SARS-CoV-2 induces human plasmacytoid predendritic cell diversification via UNC93B and IRAK4
Several studies have analyzed antiviral immune pathways in late-stage severe COVID-19. However, the initial steps of SARS-CoV-2 antiviral immunity are poorly understood. Here we have isolated primary SARS-CoV-2 viral strains and studied their interaction with human plasmacytoid predendritic cells (p...
Saved in:
Published in | The Journal of experimental medicine Vol. 218; no. 4 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Rockefeller University Press
05.04.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Several studies have analyzed antiviral immune pathways in late-stage severe COVID-19. However, the initial steps of SARS-CoV-2 antiviral immunity are poorly understood. Here we have isolated primary SARS-CoV-2 viral strains and studied their interaction with human plasmacytoid predendritic cells (pDCs), a key player in antiviral immunity. We show that pDCs are not productively infected by SARS-CoV-2. However, they efficiently diversified into activated P1-, P2-, and P3-pDC effector subsets in response to viral stimulation. They expressed CD80, CD86, CCR7, and OX40 ligand at levels similar to influenza virus–induced activation. They rapidly produced high levels of interferon-α, interferon-λ1, IL-6, IP-10, and IL-8. All major aspects of SARS-CoV-2–induced pDC activation were inhibited by hydroxychloroquine. Mechanistically, SARS-CoV-2–induced pDC activation critically depended on IRAK4 and UNC93B1, as established using pDC from genetically deficient patients. Overall, our data indicate that human pDC are efficiently activated by SARS-CoV-2 particles and may thus contribute to type I IFN–dependent immunity against SARS-CoV-2 infection. |
---|---|
AbstractList | Several studies have analyzed antiviral immune pathways in late-stage severe COVID-19. However, the initial steps of SARS-CoV-2 antiviral immunity are poorly understood. Here we have isolated primary SARS-CoV-2 viral strains and studied their interaction with human plasmacytoid predendritic cells (pDCs), a key player in antiviral immunity. We show that pDCs are not productively infected by SARS-CoV-2. However, they efficiently diversified into activated P1-, P2-, and P3-pDC effector subsets in response to viral stimulation. They expressed CD80, CD86, CCR7, and OX40 ligand at levels similar to influenza virus-induced activation. They rapidly produced high levels of interferon-α, interferon-λ1, IL-6, IP-10, and IL-8. All major aspects of SARS-CoV-2-induced pDC activation were inhibited by hydroxychloroquine. Mechanistically, SARS-CoV-2-induced pDC activation critically depended on IRAK4 and UNC93B1, as established using pDC from genetically deficient patients. Overall, our data indicate that human pDC are efficiently activated by SARS-CoV-2 particles and may thus contribute to type I IFN-dependent immunity against SARS-CoV-2 infection.Several studies have analyzed antiviral immune pathways in late-stage severe COVID-19. However, the initial steps of SARS-CoV-2 antiviral immunity are poorly understood. Here we have isolated primary SARS-CoV-2 viral strains and studied their interaction with human plasmacytoid predendritic cells (pDCs), a key player in antiviral immunity. We show that pDCs are not productively infected by SARS-CoV-2. However, they efficiently diversified into activated P1-, P2-, and P3-pDC effector subsets in response to viral stimulation. They expressed CD80, CD86, CCR7, and OX40 ligand at levels similar to influenza virus-induced activation. They rapidly produced high levels of interferon-α, interferon-λ1, IL-6, IP-10, and IL-8. All major aspects of SARS-CoV-2-induced pDC activation were inhibited by hydroxychloroquine. Mechanistically, SARS-CoV-2-induced pDC activation critically depended on IRAK4 and UNC93B1, as established using pDC from genetically deficient patients. Overall, our data indicate that human pDC are efficiently activated by SARS-CoV-2 particles and may thus contribute to type I IFN-dependent immunity against SARS-CoV-2 infection. Plasmacytoid dendritic cells (pDCs) are not permissive to SARS-CoV-2 infection but, upon viral exposure, differentiate into subsets and rapidly produce type I and III interferons. Mechanistically, pDC activation depends on IRAK4 and UNC93B1 expression. Several studies have analyzed antiviral immune pathways in late-stage severe COVID-19. However, the initial steps of SARS-CoV-2 antiviral immunity are poorly understood. Here we have isolated primary SARS-CoV-2 viral strains and studied their interaction with human plasmacytoid predendritic cells (pDCs), a key player in antiviral immunity. We show that pDCs are not productively infected by SARS-CoV-2. However, they efficiently diversified into activated P1-, P2-, and P3-pDC effector subsets in response to viral stimulation. They expressed CD80, CD86, CCR7, and OX40 ligand at levels similar to influenza virus–induced activation. They rapidly produced high levels of interferon-α, interferon-λ1, IL-6, IP-10, and IL-8. All major aspects of SARS-CoV-2–induced pDC activation were inhibited by hydroxychloroquine. Mechanistically, SARS-CoV-2–induced pDC activation critically depended on IRAK4 and UNC93B1, as established using pDC from genetically deficient patients. Overall, our data indicate that human pDC are efficiently activated by SARS-CoV-2 particles and may thus contribute to type I IFN–dependent immunity against SARS-CoV-2 infection. Several studies have analyzed antiviral immune pathways in late-stage severe COVID-19. However, the initial steps of SARS-CoV-2 antiviral immunity are poorly understood. Here we have isolated primary SARS-CoV-2 viral strains and studied their interaction with human plasmacytoid predendritic cells (pDCs), a key player in antiviral immunity. We show that pDCs are not productively infected by SARS-CoV-2. However, they efficiently diversified into activated P1-, P2-, and P3-pDC effector subsets in response to viral stimulation. They expressed CD80, CD86, CCR7, and OX40 ligand at levels similar to influenza virus-induced activation. They rapidly produced high levels of interferon-α, interferon-λ1, IL-6, IP-10, and IL-8. All major aspects of SARS-CoV-2-induced pDC activation were inhibited by hydroxychloroquine. Mechanistically, SARS-CoV-2-induced pDC activation critically depended on IRAK4 and UNC93B1, as established using pDC from genetically deficient patients. Overall, our data indicate that human pDC are efficiently activated by SARS-CoV-2 particles and may thus contribute to type I IFN-dependent immunity against SARS-CoV-2 infection. |
Author | Karpf, Léa Bonnet-Madin, Lucie Amara, Ali Molina, Jean-Michel Zhang, Shen-Ying Zhang, Qian Delaugerre, Constance Soumelis, Vassili Puel, Anne Onodi, Fanny Jouanguy, Emmanuelle Meertens, Laurent Casanova, Jean-Laurent Picard, Capucine Le Goff, Jérôme Poirot, Justine |
AuthorAffiliation | 1 Université de Paris, Institut de Recherche Saint-Louis, Institut National de la Santé et de la Recherche Médicale U976, Hôpital Saint-Louis, Paris, France 2 Université de Paris, Institut de Recherche Saint-Louis, Institut National de la Santé et de la Recherche Médicale U944, Centre National de la Recherche Scientifique 7212, Hôpital Saint-Louis, Paris, France 3 Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale, Necker Hospital for Sick Children, Paris, France 5 St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 4 Université de Paris, Institut National de la Santé et de la Recherche Médicale Unite Mixte de Recherche 1163, Institut Imagine, Paris, France 7 Laboratoire de Virologie et Département des Maladies Infectieuses, Hôpital Saint-Louis, Assistance Publique–Hôpitaux de Paris, Paris, France 8 Howard Hughes Medical Institute, New York, NY 9 A |
AuthorAffiliation_xml | – name: 2 Université de Paris, Institut de Recherche Saint-Louis, Institut National de la Santé et de la Recherche Médicale U944, Centre National de la Recherche Scientifique 7212, Hôpital Saint-Louis, Paris, France – name: 3 Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale, Necker Hospital for Sick Children, Paris, France – name: 6 Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique–Hôpitaux de Paris, Paris, France – name: 7 Laboratoire de Virologie et Département des Maladies Infectieuses, Hôpital Saint-Louis, Assistance Publique–Hôpitaux de Paris, Paris, France – name: 4 Université de Paris, Institut National de la Santé et de la Recherche Médicale Unite Mixte de Recherche 1163, Institut Imagine, Paris, France – name: 1 Université de Paris, Institut de Recherche Saint-Louis, Institut National de la Santé et de la Recherche Médicale U976, Hôpital Saint-Louis, Paris, France – name: 5 St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY – name: 8 Howard Hughes Medical Institute, New York, NY – name: 9 Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Laboratoire d'Immunologie, Paris, France |
Author_xml | – sequence: 1 givenname: Fanny orcidid: 0000-0002-8429-4821 surname: Onodi fullname: Onodi, Fanny – sequence: 2 givenname: Lucie orcidid: 0000-0002-9848-3287 surname: Bonnet-Madin fullname: Bonnet-Madin, Lucie – sequence: 3 givenname: Laurent orcidid: 0000-0003-2811-3675 surname: Meertens fullname: Meertens, Laurent – sequence: 4 givenname: Léa orcidid: 0000-0001-6959-7528 surname: Karpf fullname: Karpf, Léa – sequence: 5 givenname: Justine orcidid: 0000-0002-6694-7796 surname: Poirot fullname: Poirot, Justine – sequence: 6 givenname: Shen-Ying orcidid: 0000-0002-9449-3672 surname: Zhang fullname: Zhang, Shen-Ying – sequence: 7 givenname: Capucine orcidid: 0000-0001-8788-5056 surname: Picard fullname: Picard, Capucine – sequence: 8 givenname: Anne orcidid: 0000-0003-2603-0323 surname: Puel fullname: Puel, Anne – sequence: 9 givenname: Emmanuelle orcidid: 0000-0002-7358-9157 surname: Jouanguy fullname: Jouanguy, Emmanuelle – sequence: 10 givenname: Qian orcidid: 0000-0002-9040-3289 surname: Zhang fullname: Zhang, Qian – sequence: 11 givenname: Jérôme orcidid: 0000-0001-7111-1865 surname: Le Goff fullname: Le Goff, Jérôme – sequence: 12 givenname: Jean-Michel orcidid: 0000-0001-8684-2214 surname: Molina fullname: Molina, Jean-Michel – sequence: 13 givenname: Constance orcidid: 0000-0001-6081-7993 surname: Delaugerre fullname: Delaugerre, Constance – sequence: 14 givenname: Jean-Laurent orcidid: 0000-0002-7782-4169 surname: Casanova fullname: Casanova, Jean-Laurent – sequence: 15 givenname: Ali orcidid: 0000-0002-0283-1815 surname: Amara fullname: Amara, Ali – sequence: 16 givenname: Vassili orcidid: 0000-0003-1849-9834 surname: Soumelis fullname: Soumelis, Vassili |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33533916$$D View this record in MEDLINE/PubMed |
BookMark | eNptkc1v1DAQxS1URLeFG2fkIwdS_JnEF6RlxUfVCqSWckKyZu0JdZXYWztZqf89Ke1WFPU0h_nNe5r3DsheTBEJec3ZEWeten-Fw5FggnHZNs_IgmvFKqNlu0cWjAlRccaafXJQyhVjXCldvyD7UmopDa8X5Nf58uy8WqWflaAh-slhoZfTAJFueigDuJsxBU83GT1Gn8MYHHXY99SHLeYSuuBgDCnSbQB68W1l5EcK0dPjs-WJekmed9AXfHU_D8nF508_Vl-r0-9fjlfL08opzcaKC9MoUMoI34BhNfcSGUKtmeocdByB18Zgs-a1U92aK2glN02H0GkttZKH5MOd7mZaD-gdxjFDbzc5DJBvbIJgH29iuLS_09Y2rTItN7PA23uBnK4nLKMdQrl9EyKmqVih2prrthFyRt_86_Vgsot0BsQd4HIqJWNnXRj_ZjRbh95yZm97s3NvdtfbfPTuv6Od7pP4H_rWmLE |
CitedBy_id | crossref_primary_10_3389_fimmu_2021_797390 crossref_primary_10_1111_joim_13628 crossref_primary_10_1111_dth_15434 crossref_primary_10_1042_BCJ20210602 crossref_primary_10_1038_s41598_021_02432_7 crossref_primary_10_1371_journal_ppat_1009878 crossref_primary_10_1016_j_bsheal_2023_08_005 crossref_primary_10_1016_j_cell_2021_08_016 crossref_primary_10_1097_MOH_0000000000000645 crossref_primary_10_1111_jocd_14843 crossref_primary_10_15252_embj_2022111208 crossref_primary_10_3389_fmed_2021_761372 crossref_primary_10_3390_cells10102545 crossref_primary_10_1016_j_coi_2022_01_003 crossref_primary_10_1016_j_jaci_2023_02_003 crossref_primary_10_1111_jocd_14572 crossref_primary_10_1111_imr_13113 crossref_primary_10_1128_CMR_00094_21 crossref_primary_10_3390_v17010105 crossref_primary_10_1093_pcmedi_pbae015 crossref_primary_10_3389_fimmu_2022_1016304 crossref_primary_10_3390_cells11020253 crossref_primary_10_3390_ijms241713083 crossref_primary_10_3748_wjg_v29_i13_1942 crossref_primary_10_1111_ced_14941 crossref_primary_10_1038_s41556_021_00681_2 crossref_primary_10_1111_ced_14932 crossref_primary_10_1136_annrheumdis_2021_220435 crossref_primary_10_1371_journal_ppat_1009742 crossref_primary_10_1016_j_coi_2024_102423 crossref_primary_10_3390_life12091300 crossref_primary_10_1016_j_coi_2024_102424 crossref_primary_10_1111_joim_13559 crossref_primary_10_1038_s41586_022_04447_0 crossref_primary_10_1007_s00018_022_04329_8 crossref_primary_10_3389_fimmu_2022_814627 crossref_primary_10_1146_annurev_immunol_101921_050835 crossref_primary_10_1002_eji_202350437 crossref_primary_10_1128_mBio_00700_21 crossref_primary_10_1007_s00296_021_04825_3 crossref_primary_10_1002_cti2_1382 crossref_primary_10_3390_ijms26031047 crossref_primary_10_4049_jimmunol_2200844 crossref_primary_10_1038_s41467_023_36140_9 crossref_primary_10_1016_j_molimm_2023_05_007 crossref_primary_10_2147_ITT_S284830 crossref_primary_10_1016_j_celrep_2022_111148 crossref_primary_10_1126_sciimmunol_abl4348 crossref_primary_10_1093_jleuko_qiae003 crossref_primary_10_1038_s41467_024_44958_0 crossref_primary_10_3390_v13091839 crossref_primary_10_1084_jem_20220258 crossref_primary_10_3390_cancers15082206 crossref_primary_10_1038_s41598_022_11157_0 crossref_primary_10_1084_jem_20220131 crossref_primary_10_1093_cei_uxae062 crossref_primary_10_1126_sciimmunol_abm5505 crossref_primary_10_1084_jem_20220170 crossref_primary_10_1016_j_smim_2021_101508 crossref_primary_10_1038_s41467_022_34895_1 crossref_primary_10_1111_jocd_14155 crossref_primary_10_1146_annurev_immunol_090122_041105 crossref_primary_10_1172_JCI166283 crossref_primary_10_3389_fimmu_2021_760288 crossref_primary_10_3389_fimmu_2024_1294807 crossref_primary_10_1016_j_coviro_2021_08_004 crossref_primary_10_3390_ijms231810968 crossref_primary_10_1038_s41423_024_01167_5 crossref_primary_10_1002_jmv_28000 crossref_primary_10_1016_j_celrep_2022_110387 crossref_primary_10_3389_fimmu_2021_713779 crossref_primary_10_3389_fimmu_2021_621440 crossref_primary_10_1016_j_jinf_2023_01_019 crossref_primary_10_1111_jdv_18513 crossref_primary_10_1080_25785826_2022_2066251 crossref_primary_10_1111_sji_13043 crossref_primary_10_1111_all_15004 crossref_primary_10_1126_sciimmunol_adm8185 crossref_primary_10_15252_embj_2021109622 crossref_primary_10_3389_fimmu_2021_683800 crossref_primary_10_1038_s41423_023_01039_4 crossref_primary_10_1128_aac_00083_22 crossref_primary_10_1080_22221751_2023_2195019 crossref_primary_10_1128_jvi_01235_24 crossref_primary_10_1038_s41577_024_00996_9 crossref_primary_10_1016_j_smim_2024_101863 crossref_primary_10_3389_fimmu_2022_843342 crossref_primary_10_1126_sciimmunol_add4906 crossref_primary_10_1016_S2665_9913_22_00067_4 crossref_primary_10_1016_j_immuni_2024_03_004 crossref_primary_10_3390_v14050999 crossref_primary_10_3390_ijms232012154 crossref_primary_10_1016_j_it_2021_10_009 crossref_primary_10_1073_pnas_2114390118 crossref_primary_10_3389_fimmu_2023_1112985 |
Cites_doi | 10.1126/science.1128346 10.1089/vim.2009.0112 10.1007/s00005-013-0243-0 10.1182/blood.V98.4.906 10.1126/science.abd4570 10.1016/j.tcb.2013.12.002 10.1128/JVI.01501-14 10.1371/journal.ppat.1008536 10.1146/annurev.immunol.20.100301.064828 10.1016/j.it.2010.07.004 10.1146/annurev.immunol.23.021704.115633 10.1126/science.abd4585 10.1001/jama.2020.13719 10.1038/s41577-020-0346-x 10.1073/pnas.1117359109 10.1038/s41577-020-0311-8 10.1126/scisignal.aaz1053 10.1186/ar3895 10.1038/nri2358 10.1186/s13075-018-1702-0 10.1146/annurev-immunol-030409-101335 10.4049/jimmunol.177.10.6758 10.1126/science.aaa1578 10.1371/journal.ppat.1003478 10.1128/JVI.03607-14 10.1016/j.ygyno.2004.10.040 10.1007/s40261-020-00927-1 10.1126/science.1139522 10.3389/fpubh.2020.00216 10.1128/JVI.02935-13 10.1182/blood-2012-02-413286 10.1016/j.clim.2005.09.019 10.1126/science.aah4573 10.1038/s41590-017-0012-z 10.1084/jem.20101568 10.1016/S0198-8859(02)00749-8 10.1016/j.jhep.2020.09.031 10.1182/blood-2006-05-023770 10.4049/jimmunol.170.8.4061 10.1371/journal.pone.0000458 10.1016/j.it.2017.05.005 10.1016/j.cell.2020.02.052 10.1016/j.cytogfr.2012.06.001 10.1182/blood-2010-05-282913 10.1126/science.1081902 |
ContentType | Journal Article |
Copyright | 2021 Onodi et al. 2021 Onodi et al. 2021 |
Copyright_xml | – notice: 2021 Onodi et al. – notice: 2021 Onodi et al. 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1084/jem.20201387 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
DocumentTitleAlternate | SARS-CoV-2 and plasmacytoid predendritic cells |
EISSN | 1540-9538 |
ExternalDocumentID | PMC7849819 33533916 10_1084_jem_20201387 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R01 AI088364 – fundername: ; – fundername: ; grantid: ANR-18-CE15-0009-01 – fundername: ; grantid: RACPL20FIR01-COVID-SOUL – fundername: ; grantid: ANRS-COV05 – fundername: ; grantid: EQU201903007798 – fundername: ; grantid: UM1HG006504; U24HG008956 – fundername: ; grantid: ANR-10-LABX-62-IBEID – fundername: ; grantid: ANR-18-CE15-0020-02 – fundername: ; grantid: R01AI088364 – fundername: ; grantid: UL1 TR001866 |
GroupedDBID | --- -~X 18M 29K 2WC 36B 4.4 53G 5GY 5RE 5VS AAYXX ABOCM ABZEH ACGFO ACNCT ACPRK ADBBV AENEX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW C45 CITATION CS3 D-I DIK DU5 E3Z EBS EMB F5P F9R GX1 H13 HYE IH2 KQ8 L7B N9A O5R O5S OK1 P2P P6G R.V RHI SJN TR2 TRP UHB W8F WOQ CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c450t-12974a4492d7a9061d3e0ea6504fcaf1ea1699e7b16c4fb14a83197feaf553543 |
ISSN | 0022-1007 1540-9538 |
IngestDate | Thu Aug 21 14:13:54 EDT 2025 Thu Jul 10 19:30:24 EDT 2025 Thu Apr 03 06:59:15 EDT 2025 Thu Apr 24 23:02:00 EDT 2025 Tue Jul 01 00:41:15 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | 2021 Onodi et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c450t-12974a4492d7a9061d3e0ea6504fcaf1ea1699e7b16c4fb14a83197feaf553543 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Disclosures: J.-M. Molina reported grants from Gilead and personal fees from Merck, ViiV, and Janssen outside the submitted work. V. Soumelis reported grants from Sanofi and Roche, and personal fees from Leo Pharma, Gilead, Merck, and Sanofi outside the submitted work. No other disclosures were reported. |
ORCID | 0000-0003-1849-9834 0000-0002-7782-4169 0000-0002-7358-9157 0000-0002-9040-3289 0000-0002-9848-3287 0000-0002-6694-7796 0000-0002-9449-3672 0000-0003-2811-3675 0000-0001-7111-1865 0000-0002-0283-1815 0000-0001-8788-5056 0000-0001-6081-7993 0000-0003-2603-0323 0000-0002-8429-4821 0000-0001-6959-7528 0000-0001-8684-2214 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7849819 |
PMID | 33533916 |
PQID | 2486158723 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7849819 proquest_miscellaneous_2486158723 pubmed_primary_33533916 crossref_citationtrail_10_1084_jem_20201387 crossref_primary_10_1084_jem_20201387 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-05 |
PublicationDateYYYYMMDD | 2021-04-05 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of experimental medicine |
PublicationTitleAlternate | J Exp Med |
PublicationYear | 2021 |
Publisher | Rockefeller University Press |
Publisher_xml | – name: Rockefeller University Press |
References | Hjorton (2023072801431023100_bib22) 2018; 20 Thomas (2023072801431023100_bib41) 2014; 88 Lee (2023072801431023100_bib26) 2013; 9 Picard (2023072801431023100_bib32) 2003; 299 Meyers (2023072801431023100_bib31) 2007; 2 Cervantes-Barragan (2023072801431023100_bib11) 2012; 109 Guo (2023072801431023100_bib20) 2011; 208 Scheuplein (2023072801431023100_bib36) 2015; 89 Lepelletier (2023072801431023100_bib27) 2010; 116 van der Made (2023072801431023100_bib42) 2020; 324 Villani (2023072801431023100_bib43) 2017; 356 Asselah (2023072801431023100_bib4) 2020; 0 Corzo (2023072801431023100_bib13) 2020; 13 Keni (2023072801431023100_bib24) 2020; 8 Blackwell (2023072801431023100_bib6) 2003; 170 Lee (2023072801431023100_bib25) 2014; 24 Ciancanelli (2023072801431023100_bib12) 2015; 348 Zhang (2023072801431023100_bib47) 2020; 370 Cervantes-Barragan (2023072801431023100_bib10) 2007; 109 Meera (2023072801431023100_bib30) 2010; 23 Tang (2023072801431023100_bib39) 2020; 16 Casanova (2023072801431023100_bib8) 2011; 29 Tay (2023072801431023100_bib40) 2020; 20 Zhang (2023072801431023100_bib46) 2020; 1 Abe (2023072801431023100_bib1) 2006; 118 Marsili (2023072801431023100_bib29) 2012; 23 Hirsch (2023072801431023100_bib21) 2010; 31 Florentin (2023072801431023100_bib16) 2012; 120 Dolganiuc (2023072801431023100_bib15) 2006; 177 Rothenfusser (2023072801431023100_bib34) 2002; 63 Liu (2023072801431023100_bib28) 2005; 23 Guermonprez (2023072801431023100_bib19) 2002; 20 Snell (2023072801431023100_bib37) 2017; 38 Alculumbre (2023072801431023100_bib3) 2018; 19 Gilliet (2023072801431023100_bib18) 2008; 8 Bastard (2023072801431023100_bib5) 2020; 370 Das (2023072801431023100_bib14) 2020; 40 World Health Organization (2023072801431023100_bib44) 2020 Zhang (2023072801431023100_bib45) 2007; 317 Acharya (2023072801431023100_bib2) 2020; 20 Raj (2023072801431023100_bib33) 2014; 88 Bontkes (2023072801431023100_bib7) 2005; 96 Frazão (2023072801431023100_bib17) 2013; 61 Casrouge (2023072801431023100_bib9) 2006; 314 Hoffmann (2023072801431023100_bib23) 2020; 181 Sacre (2023072801431023100_bib35) 2012; 14 Soumelis (2023072801431023100_bib38) 2001; 98 33442685 - bioRxiv. 2021 Jan 08 |
References_xml | – volume: 314 start-page: 308 year: 2006 ident: 2023072801431023100_bib9 article-title: Herpes simplex virus encephalitis in human UNC-93B deficiency publication-title: Science. doi: 10.1126/science.1128346 – volume: 23 start-page: 241 year: 2010 ident: 2023072801431023100_bib30 article-title: Irreversible loss of pDCs by apoptosis during early HIV infection may be a critical determinant of immune dysfunction publication-title: Viral Immunol. doi: 10.1089/vim.2009.0112 – volume: 61 start-page: 427 year: 2013 ident: 2023072801431023100_bib17 article-title: Toll-like receptors’ pathway disturbances are associated with increased susceptibility to infections in humans publication-title: Arch. Immunol. Ther. Exp. (Warsz.). doi: 10.1007/s00005-013-0243-0 – volume: 98 start-page: 906 year: 2001 ident: 2023072801431023100_bib38 article-title: Depletion of circulating natural type 1 interferon-producing cells in HIV-infected AIDS patients publication-title: Blood. doi: 10.1182/blood.V98.4.906 – volume: 1 start-page: 14 year: 2020 ident: 2023072801431023100_bib46 article-title: Life-Threatening COVID-19: Defective Interferons Unleash Excessive Inflammation publication-title: Med (N Y). doi: 10.1126/science.abd4570 – volume: 24 start-page: 360 year: 2014 ident: 2023072801431023100_bib25 article-title: Trafficking of endosomal Toll-like receptors publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2013.12.002 – volume: 88 start-page: 10758 year: 2014 ident: 2023072801431023100_bib41 article-title: Differential responses of plasmacytoid dendritic cells to influenza virus and distinct viral pathogens publication-title: J. Virol. doi: 10.1128/JVI.01501-14 – volume: 16 year: 2020 ident: 2023072801431023100_bib39 article-title: The hallmarks of COVID-19 disease publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1008536 – year: 2020 ident: 2023072801431023100_bib44 – volume: 20 start-page: 621 year: 2002 ident: 2023072801431023100_bib19 article-title: Antigen presentation and T cell stimulation by dendritic cells publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev.immunol.20.100301.064828 – volume: 31 start-page: 391 year: 2010 ident: 2023072801431023100_bib21 article-title: Impaired Toll-like receptor 7 and 9 signaling: from chronic viral infections to cancer publication-title: Trends Immunol. doi: 10.1016/j.it.2010.07.004 – volume: 23 start-page: 275 year: 2005 ident: 2023072801431023100_bib28 article-title: IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev.immunol.23.021704.115633 – volume: 370 year: 2020 ident: 2023072801431023100_bib5 article-title: Autoantibodies against type I IFNs in patients with life-threatening COVID-19 publication-title: Science. doi: 10.1126/science.abd4585 – volume: 324 start-page: 663 year: 2020 ident: 2023072801431023100_bib42 article-title: Presence of Genetic Variants Among Young Men With Severe COVID-19 publication-title: JAMA. doi: 10.1001/jama.2020.13719 – volume: 20 start-page: 397 year: 2020 ident: 2023072801431023100_bib2 article-title: Dysregulation of type I interferon responses in COVID-19 publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-020-0346-x – volume: 109 start-page: 3012 year: 2012 ident: 2023072801431023100_bib11 article-title: Plasmacytoid dendritic cells control T-cell response to chronic viral infection publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.1117359109 – volume: 20 start-page: 363 year: 2020 ident: 2023072801431023100_bib40 article-title: The trinity of COVID-19: immunity, inflammation and intervention publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-020-0311-8 – volume: 13 year: 2020 ident: 2023072801431023100_bib13 article-title: The kinase IRAK4 promotes endosomal TLR and immune complex signaling in B cells and plasmacytoid dendritic cells publication-title: Sci. Signal. doi: 10.1126/scisignal.aaz1053 – volume: 14 start-page: R155 year: 2012 ident: 2023072801431023100_bib35 article-title: Hydroxychloroquine is associated with impaired interferon-alpha and tumor necrosis factor-alpha production by plasmacytoid dendritic cells in systemic lupus erythematosus publication-title: Arthritis Res. Ther. doi: 10.1186/ar3895 – volume: 8 start-page: 594 year: 2008 ident: 2023072801431023100_bib18 article-title: Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases publication-title: Nat. Rev. Immunol. doi: 10.1038/nri2358 – volume: 20 start-page: 238 year: 2018 ident: 2023072801431023100_bib22 article-title: Cytokine production by activated plasmacytoid dendritic cells and natural killer cells is suppressed by an IRAK4 inhibitor publication-title: Arthritis Res. Ther. doi: 10.1186/s13075-018-1702-0 – volume: 29 start-page: 447 year: 2011 ident: 2023072801431023100_bib8 article-title: Human TLRs and IL-1Rs in host defense: natural insights from evolutionary, epidemiological, and clinical genetics publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev-immunol-030409-101335 – volume: 177 start-page: 6758 year: 2006 ident: 2023072801431023100_bib15 article-title: Hepatitis C virus (HCV) core protein-induced, monocyte-mediated mechanisms of reduced IFN-alpha and plasmacytoid dendritic cell loss in chronic HCV infection publication-title: J. Immunol. doi: 10.4049/jimmunol.177.10.6758 – volume: 348 start-page: 448 year: 2015 ident: 2023072801431023100_bib12 article-title: Infectious disease. Life-threatening influenza and impaired interferon amplification in human IRF7 deficiency publication-title: Science. doi: 10.1126/science.aaa1578 – volume: 9 year: 2013 ident: 2023072801431023100_bib26 article-title: Negative regulation of type I IFN expression by OASL1 permits chronic viral infection and CD8+ T-cell exhaustion publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1003478 – volume: 89 start-page: 3859 year: 2015 ident: 2023072801431023100_bib36 article-title: High secretion of interferons by human plasmacytoid dendritic cells upon recognition of Middle East respiratory syndrome coronavirus publication-title: J. Virol. doi: 10.1128/JVI.03607-14 – volume: 96 start-page: 897 year: 2005 ident: 2023072801431023100_bib7 article-title: Plasmacytoid dendritic cells are present in cervical carcinoma and become activated by human papillomavirus type 16 virus-like particles publication-title: Gynecol. Oncol. doi: 10.1016/j.ygyno.2004.10.040 – volume: 40 start-page: 591 year: 2020 ident: 2023072801431023100_bib14 article-title: An Updated Systematic Review of the Therapeutic Role of Hydroxychloroquine in Coronavirus Disease-19 (COVID-19) publication-title: Clin. Drug Investig. doi: 10.1007/s40261-020-00927-1 – volume: 317 start-page: 1522 year: 2007 ident: 2023072801431023100_bib45 article-title: TLR3 deficiency in patients with herpes simplex encephalitis publication-title: Science. doi: 10.1126/science.1139522 – volume: 8 start-page: 216 year: 2020 ident: 2023072801431023100_bib24 article-title: COVID-19: Emergence, Spread, Possible Treatments, and Global Burden publication-title: Front. Public Health. doi: 10.3389/fpubh.2020.00216 – volume: 88 start-page: 1834 year: 2014 ident: 2023072801431023100_bib33 article-title: Adenosine deaminase acts as a natural antagonist for dipeptidyl peptidase 4-mediated entry of the Middle East respiratory syndrome coronavirus publication-title: J. Virol. doi: 10.1128/JVI.02935-13 – volume: 120 start-page: 4544 year: 2012 ident: 2023072801431023100_bib16 article-title: HCV glycoprotein E2 is a novel BDCA-2 ligand and acts as an inhibitor of IFN production by plasmacytoid dendritic cells publication-title: Blood. doi: 10.1182/blood-2012-02-413286 – volume: 118 start-page: 300 year: 2006 ident: 2023072801431023100_bib1 article-title: Dexamethasone preferentially suppresses plasmacytoid dendritic cell differentiation and enhances their apoptotic death publication-title: Clin. Immunol. doi: 10.1016/j.clim.2005.09.019 – volume: 370 year: 2020 ident: 2023072801431023100_bib47 article-title: Inborn errors of type I IFN immunity in patients with life-threatening COVID-19 publication-title: Science. doi: 10.1126/science.abd4570 – volume: 356 year: 2017 ident: 2023072801431023100_bib43 article-title: Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors publication-title: Science. doi: 10.1126/science.aah4573 – volume: 19 start-page: 63 year: 2018 ident: 2023072801431023100_bib3 article-title: Diversification of human plasmacytoid predendritic cells in response to a single stimulus publication-title: Nat. Immunol. doi: 10.1038/s41590-017-0012-z – volume: 208 start-page: 2083 year: 2011 ident: 2023072801431023100_bib20 article-title: Herpes simplex virus encephalitis in a patient with complete TLR3 deficiency: TLR3 is otherwise redundant in protective immunity publication-title: J. Exp. Med. doi: 10.1084/jem.20101568 – volume: 63 start-page: 1111 year: 2002 ident: 2023072801431023100_bib34 article-title: Plasmacytoid dendritic cells: the key to CpG publication-title: Hum. Immunol. doi: 10.1016/S0198-8859(02)00749-8 – volume: 0 year: 2020 ident: 2023072801431023100_bib4 article-title: COVID-19: discovery, diagnostics and drug development publication-title: J. Hepatol. doi: 10.1016/j.jhep.2020.09.031 – volume: 109 start-page: 1131 year: 2007 ident: 2023072801431023100_bib10 article-title: Control of coronavirus infection through plasmacytoid dendritic-cell-derived type I interferon publication-title: Blood. doi: 10.1182/blood-2006-05-023770 – volume: 170 start-page: 4061 year: 2003 ident: 2023072801431023100_bib6 article-title: CpG-A-induced monocyte IFN-gamma-inducible protein-10 production is regulated by plasmacytoid dendritic cell-derived IFN-alpha publication-title: J. Immunol. doi: 10.4049/jimmunol.170.8.4061 – volume: 2 year: 2007 ident: 2023072801431023100_bib31 article-title: Impact of HIV on cell survival and antiviral activity of plasmacytoid dendritic cells publication-title: PLoS One. doi: 10.1371/journal.pone.0000458 – volume: 38 start-page: 542 year: 2017 ident: 2023072801431023100_bib37 article-title: Type I Interferon in Chronic Virus Infection and Cancer publication-title: Trends Immunol. doi: 10.1016/j.it.2017.05.005 – volume: 181 start-page: 271 year: 2020 ident: 2023072801431023100_bib23 article-title: SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor publication-title: Cell. doi: 10.1016/j.cell.2020.02.052 – volume: 23 start-page: 255 year: 2012 ident: 2023072801431023100_bib29 article-title: HIV-1, interferon and the interferon regulatory factor system: an interplay between induction, antiviral responses and viral evasion publication-title: Cytokine Growth Factor Rev. doi: 10.1016/j.cytogfr.2012.06.001 – volume: 116 start-page: 3389 year: 2010 ident: 2023072801431023100_bib27 article-title: Toll-like receptor control of glucocorticoid-induced apoptosis in human plasmacytoid predendritic cells (pDCs) publication-title: Blood. doi: 10.1182/blood-2010-05-282913 – volume: 299 start-page: 2076 year: 2003 ident: 2023072801431023100_bib32 article-title: Pyogenic bacterial infections in humans with IRAK-4 deficiency publication-title: Science. doi: 10.1126/science.1081902 – reference: 33442685 - bioRxiv. 2021 Jan 08;: |
SSID | ssj0014456 |
Score | 2.6207478 |
Snippet | Several studies have analyzed antiviral immune pathways in late-stage severe COVID-19. However, the initial steps of SARS-CoV-2 antiviral immunity are poorly... Plasmacytoid dendritic cells (pDCs) are not permissive to SARS-CoV-2 infection but, upon viral exposure, differentiate into subsets and rapidly produce type I... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
SubjectTerms | Biomarkers Brief Definitive Report Cell Plasticity - immunology COVID-19 - drug therapy COVID-19 - immunology COVID-19 - metabolism COVID-19 - virology Cytokines - metabolism Dendritic Cells - immunology Dendritic Cells - metabolism Dendritic Cells - virology Host-Pathogen Interactions - immunology Humans Hydroxychloroquine - pharmacology Hydroxychloroquine - therapeutic use Immunomodulation Immunophenotyping Infectious Disease and Host Defense Inflammation Mediators - metabolism Innate Immunity and Inflammation Interferon Type I - metabolism Interferons - metabolism Interleukin-1 Receptor-Associated Kinases - metabolism Membrane Transport Proteins - metabolism SARS-CoV-2 - immunology |
Title | SARS-CoV-2 induces human plasmacytoid predendritic cell diversification via UNC93B and IRAK4 |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33533916 https://www.proquest.com/docview/2486158723 https://pubmed.ncbi.nlm.nih.gov/PMC7849819 |
Volume | 218 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bixMxFA66wrIv4t2uFyLo0zA6lzOTyWMtyuJahb1IH4QhyWSw4M6U7lTQX-9JMrd2XVBfSjuTZiDf19MvyXdOCHkJccplqRj-kHjqg1aBL2Mm8GPEChZIEYJJcJ5_So_O4cMiWQxeVZtd0sjX6tcf80r-B1W8hriaLNl_QLbvFC_ge8QXXxFhfP0rjE-nJ6f-rP7iRx5OrTfGXOXO3FuhJr4Q6mdTL20ZAAwuhT3TwDML9V7hzBhlu17n_VgKnAjOePzW2YNPpscwVq1D_phVrlunAuxuzn-u6sI6BExh4CFbwvhpGn9uHPt2KWCjloPrVuu1MdJ3edojL86xWK9s2ciPbkdfjFcpotCaW9x2tW4jKwRmrzgbh95oiL3dwsKVkB5kYEK6NmUDIrOvysbNEJDVhYU3jlG58nCnrrb7p25v3SS3IpxN2JzwRe8EwillkrY5EfiwN-NHHZD97svbwuXKbGTXVDtSKWd3yO0WJDp1XLlLbujqHtmftxjdJ18HytCWMtRSho4pQ8eUoYYydIcyFClDHWUoUoZayjwg5-_fnc2O_PaADV9BEjQ-aj0GAoBHBRMclV0R60ALFO1QKlGGWoQp55rJMFVQyhBEhhGblVqUSRInED8ke1Vd6ceE8lQmYE6uYQEK7CKSCXYoipSFTGuc1k-I141ertrq8-YQlO-5dUFkkOOw592wT8irvvXKVV25pt2LDogcw6IZD1HpenOZR5ChVs8Q7Al55IDpe-oQnRC2BVnfwJRc375TLb_Z0ussA44a-vDaPp-Qg4H-T8les97oZyhbG_ncku43W4eWUg |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SARS-CoV-2+induces+human+plasmacytoid+predendritic+cell+diversification+via+UNC93B+and+IRAK4&rft.jtitle=The+Journal+of+experimental+medicine&rft.au=Onodi%2C+Fanny&rft.au=Bonnet-Madin%2C+Lucie&rft.au=Meertens%2C+Laurent&rft.au=Karpf%2C+L%C3%A9a&rft.date=2021-04-05&rft.eissn=1540-9538&rft.volume=218&rft.issue=4&rft_id=info:doi/10.1084%2Fjem.20201387&rft_id=info%3Apmid%2F33533916&rft.externalDocID=33533916 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1007&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1007&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1007&client=summon |