SARS-CoV-2 induces human plasmacytoid predendritic cell diversification via UNC93B and IRAK4

Several studies have analyzed antiviral immune pathways in late-stage severe COVID-19. However, the initial steps of SARS-CoV-2 antiviral immunity are poorly understood. Here we have isolated primary SARS-CoV-2 viral strains and studied their interaction with human plasmacytoid predendritic cells (p...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of experimental medicine Vol. 218; no. 4
Main Authors Onodi, Fanny, Bonnet-Madin, Lucie, Meertens, Laurent, Karpf, Léa, Poirot, Justine, Zhang, Shen-Ying, Picard, Capucine, Puel, Anne, Jouanguy, Emmanuelle, Zhang, Qian, Le Goff, Jérôme, Molina, Jean-Michel, Delaugerre, Constance, Casanova, Jean-Laurent, Amara, Ali, Soumelis, Vassili
Format Journal Article
LanguageEnglish
Published United States Rockefeller University Press 05.04.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Several studies have analyzed antiviral immune pathways in late-stage severe COVID-19. However, the initial steps of SARS-CoV-2 antiviral immunity are poorly understood. Here we have isolated primary SARS-CoV-2 viral strains and studied their interaction with human plasmacytoid predendritic cells (pDCs), a key player in antiviral immunity. We show that pDCs are not productively infected by SARS-CoV-2. However, they efficiently diversified into activated P1-, P2-, and P3-pDC effector subsets in response to viral stimulation. They expressed CD80, CD86, CCR7, and OX40 ligand at levels similar to influenza virus–induced activation. They rapidly produced high levels of interferon-α, interferon-λ1, IL-6, IP-10, and IL-8. All major aspects of SARS-CoV-2–induced pDC activation were inhibited by hydroxychloroquine. Mechanistically, SARS-CoV-2–induced pDC activation critically depended on IRAK4 and UNC93B1, as established using pDC from genetically deficient patients. Overall, our data indicate that human pDC are efficiently activated by SARS-CoV-2 particles and may thus contribute to type I IFN–dependent immunity against SARS-CoV-2 infection.
AbstractList Several studies have analyzed antiviral immune pathways in late-stage severe COVID-19. However, the initial steps of SARS-CoV-2 antiviral immunity are poorly understood. Here we have isolated primary SARS-CoV-2 viral strains and studied their interaction with human plasmacytoid predendritic cells (pDCs), a key player in antiviral immunity. We show that pDCs are not productively infected by SARS-CoV-2. However, they efficiently diversified into activated P1-, P2-, and P3-pDC effector subsets in response to viral stimulation. They expressed CD80, CD86, CCR7, and OX40 ligand at levels similar to influenza virus-induced activation. They rapidly produced high levels of interferon-α, interferon-λ1, IL-6, IP-10, and IL-8. All major aspects of SARS-CoV-2-induced pDC activation were inhibited by hydroxychloroquine. Mechanistically, SARS-CoV-2-induced pDC activation critically depended on IRAK4 and UNC93B1, as established using pDC from genetically deficient patients. Overall, our data indicate that human pDC are efficiently activated by SARS-CoV-2 particles and may thus contribute to type I IFN-dependent immunity against SARS-CoV-2 infection.Several studies have analyzed antiviral immune pathways in late-stage severe COVID-19. However, the initial steps of SARS-CoV-2 antiviral immunity are poorly understood. Here we have isolated primary SARS-CoV-2 viral strains and studied their interaction with human plasmacytoid predendritic cells (pDCs), a key player in antiviral immunity. We show that pDCs are not productively infected by SARS-CoV-2. However, they efficiently diversified into activated P1-, P2-, and P3-pDC effector subsets in response to viral stimulation. They expressed CD80, CD86, CCR7, and OX40 ligand at levels similar to influenza virus-induced activation. They rapidly produced high levels of interferon-α, interferon-λ1, IL-6, IP-10, and IL-8. All major aspects of SARS-CoV-2-induced pDC activation were inhibited by hydroxychloroquine. Mechanistically, SARS-CoV-2-induced pDC activation critically depended on IRAK4 and UNC93B1, as established using pDC from genetically deficient patients. Overall, our data indicate that human pDC are efficiently activated by SARS-CoV-2 particles and may thus contribute to type I IFN-dependent immunity against SARS-CoV-2 infection.
Plasmacytoid dendritic cells (pDCs) are not permissive to SARS-CoV-2 infection but, upon viral exposure, differentiate into subsets and rapidly produce type I and III interferons. Mechanistically, pDC activation depends on IRAK4 and UNC93B1 expression. Several studies have analyzed antiviral immune pathways in late-stage severe COVID-19. However, the initial steps of SARS-CoV-2 antiviral immunity are poorly understood. Here we have isolated primary SARS-CoV-2 viral strains and studied their interaction with human plasmacytoid predendritic cells (pDCs), a key player in antiviral immunity. We show that pDCs are not productively infected by SARS-CoV-2. However, they efficiently diversified into activated P1-, P2-, and P3-pDC effector subsets in response to viral stimulation. They expressed CD80, CD86, CCR7, and OX40 ligand at levels similar to influenza virus–induced activation. They rapidly produced high levels of interferon-α, interferon-λ1, IL-6, IP-10, and IL-8. All major aspects of SARS-CoV-2–induced pDC activation were inhibited by hydroxychloroquine. Mechanistically, SARS-CoV-2–induced pDC activation critically depended on IRAK4 and UNC93B1, as established using pDC from genetically deficient patients. Overall, our data indicate that human pDC are efficiently activated by SARS-CoV-2 particles and may thus contribute to type I IFN–dependent immunity against SARS-CoV-2 infection.
Several studies have analyzed antiviral immune pathways in late-stage severe COVID-19. However, the initial steps of SARS-CoV-2 antiviral immunity are poorly understood. Here we have isolated primary SARS-CoV-2 viral strains and studied their interaction with human plasmacytoid predendritic cells (pDCs), a key player in antiviral immunity. We show that pDCs are not productively infected by SARS-CoV-2. However, they efficiently diversified into activated P1-, P2-, and P3-pDC effector subsets in response to viral stimulation. They expressed CD80, CD86, CCR7, and OX40 ligand at levels similar to influenza virus-induced activation. They rapidly produced high levels of interferon-α, interferon-λ1, IL-6, IP-10, and IL-8. All major aspects of SARS-CoV-2-induced pDC activation were inhibited by hydroxychloroquine. Mechanistically, SARS-CoV-2-induced pDC activation critically depended on IRAK4 and UNC93B1, as established using pDC from genetically deficient patients. Overall, our data indicate that human pDC are efficiently activated by SARS-CoV-2 particles and may thus contribute to type I IFN-dependent immunity against SARS-CoV-2 infection.
Author Karpf, Léa
Bonnet-Madin, Lucie
Amara, Ali
Molina, Jean-Michel
Zhang, Shen-Ying
Zhang, Qian
Delaugerre, Constance
Soumelis, Vassili
Puel, Anne
Onodi, Fanny
Jouanguy, Emmanuelle
Meertens, Laurent
Casanova, Jean-Laurent
Picard, Capucine
Le Goff, Jérôme
Poirot, Justine
AuthorAffiliation 1 Université de Paris, Institut de Recherche Saint-Louis, Institut National de la Santé et de la Recherche Médicale U976, Hôpital Saint-Louis, Paris, France
2 Université de Paris, Institut de Recherche Saint-Louis, Institut National de la Santé et de la Recherche Médicale U944, Centre National de la Recherche Scientifique 7212, Hôpital Saint-Louis, Paris, France
3 Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale, Necker Hospital for Sick Children, Paris, France
5 St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
4 Université de Paris, Institut National de la Santé et de la Recherche Médicale Unite Mixte de Recherche 1163, Institut Imagine, Paris, France
7 Laboratoire de Virologie et Département des Maladies Infectieuses, Hôpital Saint-Louis, Assistance Publique–Hôpitaux de Paris, Paris, France
8 Howard Hughes Medical Institute, New York, NY
9 A
AuthorAffiliation_xml – name: 2 Université de Paris, Institut de Recherche Saint-Louis, Institut National de la Santé et de la Recherche Médicale U944, Centre National de la Recherche Scientifique 7212, Hôpital Saint-Louis, Paris, France
– name: 3 Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale, Necker Hospital for Sick Children, Paris, France
– name: 6 Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique–Hôpitaux de Paris, Paris, France
– name: 7 Laboratoire de Virologie et Département des Maladies Infectieuses, Hôpital Saint-Louis, Assistance Publique–Hôpitaux de Paris, Paris, France
– name: 4 Université de Paris, Institut National de la Santé et de la Recherche Médicale Unite Mixte de Recherche 1163, Institut Imagine, Paris, France
– name: 1 Université de Paris, Institut de Recherche Saint-Louis, Institut National de la Santé et de la Recherche Médicale U976, Hôpital Saint-Louis, Paris, France
– name: 5 St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
– name: 8 Howard Hughes Medical Institute, New York, NY
– name: 9 Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Laboratoire d'Immunologie, Paris, France
Author_xml – sequence: 1
  givenname: Fanny
  orcidid: 0000-0002-8429-4821
  surname: Onodi
  fullname: Onodi, Fanny
– sequence: 2
  givenname: Lucie
  orcidid: 0000-0002-9848-3287
  surname: Bonnet-Madin
  fullname: Bonnet-Madin, Lucie
– sequence: 3
  givenname: Laurent
  orcidid: 0000-0003-2811-3675
  surname: Meertens
  fullname: Meertens, Laurent
– sequence: 4
  givenname: Léa
  orcidid: 0000-0001-6959-7528
  surname: Karpf
  fullname: Karpf, Léa
– sequence: 5
  givenname: Justine
  orcidid: 0000-0002-6694-7796
  surname: Poirot
  fullname: Poirot, Justine
– sequence: 6
  givenname: Shen-Ying
  orcidid: 0000-0002-9449-3672
  surname: Zhang
  fullname: Zhang, Shen-Ying
– sequence: 7
  givenname: Capucine
  orcidid: 0000-0001-8788-5056
  surname: Picard
  fullname: Picard, Capucine
– sequence: 8
  givenname: Anne
  orcidid: 0000-0003-2603-0323
  surname: Puel
  fullname: Puel, Anne
– sequence: 9
  givenname: Emmanuelle
  orcidid: 0000-0002-7358-9157
  surname: Jouanguy
  fullname: Jouanguy, Emmanuelle
– sequence: 10
  givenname: Qian
  orcidid: 0000-0002-9040-3289
  surname: Zhang
  fullname: Zhang, Qian
– sequence: 11
  givenname: Jérôme
  orcidid: 0000-0001-7111-1865
  surname: Le Goff
  fullname: Le Goff, Jérôme
– sequence: 12
  givenname: Jean-Michel
  orcidid: 0000-0001-8684-2214
  surname: Molina
  fullname: Molina, Jean-Michel
– sequence: 13
  givenname: Constance
  orcidid: 0000-0001-6081-7993
  surname: Delaugerre
  fullname: Delaugerre, Constance
– sequence: 14
  givenname: Jean-Laurent
  orcidid: 0000-0002-7782-4169
  surname: Casanova
  fullname: Casanova, Jean-Laurent
– sequence: 15
  givenname: Ali
  orcidid: 0000-0002-0283-1815
  surname: Amara
  fullname: Amara, Ali
– sequence: 16
  givenname: Vassili
  orcidid: 0000-0003-1849-9834
  surname: Soumelis
  fullname: Soumelis, Vassili
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33533916$$D View this record in MEDLINE/PubMed
BookMark eNptkc1v1DAQxS1URLeFG2fkIwdS_JnEF6RlxUfVCqSWckKyZu0JdZXYWztZqf89Ke1WFPU0h_nNe5r3DsheTBEJec3ZEWeten-Fw5FggnHZNs_IgmvFKqNlu0cWjAlRccaafXJQyhVjXCldvyD7UmopDa8X5Nf58uy8WqWflaAh-slhoZfTAJFueigDuJsxBU83GT1Gn8MYHHXY99SHLeYSuuBgDCnSbQB68W1l5EcK0dPjs-WJekmed9AXfHU_D8nF508_Vl-r0-9fjlfL08opzcaKC9MoUMoI34BhNfcSGUKtmeocdByB18Zgs-a1U92aK2glN02H0GkttZKH5MOd7mZaD-gdxjFDbzc5DJBvbIJgH29iuLS_09Y2rTItN7PA23uBnK4nLKMdQrl9EyKmqVih2prrthFyRt_86_Vgsot0BsQd4HIqJWNnXRj_ZjRbh95yZm97s3NvdtfbfPTuv6Od7pP4H_rWmLE
CitedBy_id crossref_primary_10_3389_fimmu_2021_797390
crossref_primary_10_1111_joim_13628
crossref_primary_10_1111_dth_15434
crossref_primary_10_1042_BCJ20210602
crossref_primary_10_1038_s41598_021_02432_7
crossref_primary_10_1371_journal_ppat_1009878
crossref_primary_10_1016_j_bsheal_2023_08_005
crossref_primary_10_1016_j_cell_2021_08_016
crossref_primary_10_1097_MOH_0000000000000645
crossref_primary_10_1111_jocd_14843
crossref_primary_10_15252_embj_2022111208
crossref_primary_10_3389_fmed_2021_761372
crossref_primary_10_3390_cells10102545
crossref_primary_10_1016_j_coi_2022_01_003
crossref_primary_10_1016_j_jaci_2023_02_003
crossref_primary_10_1111_jocd_14572
crossref_primary_10_1111_imr_13113
crossref_primary_10_1128_CMR_00094_21
crossref_primary_10_3390_v17010105
crossref_primary_10_1093_pcmedi_pbae015
crossref_primary_10_3389_fimmu_2022_1016304
crossref_primary_10_3390_cells11020253
crossref_primary_10_3390_ijms241713083
crossref_primary_10_3748_wjg_v29_i13_1942
crossref_primary_10_1111_ced_14941
crossref_primary_10_1038_s41556_021_00681_2
crossref_primary_10_1111_ced_14932
crossref_primary_10_1136_annrheumdis_2021_220435
crossref_primary_10_1371_journal_ppat_1009742
crossref_primary_10_1016_j_coi_2024_102423
crossref_primary_10_3390_life12091300
crossref_primary_10_1016_j_coi_2024_102424
crossref_primary_10_1111_joim_13559
crossref_primary_10_1038_s41586_022_04447_0
crossref_primary_10_1007_s00018_022_04329_8
crossref_primary_10_3389_fimmu_2022_814627
crossref_primary_10_1146_annurev_immunol_101921_050835
crossref_primary_10_1002_eji_202350437
crossref_primary_10_1128_mBio_00700_21
crossref_primary_10_1007_s00296_021_04825_3
crossref_primary_10_1002_cti2_1382
crossref_primary_10_3390_ijms26031047
crossref_primary_10_4049_jimmunol_2200844
crossref_primary_10_1038_s41467_023_36140_9
crossref_primary_10_1016_j_molimm_2023_05_007
crossref_primary_10_2147_ITT_S284830
crossref_primary_10_1016_j_celrep_2022_111148
crossref_primary_10_1126_sciimmunol_abl4348
crossref_primary_10_1093_jleuko_qiae003
crossref_primary_10_1038_s41467_024_44958_0
crossref_primary_10_3390_v13091839
crossref_primary_10_1084_jem_20220258
crossref_primary_10_3390_cancers15082206
crossref_primary_10_1038_s41598_022_11157_0
crossref_primary_10_1084_jem_20220131
crossref_primary_10_1093_cei_uxae062
crossref_primary_10_1126_sciimmunol_abm5505
crossref_primary_10_1084_jem_20220170
crossref_primary_10_1016_j_smim_2021_101508
crossref_primary_10_1038_s41467_022_34895_1
crossref_primary_10_1111_jocd_14155
crossref_primary_10_1146_annurev_immunol_090122_041105
crossref_primary_10_1172_JCI166283
crossref_primary_10_3389_fimmu_2021_760288
crossref_primary_10_3389_fimmu_2024_1294807
crossref_primary_10_1016_j_coviro_2021_08_004
crossref_primary_10_3390_ijms231810968
crossref_primary_10_1038_s41423_024_01167_5
crossref_primary_10_1002_jmv_28000
crossref_primary_10_1016_j_celrep_2022_110387
crossref_primary_10_3389_fimmu_2021_713779
crossref_primary_10_3389_fimmu_2021_621440
crossref_primary_10_1016_j_jinf_2023_01_019
crossref_primary_10_1111_jdv_18513
crossref_primary_10_1080_25785826_2022_2066251
crossref_primary_10_1111_sji_13043
crossref_primary_10_1111_all_15004
crossref_primary_10_1126_sciimmunol_adm8185
crossref_primary_10_15252_embj_2021109622
crossref_primary_10_3389_fimmu_2021_683800
crossref_primary_10_1038_s41423_023_01039_4
crossref_primary_10_1128_aac_00083_22
crossref_primary_10_1080_22221751_2023_2195019
crossref_primary_10_1128_jvi_01235_24
crossref_primary_10_1038_s41577_024_00996_9
crossref_primary_10_1016_j_smim_2024_101863
crossref_primary_10_3389_fimmu_2022_843342
crossref_primary_10_1126_sciimmunol_add4906
crossref_primary_10_1016_S2665_9913_22_00067_4
crossref_primary_10_1016_j_immuni_2024_03_004
crossref_primary_10_3390_v14050999
crossref_primary_10_3390_ijms232012154
crossref_primary_10_1016_j_it_2021_10_009
crossref_primary_10_1073_pnas_2114390118
crossref_primary_10_3389_fimmu_2023_1112985
Cites_doi 10.1126/science.1128346
10.1089/vim.2009.0112
10.1007/s00005-013-0243-0
10.1182/blood.V98.4.906
10.1126/science.abd4570
10.1016/j.tcb.2013.12.002
10.1128/JVI.01501-14
10.1371/journal.ppat.1008536
10.1146/annurev.immunol.20.100301.064828
10.1016/j.it.2010.07.004
10.1146/annurev.immunol.23.021704.115633
10.1126/science.abd4585
10.1001/jama.2020.13719
10.1038/s41577-020-0346-x
10.1073/pnas.1117359109
10.1038/s41577-020-0311-8
10.1126/scisignal.aaz1053
10.1186/ar3895
10.1038/nri2358
10.1186/s13075-018-1702-0
10.1146/annurev-immunol-030409-101335
10.4049/jimmunol.177.10.6758
10.1126/science.aaa1578
10.1371/journal.ppat.1003478
10.1128/JVI.03607-14
10.1016/j.ygyno.2004.10.040
10.1007/s40261-020-00927-1
10.1126/science.1139522
10.3389/fpubh.2020.00216
10.1128/JVI.02935-13
10.1182/blood-2012-02-413286
10.1016/j.clim.2005.09.019
10.1126/science.aah4573
10.1038/s41590-017-0012-z
10.1084/jem.20101568
10.1016/S0198-8859(02)00749-8
10.1016/j.jhep.2020.09.031
10.1182/blood-2006-05-023770
10.4049/jimmunol.170.8.4061
10.1371/journal.pone.0000458
10.1016/j.it.2017.05.005
10.1016/j.cell.2020.02.052
10.1016/j.cytogfr.2012.06.001
10.1182/blood-2010-05-282913
10.1126/science.1081902
ContentType Journal Article
Copyright 2021 Onodi et al.
2021 Onodi et al. 2021
Copyright_xml – notice: 2021 Onodi et al.
– notice: 2021 Onodi et al. 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1084/jem.20201387
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate SARS-CoV-2 and plasmacytoid predendritic cells
EISSN 1540-9538
ExternalDocumentID PMC7849819
33533916
10_1084_jem_20201387
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R01 AI088364
– fundername: ;
– fundername: ;
  grantid: ANR-18-CE15-0009-01
– fundername: ;
  grantid: RACPL20FIR01-COVID-SOUL
– fundername: ;
  grantid: ANRS-COV05
– fundername: ;
  grantid: EQU201903007798
– fundername: ;
  grantid: UM1HG006504; U24HG008956
– fundername: ;
  grantid: ANR-10-LABX-62-IBEID
– fundername: ;
  grantid: ANR-18-CE15-0020-02
– fundername: ;
  grantid: R01AI088364
– fundername: ;
  grantid: UL1 TR001866
GroupedDBID ---
-~X
18M
29K
2WC
36B
4.4
53G
5GY
5RE
5VS
AAYXX
ABOCM
ABZEH
ACGFO
ACNCT
ACPRK
ADBBV
AENEX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
C45
CITATION
CS3
D-I
DIK
DU5
E3Z
EBS
EMB
F5P
F9R
GX1
H13
HYE
IH2
KQ8
L7B
N9A
O5R
O5S
OK1
P2P
P6G
R.V
RHI
SJN
TR2
TRP
UHB
W8F
WOQ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c450t-12974a4492d7a9061d3e0ea6504fcaf1ea1699e7b16c4fb14a83197feaf553543
ISSN 0022-1007
1540-9538
IngestDate Thu Aug 21 14:13:54 EDT 2025
Thu Jul 10 19:30:24 EDT 2025
Thu Apr 03 06:59:15 EDT 2025
Thu Apr 24 23:02:00 EDT 2025
Tue Jul 01 00:41:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License 2021 Onodi et al.
This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c450t-12974a4492d7a9061d3e0ea6504fcaf1ea1699e7b16c4fb14a83197feaf553543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Disclosures: J.-M. Molina reported grants from Gilead and personal fees from Merck, ViiV, and Janssen outside the submitted work. V. Soumelis reported grants from Sanofi and Roche, and personal fees from Leo Pharma, Gilead, Merck, and Sanofi outside the submitted work. No other disclosures were reported.
ORCID 0000-0003-1849-9834
0000-0002-7782-4169
0000-0002-7358-9157
0000-0002-9040-3289
0000-0002-9848-3287
0000-0002-6694-7796
0000-0002-9449-3672
0000-0003-2811-3675
0000-0001-7111-1865
0000-0002-0283-1815
0000-0001-8788-5056
0000-0001-6081-7993
0000-0003-2603-0323
0000-0002-8429-4821
0000-0001-6959-7528
0000-0001-8684-2214
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7849819
PMID 33533916
PQID 2486158723
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7849819
proquest_miscellaneous_2486158723
pubmed_primary_33533916
crossref_citationtrail_10_1084_jem_20201387
crossref_primary_10_1084_jem_20201387
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-05
PublicationDateYYYYMMDD 2021-04-05
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-05
  day: 05
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of experimental medicine
PublicationTitleAlternate J Exp Med
PublicationYear 2021
Publisher Rockefeller University Press
Publisher_xml – name: Rockefeller University Press
References Hjorton (2023072801431023100_bib22) 2018; 20
Thomas (2023072801431023100_bib41) 2014; 88
Lee (2023072801431023100_bib26) 2013; 9
Picard (2023072801431023100_bib32) 2003; 299
Meyers (2023072801431023100_bib31) 2007; 2
Cervantes-Barragan (2023072801431023100_bib11) 2012; 109
Guo (2023072801431023100_bib20) 2011; 208
Scheuplein (2023072801431023100_bib36) 2015; 89
Lepelletier (2023072801431023100_bib27) 2010; 116
van der Made (2023072801431023100_bib42) 2020; 324
Villani (2023072801431023100_bib43) 2017; 356
Asselah (2023072801431023100_bib4) 2020; 0
Corzo (2023072801431023100_bib13) 2020; 13
Keni (2023072801431023100_bib24) 2020; 8
Blackwell (2023072801431023100_bib6) 2003; 170
Lee (2023072801431023100_bib25) 2014; 24
Ciancanelli (2023072801431023100_bib12) 2015; 348
Zhang (2023072801431023100_bib47) 2020; 370
Cervantes-Barragan (2023072801431023100_bib10) 2007; 109
Meera (2023072801431023100_bib30) 2010; 23
Tang (2023072801431023100_bib39) 2020; 16
Casanova (2023072801431023100_bib8) 2011; 29
Tay (2023072801431023100_bib40) 2020; 20
Zhang (2023072801431023100_bib46) 2020; 1
Abe (2023072801431023100_bib1) 2006; 118
Marsili (2023072801431023100_bib29) 2012; 23
Hirsch (2023072801431023100_bib21) 2010; 31
Florentin (2023072801431023100_bib16) 2012; 120
Dolganiuc (2023072801431023100_bib15) 2006; 177
Rothenfusser (2023072801431023100_bib34) 2002; 63
Liu (2023072801431023100_bib28) 2005; 23
Guermonprez (2023072801431023100_bib19) 2002; 20
Snell (2023072801431023100_bib37) 2017; 38
Alculumbre (2023072801431023100_bib3) 2018; 19
Gilliet (2023072801431023100_bib18) 2008; 8
Bastard (2023072801431023100_bib5) 2020; 370
Das (2023072801431023100_bib14) 2020; 40
World Health Organization (2023072801431023100_bib44) 2020
Zhang (2023072801431023100_bib45) 2007; 317
Acharya (2023072801431023100_bib2) 2020; 20
Raj (2023072801431023100_bib33) 2014; 88
Bontkes (2023072801431023100_bib7) 2005; 96
Frazão (2023072801431023100_bib17) 2013; 61
Casrouge (2023072801431023100_bib9) 2006; 314
Hoffmann (2023072801431023100_bib23) 2020; 181
Sacre (2023072801431023100_bib35) 2012; 14
Soumelis (2023072801431023100_bib38) 2001; 98
33442685 - bioRxiv. 2021 Jan 08
References_xml – volume: 314
  start-page: 308
  year: 2006
  ident: 2023072801431023100_bib9
  article-title: Herpes simplex virus encephalitis in human UNC-93B deficiency
  publication-title: Science.
  doi: 10.1126/science.1128346
– volume: 23
  start-page: 241
  year: 2010
  ident: 2023072801431023100_bib30
  article-title: Irreversible loss of pDCs by apoptosis during early HIV infection may be a critical determinant of immune dysfunction
  publication-title: Viral Immunol.
  doi: 10.1089/vim.2009.0112
– volume: 61
  start-page: 427
  year: 2013
  ident: 2023072801431023100_bib17
  article-title: Toll-like receptors’ pathway disturbances are associated with increased susceptibility to infections in humans
  publication-title: Arch. Immunol. Ther. Exp. (Warsz.).
  doi: 10.1007/s00005-013-0243-0
– volume: 98
  start-page: 906
  year: 2001
  ident: 2023072801431023100_bib38
  article-title: Depletion of circulating natural type 1 interferon-producing cells in HIV-infected AIDS patients
  publication-title: Blood.
  doi: 10.1182/blood.V98.4.906
– volume: 1
  start-page: 14
  year: 2020
  ident: 2023072801431023100_bib46
  article-title: Life-Threatening COVID-19: Defective Interferons Unleash Excessive Inflammation
  publication-title: Med (N Y).
  doi: 10.1126/science.abd4570
– volume: 24
  start-page: 360
  year: 2014
  ident: 2023072801431023100_bib25
  article-title: Trafficking of endosomal Toll-like receptors
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2013.12.002
– volume: 88
  start-page: 10758
  year: 2014
  ident: 2023072801431023100_bib41
  article-title: Differential responses of plasmacytoid dendritic cells to influenza virus and distinct viral pathogens
  publication-title: J. Virol.
  doi: 10.1128/JVI.01501-14
– volume: 16
  year: 2020
  ident: 2023072801431023100_bib39
  article-title: The hallmarks of COVID-19 disease
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1008536
– year: 2020
  ident: 2023072801431023100_bib44
– volume: 20
  start-page: 621
  year: 2002
  ident: 2023072801431023100_bib19
  article-title: Antigen presentation and T cell stimulation by dendritic cells
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev.immunol.20.100301.064828
– volume: 31
  start-page: 391
  year: 2010
  ident: 2023072801431023100_bib21
  article-title: Impaired Toll-like receptor 7 and 9 signaling: from chronic viral infections to cancer
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2010.07.004
– volume: 23
  start-page: 275
  year: 2005
  ident: 2023072801431023100_bib28
  article-title: IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev.immunol.23.021704.115633
– volume: 370
  year: 2020
  ident: 2023072801431023100_bib5
  article-title: Autoantibodies against type I IFNs in patients with life-threatening COVID-19
  publication-title: Science.
  doi: 10.1126/science.abd4585
– volume: 324
  start-page: 663
  year: 2020
  ident: 2023072801431023100_bib42
  article-title: Presence of Genetic Variants Among Young Men With Severe COVID-19
  publication-title: JAMA.
  doi: 10.1001/jama.2020.13719
– volume: 20
  start-page: 397
  year: 2020
  ident: 2023072801431023100_bib2
  article-title: Dysregulation of type I interferon responses in COVID-19
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/s41577-020-0346-x
– volume: 109
  start-page: 3012
  year: 2012
  ident: 2023072801431023100_bib11
  article-title: Plasmacytoid dendritic cells control T-cell response to chronic viral infection
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.1117359109
– volume: 20
  start-page: 363
  year: 2020
  ident: 2023072801431023100_bib40
  article-title: The trinity of COVID-19: immunity, inflammation and intervention
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/s41577-020-0311-8
– volume: 13
  year: 2020
  ident: 2023072801431023100_bib13
  article-title: The kinase IRAK4 promotes endosomal TLR and immune complex signaling in B cells and plasmacytoid dendritic cells
  publication-title: Sci. Signal.
  doi: 10.1126/scisignal.aaz1053
– volume: 14
  start-page: R155
  year: 2012
  ident: 2023072801431023100_bib35
  article-title: Hydroxychloroquine is associated with impaired interferon-alpha and tumor necrosis factor-alpha production by plasmacytoid dendritic cells in systemic lupus erythematosus
  publication-title: Arthritis Res. Ther.
  doi: 10.1186/ar3895
– volume: 8
  start-page: 594
  year: 2008
  ident: 2023072801431023100_bib18
  article-title: Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri2358
– volume: 20
  start-page: 238
  year: 2018
  ident: 2023072801431023100_bib22
  article-title: Cytokine production by activated plasmacytoid dendritic cells and natural killer cells is suppressed by an IRAK4 inhibitor
  publication-title: Arthritis Res. Ther.
  doi: 10.1186/s13075-018-1702-0
– volume: 29
  start-page: 447
  year: 2011
  ident: 2023072801431023100_bib8
  article-title: Human TLRs and IL-1Rs in host defense: natural insights from evolutionary, epidemiological, and clinical genetics
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev-immunol-030409-101335
– volume: 177
  start-page: 6758
  year: 2006
  ident: 2023072801431023100_bib15
  article-title: Hepatitis C virus (HCV) core protein-induced, monocyte-mediated mechanisms of reduced IFN-alpha and plasmacytoid dendritic cell loss in chronic HCV infection
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.177.10.6758
– volume: 348
  start-page: 448
  year: 2015
  ident: 2023072801431023100_bib12
  article-title: Infectious disease. Life-threatening influenza and impaired interferon amplification in human IRF7 deficiency
  publication-title: Science.
  doi: 10.1126/science.aaa1578
– volume: 9
  year: 2013
  ident: 2023072801431023100_bib26
  article-title: Negative regulation of type I IFN expression by OASL1 permits chronic viral infection and CD8+ T-cell exhaustion
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1003478
– volume: 89
  start-page: 3859
  year: 2015
  ident: 2023072801431023100_bib36
  article-title: High secretion of interferons by human plasmacytoid dendritic cells upon recognition of Middle East respiratory syndrome coronavirus
  publication-title: J. Virol.
  doi: 10.1128/JVI.03607-14
– volume: 96
  start-page: 897
  year: 2005
  ident: 2023072801431023100_bib7
  article-title: Plasmacytoid dendritic cells are present in cervical carcinoma and become activated by human papillomavirus type 16 virus-like particles
  publication-title: Gynecol. Oncol.
  doi: 10.1016/j.ygyno.2004.10.040
– volume: 40
  start-page: 591
  year: 2020
  ident: 2023072801431023100_bib14
  article-title: An Updated Systematic Review of the Therapeutic Role of Hydroxychloroquine in Coronavirus Disease-19 (COVID-19)
  publication-title: Clin. Drug Investig.
  doi: 10.1007/s40261-020-00927-1
– volume: 317
  start-page: 1522
  year: 2007
  ident: 2023072801431023100_bib45
  article-title: TLR3 deficiency in patients with herpes simplex encephalitis
  publication-title: Science.
  doi: 10.1126/science.1139522
– volume: 8
  start-page: 216
  year: 2020
  ident: 2023072801431023100_bib24
  article-title: COVID-19: Emergence, Spread, Possible Treatments, and Global Burden
  publication-title: Front. Public Health.
  doi: 10.3389/fpubh.2020.00216
– volume: 88
  start-page: 1834
  year: 2014
  ident: 2023072801431023100_bib33
  article-title: Adenosine deaminase acts as a natural antagonist for dipeptidyl peptidase 4-mediated entry of the Middle East respiratory syndrome coronavirus
  publication-title: J. Virol.
  doi: 10.1128/JVI.02935-13
– volume: 120
  start-page: 4544
  year: 2012
  ident: 2023072801431023100_bib16
  article-title: HCV glycoprotein E2 is a novel BDCA-2 ligand and acts as an inhibitor of IFN production by plasmacytoid dendritic cells
  publication-title: Blood.
  doi: 10.1182/blood-2012-02-413286
– volume: 118
  start-page: 300
  year: 2006
  ident: 2023072801431023100_bib1
  article-title: Dexamethasone preferentially suppresses plasmacytoid dendritic cell differentiation and enhances their apoptotic death
  publication-title: Clin. Immunol.
  doi: 10.1016/j.clim.2005.09.019
– volume: 370
  year: 2020
  ident: 2023072801431023100_bib47
  article-title: Inborn errors of type I IFN immunity in patients with life-threatening COVID-19
  publication-title: Science.
  doi: 10.1126/science.abd4570
– volume: 356
  year: 2017
  ident: 2023072801431023100_bib43
  article-title: Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors
  publication-title: Science.
  doi: 10.1126/science.aah4573
– volume: 19
  start-page: 63
  year: 2018
  ident: 2023072801431023100_bib3
  article-title: Diversification of human plasmacytoid predendritic cells in response to a single stimulus
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-017-0012-z
– volume: 208
  start-page: 2083
  year: 2011
  ident: 2023072801431023100_bib20
  article-title: Herpes simplex virus encephalitis in a patient with complete TLR3 deficiency: TLR3 is otherwise redundant in protective immunity
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20101568
– volume: 63
  start-page: 1111
  year: 2002
  ident: 2023072801431023100_bib34
  article-title: Plasmacytoid dendritic cells: the key to CpG
  publication-title: Hum. Immunol.
  doi: 10.1016/S0198-8859(02)00749-8
– volume: 0
  year: 2020
  ident: 2023072801431023100_bib4
  article-title: COVID-19: discovery, diagnostics and drug development
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2020.09.031
– volume: 109
  start-page: 1131
  year: 2007
  ident: 2023072801431023100_bib10
  article-title: Control of coronavirus infection through plasmacytoid dendritic-cell-derived type I interferon
  publication-title: Blood.
  doi: 10.1182/blood-2006-05-023770
– volume: 170
  start-page: 4061
  year: 2003
  ident: 2023072801431023100_bib6
  article-title: CpG-A-induced monocyte IFN-gamma-inducible protein-10 production is regulated by plasmacytoid dendritic cell-derived IFN-alpha
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.170.8.4061
– volume: 2
  year: 2007
  ident: 2023072801431023100_bib31
  article-title: Impact of HIV on cell survival and antiviral activity of plasmacytoid dendritic cells
  publication-title: PLoS One.
  doi: 10.1371/journal.pone.0000458
– volume: 38
  start-page: 542
  year: 2017
  ident: 2023072801431023100_bib37
  article-title: Type I Interferon in Chronic Virus Infection and Cancer
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2017.05.005
– volume: 181
  start-page: 271
  year: 2020
  ident: 2023072801431023100_bib23
  article-title: SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor
  publication-title: Cell.
  doi: 10.1016/j.cell.2020.02.052
– volume: 23
  start-page: 255
  year: 2012
  ident: 2023072801431023100_bib29
  article-title: HIV-1, interferon and the interferon regulatory factor system: an interplay between induction, antiviral responses and viral evasion
  publication-title: Cytokine Growth Factor Rev.
  doi: 10.1016/j.cytogfr.2012.06.001
– volume: 116
  start-page: 3389
  year: 2010
  ident: 2023072801431023100_bib27
  article-title: Toll-like receptor control of glucocorticoid-induced apoptosis in human plasmacytoid predendritic cells (pDCs)
  publication-title: Blood.
  doi: 10.1182/blood-2010-05-282913
– volume: 299
  start-page: 2076
  year: 2003
  ident: 2023072801431023100_bib32
  article-title: Pyogenic bacterial infections in humans with IRAK-4 deficiency
  publication-title: Science.
  doi: 10.1126/science.1081902
– reference: 33442685 - bioRxiv. 2021 Jan 08;:
SSID ssj0014456
Score 2.6207478
Snippet Several studies have analyzed antiviral immune pathways in late-stage severe COVID-19. However, the initial steps of SARS-CoV-2 antiviral immunity are poorly...
Plasmacytoid dendritic cells (pDCs) are not permissive to SARS-CoV-2 infection but, upon viral exposure, differentiate into subsets and rapidly produce type I...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms Biomarkers
Brief Definitive Report
Cell Plasticity - immunology
COVID-19 - drug therapy
COVID-19 - immunology
COVID-19 - metabolism
COVID-19 - virology
Cytokines - metabolism
Dendritic Cells - immunology
Dendritic Cells - metabolism
Dendritic Cells - virology
Host-Pathogen Interactions - immunology
Humans
Hydroxychloroquine - pharmacology
Hydroxychloroquine - therapeutic use
Immunomodulation
Immunophenotyping
Infectious Disease and Host Defense
Inflammation Mediators - metabolism
Innate Immunity and Inflammation
Interferon Type I - metabolism
Interferons - metabolism
Interleukin-1 Receptor-Associated Kinases - metabolism
Membrane Transport Proteins - metabolism
SARS-CoV-2 - immunology
Title SARS-CoV-2 induces human plasmacytoid predendritic cell diversification via UNC93B and IRAK4
URI https://www.ncbi.nlm.nih.gov/pubmed/33533916
https://www.proquest.com/docview/2486158723
https://pubmed.ncbi.nlm.nih.gov/PMC7849819
Volume 218
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bixMxFA66wrIv4t2uFyLo0zA6lzOTyWMtyuJahb1IH4QhyWSw4M6U7lTQX-9JMrd2XVBfSjuTZiDf19MvyXdOCHkJccplqRj-kHjqg1aBL2Mm8GPEChZIEYJJcJ5_So_O4cMiWQxeVZtd0sjX6tcf80r-B1W8hriaLNl_QLbvFC_ge8QXXxFhfP0rjE-nJ6f-rP7iRx5OrTfGXOXO3FuhJr4Q6mdTL20ZAAwuhT3TwDML9V7hzBhlu17n_VgKnAjOePzW2YNPpscwVq1D_phVrlunAuxuzn-u6sI6BExh4CFbwvhpGn9uHPt2KWCjloPrVuu1MdJ3edojL86xWK9s2ciPbkdfjFcpotCaW9x2tW4jKwRmrzgbh95oiL3dwsKVkB5kYEK6NmUDIrOvysbNEJDVhYU3jlG58nCnrrb7p25v3SS3IpxN2JzwRe8EwillkrY5EfiwN-NHHZD97svbwuXKbGTXVDtSKWd3yO0WJDp1XLlLbujqHtmftxjdJ18HytCWMtRSho4pQ8eUoYYydIcyFClDHWUoUoZayjwg5-_fnc2O_PaADV9BEjQ-aj0GAoBHBRMclV0R60ALFO1QKlGGWoQp55rJMFVQyhBEhhGblVqUSRInED8ke1Vd6ceE8lQmYE6uYQEK7CKSCXYoipSFTGuc1k-I141ertrq8-YQlO-5dUFkkOOw592wT8irvvXKVV25pt2LDogcw6IZD1HpenOZR5ChVs8Q7Al55IDpe-oQnRC2BVnfwJRc375TLb_Z0ussA44a-vDaPp-Qg4H-T8les97oZyhbG_ncku43W4eWUg
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SARS-CoV-2+induces+human+plasmacytoid+predendritic+cell+diversification+via+UNC93B+and+IRAK4&rft.jtitle=The+Journal+of+experimental+medicine&rft.au=Onodi%2C+Fanny&rft.au=Bonnet-Madin%2C+Lucie&rft.au=Meertens%2C+Laurent&rft.au=Karpf%2C+L%C3%A9a&rft.date=2021-04-05&rft.eissn=1540-9538&rft.volume=218&rft.issue=4&rft_id=info:doi/10.1084%2Fjem.20201387&rft_id=info%3Apmid%2F33533916&rft.externalDocID=33533916
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1007&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1007&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1007&client=summon