Hybrid Metal Halides with Multiple Photoluminescence Centers

Very little is known about the realm of solid‐state metal halide compounds comprising two or more halometalate anions. Such compounds would be of great interest if their optical and electronic properties could be rationally designed. Herein, we report a new example of metal halide cluster‐assembled...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 58; no. 51; pp. 18670 - 18675
Main Authors Li, Mingze, Zhou, Jun, Zhou, Guojun, Molokeev, Maxim S., Zhao, Jing, Morad, Viktoriia, Kovalenko, Maksym V., Xia, Zhiguo
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 16.12.2019
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Very little is known about the realm of solid‐state metal halide compounds comprising two or more halometalate anions. Such compounds would be of great interest if their optical and electronic properties could be rationally designed. Herein, we report a new example of metal halide cluster‐assembled compound (C9NH20)9[Pb3Br11](MnBr4)2, featuring distinctly different anionic polyhedra, namely, a rare lead halide cluster [Pb3Br11]5− and [MnBr4]2−. In accordance with its multinary zero‐dimensional (0D) structure, this compound is found to contain two distinct emission centers, 565 nm and 528 nm, resulting from the formation of self‐trapped excitons and 4T1‐6A1 transition of Mn2+ ions, respectively. Based on the high durability of (C9NH20)9[Pb3Br11](MnBr4)2 upon light and heat, as well as high photoluminescence quantum yield (PLQY) of 49.8 % under 450 nm blue light excitation, white light‐emitting diodes (WLEDs) are fabricated, showcasing its potential in backlight application. Luminescent metal halide: A novel 0D metal halide material (C9NH20)9[Pb3Br11](MnBr4)2 has two distinct emitting centers, self‐trapped excitons (STE) residing on [Pb3Br11]5− clusters and 4T1‐to‐6A1 transitions of Mn2+ ions in [MnBr4]2− tetrahedral units. This is the first example of Mn2+ emission and STE emissioncoexisting in a single crystalline material and allows white light‐emitting diodes (WLEDs) to be fabricated.
AbstractList Very little is known about the realm of solid‐state metal halide compounds comprising two or more halometalate anions. Such compounds would be of great interest if their optical and electronic properties could be rationally designed. Herein, we report a new example of metal halide cluster‐assembled compound (C9NH20)9[Pb3Br11](MnBr4)2, featuring distinctly different anionic polyhedra, namely, a rare lead halide cluster [Pb3Br11]5− and [MnBr4]2−. In accordance with its multinary zero‐dimensional (0D) structure, this compound is found to contain two distinct emission centers, 565 nm and 528 nm, resulting from the formation of self‐trapped excitons and 4T1‐6A1 transition of Mn2+ ions, respectively. Based on the high durability of (C9NH20)9[Pb3Br11](MnBr4)2 upon light and heat, as well as high photoluminescence quantum yield (PLQY) of 49.8 % under 450 nm blue light excitation, white light‐emitting diodes (WLEDs) are fabricated, showcasing its potential in backlight application.
Very little is known about the realm of solid-state metal halide compounds comprising two or more halometalate anions. Such compounds would be of great interest if their optical and electronic properties could be rationally designed. Herein, we report a new example of metal halide cluster-assembled compound (C NH ) [Pb Br ](MnBr ) , featuring distinctly different anionic polyhedra, namely, a rare lead halide cluster [Pb Br ] and [MnBr ] . In accordance with its multinary zero-dimensional (0D) structure, this compound is found to contain two distinct emission centers, 565 nm and 528 nm, resulting from the formation of self-trapped excitons and T - A transition of Mn ions, respectively. Based on the high durability of (C NH ) [Pb Br ](MnBr ) upon light and heat, as well as high photoluminescence quantum yield (PLQY) of 49.8 % under 450 nm blue light excitation, white light-emitting diodes (WLEDs) are fabricated, showcasing its potential in backlight application.
Abstract Very little is known about the realm of solid‐state metal halide compounds comprising two or more halometalate anions. Such compounds would be of great interest if their optical and electronic properties could be rationally designed. Herein, we report a new example of metal halide cluster‐assembled compound (C 9 NH 20 ) 9 [Pb 3 Br 11 ](MnBr 4 ) 2 , featuring distinctly different anionic polyhedra, namely, a rare lead halide cluster [Pb 3 Br 11 ] 5− and [MnBr 4 ] 2− . In accordance with its multinary zero‐dimensional (0D) structure, this compound is found to contain two distinct emission centers, 565 nm and 528 nm, resulting from the formation of self‐trapped excitons and 4 T 1 ‐ 6 A 1 transition of Mn 2+ ions, respectively. Based on the high durability of (C 9 NH 20 ) 9 [Pb 3 Br 11 ](MnBr 4 ) 2 upon light and heat, as well as high photoluminescence quantum yield (PLQY) of 49.8 % under 450 nm blue light excitation, white light‐emitting diodes (WLEDs) are fabricated, showcasing its potential in backlight application.
Very little is known about the realm of solid‐state metal halide compounds comprising two or more halometalate anions. Such compounds would be of great interest if their optical and electronic properties could be rationally designed. Herein, we report a new example of metal halide cluster‐assembled compound (C9NH20)9[Pb3Br11](MnBr4)2, featuring distinctly different anionic polyhedra, namely, a rare lead halide cluster [Pb3Br11]5− and [MnBr4]2−. In accordance with its multinary zero‐dimensional (0D) structure, this compound is found to contain two distinct emission centers, 565 nm and 528 nm, resulting from the formation of self‐trapped excitons and 4T1‐6A1 transition of Mn2+ ions, respectively. Based on the high durability of (C9NH20)9[Pb3Br11](MnBr4)2 upon light and heat, as well as high photoluminescence quantum yield (PLQY) of 49.8 % under 450 nm blue light excitation, white light‐emitting diodes (WLEDs) are fabricated, showcasing its potential in backlight application. Luminescent metal halide: A novel 0D metal halide material (C9NH20)9[Pb3Br11](MnBr4)2 has two distinct emitting centers, self‐trapped excitons (STE) residing on [Pb3Br11]5− clusters and 4T1‐to‐6A1 transitions of Mn2+ ions in [MnBr4]2− tetrahedral units. This is the first example of Mn2+ emission and STE emissioncoexisting in a single crystalline material and allows white light‐emitting diodes (WLEDs) to be fabricated.
Author Zhou, Jun
Kovalenko, Maksym V.
Zhao, Jing
Zhou, Guojun
Molokeev, Maxim S.
Li, Mingze
Morad, Viktoriia
Xia, Zhiguo
Author_xml – sequence: 1
  givenname: Mingze
  surname: Li
  fullname: Li, Mingze
  organization: University of Science and Technology Beijing
– sequence: 2
  givenname: Jun
  surname: Zhou
  fullname: Zhou, Jun
  organization: University of Science and Technology Beijing
– sequence: 3
  givenname: Guojun
  surname: Zhou
  fullname: Zhou, Guojun
  organization: University of Science and Technology Beijing
– sequence: 4
  givenname: Maxim S.
  surname: Molokeev
  fullname: Molokeev, Maxim S.
  organization: Far Eastern State Transport University
– sequence: 5
  givenname: Jing
  surname: Zhao
  fullname: Zhao, Jing
  organization: University of Science and Technology Beijing
– sequence: 6
  givenname: Viktoriia
  surname: Morad
  fullname: Morad, Viktoriia
  organization: Empa-Swiss Federal Laboratories for Materials Science and Technology
– sequence: 7
  givenname: Maksym V.
  surname: Kovalenko
  fullname: Kovalenko, Maksym V.
  organization: Empa-Swiss Federal Laboratories for Materials Science and Technology
– sequence: 8
  givenname: Zhiguo
  orcidid: 0000-0002-9670-3223
  surname: Xia
  fullname: Xia, Zhiguo
  email: xiazg@ustb.edu.cn, xiazg@scut.edu.cn
  organization: South China University of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31602721$$D View this record in MEDLINE/PubMed
BookMark eNqF0E1Lw0AQBuBFKrZVrx4l4MVL6s5-JBvwUkq1hfpx0HPYTaZ0yzap2YTSf-9Kq4IXTzOHZ16Gd0h6VV0hIVdAR0Apu9OVxRGjkAEIyE7IACSDmKcp74VdcB6nSkKfDL1fB68UTc5In0NCWcpgQO5ne9PYMnrCVrtopp0t0Uc7266ip861duswel3Vbe26ja3QF1gVGE2warHxF-R0qZ3Hy-M8J-8P07fJLF68PM4n40VcCEmzmC2VygqqEy4TahAFB0GXTGpjjFBgjEZeYlbIrESZJpolCrgCZkwqSwnAz8ntIXfb1B8d-jbf2PCJc7rCuvM541RSAUywQG_-0HXdNVX4LijGUpExJYIaHVTR1N43uMy3jd3oZp8Dzb96zb96zX96DQfXx9jObLD84d9FBpAdwM463P8Tl4-f59Pf8E_3FoRK
CitedBy_id crossref_primary_10_1016_j_cej_2023_146872
crossref_primary_10_1021_acsami_2c08116
crossref_primary_10_1021_acs_chemmater_9b03925
crossref_primary_10_1016_j_jlumin_2022_119613
crossref_primary_10_1039_D1MH01370J
crossref_primary_10_1002_ange_202311912
crossref_primary_10_1039_D3QM00211J
crossref_primary_10_1002_ange_202017274
crossref_primary_10_1038_s41467_020_18482_w
crossref_primary_10_1002_anie_202205317
crossref_primary_10_1002_asia_202100293
crossref_primary_10_1021_acs_inorgchem_3c01486
crossref_primary_10_1021_acsnano_9b10148
crossref_primary_10_1021_jacs_0c06039
crossref_primary_10_1002_ange_202003822
crossref_primary_10_1021_acsaelm_0c00327
crossref_primary_10_1016_j_cej_2022_138458
crossref_primary_10_1002_anie_202400554
crossref_primary_10_1021_acs_chemmater_1c00085
crossref_primary_10_1039_D3SC06178G
crossref_primary_10_1039_D0CC01779E
crossref_primary_10_1002_lpor_202100689
crossref_primary_10_1002_anie_202004562
crossref_primary_10_1016_j_ccr_2021_214185
crossref_primary_10_1002_adom_202100544
crossref_primary_10_1002_adom_202000418
crossref_primary_10_1039_D0CE01202E
crossref_primary_10_1021_acs_jpcc_3c03645
crossref_primary_10_1039_D0CC05570K
crossref_primary_10_1016_j_jlumin_2023_120317
crossref_primary_10_1021_acs_jpcc_3c01988
crossref_primary_10_1039_D4QI00303A
crossref_primary_10_1021_acs_inorgchem_3c04488
crossref_primary_10_1039_D1TC04704C
crossref_primary_10_1088_1361_648X_ac4aaa
crossref_primary_10_1088_1361_6463_ac7264
crossref_primary_10_1039_D0CS01463J
crossref_primary_10_1002_ange_202009237
crossref_primary_10_1016_j_cej_2023_144160
crossref_primary_10_1016_j_jcis_2022_05_153
crossref_primary_10_1007_s13391_023_00411_w
crossref_primary_10_1021_acs_chemmater_2c02187
crossref_primary_10_1021_acsmaterialslett_0c00011
crossref_primary_10_1002_anie_202010555
crossref_primary_10_1002_adom_202002213
crossref_primary_10_1016_j_jallcom_2020_156324
crossref_primary_10_1080_21663831_2024_2338828
crossref_primary_10_1002_adma_202007355
crossref_primary_10_1021_acs_jpclett_1c03767
crossref_primary_10_1002_anie_202006064
crossref_primary_10_1002_adom_202102141
crossref_primary_10_1021_acs_inorgchem_2c00160
crossref_primary_10_1039_D0DT04388E
crossref_primary_10_1039_D0NJ04686H
crossref_primary_10_1021_acs_inorgchem_1c04000
crossref_primary_10_1002_ange_202010555
crossref_primary_10_1002_adom_202102426
crossref_primary_10_1002_anie_202311912
crossref_primary_10_1021_acs_inorgchem_4c01220
crossref_primary_10_1021_acssuschemeng_1c05923
crossref_primary_10_1002_ange_202205317
crossref_primary_10_1021_acs_inorgchem_3c02840
crossref_primary_10_1002_anie_202003509
crossref_primary_10_1126_sciadv_abg3989
crossref_primary_10_1016_j_mtchem_2021_100757
crossref_primary_10_1039_D2NR06975J
crossref_primary_10_1002_adom_201902114
crossref_primary_10_1002_adom_202001766
crossref_primary_10_1002_lpor_202200524
crossref_primary_10_1039_D1CC02353E
crossref_primary_10_1021_acs_nanolett_3c02205
crossref_primary_10_1039_D3SC04332K
crossref_primary_10_1016_j_mattod_2020_04_032
crossref_primary_10_1002_ange_202004562
crossref_primary_10_1021_acs_jpclett_2c02714
crossref_primary_10_1002_adom_202102793
crossref_primary_10_1002_ange_202006064
crossref_primary_10_1021_acs_inorgchem_3c00997
crossref_primary_10_1021_acs_inorgchem_4c01654
crossref_primary_10_1021_acs_jpclett_3c00902
crossref_primary_10_1039_D3QM00093A
crossref_primary_10_1039_D3CE00536D
crossref_primary_10_1002_ange_202003509
crossref_primary_10_1021_acs_inorgchem_3c02135
crossref_primary_10_1021_acs_jpcc_3c00623
crossref_primary_10_1021_acs_inorgchem_0c02785
crossref_primary_10_1039_D0TC00391C
crossref_primary_10_1021_jacs_1c07537
crossref_primary_10_1016_j_cej_2021_134336
crossref_primary_10_1016_j_jlumin_2023_120379
crossref_primary_10_1002_lpor_202400440
crossref_primary_10_1016_j_saa_2023_122821
crossref_primary_10_1002_adom_202202997
crossref_primary_10_1002_adpr_202200351
crossref_primary_10_1016_j_mtchem_2021_100766
crossref_primary_10_1016_j_mser_2020_100548
crossref_primary_10_1039_D2TC03008J
crossref_primary_10_1002_adma_202200607
crossref_primary_10_1021_acs_inorgchem_3c02821
crossref_primary_10_1021_acs_jpclett_2c01573
crossref_primary_10_1007_s40843_021_1792_1
crossref_primary_10_1016_j_trechm_2022_08_007
crossref_primary_10_1039_D0CS00779J
crossref_primary_10_1002_ange_202400554
crossref_primary_10_1021_acs_jpcc_1c05065
crossref_primary_10_1021_acs_jpclett_1c02354
crossref_primary_10_1039_D0CC04473C
crossref_primary_10_1016_j_jcis_2024_01_215
crossref_primary_10_1039_D2MA00676F
crossref_primary_10_1002_adom_202002246
crossref_primary_10_1016_j_orgel_2020_105903
crossref_primary_10_1039_D0TC00881H
crossref_primary_10_1002_ange_202105883
crossref_primary_10_1002_zaac_202100334
crossref_primary_10_1002_anie_202208881
crossref_primary_10_1002_lpor_202400450
crossref_primary_10_1002_adom_202200720
crossref_primary_10_1021_acs_chemmater_1c00032
crossref_primary_10_1002_adfm_202315676
crossref_primary_10_1016_j_nanoen_2021_106863
crossref_primary_10_1063_5_0108010
crossref_primary_10_1021_acsaelm_0c00916
crossref_primary_10_1021_acs_jpclett_2c01561
crossref_primary_10_1149_2162_8777_ad145d
crossref_primary_10_1016_j_mtphys_2022_100703
crossref_primary_10_1021_acs_jpcc_2c07944
crossref_primary_10_1002_ejic_201901188
crossref_primary_10_1016_j_mtphys_2023_101111
crossref_primary_10_1039_D2NJ03090J
crossref_primary_10_1039_D2QI01631A
crossref_primary_10_1021_acs_jpclett_0c00096
crossref_primary_10_1002_anie_202003822
crossref_primary_10_1016_j_cej_2023_146935
crossref_primary_10_1016_j_simpa_2022_100445
crossref_primary_10_1002_adom_202000985
crossref_primary_10_1002_advs_202310262
crossref_primary_10_1002_cplu_202100459
crossref_primary_10_1002_adom_202102619
crossref_primary_10_1002_anie_202017274
crossref_primary_10_1021_acs_jpclett_9b03213
crossref_primary_10_1021_acs_jpclett_1c02997
crossref_primary_10_1039_D2NR04771C
crossref_primary_10_1002_ange_202208881
crossref_primary_10_1002_anie_202105883
crossref_primary_10_1039_C9CC09486E
crossref_primary_10_1039_D0TC05137C
crossref_primary_10_1002_anie_202009237
crossref_primary_10_1002_smll_202305083
crossref_primary_10_1002_adom_202102746
crossref_primary_10_1002_smll_202400338
crossref_primary_10_1002_ejic_202100685
crossref_primary_10_1007_s40843_021_1958_4
crossref_primary_10_1021_acs_inorgchem_2c01601
crossref_primary_10_1039_D2CP05063C
crossref_primary_10_1016_j_ceramint_2021_10_156
crossref_primary_10_1021_acsanm_3c00793
crossref_primary_10_1063_1_5140441
crossref_primary_10_1039_C9TC05954G
crossref_primary_10_1021_acs_inorgchem_0c01103
crossref_primary_10_1016_j_materresbull_2023_112251
crossref_primary_10_1016_j_matt_2020_05_018
crossref_primary_10_3390_nano13212867
crossref_primary_10_1016_j_optmat_2021_111603
crossref_primary_10_1002_adfm_202002468
Cites_doi 10.1021/acs.inorgchem.9b02374
10.1021/jacs.9b02365
10.1038/s41467-018-02838-4
10.1021/jacs.5b01680
10.1016/j.jlumin.2018.10.024
10.1016/0022-3697(91)90059-9
10.1002/adfm.201901988
10.1126/science.aam7093
10.1021/acsenergylett.9b00991
10.1021/acs.chemmater.7b01184
10.1039/C9TC04127C
10.1021/acs.chemmater.8b03066
10.1002/adma.201605739
10.1038/nphoton.2009.32
10.1021/acs.cgd.9b00358
10.1038/nnano.2014.149
10.1021/nl801847e
10.1039/C6DT01230B
10.1103/PhysRevB.80.085115
10.1103/PhysRevB.65.214306
10.1021/acsenergylett.6b00396
10.1021/acs.jpca.5b12612
10.1002/ange.201812865
10.1021/acsenergylett.7b00926
10.1002/adma.201804547
10.1039/C7CC01107E
10.1002/anie.201710383
10.1038/nmat4901
10.1021/acs.jpclett.9b00238
10.1002/ange.200804005
10.1002/adma.201605242
10.1002/anie.201812865
10.1103/PhysRevB.45.8989
10.1002/adma.201901115
10.1038/s41563-019-0416-2
10.1002/ange.201710383
10.1039/C7SC01590A
10.1021/jacs.8b07731
10.1021/acs.jpclett.6b00793
10.1002/anie.200804005
10.1039/C4CS00458B
10.1002/aenm.201502009
ContentType Journal Article
Copyright 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID NPM
AAYXX
CITATION
7TM
K9.
7X8
DOI 10.1002/anie.201911419
DatabaseName PubMed
CrossRef
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
PubMed
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 18675
ExternalDocumentID 10_1002_anie_201911419
31602721
ANIE201911419
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: European Union's Horizon 2020 research and innovation programme
  funderid: 819740
– fundername: National Natural Science Foundation of China
  funderid: 51722202
– fundername: European Union's Horizon 2020 research and innovation programme
  grantid: 819740
– fundername: National Natural Science Foundation of China
  grantid: 51722202
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
B-7
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
NPM
AAYXX
CITATION
7TM
K9.
7X8
ID FETCH-LOGICAL-c4509-2f889c0a63560bee43140f25abbb481bbae3de9c59de576a26813812bb75d5113
IEDL.DBID DR2
ISSN 1433-7851
IngestDate Fri Aug 16 02:48:17 EDT 2024
Thu Oct 10 19:05:02 EDT 2024
Fri Aug 23 00:48:51 EDT 2024
Sat Sep 28 08:30:26 EDT 2024
Sat Aug 24 01:09:01 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 51
Keywords metal halides
photoluminescence
light-emitting diodes
0D materials
manganese
Language English
License 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4509-2f889c0a63560bee43140f25abbb481bbae3de9c59de576a26813812bb75d5113
Notes These authors contributed equally to this work.
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ORCID 0000-0002-9670-3223
OpenAccessLink https://www.research-collection.ethz.ch/bitstream/20.500.11850/377326/3/HybridMetalHalides.pdf
PMID 31602721
PQID 2322749284
PQPubID 946352
PageCount 6
ParticipantIDs proquest_miscellaneous_2305041242
proquest_journals_2322749284
crossref_primary_10_1002_anie_201911419
pubmed_primary_31602721
wiley_primary_10_1002_anie_201911419_ANIE201911419
PublicationCentury 2000
PublicationDate December 16, 2019
PublicationDateYYYYMMDD 2019-12-16
PublicationDate_xml – month: 12
  year: 2019
  text: December 16, 2019
  day: 16
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 7
2017; 8
2019; 4
2018; 140
2019; 31
2009 2009; 48 121
2009; 80
2019; 10
1991; 52
2019; 58
2019; 19
2019; 18
2008; 8
2017; 29
2019; 206
2019; 141
2016; 120
2017; 358
2019 2019; 58 131
2018; 9
2016; 6
2017; 53
2016; 7
2018; 3
2016; 1
2015; 137
2017; 16
2018 2018; 57 130
2002; 65
2019; 29
2018; 30
2009; 3
2014; 9
1992; 45
2016; 45
e_1_2_6_51_2
e_1_2_6_53_1
e_1_2_6_30_2
e_1_2_6_19_1
e_1_2_6_36_1
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_15_2
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_2
e_1_2_6_7_3
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_5_1
e_1_2_6_3_2
e_1_2_6_1_1
e_1_2_6_24_2
e_1_2_6_47_2
e_1_2_6_49_1
e_1_2_6_22_2
e_1_2_6_26_3
e_1_2_6_28_1
e_1_2_6_26_2
e_1_2_6_45_2
e_1_2_6_52_2
e_1_2_6_31_2
e_1_2_6_50_1
e_1_2_6_18_2
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_14_1
e_1_2_6_10_2
e_1_2_6_33_1
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_37_1
e_1_2_6_42_2
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_6_2
e_1_2_6_23_3
e_1_2_6_25_1
e_1_2_6_23_2
e_1_2_6_48_2
e_1_2_6_2_2
e_1_2_6_21_2
e_1_2_6_27_2
e_1_2_6_44_2
e_1_2_6_46_1
References_xml – volume: 6
  start-page: 1502009
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 16
  start-page: 500
  year: 2017
  end-page: 501
  publication-title: Nat. Mater.
– volume: 29
  start-page: 1605739
  year: 2017
  publication-title: Adv. Mater.
– volume: 29
  start-page: 4129
  year: 2017
  end-page: 4145
  publication-title: Chem. Mater.
– volume: 137
  start-page: 4928
  year: 2015
  end-page: 4931
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 4497
  year: 2017
  end-page: 4504
  publication-title: Chem. Sci.
– volume: 18
  start-page: 846
  year: 2019
  end-page: 852
  publication-title: Nat. Mater.
– volume: 3
  start-page: 54
  year: 2018
  end-page: 62
  publication-title: ACS Energy Lett.
– volume: 206
  start-page: 46
  year: 2019
  end-page: 52
  publication-title: J. Lumin.
– volume: 29
  start-page: 1901988
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 30
  start-page: 1804547
  year: 2018
  publication-title: Adv. Mater.
– volume: 80
  start-page: 085115
  year: 2009
  publication-title: Phys. Rev. B
– volume: 65
  start-page: 214306
  year: 2002
  publication-title: Phys. Rev. B
– volume: 120
  start-page: 4961
  year: 2016
  end-page: 4965
  publication-title: J. Phys. Chem. A
– volume: 58
  start-page: 13464
  year: 2019
  end-page: 13470
  publication-title: Inorg. Chem.
– volume: 9
  start-page: 687
  year: 2014
  end-page: 692
  publication-title: Nat. Nanotechnol.
– volume: 9
  start-page: 772
  year: 2018
  publication-title: Nat. Commun.
– volume: 53
  start-page: 5954
  year: 2017
  end-page: 5957
  publication-title: Chem. Commun.
– volume: 30
  start-page: 8170
  year: 2018
  end-page: 8178
  publication-title: Chem. Mater.
– volume: 141
  start-page: 9764
  year: 2019
  end-page: 9768
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 2258
  year: 2016
  end-page: 2263
  publication-title: J. Phys. Chem. Lett.
– volume: 358
  start-page: 745
  year: 2017
  end-page: 750
  publication-title: Science
– volume: 31
  start-page: 1901115
  year: 2019
  publication-title: Adv. Mater.
– volume: 3
  start-page: 180
  year: 2009
  publication-title: Nat. Photonics
– volume: 10
  start-page: 1337
  year: 2019
  end-page: 1341
  publication-title: J. Phys. Chem. Lett.
– volume: 1
  start-page: 840
  year: 2016
  end-page: 845
  publication-title: ACS Energy Lett.
– volume: 45
  start-page: 11214
  year: 2016
  end-page: 11232
  publication-title: Dalton Trans.
– volume: 58 131
  start-page: 2725 2751
  year: 2019 2019
  end-page: 2729 2755
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 8
  start-page: 2949
  year: 2008
  end-page: 2953
  publication-title: Nano Lett.
– volume: 45
  start-page: 655
  year: 2016
  end-page: 689
  publication-title: Chem. Soc. Rev.
– volume: 7
  start-page: 11220
  year: 2019
  end-page: 11226
  publication-title: J. Mater. Chem. C
– volume: 19
  start-page: 4172
  year: 2019
  end-page: 4192
  publication-title: Cryst. Growth Des.
– volume: 57 130
  start-page: 1021 1033
  year: 2018 2018
  end-page: 1024 1036
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 4
  start-page: 1579
  year: 2019
  end-page: 1583
  publication-title: ACS Energy Lett.
– volume: 52
  start-page: 35
  year: 1991
  end-page: 67
  publication-title: J. Phys. Chem. Solids
– volume: 29
  start-page: 1605242
  year: 2017
  publication-title: Adv. Mater.
– volume: 140
  start-page: 13181
  year: 2018
  end-page: 13184
  publication-title: J. Am. Chem. Soc.
– volume: 48 121
  start-page: 3572 3626
  year: 2009 2009
  end-page: 3582 3636
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 45
  start-page: 8989
  year: 1992
  end-page: 8994
  publication-title: Phys. Rev. B
– ident: e_1_2_6_35_2
  doi: 10.1021/acs.inorgchem.9b02374
– ident: e_1_2_6_40_1
– ident: e_1_2_6_37_1
– ident: e_1_2_6_53_1
– ident: e_1_2_6_21_2
  doi: 10.1021/jacs.9b02365
– ident: e_1_2_6_14_1
– ident: e_1_2_6_28_1
– ident: e_1_2_6_16_2
  doi: 10.1038/s41467-018-02838-4
– ident: e_1_2_6_39_2
  doi: 10.1021/jacs.5b01680
– ident: e_1_2_6_47_2
  doi: 10.1016/j.jlumin.2018.10.024
– ident: e_1_2_6_44_2
  doi: 10.1016/0022-3697(91)90059-9
– ident: e_1_2_6_4_2
  doi: 10.1002/adfm.201901988
– ident: e_1_2_6_12_2
  doi: 10.1126/science.aam7093
– ident: e_1_2_6_27_2
  doi: 10.1021/acsenergylett.9b00991
– ident: e_1_2_6_45_2
  doi: 10.1021/acs.chemmater.7b01184
– ident: e_1_2_6_52_2
  doi: 10.1039/C9TC04127C
– ident: e_1_2_6_42_2
  doi: 10.1021/acs.chemmater.8b03066
– ident: e_1_2_6_51_2
  doi: 10.1002/adma.201605739
– ident: e_1_2_6_3_2
  doi: 10.1038/nphoton.2009.32
– ident: e_1_2_6_15_2
  doi: 10.1021/acs.cgd.9b00358
– ident: e_1_2_6_50_1
– ident: e_1_2_6_9_2
  doi: 10.1038/nnano.2014.149
– ident: e_1_2_6_41_2
  doi: 10.1021/nl801847e
– ident: e_1_2_6_6_2
  doi: 10.1039/C6DT01230B
– ident: e_1_2_6_34_2
  doi: 10.1103/PhysRevB.80.085115
– ident: e_1_2_6_29_2
  doi: 10.1103/PhysRevB.65.214306
– ident: e_1_2_6_22_2
  doi: 10.1021/acsenergylett.6b00396
– ident: e_1_2_6_48_2
  doi: 10.1021/acs.jpca.5b12612
– ident: e_1_2_6_20_1
– ident: e_1_2_6_26_3
  doi: 10.1002/ange.201812865
– ident: e_1_2_6_1_1
– ident: e_1_2_6_19_1
  doi: 10.1021/acsenergylett.7b00926
– ident: e_1_2_6_32_2
  doi: 10.1002/adma.201804547
– ident: e_1_2_6_38_2
  doi: 10.1039/C7CC01107E
– ident: e_1_2_6_23_2
  doi: 10.1002/anie.201710383
– ident: e_1_2_6_2_2
  doi: 10.1038/nmat4901
– ident: e_1_2_6_36_1
  doi: 10.1021/acs.jpclett.9b00238
– ident: e_1_2_6_7_3
  doi: 10.1002/ange.200804005
– ident: e_1_2_6_25_1
– ident: e_1_2_6_33_1
– ident: e_1_2_6_11_2
  doi: 10.1002/adma.201605242
– ident: e_1_2_6_26_2
  doi: 10.1002/anie.201812865
– ident: e_1_2_6_49_1
  doi: 10.1103/PhysRevB.45.8989
– ident: e_1_2_6_5_1
– ident: e_1_2_6_18_2
  doi: 10.1002/adma.201901115
– ident: e_1_2_6_13_2
  doi: 10.1038/s41563-019-0416-2
– ident: e_1_2_6_8_1
– ident: e_1_2_6_23_3
  doi: 10.1002/ange.201710383
– ident: e_1_2_6_30_2
  doi: 10.1039/C7SC01590A
– ident: e_1_2_6_46_1
– ident: e_1_2_6_24_2
  doi: 10.1021/jacs.8b07731
– ident: e_1_2_6_43_1
– ident: e_1_2_6_31_2
  doi: 10.1021/acs.jpclett.6b00793
– ident: e_1_2_6_7_2
  doi: 10.1002/anie.200804005
– ident: e_1_2_6_10_2
  doi: 10.1039/C4CS00458B
– ident: e_1_2_6_17_2
  doi: 10.1002/aenm.201502009
SSID ssj0028806
Score 2.6748734
SecondaryResourceType review_article
Snippet Very little is known about the realm of solid‐state metal halide compounds comprising two or more halometalate anions. Such compounds would be of great...
Very little is known about the realm of solid-state metal halide compounds comprising two or more halometalate anions. Such compounds would be of great...
Abstract Very little is known about the realm of solid‐state metal halide compounds comprising two or more halometalate anions. Such compounds would be of...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 18670
SubjectTerms 0D materials
Anions
Clusters
Durability
Excitons
Facilities management
Halides
Lead compounds
light-emitting diodes
Luminescence
manganese
Manganese ions
Metal halides
Metals
Optical properties
Organic light emitting diodes
Photoluminescence
Photons
Polyhedra
White light
Title Hybrid Metal Halides with Multiple Photoluminescence Centers
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201911419
https://www.ncbi.nlm.nih.gov/pubmed/31602721
https://www.proquest.com/docview/2322749284
https://search.proquest.com/docview/2305041242
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6kF734fkSrRBA8pU1281rwIrUlCi0iFnoL2ewGQUjFpgf99c7kpdWDoLeEZMlmZmf3m92ZbwAubD_1tKNsSzvaRQdFaktkOrTCLLGFQoDgyDLaYuJHU_du5s2-ZPFX_BDthhtZRjlfk4EnctH_JA2lDGwKzUJrdUveT4cHFNN189DyRzEcnFV6EecWVaFvWBtt1l9tvroq_YCaq8i1XHpGW5A0na4iTp57y0L20vdvfI7_-att2KxxqXldDaQdWNP5LqwPmnJwe3AVvVFylznWCNfNCOG70guTtnHNcR2UaN4_zQua7SiUPqUpw6TNYwSY-zAdDR8HkVWXXrBS16MzlywMRWonxF6H-tMIM1w7Y14ipXQR6cpEc6VF6gml0WNJmB86uPYzKQNPIYbjB9DJ57k-AtP1JQ84y2zFODpzSggV6tBFRzJIOePKgMtG9PFLxbARV1zKLCZpxK00DOg2molrS1vEiAjRsRa4yhpw3j5G2dDBR5Lr-ZLesb2yzDYz4LDSaPsp7vjomTPHAFbq5Zc-xNeT22F7d_yXRiewQdcUE-P4XegUr0t9isimkGfl6P0AQ9TtOw
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5ED_Xi-xGtGkHwlDbZTdIEvJTakmpbRFrwFrLZDYKQik0P-uudyUuqB0GPeSzZ7O7sfDM78w3AlenGjrKkaShL2WigCGX4ifIML4lMXyJAsEQebTFxg5l99-RU0YSUC1PwQ9QON5KMfL8mASeHdPuLNZRSsCk2C8XVJuLPDZR5TtUbbh9rBimGy7NIMOLcoDr0FW-jydqr7Vf10g-wuYpdc-Uz2AZRdbuIOXlpLTPRij--MTr-6792YKuEpnq3WEu7sKbSPWj0qopw-3ATvFN-lz5WiNj1ABG8VAudPLn6uIxL1B-e5xlteBRNH9OuoZP_GDHmAcwG_WkvMMrqC0ZsO3TsknieH5sREdjhFCpEGraZMCcSQtgIdkWkuFR-7PhSodESMdezUP0zITqORBjHD2E9nafqGHTbFbzDWWJKxtGek74vPeXZaEt2Ys641OC6GvvwtSDZCAs6ZRbSaIT1aGjQrKYmLIVtESIoRNvaR0WrwWX9GMeGzj6iVM2X9I7p5JW2mQZHxZTWn-KWi8Y5szRg-cT80oewOxn266uTvzS6gEYwHY_C0XByfwqbdJ9CZCy3CevZ21KdIdDJxHm-lD8BIujxUw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5EQb34fkSrRhA8pU12N2kCXkptadWWIhZ6C9nsBkFoi00P-uudSZpo9SDoMY8lm5md3W92Z74BuLK92NWOsi3taIEOitRWkGjf8pPIDhQCBEdm0RZ9rzMUdyN39CWLP-eHKDfcyDKy-ZoMfKqS2idpKGVgU2gWWqsg3s814SH8JVj0WBJIMRydeX4R5xaVoS9oG21WW26_vCz9wJrL0DVbe9rbEBW9zkNOXqrzVFbj92-Ejv_5rR3YWgBTs5GPpF1Y0eM92GgW9eD24abzRtldZk8jXjc7iN-Vnpm0j2v2FlGJ5uB5ktJ0R7H0Mc0ZJu0eI8I8gGG79dTsWIvaC1YsXDp0SXw_iO2I6OtQgRpxhrAT5kZSSoFQV0aaKx3EbqA0uiwR83wHF38mZd1VCOL4IayOJ2N9DKbwJK9zltiKcfTmVBAoX_sCPcl6zBlXBlwXog-nOcVGmJMps5CkEZbSMKBSaCZcmNosREiInnWAy6wBl-VjlA2dfERjPZnTO7ab1dlmBhzlGi0_xR0PXXPmGMAyvfzSh7DR77bKq5O_NLqA9cFtO3zo9u9PYZNuU3yM41VgNX2d6zNEOak8zwbyB0-Y8AI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+Metal+Halides+with+Multiple+Photoluminescence+Centers&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Li%2C+Mingze&rft.au=Zhou%2C+Jun&rft.au=Zhou%2C+Guojun&rft.au=Molokeev%2C+Maxim+S&rft.date=2019-12-16&rft.eissn=1521-3773&rft.volume=58&rft.issue=51&rft.spage=18670&rft_id=info:doi/10.1002%2Fanie.201911419&rft_id=info%3Apmid%2F31602721&rft.externalDocID=31602721
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon