Metabolism of Dichloromethylcatechols as Central Intermediates in the Degradation of Dichlorotoluenes by Ralstonia sp. Strain PS12

Article Usage Stats Services JB Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue JB About JB Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commer...

Full description

Saved in:
Bibliographic Details
Published inJournal of Bacteriology Vol. 184; no. 19; pp. 5261 - 5274
Main Authors Pollmann, Katrin, Kaschabek, Stefan, Wray, Victor, Reineke, Walter, Pieper, Dietmar H.
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 01.10.2002
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Article Usage Stats Services JB Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue JB About JB Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy JB RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0021-9193 Online ISSN: 1098-5530 Copyright © 2014 by the American Society for Microbiology.   For an alternate route to JB .asm.org, visit: JB       
AbstractList Ralstonia sp. strain PS12 is able to use 2,4-, 2,5-, and 3,4-dichlorotoluene as growth substrates. Dichloromethylcatechols are central intermediates that are formed by TecA tetrachlorobenzene dioxygenase-mediated activation at two adjacent unsubstituted carbon atoms followed by TecB chlorobenzene dihydrodiol dehydrogenase-catalyzed rearomatization and then are channeled into a chlorocatechol ortho cleavage pathway involving a chlorocatechol 1,2-dioxygenase, chloromuconate cycloisomerase, and dienelactone hydrolase. However, completely different metabolic routes were observed for the three dichloromethylcatechols analyzed. Whereas 3,4-dichloro-6-methylcatechol is quantitatively transformed into one dienelactone (5-chloro-2-methyldienelactone) and thus is degraded via a linear pathway, 3,5-dichloro-2-methylmuconate formed from 4,6-dichloro-3-methylcatechol is subject to both 1,4- and 3,6-cycloisomerization and thus is degraded via a branched metabolic route. 3,6-Dichloro-4-methylcatechol, on the first view, is transformed predominantly into one (2-chloro-3-methyl- trans -) dienelactone. In situ 1 H nuclear magnetic resonance analysis revealed the intermediate formation of 2,5-dichloro-4-methylmuconolactone, showing that both 1,4- and 3,6-cycloisomerization occur with this muconate and indicating a degradation of the muconolactone via a reversible cycloisomerization reaction and the dienelactone-forming branch of the pathway. Diastereomeric mixtures of two dichloromethylmuconolactones were prepared chemically to proof such a hypothesis. Chloromuconate cycloisomerase transformed 3,5-dichloro-2-methylmuconolactone into a mixture of 2-chloro-5-methyl- cis - and 3-chloro-2-methyldienelactone, affording evidence for a metabolic route of 3,5-dichloro-2-methylmuconolactone via 3,5-dichloro-2-methylmuconate into 2-chloro-5-methyl- cis -dienelactone. 2,5-Dichloro-3-methylmuconolactone was transformed nearly exclusively into 2-chloro-3-methyl- trans -dienelactone.
Article Usage Stats Services JB Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue JB About JB Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy JB RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0021-9193 Online ISSN: 1098-5530 Copyright © 2014 by the American Society for Microbiology.   For an alternate route to JB .asm.org, visit: JB       
Ralstonia sp. strain PS12 is able to use 2,4-, 2,5-, and 3,4-dichlorotoluene as growth substrates. Dichloromethylcatechols are central intermediates that are formed by TecA tetrachlorobenzene dioxygenase-mediated activation at two adjacent unsubstituted carbon atoms followed by TecB chlorobenzene dihydrodiol dehydrogenase-catalyzed rearomatization and then are channeled into a chlorocatechol ortho cleavage pathway involving a chlorocatechol 1,2-dioxygenase, chloromuconate cycloisomerase, and dienelactone hydrolase. However, completely different metabolic routes were observed for the three dichloromethylcatechols analyzed. Whereas 3,4-dichloro-6-methylcatechol is quantitatively transformed into one dienelactone (5-chloro-2-methyldienelactone) and thus is degraded via a linear pathway, 3,5-dichloro-2-methylmuconate formed from 4,6-dichloro-3-methylcatechol is subject to both 1,4- and 3,6-cycloisomerization and thus is degraded via a branched metabolic route. 3,6-Dichloro-4-methylcatechol, on the first view, is transformed predominantly into one (2-chloro-3-methyl-trans-) dienelactone. In situ (1)H nuclear magnetic resonance analysis revealed the intermediate formation of 2,5-dichloro-4-methylmuconolactone, showing that both 1,4- and 3,6-cycloisomerization occur with this muconate and indicating a degradation of the muconolactone via a reversible cycloisomerization reaction and the dienelactone-forming branch of the pathway. Diastereomeric mixtures of two dichloromethylmuconolactones were prepared chemically to proof such a hypothesis. Chloromuconate cycloisomerase transformed 3,5-dichloro-2-methylmuconolactone into a mixture of 2-chloro-5-methyl-cis- and 3-chloro-2-methyldienelactone, affording evidence for a metabolic route of 3,5-dichloro-2-methylmuconolactone via 3,5-dichloro-2-methylmuconate into 2-chloro-5-methyl-cis-dienelactone. 2,5-Dichloro-3-methylmuconolactone was transformed nearly exclusively into 2-chloro-3-methyl-trans-dienelactone.
Ralstonia sp. strain PS12 is able to use 2,4-, 2,5-, and 3,4-dichlorotoluene as growth substrates. Dichloromethylcatechols are central intermediates that are formed by TecA tetrachlorobenzene dioxygenase-mediated activation at two adjacent unsubstituted carbon atoms followed by TecB chlorobenzene dihydrodiol dehydrogenase-catalyzed rearomatization and then are channeled into a chlorocatechol ortho cleavage pathway involving a chlorocatechol 1,2-dioxygenase, chloromuconate cycloisomerase, and dienelactone hydrolase.
Ralstonia sp. strain PS12 is able to use 2,4-, 2,5-, and 3,4- dichlorotoluene as growth substrates. Dichloromethylcatechols are central intermediates that are formed by TecA tetrachlorobenzene dioxygenase-mediated activation at two adjacent unsubstituted carbon atoms followed by TecB chlorobenzene dihydrodiol dehydrogenase-catalyzed rearomatization and then are channeled into a chlorocatechol ortho cleavage pathway involving a chlorocatechol 1,2-dioxygenase, chloromuconate cycloisomerase, and dienelactone hydrolase. However, completely different metabolic routes were observed for the three dichloromethylcatechols analyzed. Whereas 3,4-dichloro-6-methylcatechol is quantitatively transformed into one dienelactone (5-chloro-2-methyldienelactone) and thus is degraded via a linear pathway, 3,5-dichloro-2-methylmuconate formed from 4,6-dichloro-3-methylcatechol is subject to both 1,4- and 3,6- cycloisomerization and thus is degraded via a branched metabolic route. 3,6- Dichloro-4-methylcatechol, on the first view, is transformed predominantly into one (2-chloro-3-methyl-trans-) dienelactone. In situ super(1)H nuclear magnetic resonance analysis revealed the intermediate formation of 2,5-dichloro-4- methylmuconolactone, showing that both 1,4- and 3,6-cycloisomerization occur with this muconate and indicating a degradation of the muconolactone via a reversible cycloisomerization reaction and the dienelactone-forming branch of the pathway. Diastereomeric mixtures of two dichloromethylmuconolactones were prepared chemically to proof such a hypothesis. Chloromuconate cycloisomerase transformed 3,5-dichloro-2-methylmuconolactone into a mixture of 2-chloro-5- methyl-cis- and 3-chloro-2-methyldienelactone, affording evidence for a metabolic route of 3,5-dichloro-2-methylmuconolactone via 3,5-dichloro-2- methylmuconate into 2-chloro-5-methyl-cis-dienelactone. 2,5-Dichloro-3- methylmuconolactone was transformed nearly exclusively into 2-chloro-3-methyl- trans-dienelactone.
Ralstonia sp. strain PS12 is able to use 2,4-, 2,5-, and 3,4-dichlorotoluene as growth substrates. Dichloromethylcatechols are central intermediates that are formed by TecA tetrachlorobenzene dioxygenase-mediated activation at two adjacent unsubstituted carbon atoms followed by TecB chlorobenzene dihydrodiol dehydrogenase-catalyzed rearomatization and then are channeled into a chlorocatechol ortho cleavage pathway involving a chlorocatechol 1,2-dioxygenase, chloromuconate cycloisomerase, and dienelactone hydrolase. However, completely different metabolic routes were observed for the three dichloromethylcatechols analyzed. Whereas 3,4-dichloro-6-methylcatechol is quantitatively transformed into one dienelactone (5-chloro-2-methyldienelactone) and thus is degraded via a linear pathway, 3,5-dichloro-2-methylmuconate formed from 4,6-dichloro-3-methylcatechol is subject to both 1,4- and 3,6-cycloisomerization and thus is degraded via a branched metabolic route. 3,6-Dichloro-4-methylcatechol, on the first view, is transformed predominantly into one (2-chloro-3-methyl-trans-) dienelactone. In situ (1)H nuclear magnetic resonance analysis revealed the intermediate formation of 2,5-dichloro-4-methylmuconolactone, showing that both 1,4- and 3,6-cycloisomerization occur with this muconate and indicating a degradation of the muconolactone via a reversible cycloisomerization reaction and the dienelactone-forming branch of the pathway. Diastereomeric mixtures of two dichloromethylmuconolactones were prepared chemically to proof such a hypothesis. Chloromuconate cycloisomerase transformed 3,5-dichloro-2-methylmuconolactone into a mixture of 2-chloro-5-methyl-cis- and 3-chloro-2-methyldienelactone, affording evidence for a metabolic route of 3,5-dichloro-2-methylmuconolactone via 3,5-dichloro-2-methylmuconate into 2-chloro-5-methyl-cis-dienelactone. 2,5-Dichloro-3-methylmuconolactone was transformed nearly exclusively into 2-chloro-3-methyl-trans-dienelactone.Ralstonia sp. strain PS12 is able to use 2,4-, 2,5-, and 3,4-dichlorotoluene as growth substrates. Dichloromethylcatechols are central intermediates that are formed by TecA tetrachlorobenzene dioxygenase-mediated activation at two adjacent unsubstituted carbon atoms followed by TecB chlorobenzene dihydrodiol dehydrogenase-catalyzed rearomatization and then are channeled into a chlorocatechol ortho cleavage pathway involving a chlorocatechol 1,2-dioxygenase, chloromuconate cycloisomerase, and dienelactone hydrolase. However, completely different metabolic routes were observed for the three dichloromethylcatechols analyzed. Whereas 3,4-dichloro-6-methylcatechol is quantitatively transformed into one dienelactone (5-chloro-2-methyldienelactone) and thus is degraded via a linear pathway, 3,5-dichloro-2-methylmuconate formed from 4,6-dichloro-3-methylcatechol is subject to both 1,4- and 3,6-cycloisomerization and thus is degraded via a branched metabolic route. 3,6-Dichloro-4-methylcatechol, on the first view, is transformed predominantly into one (2-chloro-3-methyl-trans-) dienelactone. In situ (1)H nuclear magnetic resonance analysis revealed the intermediate formation of 2,5-dichloro-4-methylmuconolactone, showing that both 1,4- and 3,6-cycloisomerization occur with this muconate and indicating a degradation of the muconolactone via a reversible cycloisomerization reaction and the dienelactone-forming branch of the pathway. Diastereomeric mixtures of two dichloromethylmuconolactones were prepared chemically to proof such a hypothesis. Chloromuconate cycloisomerase transformed 3,5-dichloro-2-methylmuconolactone into a mixture of 2-chloro-5-methyl-cis- and 3-chloro-2-methyldienelactone, affording evidence for a metabolic route of 3,5-dichloro-2-methylmuconolactone via 3,5-dichloro-2-methylmuconate into 2-chloro-5-methyl-cis-dienelactone. 2,5-Dichloro-3-methylmuconolactone was transformed nearly exclusively into 2-chloro-3-methyl-trans-dienelactone.
Author Stefan Kaschabek
Walter Reineke
Katrin Pollmann
Victor Wray
Dietmar H. Pieper
AuthorAffiliation Department of Environmental Microbiology, 1 Department of Structure Research, GBF-German Research Center for Biotechnology, D-38124 Braunschweig, 3 Chemical Microbiology, Bergische University, Wuppertal, Germany 2
AuthorAffiliation_xml – name: Department of Environmental Microbiology, 1 Department of Structure Research, GBF-German Research Center for Biotechnology, D-38124 Braunschweig, 3 Chemical Microbiology, Bergische University, Wuppertal, Germany 2
Author_xml – sequence: 1
  givenname: Katrin
  surname: Pollmann
  fullname: Pollmann, Katrin
  organization: Department of Environmental Microbiology
– sequence: 2
  givenname: Stefan
  surname: Kaschabek
  fullname: Kaschabek, Stefan
  organization: Chemical Microbiology, Bergische University, Wuppertal, Germany
– sequence: 3
  givenname: Victor
  surname: Wray
  fullname: Wray, Victor
  organization: Department of Structure Research, GBF-German Research Center for Biotechnology, D-38124 Braunschweig
– sequence: 4
  givenname: Walter
  surname: Reineke
  fullname: Reineke, Walter
  organization: Chemical Microbiology, Bergische University, Wuppertal, Germany
– sequence: 5
  givenname: Dietmar H.
  surname: Pieper
  fullname: Pieper, Dietmar H.
  organization: Department of Environmental Microbiology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/12218011$$D View this record in MEDLINE/PubMed
BookMark eNqFkstu1DAUhi1URKeFV0AWC3YJPs7FzgIkOuXSqghEYW05jjPxKLEH2wOaLU-OwwzV0E1Xlny-_z_XM3RindUIYSA5AOWvri9y4GUOTV7RGrKKsjKnhNBHaAGkZhnnBT1Bi_QDWQNNcYrOQlgTAmVZ0SfoFCgFTgAW6PcnHWXrRhMm7Hp8adQwOu8mHYfdqGTUanBjwDLgpbbRyxFf2aj9pDuTggEbi-Og8aVeednJaJw9tolu3GqbsHaHv8oxRGeNxGGT49vklbRfboE-RY_7FNPPDu85-v7-3bflx-zm84er5dubTJUViRlwqVXbSVLytmhU17G6Iy1nqq6g5zWnCqhkfa_LsuxoVUHTUlZJXrRA-pKS4hy93vtutm2qX-37ERtvJul3wkkj_o9YM4iV-ymgqIqaJv3Lg967H1sdophMUHocpdVuGwSjhKW07EEwra6pORQJfHEPXLutt2kIglJGeFXXkKDnx2Xf1ftvhwl4sweUdyF43Qtl4t9VzDMeBRAxH424vpgzC2jEfDRiPhoxH00y4PcM7nI8LD10MJjV8Mt4LWSYxLo9xos_HJDTFQ
CODEN JOBAAY
CitedBy_id crossref_primary_10_1128_mra_00902_24
crossref_primary_10_1080_10934521003772444
crossref_primary_10_1007_s00253_011_3543_5
crossref_primary_10_1128_JB_187_7_2332_2340_2005
crossref_primary_10_1099_mic_0_26054_0
crossref_primary_10_1007_s13765_017_0299_3
crossref_primary_10_1016_j_bcab_2019_101285
Cites_doi 10.1128/jb.175.21.6745-6754.1993
10.1128/JB.184.15.4054-4064.2002
10.1128/JB.182.6.1641-1649.2000
10.1128/aem.55.2.372-379.1989
10.1007/BF00409724
10.1007/BF01278610
10.1128/jb.179.14.4530-4537.1997
10.1074/jbc.270.49.29229
10.1128/AEM.66.8.3187-3193.2000
10.1016/0003-2697(76)90527-3
10.1128/JB.180.9.2337-2344.1998
10.1128/AEM.64.9.3290-3299.1998
10.1111/j.1432-1033.1972.tb01920.x
10.1111/j.1432-1033.1996.00357.x
10.1042/bj1210089
10.1111/j.1574-6968.1985.tb00836.x
10.1128/aem.61.6.2159-2165.1995
10.1111/j.1432-1033.1997.00190.x
10.1128/jb.178.23.6833-6841.1996
10.1021/ja00041a004
10.1128/AEM.67.9.4057-4063.2001
10.1042/bj1740085
10.1042/bj2710529
10.1042/bj1920339
10.1128/JB.181.1.341-346.1999
10.1128/JB.180.2.400-402.1998
10.1515/9783111322926
10.1007/BF00249118
10.1128/jb.177.2.320-325.1995
10.1002/(SICI)1097-0134(19990101)34:1<125::AID-PROT10>3.0.CO;2-Y
10.1007/s002530051438
10.1111/j.1432-1033.1996.00350.x
10.1042/bj1740073
10.1128/jb.171.12.6782-6790.1989
10.1128/JB.181.16.5051-5059.1999
10.1128/jb.176.14.4366-4375.1994
10.1128/AEM.64.1.153-158.1998
10.1128/JB.183.18.5441-5444.2001
10.1128/JB.183.15.4551-4561.2001
10.1042/bj2620303
10.1021/ja00252a034
10.1099/00221287-145-12-3389
10.1128/aem.42.4.737-739.1981
10.1007/BF00696222
10.1128/aem.57.5.1430-1440.1991
10.1021/jo00093a036
10.1128/aem.61.2.443-447.1995
10.1128/jb.145.2.681-686.1981
10.1126/science.3479842
10.1007/BF00249121
10.1128/jb.172.9.5119-5129.1990
10.1128/jb.177.10.2938-2941.1995
10.1111/j.1432-1033.1971.tb01406.x
10.1007/BF00409721
10.1128/JB.184.5.1466-1470.2002
10.1128/JB.182.19.5495-5504.2000
ContentType Journal Article
Copyright Copyright American Society for Microbiology Oct 2002
Copyright © 2002, American Society for Microbiology 2002
Copyright_xml – notice: Copyright American Society for Microbiology Oct 2002
– notice: Copyright © 2002, American Society for Microbiology 2002
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1128/JB.184.19.5261-5274.2002
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Virology and AIDS Abstracts
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1067-8832
1098-5530
EndPage 5274
ExternalDocumentID PMC135362
190437531
12218011
10_1128_JB_184_19_5261_5274_2002
jb_184_19_5261
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
186
18M
1VV
29J
2WC
39C
3O-
4.4
53G
5GY
5RE
5VS
79B
85S
8WZ
9M8
A6W
AAGFI
AAYXX
ABPPZ
ACGFO
ACGOD
ACNCT
ACPRK
ADBBV
ADXHL
AENEX
AFFDN
AFFNX
AFRAH
AGCDD
AGVNZ
AI.
AIDAL
AJUXI
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BTFSW
C1A
CITATION
CJ0
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HYE
HZ~
IH2
KQ8
L7B
MVM
NHB
O9-
OHT
OK1
P-O
P-S
P2P
PQQKQ
QZG
RHI
RNS
RPM
RSF
RXW
TAE
TR2
UHB
UKR
UPT
VH1
W8F
WH7
WHG
WOQ
X7M
Y6R
YQT
YR2
YZZ
ZCA
ZCG
ZGI
ZXP
ZY4
~02
~KM
ABTAH
CGR
CUY
CVF
ECM
EIF
NPM
PKN
RHF
UCJ
VQA
YIN
7QL
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c450t-18aecbda048b39cdd76d0b87c651f8682c12a7ffe444d25519b275a83b10f4203
ISSN 0021-9193
IngestDate Thu Aug 21 18:31:52 EDT 2025
Thu Jul 10 18:16:00 EDT 2025
Thu Jul 10 23:09:30 EDT 2025
Mon Jun 30 10:29:43 EDT 2025
Wed Feb 19 02:34:08 EST 2025
Thu Apr 24 23:11:31 EDT 2025
Tue Jul 01 02:44:41 EDT 2025
Wed May 18 15:54:43 EDT 2016
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c450t-18aecbda048b39cdd76d0b87c651f8682c12a7ffe444d25519b275a83b10f4203
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
Corresponding author. Mailing address: Bereich Mikrobiologie, AG Biodegradation, Gesellschaft für Biotechnologische Forschung mbH, Mascheroder Weg 1, D-38124 Braunschweig, Germany. Phone: 49 531 6181 467. Fax: 49 531 6181 467. E-mail: dpi@gbf.de.
Present address: TU Bergakademie Freiberg, Interdisziplinäres Ökologisches Zentrum, D-09599 Freiberg, Germany.
PMID 12218011
PQID 227085661
PQPubID 40724
PageCount 14
ParticipantIDs crossref_citationtrail_10_1128_JB_184_19_5261_5274_2002
crossref_primary_10_1128_JB_184_19_5261_5274_2002
pubmed_primary_12218011
proquest_miscellaneous_72075517
proquest_miscellaneous_18496813
pubmedcentral_primary_oai_pubmedcentral_nih_gov_135362
proquest_journals_227085661
highwire_asm_jb_184_19_5261
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20021001
2002-10-00
2002-Oct
PublicationDateYYYYMMDD 2002-10-01
PublicationDate_xml – month: 10
  year: 2002
  text: 20021001
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Journal of Bacteriology
PublicationTitleAlternate J Bacteriol
PublicationYear 2002
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_2_49_2
(e_1_3_2_15_2) 1976; 4
e_1_3_2_28_2
(e_1_3_2_5_2) 1997; 247
(e_1_3_2_11_2) 1989; 262
(e_1_3_2_16_2) 1987; 109
(e_1_3_2_21_2) 1978; 174
(e_1_3_2_59_2) 1980; 192
(e_1_3_2_7_2) 1995; 270
(e_1_3_2_45_2) 1990; 271
e_1_3_2_64_2
e_1_3_2_62_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_66_2
(e_1_3_2_29_2) 1992; 158
e_1_3_2_37_2
e_1_3_2_18_2
e_1_3_2_39_2
(e_1_3_2_41_2) 1991; 156
(e_1_3_2_14_2) 1971; 121
e_1_3_2_12_2
e_1_3_2_58_2
e_1_3_2_3_2
e_1_3_2_56_2
(e_1_3_2_52_2) 1987; 238
(e_1_3_2_63_2) 1967; 33
(e_1_3_2_40_2) 1985; 29
(e_1_3_2_34_2) 1990; 266
(e_1_3_2_9_2) 1999; 145
(e_1_3_2_70_2) 1990; 266
(e_1_3_2_54_2) 1972; 28
e_1_3_2_48_2
(e_1_3_2_68_2) 1999; 51
e_1_3_2_65_2
(e_1_3_2_22_2) 1978; 174
e_1_3_2_42_2
(e_1_3_2_20_2) 1974; 99
e_1_3_2_23_2
(e_1_3_2_61_2) 1988; 150
e_1_3_2_69_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_67_2
(e_1_3_2_35_2) 1996; 63
(e_1_3_2_53_2) 1971; 20
(e_1_3_2_26_2) 1992; 114
(e_1_3_2_31_2) 1994; 59
(e_1_3_2_33_2) 1976; 2
e_1_3_2_38_2
(e_1_3_2_51_2) 1996; 237
e_1_3_2_8_2
(e_1_3_2_27_2) 1989; 55
(e_1_3_2_50_2) 1996; 237
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
(e_1_3_2_60_2) 2000; 5
e_1_3_2_32_2
(e_1_3_2_43_2) 1988; 150
e_1_3_2_4_2
(e_1_3_2_44_2) 1993; 160
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_2_2
(e_1_3_2_10_2) 1992; 75
(e_1_3_2_57_2) 1999; 34
(e_1_3_2_13_2) 1989; 21
References_xml – ident: e_1_3_2_62_2
  doi: 10.1128/jb.175.21.6745-6754.1993
– ident: e_1_3_2_47_2
  doi: 10.1128/JB.184.15.4054-4064.2002
– ident: e_1_3_2_38_2
  doi: 10.1128/JB.182.6.1641-1649.2000
– volume: 55
  start-page: 372
  year: 1989
  ident: e_1_3_2_27_2
  publication-title: strain JS6. Appl. Environ. Microbiol.
  doi: 10.1128/aem.55.2.372-379.1989
– volume: 150
  start-page: 95
  year: 1988
  ident: e_1_3_2_43_2
  publication-title: Arch. Microbiol.
  doi: 10.1007/BF00409724
– volume: 2
  start-page: 267
  year: 1976
  ident: e_1_3_2_33_2
  publication-title: Eur. J. Appl. Microbiol.
  doi: 10.1007/BF01278610
– ident: e_1_3_2_36_2
  doi: 10.1128/jb.179.14.4530-4537.1997
– volume: 33
  start-page: 2708
  year: 1967
  ident: e_1_3_2_63_2
  publication-title: J. Org. Chem.
– volume: 270
  start-page: 29229
  year: 1995
  ident: e_1_3_2_7_2
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.270.49.29229
– ident: e_1_3_2_17_2
  doi: 10.1128/AEM.66.8.3187-3193.2000
– ident: e_1_3_2_8_2
  doi: 10.1016/0003-2697(76)90527-3
– ident: e_1_3_2_37_2
  doi: 10.1128/JB.180.9.2337-2344.1998
– ident: e_1_3_2_67_2
  doi: 10.1128/AEM.64.9.3290-3299.1998
– volume: 28
  start-page: 347
  year: 1972
  ident: e_1_3_2_54_2
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1972.tb01920.x
– ident: e_1_3_2_28_2
– volume: 237
  start-page: 357
  year: 1996
  ident: e_1_3_2_51_2
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1996.00357.x
– volume: 121
  start-page: 89
  year: 1971
  ident: e_1_3_2_14_2
  publication-title: Biochem. J.
  doi: 10.1042/bj1210089
– volume: 29
  start-page: 63
  year: 1985
  ident: e_1_3_2_40_2
  publication-title: FEMS Microbiol Lett.
  doi: 10.1111/j.1574-6968.1985.tb00836.x
– ident: e_1_3_2_46_2
  doi: 10.1128/aem.61.6.2159-2165.1995
– volume: 247
  start-page: 190
  year: 1997
  ident: e_1_3_2_5_2
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1997.00190.x
– ident: e_1_3_2_25_2
  doi: 10.1128/jb.178.23.6833-6841.1996
– ident: e_1_3_2_55_2
– volume: 114
  start-page: 5928
  year: 1992
  ident: e_1_3_2_26_2
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00041a004
– ident: e_1_3_2_49_2
  doi: 10.1128/AEM.67.9.4057-4063.2001
– volume: 174
  start-page: 85
  year: 1978
  ident: e_1_3_2_21_2
  publication-title: Biochem. J.
  doi: 10.1042/bj1740085
– volume: 63
  start-page: 1974
  year: 1996
  ident: e_1_3_2_35_2
  publication-title: Appl. Environ. Microbiol.
– volume: 271
  start-page: 529
  year: 1990
  ident: e_1_3_2_45_2
  publication-title: Biochem J.
  doi: 10.1042/bj2710529
– volume: 192
  start-page: 339
  year: 1980
  ident: e_1_3_2_59_2
  publication-title: Biochem J.
  doi: 10.1042/bj1920339
– ident: e_1_3_2_6_2
  doi: 10.1128/JB.181.1.341-346.1999
– ident: e_1_3_2_12_2
  doi: 10.1128/JB.180.2.400-402.1998
– ident: e_1_3_2_24_2
  doi: 10.1515/9783111322926
– volume: 156
  start-page: 218
  year: 1991
  ident: e_1_3_2_41_2
  publication-title: Arch. Microbiol.
  doi: 10.1007/BF00249118
– ident: e_1_3_2_30_2
  doi: 10.1128/jb.177.2.320-325.1995
– volume: 21
  start-page: 1629
  year: 1989
  ident: e_1_3_2_13_2
  publication-title: Commun.
– volume: 34
  start-page: 125
  year: 1999
  ident: e_1_3_2_57_2
  publication-title: Proteins
  doi: 10.1002/(SICI)1097-0134(19990101)34:1<125::AID-PROT10>3.0.CO;2-Y
– volume: 51
  start-page: 598
  year: 1999
  ident: e_1_3_2_68_2
  publication-title: P51. Appl. Microbiol. Biotechnol.
  doi: 10.1007/s002530051438
– volume: 4
  start-page: 436
  year: 1976
  ident: e_1_3_2_15_2
  publication-title: Biochem. Soc. Trans.
– volume: 237
  start-page: 350
  year: 1996
  ident: e_1_3_2_50_2
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1996.00350.x
– volume: 174
  start-page: 73
  year: 1978
  ident: e_1_3_2_22_2
  publication-title: Biochem. J.
  doi: 10.1042/bj1740073
– ident: e_1_3_2_2_2
  doi: 10.1128/jb.171.12.6782-6790.1989
– ident: e_1_3_2_48_2
  doi: 10.1128/JB.181.16.5051-5059.1999
– ident: e_1_3_2_23_2
– ident: e_1_3_2_66_2
  doi: 10.1128/jb.176.14.4366-4375.1994
– ident: e_1_3_2_18_2
  doi: 10.1128/AEM.64.1.153-158.1998
– ident: e_1_3_2_64_2
  doi: 10.1128/JB.183.18.5441-5444.2001
– ident: e_1_3_2_32_2
  doi: 10.1128/JB.183.15.4551-4561.2001
– volume: 262
  start-page: 303
  year: 1989
  ident: e_1_3_2_11_2
  publication-title: Biochem. J.
  doi: 10.1042/bj2620303
– ident: e_1_3_2_4_2
– volume: 109
  start-page: 5514
  year: 1987
  ident: e_1_3_2_16_2
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00252a034
– volume: 145
  start-page: 3389
  year: 1999
  ident: e_1_3_2_9_2
  publication-title: Microbiology
  doi: 10.1099/00221287-145-12-3389
– volume: 158
  start-page: 412
  year: 1992
  ident: e_1_3_2_29_2
  publication-title: Arch. Microbiol.
– volume: 5
  start-page: 638
  year: 2000
  ident: e_1_3_2_60_2
  publication-title: GIT Labor-Fachzeitschrift.
– ident: e_1_3_2_65_2
  doi: 10.1128/aem.42.4.737-739.1981
– volume: 99
  start-page: 61
  year: 1974
  ident: e_1_3_2_20_2
  publication-title: Arch. Microbiol.
  doi: 10.1007/BF00696222
– ident: e_1_3_2_56_2
  doi: 10.1128/aem.57.5.1430-1440.1991
– volume: 59
  start-page: 4001
  year: 1994
  ident: e_1_3_2_31_2
  publication-title: J. Org. Chem.
  doi: 10.1021/jo00093a036
– volume: 266
  start-page: 877
  year: 1990
  ident: e_1_3_2_34_2
  publication-title: Biochem J.
– ident: e_1_3_2_3_2
  doi: 10.1128/aem.61.2.443-447.1995
– volume: 266
  start-page: 605
  year: 1990
  ident: e_1_3_2_70_2
  publication-title: Biochem. J.
– volume: 75
  start-page: 81
  year: 1992
  ident: e_1_3_2_10_2
  publication-title: FEMS Microbiol. Lett.
– ident: e_1_3_2_19_2
  doi: 10.1128/jb.145.2.681-686.1981
– volume: 238
  start-page: 1395
  year: 1987
  ident: e_1_3_2_52_2
  publication-title: Science
  doi: 10.1126/science.3479842
– volume: 160
  start-page: 169
  year: 1993
  ident: e_1_3_2_44_2
  publication-title: Arch. Microbiol.
  doi: 10.1007/BF00249121
– ident: e_1_3_2_58_2
  doi: 10.1128/jb.172.9.5119-5129.1990
– ident: e_1_3_2_69_2
  doi: 10.1128/jb.177.10.2938-2941.1995
– volume: 20
  start-page: 400
  year: 1971
  ident: e_1_3_2_53_2
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1971.tb01406.x
– volume: 150
  start-page: 78
  year: 1988
  ident: e_1_3_2_61_2
  publication-title: Arch. Microbiol.
  doi: 10.1007/BF00409721
– ident: e_1_3_2_42_2
  doi: 10.1128/JB.184.5.1466-1470.2002
– ident: e_1_3_2_39_2
  doi: 10.1128/JB.182.19.5495-5504.2000
SSID ssj0014452
Score 1.7289635
Snippet Article Usage Stats Services JB Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley...
Ralstonia sp. strain PS12 is able to use 2,4-, 2,5-, and 3,4-dichlorotoluene as growth substrates. Dichloromethylcatechols are central intermediates that are...
Ralstonia sp. strain PS12 is able to use 2,4-, 2,5-, and 3,4-dichlorotoluene as growth substrates. Dichloromethylcatechols are central intermediates that are...
Ralstonia sp. strain PS12 is able to use 2,4-, 2,5-, and 3,4- dichlorotoluene as growth substrates. Dichloromethylcatechols are central intermediates that are...
SourceID pubmedcentral
proquest
pubmed
crossref
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5261
SubjectTerms Bacteria
Bacteriology
Betaproteobacteria - growth & development
Betaproteobacteria - metabolism
Biodegradation, Environmental
Catechols - chemistry
Catechols - metabolism
Chlorobenzene
Hydrocarbons
Intramolecular Lyases - metabolism
Lactones - chemistry
Lactones - metabolism
Magnetic Resonance Spectroscopy
Metabolism
Physiology and Metabolism
Sorbic Acid - analogs & derivatives
Sorbic Acid - chemistry
Sorbic Acid - metabolism
Toluene - analogs & derivatives
Toluene - chemistry
Toluene - metabolism
Title Metabolism of Dichloromethylcatechols as Central Intermediates in the Degradation of Dichlorotoluenes by Ralstonia sp. Strain PS12
URI http://jb.asm.org/content/184/19/5261.abstract
https://www.ncbi.nlm.nih.gov/pubmed/12218011
https://www.proquest.com/docview/227085661
https://www.proquest.com/docview/18496813
https://www.proquest.com/docview/72075517
https://pubmed.ncbi.nlm.nih.gov/PMC135362
Volume 184
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKEBIviPvKuPiBN5RSOzfnkbGNqWxjGp3WN8tOHK3QtdOSIpVHfjnnxLmyVQxeoiq-1O335Vyc43MIeeuKBJSIihwdptzxWJg4wkRDxzNMgC8GGovh2eHDo2D_1BtN_Emv96MVtbTM9SD-eeO5kv9BFe4BrnhK9h-QrSeFG_AZ8IUrIAzXW2F8aHLAcIZ1LsDm25nG5-B9L7Ao9GqGkU4o2jKsJFPu4dr9v-KwSF4EYhVm5w7mi0hq07GaJl9g9RLoBgbqCfwUMBKn6l12OcA32QrGHn8tQ5Ov27ba5oDubNkfA-MuypLM9d7qZwXetdLme2cX9uxKrToBuCcGjGEbRnTW2afgdcRbc26AgWi19RAb2eu1SRa1RKnPbZb2Ui373FbzuS7yOR5jGG0PYK4BiwY4zsHeRfxJo-aqV_tHX-Te6cGBHO9OxnfIXQ7uBVa--DSpQ4PAx_TLLPN2xVUEGBfv131P16ypUk3f5Lb8GX3bMmfGD8mDEiv6wZLqEemZ-WNyz1YmXT0hvxpq0UVK11CLqoyW1KIdatHpnAK1aIta7WkqalG9ojW1KFCLWmpRpNZTcrq3O_6475TlOpzY84e5w4QysU4U6ATtRnGShEEy1CKMA5-lIhA8ZlyFaWo8z0vAk2WR5qGvhKvZMPX40H1GNuaLudkkVLuYyBI8KgHefJLGQntBDK69VoFIY5P0SVj92zIuc9nj-may8Gm5kKNtCThJFknESSJOWHGV9wmrR17afC63GLNVASpVdiG_6XY_aK0wlqVsyCTnIfgyAba-qVtBcOPbODU3i2WGU0SBYO76HiEHe95nYZ88t4xpVszBMgfN3CdBh0t1B0wa322ZT8-L5PFY5ybgL_66rC1yv3mKX5KN_GppXoH9nevXxcPyG1lZ2ac
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metabolism+of+Dichloromethylcatechols+as+Central+Intermediates+in+the+Degradation+of+Dichlorotoluenes+by+Ralstonia+sp.+Strain+PS12&rft.jtitle=Journal+of+bacteriology&rft.au=Pollmann%2C+K&rft.au=Kaschabek%2C+S&rft.au=Wray%2C+V&rft.au=Reineke%2C+W&rft.date=2002-10-01&rft.issn=0021-9193&rft.volume=184&rft.issue=19&rft.spage=5261&rft.epage=5274&rft_id=info:doi/10.1128%2FJB.184.19.5261-5274.2002&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9193&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9193&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9193&client=summon