7_2) 1995; 270 (e_1_3_2_45_2) 1990; 271 e_1_3_2_64_2 e_1_3_2_62_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_66_2 (e_1_3_2_29_2) 1992; 158 e_1_3_2_37_2 e_1_3_2_18_2 e_1_3_2_39_2 (e_1_3_2_41_2) 1991; 156 (e_1_3_2_14_2) 1971; 121 e_1_3_2_12_2 e_1_3_2_58_2 e_1_3_2_3_2 e_1_3_2_56_2 (e_1_3_2_52_2) 1987; 238 (e_1_3_2_63_2) 1967; 33 (e_1_3_2_40_2) 1985; 29 (e_1_3_2_34_2) 1990; 266 (e_1_3_2_9_2) 1999; 145 (e_1_3_2_70_2) 1990; 266 (e_1_3_2_54_2) 1972; 28 e_1_3_2_48_2 (e_1_3_2_68_2) 1999; 51 e_1_3_2_65_2 (e_1_3_2_22_2) 1978; 174 e_1_3_2_42_2 (e_1_3_2_20_2) 1974; 99 e_1_3_2_23_2 (e_1_3_2_61_2) 1988; 150 e_1_3_2_69_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_67_2 (e_1_3_2_35_2) 1996; 63 (e_1_3_2_53_2) 1971; 20 (e_1_3_2_26_2) 1992; 114 (e_1_3_2_31_2) 1994; 59 (e_1_3_2_33_2) 1976; 2 e_1_3_2_38_2 (e_1_3_2_51_2) 1996; 237 e_1_3_2_8_2 (e_1_3_2_27_2) 1989; 55 (e_1_3_2_50_2) 1996; 237 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 (e_1_3_2_60_2) 2000; 5 e_1_3_2_32_2 (e_1_3_2_43_2) 1988; 150 e_1_3_2_4_2 (e_1_3_2_44_2) 1993; 160 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_2_2 (e_1_3_2_10_2) 1992; 75 (e_1_3_2_57_2) 1999; 34 (e_1_3_2_13_2) 1989; 21 |
References_xml | – ident: e_1_3_2_62_2 doi: 10.1128/jb.175.21.6745-6754.1993 – ident: e_1_3_2_47_2 doi: 10.1128/JB.184.15.4054-4064.2002 – ident: e_1_3_2_38_2 doi: 10.1128/JB.182.6.1641-1649.2000 – volume: 55 start-page: 372 year: 1989 ident: e_1_3_2_27_2 publication-title: strain JS6. Appl. Environ. Microbiol. doi: 10.1128/aem.55.2.372-379.1989 – volume: 150 start-page: 95 year: 1988 ident: e_1_3_2_43_2 publication-title: Arch. Microbiol. doi: 10.1007/BF00409724 – volume: 2 start-page: 267 year: 1976 ident: e_1_3_2_33_2 publication-title: Eur. J. Appl. Microbiol. doi: 10.1007/BF01278610 – ident: e_1_3_2_36_2 doi: 10.1128/jb.179.14.4530-4537.1997 – volume: 33 start-page: 2708 year: 1967 ident: e_1_3_2_63_2 publication-title: J. Org. Chem. – volume: 270 start-page: 29229 year: 1995 ident: e_1_3_2_7_2 publication-title: J. Biol. Chem. doi: 10.1074/jbc.270.49.29229 – ident: e_1_3_2_17_2 doi: 10.1128/AEM.66.8.3187-3193.2000 – ident: e_1_3_2_8_2 doi: 10.1016/0003-2697(76)90527-3 – ident: e_1_3_2_37_2 doi: 10.1128/JB.180.9.2337-2344.1998 – ident: e_1_3_2_67_2 doi: 10.1128/AEM.64.9.3290-3299.1998 – volume: 28 start-page: 347 year: 1972 ident: e_1_3_2_54_2 publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1972.tb01920.x – ident: e_1_3_2_28_2 – volume: 237 start-page: 357 year: 1996 ident: e_1_3_2_51_2 publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1996.00357.x – volume: 121 start-page: 89 year: 1971 ident: e_1_3_2_14_2 publication-title: Biochem. J. doi: 10.1042/bj1210089 – volume: 29 start-page: 63 year: 1985 ident: e_1_3_2_40_2 publication-title: FEMS Microbiol Lett. doi: 10.1111/j.1574-6968.1985.tb00836.x – ident: e_1_3_2_46_2 doi: 10.1128/aem.61.6.2159-2165.1995 – volume: 247 start-page: 190 year: 1997 ident: e_1_3_2_5_2 publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1997.00190.x – ident: e_1_3_2_25_2 doi: 10.1128/jb.178.23.6833-6841.1996 – ident: e_1_3_2_55_2 – volume: 114 start-page: 5928 year: 1992 ident: e_1_3_2_26_2 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00041a004 – ident: e_1_3_2_49_2 doi: 10.1128/AEM.67.9.4057-4063.2001 – volume: 174 start-page: 85 year: 1978 ident: e_1_3_2_21_2 publication-title: Biochem. J. doi: 10.1042/bj1740085 – volume: 63 start-page: 1974 year: 1996 ident: e_1_3_2_35_2 publication-title: Appl. Environ. Microbiol. – volume: 271 start-page: 529 year: 1990 ident: e_1_3_2_45_2 publication-title: Biochem J. doi: 10.1042/bj2710529 – volume: 192 start-page: 339 year: 1980 ident: e_1_3_2_59_2 publication-title: Biochem J. doi: 10.1042/bj1920339 – ident: e_1_3_2_6_2 doi: 10.1128/JB.181.1.341-346.1999 – ident: e_1_3_2_12_2 doi: 10.1128/JB.180.2.400-402.1998 – ident: e_1_3_2_24_2 doi: 10.1515/9783111322926 – volume: 156 start-page: 218 year: 1991 ident: e_1_3_2_41_2 publication-title: Arch. Microbiol. doi: 10.1007/BF00249118 – ident: e_1_3_2_30_2 doi: 10.1128/jb.177.2.320-325.1995 – volume: 21 start-page: 1629 year: 1989 ident: e_1_3_2_13_2 publication-title: Commun. – volume: 34 start-page: 125 year: 1999 ident: e_1_3_2_57_2 publication-title: Proteins doi: 10.1002/(SICI)1097-0134(19990101)34:1<125::AID-PROT10>3.0.CO;2-Y – volume: 51 start-page: 598 year: 1999 ident: e_1_3_2_68_2 publication-title: P51. Appl. Microbiol. Biotechnol. doi: 10.1007/s002530051438 – volume: 4 start-page: 436 year: 1976 ident: e_1_3_2_15_2 publication-title: Biochem. Soc. Trans. – volume: 237 start-page: 350 year: 1996 ident: e_1_3_2_50_2 publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1996.00350.x – volume: 174 start-page: 73 year: 1978 ident: e_1_3_2_22_2 publication-title: Biochem. J. doi: 10.1042/bj1740073 – ident: e_1_3_2_2_2 doi: 10.1128/jb.171.12.6782-6790.1989 – ident: e_1_3_2_48_2 doi: 10.1128/JB.181.16.5051-5059.1999 – ident: e_1_3_2_23_2 – ident: e_1_3_2_66_2 doi: 10.1128/jb.176.14.4366-4375.1994 – ident: e_1_3_2_18_2 doi: 10.1128/AEM.64.1.153-158.1998 – ident: e_1_3_2_64_2 doi: 10.1128/JB.183.18.5441-5444.2001 – ident: e_1_3_2_32_2 doi: 10.1128/JB.183.15.4551-4561.2001 – volume: 262 start-page: 303 year: 1989 ident: e_1_3_2_11_2 publication-title: Biochem. J. doi: 10.1042/bj2620303 – ident: e_1_3_2_4_2 – volume: 109 start-page: 5514 year: 1987 ident: e_1_3_2_16_2 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00252a034 – volume: 145 start-page: 3389 year: 1999 ident: e_1_3_2_9_2 publication-title: Microbiology doi: 10.1099/00221287-145-12-3389 – volume: 158 start-page: 412 year: 1992 ident: e_1_3_2_29_2 publication-title: Arch. Microbiol. – volume: 5 start-page: 638 year: 2000 ident: e_1_3_2_60_2 publication-title: GIT Labor-Fachzeitschrift. – ident: e_1_3_2_65_2 doi: 10.1128/aem.42.4.737-739.1981 – volume: 99 start-page: 61 year: 1974 ident: e_1_3_2_20_2 publication-title: Arch. Microbiol. doi: 10.1007/BF00696222 – ident: e_1_3_2_56_2 doi: 10.1128/aem.57.5.1430-1440.1991 – volume: 59 start-page: 4001 year: 1994 ident: e_1_3_2_31_2 publication-title: J. Org. Chem. doi: 10.1021/jo00093a036 – volume: 266 start-page: 877 year: 1990 ident: e_1_3_2_34_2 publication-title: Biochem J. – ident: e_1_3_2_3_2 doi: 10.1128/aem.61.2.443-447.1995 – volume: 266 start-page: 605 year: 1990 ident: e_1_3_2_70_2 publication-title: Biochem. J. – volume: 75 start-page: 81 year: 1992 ident: e_1_3_2_10_2 publication-title: FEMS Microbiol. Lett. – ident: e_1_3_2_19_2 doi: 10.1128/jb.145.2.681-686.1981 – volume: 238 start-page: 1395 year: 1987 ident: e_1_3_2_52_2 publication-title: Science doi: 10.1126/science.3479842 – volume: 160 start-page: 169 year: 1993 ident: e_1_3_2_44_2 publication-title: Arch. Microbiol. doi: 10.1007/BF00249121 – ident: e_1_3_2_58_2 doi: 10.1128/jb.172.9.5119-5129.1990 – ident: e_1_3_2_69_2 doi: 10.1128/jb.177.10.2938-2941.1995 – volume: 20 start-page: 400 year: 1971 ident: e_1_3_2_53_2 publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1971.tb01406.x – volume: 150 start-page: 78 year: 1988 ident: e_1_3_2_61_2 publication-title: Arch. Microbiol. doi: 10.1007/BF00409721 – ident: e_1_3_2_42_2 doi: 10.1128/JB.184.5.1466-1470.2002 – ident: e_1_3_2_39_2 doi: 10.1128/JB.182.19.5495-5504.2000 |
SSID | ssj0014452 |
Score | 1.7289635 |
Snippet | Article Usage Stats
Services
JB
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley... Ralstonia sp. strain PS12 is able to use 2,4-, 2,5-, and 3,4-dichlorotoluene as growth substrates. Dichloromethylcatechols are central intermediates that are... Ralstonia sp. strain PS12 is able to use 2,4-, 2,5-, and 3,4-dichlorotoluene as growth substrates. Dichloromethylcatechols are central intermediates that are... Ralstonia sp. strain PS12 is able to use 2,4-, 2,5-, and 3,4- dichlorotoluene as growth substrates. Dichloromethylcatechols are central intermediates that are... |
SourceID | pubmedcentral proquest pubmed crossref highwire |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5261 |
SubjectTerms | Bacteria Bacteriology Betaproteobacteria - growth & development Betaproteobacteria - metabolism Biodegradation, Environmental Catechols - chemistry Catechols - metabolism Chlorobenzene Hydrocarbons Intramolecular Lyases - metabolism Lactones - chemistry Lactones - metabolism Magnetic Resonance Spectroscopy Metabolism Physiology and Metabolism Sorbic Acid - analogs & derivatives Sorbic Acid - chemistry Sorbic Acid - metabolism Toluene - analogs & derivatives Toluene - chemistry Toluene - metabolism |
Title | Metabolism of Dichloromethylcatechols as Central Intermediates in the Degradation of Dichlorotoluenes by Ralstonia sp. Strain PS12 |
URI | http://jb.asm.org/content/184/19/5261.abstract https://www.ncbi.nlm.nih.gov/pubmed/12218011 https://www.proquest.com/docview/227085661 https://www.proquest.com/docview/18496813 https://www.proquest.com/docview/72075517 https://pubmed.ncbi.nlm.nih.gov/PMC135362 |
Volume | 184 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKEBIviPvKuPiBN5RSOzfnkbGNqWxjGp3WN8tOHK3QtdOSIpVHfjnnxLmyVQxeoiq-1O335Vyc43MIeeuKBJSIihwdptzxWJg4wkRDxzNMgC8GGovh2eHDo2D_1BtN_Emv96MVtbTM9SD-eeO5kv9BFe4BrnhK9h-QrSeFG_AZ8IUrIAzXW2F8aHLAcIZ1LsDm25nG5-B9L7Ao9GqGkU4o2jKsJFPu4dr9v-KwSF4EYhVm5w7mi0hq07GaJl9g9RLoBgbqCfwUMBKn6l12OcA32QrGHn8tQ5Ov27ba5oDubNkfA-MuypLM9d7qZwXetdLme2cX9uxKrToBuCcGjGEbRnTW2afgdcRbc26AgWi19RAb2eu1SRa1RKnPbZb2Ui373FbzuS7yOR5jGG0PYK4BiwY4zsHeRfxJo-aqV_tHX-Te6cGBHO9OxnfIXQ7uBVa--DSpQ4PAx_TLLPN2xVUEGBfv131P16ypUk3f5Lb8GX3bMmfGD8mDEiv6wZLqEemZ-WNyz1YmXT0hvxpq0UVK11CLqoyW1KIdatHpnAK1aIta7WkqalG9ojW1KFCLWmpRpNZTcrq3O_6475TlOpzY84e5w4QysU4U6ATtRnGShEEy1CKMA5-lIhA8ZlyFaWo8z0vAk2WR5qGvhKvZMPX40H1GNuaLudkkVLuYyBI8KgHefJLGQntBDK69VoFIY5P0SVj92zIuc9nj-may8Gm5kKNtCThJFknESSJOWHGV9wmrR17afC63GLNVASpVdiG_6XY_aK0wlqVsyCTnIfgyAba-qVtBcOPbODU3i2WGU0SBYO76HiEHe95nYZ88t4xpVszBMgfN3CdBh0t1B0wa322ZT8-L5PFY5ybgL_66rC1yv3mKX5KN_GppXoH9nevXxcPyG1lZ2ac |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metabolism+of+Dichloromethylcatechols+as+Central+Intermediates+in+the+Degradation+of+Dichlorotoluenes+by+Ralstonia+sp.+Strain+PS12&rft.jtitle=Journal+of+bacteriology&rft.au=Pollmann%2C+K&rft.au=Kaschabek%2C+S&rft.au=Wray%2C+V&rft.au=Reineke%2C+W&rft.date=2002-10-01&rft.issn=0021-9193&rft.volume=184&rft.issue=19&rft.spage=5261&rft.epage=5274&rft_id=info:doi/10.1128%2FJB.184.19.5261-5274.2002&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9193&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9193&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9193&client=summon |