Hybrid Metal Halides with Multiple Photoluminescence Centers
Very little is known about the realm of solid‐state metal halide compounds comprising two or more halometalate anions. Such compounds would be of great interest if their optical and electronic properties could be rationally designed. Herein, we report a new example of metal halide cluster‐assembled...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 58; no. 51; pp. 18670 - 18675 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
16.12.2019
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Very little is known about the realm of solid‐state metal halide compounds comprising two or more halometalate anions. Such compounds would be of great interest if their optical and electronic properties could be rationally designed. Herein, we report a new example of metal halide cluster‐assembled compound (C9NH20)9[Pb3Br11](MnBr4)2, featuring distinctly different anionic polyhedra, namely, a rare lead halide cluster [Pb3Br11]5− and [MnBr4]2−. In accordance with its multinary zero‐dimensional (0D) structure, this compound is found to contain two distinct emission centers, 565 nm and 528 nm, resulting from the formation of self‐trapped excitons and 4T1‐6A1 transition of Mn2+ ions, respectively. Based on the high durability of (C9NH20)9[Pb3Br11](MnBr4)2 upon light and heat, as well as high photoluminescence quantum yield (PLQY) of 49.8 % under 450 nm blue light excitation, white light‐emitting diodes (WLEDs) are fabricated, showcasing its potential in backlight application.
Luminescent metal halide: A novel 0D metal halide material (C9NH20)9[Pb3Br11](MnBr4)2 has two distinct emitting centers, self‐trapped excitons (STE) residing on [Pb3Br11]5− clusters and 4T1‐to‐6A1 transitions of Mn2+ ions in [MnBr4]2− tetrahedral units. This is the first example of Mn2+ emission and STE emissioncoexisting in a single crystalline material and allows white light‐emitting diodes (WLEDs) to be fabricated. |
---|---|
AbstractList | Very little is known about the realm of solid‐state metal halide compounds comprising two or more halometalate anions. Such compounds would be of great interest if their optical and electronic properties could be rationally designed. Herein, we report a new example of metal halide cluster‐assembled compound (C9NH20)9[Pb3Br11](MnBr4)2, featuring distinctly different anionic polyhedra, namely, a rare lead halide cluster [Pb3Br11]5− and [MnBr4]2−. In accordance with its multinary zero‐dimensional (0D) structure, this compound is found to contain two distinct emission centers, 565 nm and 528 nm, resulting from the formation of self‐trapped excitons and 4T1‐6A1 transition of Mn2+ ions, respectively. Based on the high durability of (C9NH20)9[Pb3Br11](MnBr4)2 upon light and heat, as well as high photoluminescence quantum yield (PLQY) of 49.8 % under 450 nm blue light excitation, white light‐emitting diodes (WLEDs) are fabricated, showcasing its potential in backlight application. Very little is known about the realm of solid-state metal halide compounds comprising two or more halometalate anions. Such compounds would be of great interest if their optical and electronic properties could be rationally designed. Herein, we report a new example of metal halide cluster-assembled compound (C NH ) [Pb Br ](MnBr ) , featuring distinctly different anionic polyhedra, namely, a rare lead halide cluster [Pb Br ] and [MnBr ] . In accordance with its multinary zero-dimensional (0D) structure, this compound is found to contain two distinct emission centers, 565 nm and 528 nm, resulting from the formation of self-trapped excitons and T - A transition of Mn ions, respectively. Based on the high durability of (C NH ) [Pb Br ](MnBr ) upon light and heat, as well as high photoluminescence quantum yield (PLQY) of 49.8 % under 450 nm blue light excitation, white light-emitting diodes (WLEDs) are fabricated, showcasing its potential in backlight application. Abstract Very little is known about the realm of solid‐state metal halide compounds comprising two or more halometalate anions. Such compounds would be of great interest if their optical and electronic properties could be rationally designed. Herein, we report a new example of metal halide cluster‐assembled compound (C 9 NH 20 ) 9 [Pb 3 Br 11 ](MnBr 4 ) 2 , featuring distinctly different anionic polyhedra, namely, a rare lead halide cluster [Pb 3 Br 11 ] 5− and [MnBr 4 ] 2− . In accordance with its multinary zero‐dimensional (0D) structure, this compound is found to contain two distinct emission centers, 565 nm and 528 nm, resulting from the formation of self‐trapped excitons and 4 T 1 ‐ 6 A 1 transition of Mn 2+ ions, respectively. Based on the high durability of (C 9 NH 20 ) 9 [Pb 3 Br 11 ](MnBr 4 ) 2 upon light and heat, as well as high photoluminescence quantum yield (PLQY) of 49.8 % under 450 nm blue light excitation, white light‐emitting diodes (WLEDs) are fabricated, showcasing its potential in backlight application. Very little is known about the realm of solid‐state metal halide compounds comprising two or more halometalate anions. Such compounds would be of great interest if their optical and electronic properties could be rationally designed. Herein, we report a new example of metal halide cluster‐assembled compound (C9NH20)9[Pb3Br11](MnBr4)2, featuring distinctly different anionic polyhedra, namely, a rare lead halide cluster [Pb3Br11]5− and [MnBr4]2−. In accordance with its multinary zero‐dimensional (0D) structure, this compound is found to contain two distinct emission centers, 565 nm and 528 nm, resulting from the formation of self‐trapped excitons and 4T1‐6A1 transition of Mn2+ ions, respectively. Based on the high durability of (C9NH20)9[Pb3Br11](MnBr4)2 upon light and heat, as well as high photoluminescence quantum yield (PLQY) of 49.8 % under 450 nm blue light excitation, white light‐emitting diodes (WLEDs) are fabricated, showcasing its potential in backlight application. Luminescent metal halide: A novel 0D metal halide material (C9NH20)9[Pb3Br11](MnBr4)2 has two distinct emitting centers, self‐trapped excitons (STE) residing on [Pb3Br11]5− clusters and 4T1‐to‐6A1 transitions of Mn2+ ions in [MnBr4]2− tetrahedral units. This is the first example of Mn2+ emission and STE emissioncoexisting in a single crystalline material and allows white light‐emitting diodes (WLEDs) to be fabricated. |
Author | Zhou, Jun Kovalenko, Maksym V. Zhao, Jing Zhou, Guojun Molokeev, Maxim S. Li, Mingze Morad, Viktoriia Xia, Zhiguo |
Author_xml | – sequence: 1 givenname: Mingze surname: Li fullname: Li, Mingze organization: University of Science and Technology Beijing – sequence: 2 givenname: Jun surname: Zhou fullname: Zhou, Jun organization: University of Science and Technology Beijing – sequence: 3 givenname: Guojun surname: Zhou fullname: Zhou, Guojun organization: University of Science and Technology Beijing – sequence: 4 givenname: Maxim S. surname: Molokeev fullname: Molokeev, Maxim S. organization: Far Eastern State Transport University – sequence: 5 givenname: Jing surname: Zhao fullname: Zhao, Jing organization: University of Science and Technology Beijing – sequence: 6 givenname: Viktoriia surname: Morad fullname: Morad, Viktoriia organization: Empa-Swiss Federal Laboratories for Materials Science and Technology – sequence: 7 givenname: Maksym V. surname: Kovalenko fullname: Kovalenko, Maksym V. organization: Empa-Swiss Federal Laboratories for Materials Science and Technology – sequence: 8 givenname: Zhiguo orcidid: 0000-0002-9670-3223 surname: Xia fullname: Xia, Zhiguo email: xiazg@ustb.edu.cn, xiazg@scut.edu.cn organization: South China University of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31602721$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0E1Lw0AQBuBFKrZVrx4l4MVL6s5-JBvwUkq1hfpx0HPYTaZ0yzap2YTSf-9Kq4IXTzOHZ16Gd0h6VV0hIVdAR0Apu9OVxRGjkAEIyE7IACSDmKcp74VdcB6nSkKfDL1fB68UTc5In0NCWcpgQO5ne9PYMnrCVrtopp0t0Uc7266ip861duswel3Vbe26ja3QF1gVGE2warHxF-R0qZ3Hy-M8J-8P07fJLF68PM4n40VcCEmzmC2VygqqEy4TahAFB0GXTGpjjFBgjEZeYlbIrESZJpolCrgCZkwqSwnAz8ntIXfb1B8d-jbf2PCJc7rCuvM541RSAUywQG_-0HXdNVX4LijGUpExJYIaHVTR1N43uMy3jd3oZp8Dzb96zb96zX96DQfXx9jObLD84d9FBpAdwM463P8Tl4-f59Pf8E_3FoRK |
CitedBy_id | crossref_primary_10_1016_j_cej_2023_146872 crossref_primary_10_1021_acsami_2c08116 crossref_primary_10_1021_acs_chemmater_9b03925 crossref_primary_10_1016_j_jlumin_2022_119613 crossref_primary_10_1039_D1MH01370J crossref_primary_10_1002_ange_202311912 crossref_primary_10_1039_D3QM00211J crossref_primary_10_1002_ange_202017274 crossref_primary_10_1038_s41467_020_18482_w crossref_primary_10_1002_anie_202205317 crossref_primary_10_1002_asia_202100293 crossref_primary_10_1021_acs_inorgchem_3c01486 crossref_primary_10_1021_acsnano_9b10148 crossref_primary_10_1021_jacs_0c06039 crossref_primary_10_1002_ange_202003822 crossref_primary_10_1021_acsaelm_0c00327 crossref_primary_10_1016_j_cej_2022_138458 crossref_primary_10_1002_anie_202400554 crossref_primary_10_1021_acs_chemmater_1c00085 crossref_primary_10_1039_D3SC06178G crossref_primary_10_1039_D0CC01779E crossref_primary_10_1002_lpor_202100689 crossref_primary_10_1002_anie_202004562 crossref_primary_10_1016_j_ccr_2021_214185 crossref_primary_10_1002_adom_202100544 crossref_primary_10_1002_adom_202000418 crossref_primary_10_1039_D0CE01202E crossref_primary_10_1021_acs_jpcc_3c03645 crossref_primary_10_1039_D0CC05570K crossref_primary_10_1016_j_jlumin_2023_120317 crossref_primary_10_1021_acs_jpcc_3c01988 crossref_primary_10_1039_D4QI00303A crossref_primary_10_1021_acs_inorgchem_3c04488 crossref_primary_10_1039_D1TC04704C crossref_primary_10_1088_1361_648X_ac4aaa crossref_primary_10_1088_1361_6463_ac7264 crossref_primary_10_1039_D0CS01463J crossref_primary_10_1002_ange_202009237 crossref_primary_10_1016_j_cej_2023_144160 crossref_primary_10_1016_j_jcis_2022_05_153 crossref_primary_10_1007_s13391_023_00411_w crossref_primary_10_1021_acs_chemmater_2c02187 crossref_primary_10_1021_acsmaterialslett_0c00011 crossref_primary_10_1002_anie_202010555 crossref_primary_10_1002_adom_202002213 crossref_primary_10_1016_j_jallcom_2020_156324 crossref_primary_10_1080_21663831_2024_2338828 crossref_primary_10_1002_adma_202007355 crossref_primary_10_1021_acs_jpclett_1c03767 crossref_primary_10_1002_anie_202006064 crossref_primary_10_1002_adom_202102141 crossref_primary_10_1021_acs_inorgchem_2c00160 crossref_primary_10_1039_D0DT04388E crossref_primary_10_1039_D0NJ04686H crossref_primary_10_1021_acs_inorgchem_1c04000 crossref_primary_10_1002_ange_202010555 crossref_primary_10_1002_adom_202102426 crossref_primary_10_1002_anie_202311912 crossref_primary_10_1021_acs_inorgchem_4c01220 crossref_primary_10_1021_acssuschemeng_1c05923 crossref_primary_10_1002_ange_202205317 crossref_primary_10_1021_acs_inorgchem_3c02840 crossref_primary_10_1002_anie_202003509 crossref_primary_10_1126_sciadv_abg3989 crossref_primary_10_1016_j_mtchem_2021_100757 crossref_primary_10_1039_D2NR06975J crossref_primary_10_1002_adom_201902114 crossref_primary_10_1002_adom_202001766 crossref_primary_10_1002_lpor_202200524 crossref_primary_10_1039_D1CC02353E crossref_primary_10_1021_acs_nanolett_3c02205 crossref_primary_10_1039_D3SC04332K crossref_primary_10_1016_j_mattod_2020_04_032 crossref_primary_10_1002_ange_202004562 crossref_primary_10_1021_acs_jpclett_2c02714 crossref_primary_10_1002_adom_202102793 crossref_primary_10_1002_ange_202006064 crossref_primary_10_1021_acs_inorgchem_3c00997 crossref_primary_10_1021_acs_inorgchem_4c01654 crossref_primary_10_1021_acs_jpclett_3c00902 crossref_primary_10_1039_D3QM00093A crossref_primary_10_1039_D3CE00536D crossref_primary_10_1002_ange_202003509 crossref_primary_10_1021_acs_inorgchem_3c02135 crossref_primary_10_1021_acs_jpcc_3c00623 crossref_primary_10_1021_acs_inorgchem_0c02785 crossref_primary_10_1039_D0TC00391C crossref_primary_10_1021_jacs_1c07537 crossref_primary_10_1016_j_cej_2021_134336 crossref_primary_10_1016_j_jlumin_2023_120379 crossref_primary_10_1002_lpor_202400440 crossref_primary_10_1016_j_saa_2023_122821 crossref_primary_10_1002_adom_202202997 crossref_primary_10_1002_adpr_202200351 crossref_primary_10_1016_j_mtchem_2021_100766 crossref_primary_10_1016_j_mser_2020_100548 crossref_primary_10_1039_D2TC03008J crossref_primary_10_1002_adma_202200607 crossref_primary_10_1021_acs_inorgchem_3c02821 crossref_primary_10_1021_acs_jpclett_2c01573 crossref_primary_10_1007_s40843_021_1792_1 crossref_primary_10_1016_j_trechm_2022_08_007 crossref_primary_10_1039_D0CS00779J crossref_primary_10_1002_ange_202400554 crossref_primary_10_1021_acs_jpcc_1c05065 crossref_primary_10_1021_acs_jpclett_1c02354 crossref_primary_10_1039_D0CC04473C crossref_primary_10_1016_j_jcis_2024_01_215 crossref_primary_10_1039_D2MA00676F crossref_primary_10_1002_adom_202002246 crossref_primary_10_1016_j_orgel_2020_105903 crossref_primary_10_1039_D0TC00881H crossref_primary_10_1002_ange_202105883 crossref_primary_10_1002_zaac_202100334 crossref_primary_10_1002_anie_202208881 crossref_primary_10_1002_lpor_202400450 crossref_primary_10_1002_adom_202200720 crossref_primary_10_1021_acs_chemmater_1c00032 crossref_primary_10_1002_adfm_202315676 crossref_primary_10_1016_j_nanoen_2021_106863 crossref_primary_10_1063_5_0108010 crossref_primary_10_1021_acsaelm_0c00916 crossref_primary_10_1021_acs_jpclett_2c01561 crossref_primary_10_1149_2162_8777_ad145d crossref_primary_10_1016_j_mtphys_2022_100703 crossref_primary_10_1021_acs_jpcc_2c07944 crossref_primary_10_1002_ejic_201901188 crossref_primary_10_1016_j_mtphys_2023_101111 crossref_primary_10_1039_D2NJ03090J crossref_primary_10_1039_D2QI01631A crossref_primary_10_1021_acs_jpclett_0c00096 crossref_primary_10_1002_anie_202003822 crossref_primary_10_1016_j_cej_2023_146935 crossref_primary_10_1016_j_simpa_2022_100445 crossref_primary_10_1002_adom_202000985 crossref_primary_10_1002_advs_202310262 crossref_primary_10_1002_cplu_202100459 crossref_primary_10_1002_adom_202102619 crossref_primary_10_1002_anie_202017274 crossref_primary_10_1021_acs_jpclett_9b03213 crossref_primary_10_1021_acs_jpclett_1c02997 crossref_primary_10_1039_D2NR04771C crossref_primary_10_1002_ange_202208881 crossref_primary_10_1002_anie_202105883 crossref_primary_10_1039_C9CC09486E crossref_primary_10_1039_D0TC05137C crossref_primary_10_1002_anie_202009237 crossref_primary_10_1002_smll_202305083 crossref_primary_10_1002_adom_202102746 crossref_primary_10_1002_smll_202400338 crossref_primary_10_1002_ejic_202100685 crossref_primary_10_1007_s40843_021_1958_4 crossref_primary_10_1021_acs_inorgchem_2c01601 crossref_primary_10_1039_D2CP05063C crossref_primary_10_1016_j_ceramint_2021_10_156 crossref_primary_10_1021_acsanm_3c00793 crossref_primary_10_1063_1_5140441 crossref_primary_10_1039_C9TC05954G crossref_primary_10_1021_acs_inorgchem_0c01103 crossref_primary_10_1016_j_materresbull_2023_112251 crossref_primary_10_1016_j_matt_2020_05_018 crossref_primary_10_3390_nano13212867 crossref_primary_10_1016_j_optmat_2021_111603 crossref_primary_10_1002_adfm_202002468 |
Cites_doi | 10.1021/acs.inorgchem.9b02374 10.1021/jacs.9b02365 10.1038/s41467-018-02838-4 10.1021/jacs.5b01680 10.1016/j.jlumin.2018.10.024 10.1016/0022-3697(91)90059-9 10.1002/adfm.201901988 10.1126/science.aam7093 10.1021/acsenergylett.9b00991 10.1021/acs.chemmater.7b01184 10.1039/C9TC04127C 10.1021/acs.chemmater.8b03066 10.1002/adma.201605739 10.1038/nphoton.2009.32 10.1021/acs.cgd.9b00358 10.1038/nnano.2014.149 10.1021/nl801847e 10.1039/C6DT01230B 10.1103/PhysRevB.80.085115 10.1103/PhysRevB.65.214306 10.1021/acsenergylett.6b00396 10.1021/acs.jpca.5b12612 10.1002/ange.201812865 10.1021/acsenergylett.7b00926 10.1002/adma.201804547 10.1039/C7CC01107E 10.1002/anie.201710383 10.1038/nmat4901 10.1021/acs.jpclett.9b00238 10.1002/ange.200804005 10.1002/adma.201605242 10.1002/anie.201812865 10.1103/PhysRevB.45.8989 10.1002/adma.201901115 10.1038/s41563-019-0416-2 10.1002/ange.201710383 10.1039/C7SC01590A 10.1021/jacs.8b07731 10.1021/acs.jpclett.6b00793 10.1002/anie.200804005 10.1039/C4CS00458B 10.1002/aenm.201502009 |
ContentType | Journal Article |
Copyright | 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | NPM AAYXX CITATION 7TM K9. 7X8 |
DOI | 10.1002/anie.201911419 |
DatabaseName | PubMed CrossRef Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 18675 |
ExternalDocumentID | 10_1002_anie_201911419 31602721 ANIE201911419 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: European Union's Horizon 2020 research and innovation programme funderid: 819740 – fundername: National Natural Science Foundation of China funderid: 51722202 – fundername: European Union's Horizon 2020 research and innovation programme grantid: 819740 – fundername: National Natural Science Foundation of China grantid: 51722202 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB B-7 BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT NPM AAYXX CITATION 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4509-2f889c0a63560bee43140f25abbb481bbae3de9c59de576a26813812bb75d5113 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 |
IngestDate | Fri Aug 16 02:48:17 EDT 2024 Thu Oct 10 19:05:02 EDT 2024 Fri Aug 23 00:48:51 EDT 2024 Sat Sep 28 08:30:26 EDT 2024 Sat Aug 24 01:09:01 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 51 |
Keywords | metal halides photoluminescence light-emitting diodes 0D materials manganese |
Language | English |
License | 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4509-2f889c0a63560bee43140f25abbb481bbae3de9c59de576a26813812bb75d5113 |
Notes | These authors contributed equally to this work. ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ORCID | 0000-0002-9670-3223 |
OpenAccessLink | https://www.research-collection.ethz.ch/bitstream/20.500.11850/377326/3/HybridMetalHalides.pdf |
PMID | 31602721 |
PQID | 2322749284 |
PQPubID | 946352 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2305041242 proquest_journals_2322749284 crossref_primary_10_1002_anie_201911419 pubmed_primary_31602721 wiley_primary_10_1002_anie_201911419_ANIE201911419 |
PublicationCentury | 2000 |
PublicationDate | December 16, 2019 |
PublicationDateYYYYMMDD | 2019-12-16 |
PublicationDate_xml | – month: 12 year: 2019 text: December 16, 2019 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 7 2017; 8 2019; 4 2018; 140 2019; 31 2009 2009; 48 121 2009; 80 2019; 10 1991; 52 2019; 58 2019; 19 2019; 18 2008; 8 2017; 29 2019; 206 2019; 141 2016; 120 2017; 358 2019 2019; 58 131 2018; 9 2016; 6 2017; 53 2016; 7 2018; 3 2016; 1 2015; 137 2017; 16 2018 2018; 57 130 2002; 65 2019; 29 2018; 30 2009; 3 2014; 9 1992; 45 2016; 45 e_1_2_6_51_2 e_1_2_6_53_1 e_1_2_6_30_2 e_1_2_6_19_1 e_1_2_6_36_1 e_1_2_6_13_2 e_1_2_6_34_2 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_17_2 e_1_2_6_38_2 e_1_2_6_15_2 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_2 e_1_2_6_7_3 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_5_1 e_1_2_6_3_2 e_1_2_6_1_1 e_1_2_6_24_2 e_1_2_6_47_2 e_1_2_6_49_1 e_1_2_6_22_2 e_1_2_6_26_3 e_1_2_6_28_1 e_1_2_6_26_2 e_1_2_6_45_2 e_1_2_6_52_2 e_1_2_6_31_2 e_1_2_6_50_1 e_1_2_6_18_2 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_14_1 e_1_2_6_10_2 e_1_2_6_33_1 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_37_1 e_1_2_6_42_2 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_6_2 e_1_2_6_23_3 e_1_2_6_25_1 e_1_2_6_23_2 e_1_2_6_48_2 e_1_2_6_2_2 e_1_2_6_21_2 e_1_2_6_27_2 e_1_2_6_44_2 e_1_2_6_46_1 |
References_xml | – volume: 6 start-page: 1502009 year: 2016 publication-title: Adv. Energy Mater. – volume: 16 start-page: 500 year: 2017 end-page: 501 publication-title: Nat. Mater. – volume: 29 start-page: 1605739 year: 2017 publication-title: Adv. Mater. – volume: 29 start-page: 4129 year: 2017 end-page: 4145 publication-title: Chem. Mater. – volume: 137 start-page: 4928 year: 2015 end-page: 4931 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 4497 year: 2017 end-page: 4504 publication-title: Chem. Sci. – volume: 18 start-page: 846 year: 2019 end-page: 852 publication-title: Nat. Mater. – volume: 3 start-page: 54 year: 2018 end-page: 62 publication-title: ACS Energy Lett. – volume: 206 start-page: 46 year: 2019 end-page: 52 publication-title: J. Lumin. – volume: 29 start-page: 1901988 year: 2019 publication-title: Adv. Funct. Mater. – volume: 30 start-page: 1804547 year: 2018 publication-title: Adv. Mater. – volume: 80 start-page: 085115 year: 2009 publication-title: Phys. Rev. B – volume: 65 start-page: 214306 year: 2002 publication-title: Phys. Rev. B – volume: 120 start-page: 4961 year: 2016 end-page: 4965 publication-title: J. Phys. Chem. A – volume: 58 start-page: 13464 year: 2019 end-page: 13470 publication-title: Inorg. Chem. – volume: 9 start-page: 687 year: 2014 end-page: 692 publication-title: Nat. Nanotechnol. – volume: 9 start-page: 772 year: 2018 publication-title: Nat. Commun. – volume: 53 start-page: 5954 year: 2017 end-page: 5957 publication-title: Chem. Commun. – volume: 30 start-page: 8170 year: 2018 end-page: 8178 publication-title: Chem. Mater. – volume: 141 start-page: 9764 year: 2019 end-page: 9768 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 2258 year: 2016 end-page: 2263 publication-title: J. Phys. Chem. Lett. – volume: 358 start-page: 745 year: 2017 end-page: 750 publication-title: Science – volume: 31 start-page: 1901115 year: 2019 publication-title: Adv. Mater. – volume: 3 start-page: 180 year: 2009 publication-title: Nat. Photonics – volume: 10 start-page: 1337 year: 2019 end-page: 1341 publication-title: J. Phys. Chem. Lett. – volume: 1 start-page: 840 year: 2016 end-page: 845 publication-title: ACS Energy Lett. – volume: 45 start-page: 11214 year: 2016 end-page: 11232 publication-title: Dalton Trans. – volume: 58 131 start-page: 2725 2751 year: 2019 2019 end-page: 2729 2755 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 8 start-page: 2949 year: 2008 end-page: 2953 publication-title: Nano Lett. – volume: 45 start-page: 655 year: 2016 end-page: 689 publication-title: Chem. Soc. Rev. – volume: 7 start-page: 11220 year: 2019 end-page: 11226 publication-title: J. Mater. Chem. C – volume: 19 start-page: 4172 year: 2019 end-page: 4192 publication-title: Cryst. Growth Des. – volume: 57 130 start-page: 1021 1033 year: 2018 2018 end-page: 1024 1036 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 4 start-page: 1579 year: 2019 end-page: 1583 publication-title: ACS Energy Lett. – volume: 52 start-page: 35 year: 1991 end-page: 67 publication-title: J. Phys. Chem. Solids – volume: 29 start-page: 1605242 year: 2017 publication-title: Adv. Mater. – volume: 140 start-page: 13181 year: 2018 end-page: 13184 publication-title: J. Am. Chem. Soc. – volume: 48 121 start-page: 3572 3626 year: 2009 2009 end-page: 3582 3636 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 45 start-page: 8989 year: 1992 end-page: 8994 publication-title: Phys. Rev. B – ident: e_1_2_6_35_2 doi: 10.1021/acs.inorgchem.9b02374 – ident: e_1_2_6_40_1 – ident: e_1_2_6_37_1 – ident: e_1_2_6_53_1 – ident: e_1_2_6_21_2 doi: 10.1021/jacs.9b02365 – ident: e_1_2_6_14_1 – ident: e_1_2_6_28_1 – ident: e_1_2_6_16_2 doi: 10.1038/s41467-018-02838-4 – ident: e_1_2_6_39_2 doi: 10.1021/jacs.5b01680 – ident: e_1_2_6_47_2 doi: 10.1016/j.jlumin.2018.10.024 – ident: e_1_2_6_44_2 doi: 10.1016/0022-3697(91)90059-9 – ident: e_1_2_6_4_2 doi: 10.1002/adfm.201901988 – ident: e_1_2_6_12_2 doi: 10.1126/science.aam7093 – ident: e_1_2_6_27_2 doi: 10.1021/acsenergylett.9b00991 – ident: e_1_2_6_45_2 doi: 10.1021/acs.chemmater.7b01184 – ident: e_1_2_6_52_2 doi: 10.1039/C9TC04127C – ident: e_1_2_6_42_2 doi: 10.1021/acs.chemmater.8b03066 – ident: e_1_2_6_51_2 doi: 10.1002/adma.201605739 – ident: e_1_2_6_3_2 doi: 10.1038/nphoton.2009.32 – ident: e_1_2_6_15_2 doi: 10.1021/acs.cgd.9b00358 – ident: e_1_2_6_50_1 – ident: e_1_2_6_9_2 doi: 10.1038/nnano.2014.149 – ident: e_1_2_6_41_2 doi: 10.1021/nl801847e – ident: e_1_2_6_6_2 doi: 10.1039/C6DT01230B – ident: e_1_2_6_34_2 doi: 10.1103/PhysRevB.80.085115 – ident: e_1_2_6_29_2 doi: 10.1103/PhysRevB.65.214306 – ident: e_1_2_6_22_2 doi: 10.1021/acsenergylett.6b00396 – ident: e_1_2_6_48_2 doi: 10.1021/acs.jpca.5b12612 – ident: e_1_2_6_20_1 – ident: e_1_2_6_26_3 doi: 10.1002/ange.201812865 – ident: e_1_2_6_1_1 – ident: e_1_2_6_19_1 doi: 10.1021/acsenergylett.7b00926 – ident: e_1_2_6_32_2 doi: 10.1002/adma.201804547 – ident: e_1_2_6_38_2 doi: 10.1039/C7CC01107E – ident: e_1_2_6_23_2 doi: 10.1002/anie.201710383 – ident: e_1_2_6_2_2 doi: 10.1038/nmat4901 – ident: e_1_2_6_36_1 doi: 10.1021/acs.jpclett.9b00238 – ident: e_1_2_6_7_3 doi: 10.1002/ange.200804005 – ident: e_1_2_6_25_1 – ident: e_1_2_6_33_1 – ident: e_1_2_6_11_2 doi: 10.1002/adma.201605242 – ident: e_1_2_6_26_2 doi: 10.1002/anie.201812865 – ident: e_1_2_6_49_1 doi: 10.1103/PhysRevB.45.8989 – ident: e_1_2_6_5_1 – ident: e_1_2_6_18_2 doi: 10.1002/adma.201901115 – ident: e_1_2_6_13_2 doi: 10.1038/s41563-019-0416-2 – ident: e_1_2_6_8_1 – ident: e_1_2_6_23_3 doi: 10.1002/ange.201710383 – ident: e_1_2_6_30_2 doi: 10.1039/C7SC01590A – ident: e_1_2_6_46_1 – ident: e_1_2_6_24_2 doi: 10.1021/jacs.8b07731 – ident: e_1_2_6_43_1 – ident: e_1_2_6_31_2 doi: 10.1021/acs.jpclett.6b00793 – ident: e_1_2_6_7_2 doi: 10.1002/anie.200804005 – ident: e_1_2_6_10_2 doi: 10.1039/C4CS00458B – ident: e_1_2_6_17_2 doi: 10.1002/aenm.201502009 |
SSID | ssj0028806 |
Score | 2.6748734 |
SecondaryResourceType | review_article |
Snippet | Very little is known about the realm of solid‐state metal halide compounds comprising two or more halometalate anions. Such compounds would be of great... Very little is known about the realm of solid-state metal halide compounds comprising two or more halometalate anions. Such compounds would be of great... Abstract Very little is known about the realm of solid‐state metal halide compounds comprising two or more halometalate anions. Such compounds would be of... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 18670 |
SubjectTerms | 0D materials Anions Clusters Durability Excitons Facilities management Halides Lead compounds light-emitting diodes Luminescence manganese Manganese ions Metal halides Metals Optical properties Organic light emitting diodes Photoluminescence Photons Polyhedra White light |
Title | Hybrid Metal Halides with Multiple Photoluminescence Centers |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201911419 https://www.ncbi.nlm.nih.gov/pubmed/31602721 https://www.proquest.com/docview/2322749284 https://search.proquest.com/docview/2305041242 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6kF734fkSrRBA8pU1281rwIrUlCi0iFnoL2ewGQUjFpgf99c7kpdWDoLeEZMlmZmf3m92ZbwAubD_1tKNsSzvaRQdFaktkOrTCLLGFQoDgyDLaYuJHU_du5s2-ZPFX_BDthhtZRjlfk4EnctH_JA2lDGwKzUJrdUveT4cHFNN189DyRzEcnFV6EecWVaFvWBtt1l9tvroq_YCaq8i1XHpGW5A0na4iTp57y0L20vdvfI7_-att2KxxqXldDaQdWNP5LqwPmnJwe3AVvVFylznWCNfNCOG70guTtnHNcR2UaN4_zQua7SiUPqUpw6TNYwSY-zAdDR8HkVWXXrBS16MzlywMRWonxF6H-tMIM1w7Y14ipXQR6cpEc6VF6gml0WNJmB86uPYzKQNPIYbjB9DJ57k-AtP1JQ84y2zFODpzSggV6tBFRzJIOePKgMtG9PFLxbARV1zKLCZpxK00DOg2molrS1vEiAjRsRa4yhpw3j5G2dDBR5Lr-ZLesb2yzDYz4LDSaPsp7vjomTPHAFbq5Zc-xNeT22F7d_yXRiewQdcUE-P4XegUr0t9isimkGfl6P0AQ9TtOw |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5ED_Xi-xGtGkHwlDbZTdIEvJTakmpbRFrwFrLZDYKQik0P-uudyUuqB0GPeSzZ7O7sfDM78w3AlenGjrKkaShL2WigCGX4ifIML4lMXyJAsEQebTFxg5l99-RU0YSUC1PwQ9QON5KMfL8mASeHdPuLNZRSsCk2C8XVJuLPDZR5TtUbbh9rBimGy7NIMOLcoDr0FW-jydqr7Vf10g-wuYpdc-Uz2AZRdbuIOXlpLTPRij--MTr-6792YKuEpnq3WEu7sKbSPWj0qopw-3ATvFN-lz5WiNj1ABG8VAudPLn6uIxL1B-e5xlteBRNH9OuoZP_GDHmAcwG_WkvMMrqC0ZsO3TsknieH5sREdjhFCpEGraZMCcSQtgIdkWkuFR-7PhSodESMdezUP0zITqORBjHD2E9nafqGHTbFbzDWWJKxtGek74vPeXZaEt2Ys641OC6GvvwtSDZCAs6ZRbSaIT1aGjQrKYmLIVtESIoRNvaR0WrwWX9GMeGzj6iVM2X9I7p5JW2mQZHxZTWn-KWi8Y5szRg-cT80oewOxn266uTvzS6gEYwHY_C0XByfwqbdJ9CZCy3CevZ21KdIdDJxHm-lD8BIujxUw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5EQb34fkSrRhA8pU12N2kCXkptadWWIhZ6C9nsBkFoi00P-uudSZpo9SDoMY8lm5md3W92Z74BuLK92NWOsi3taIEOitRWkGjf8pPIDhQCBEdm0RZ9rzMUdyN39CWLP-eHKDfcyDKy-ZoMfKqS2idpKGVgU2gWWqsg3s814SH8JVj0WBJIMRydeX4R5xaVoS9oG21WW26_vCz9wJrL0DVbe9rbEBW9zkNOXqrzVFbj92-Ejv_5rR3YWgBTs5GPpF1Y0eM92GgW9eD24abzRtldZk8jXjc7iN-Vnpm0j2v2FlGJ5uB5ktJ0R7H0Mc0ZJu0eI8I8gGG79dTsWIvaC1YsXDp0SXw_iO2I6OtQgRpxhrAT5kZSSoFQV0aaKx3EbqA0uiwR83wHF38mZd1VCOL4IayOJ2N9DKbwJK9zltiKcfTmVBAoX_sCPcl6zBlXBlwXog-nOcVGmJMps5CkEZbSMKBSaCZcmNosREiInnWAy6wBl-VjlA2dfERjPZnTO7ab1dlmBhzlGi0_xR0PXXPmGMAyvfzSh7DR77bKq5O_NLqA9cFtO3zo9u9PYZNuU3yM41VgNX2d6zNEOak8zwbyB0-Y8AI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+Metal+Halides+with+Multiple+Photoluminescence+Centers&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Li%2C+Mingze&rft.au=Zhou%2C+Jun&rft.au=Zhou%2C+Guojun&rft.au=Molokeev%2C+Maxim+S&rft.date=2019-12-16&rft.eissn=1521-3773&rft.volume=58&rft.issue=51&rft.spage=18670&rft_id=info:doi/10.1002%2Fanie.201911419&rft_id=info%3Apmid%2F31602721&rft.externalDocID=31602721 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |