Tailoring Mid‐Gap States of Chalcogenide Glass by Pressure‐Induced Hypervalent Bonding Towards the Design of Electrical Switching Materials

Phase change memory (PCM) and ovonic threshold switching (OTS) materials using chalcogenide glass are essential elements in advanced 3D memory chips. The mid‐gap states, induced by the disorder and defects in the glass, are the physical mechanisms of the electrical switching behavior, while the orig...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 33; no. 45
Main Authors Xu, Meng, Xu, Qundao, Gu, Rongchuan, Wang, Songyou, Wang, Cai‐Zhuang, Ho, Kai‐Ming, Wang, Zhongrui, Xu, Ming, Miao, Xiangshui
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.11.2023
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Phase change memory (PCM) and ovonic threshold switching (OTS) materials using chalcogenide glass are essential elements in advanced 3D memory chips. The mid‐gap states, induced by the disorder and defects in the glass, are the physical mechanisms of the electrical switching behavior, while the origin of these trap states is still under debate and the medium‐range clusters that break the global octet rule, such as over‐coordinated atoms, are known to be responsible in various glass. Here, it is discovered that a large fraction of over‐coordinated clusters fails to generate mid‐gap states, which are probably caused by hypervalent bonding, a multi‐centered covalent bond participated by delocalized lone‐pair electrons. This is confirmed by the pressure‐driven simulations of amorphous GeSe models, in which it is found that octahedral motifs and hypervalent bonds prevent the over‐coordinated medium‐range clusters from providing excessive electrons. In practical applications, compatible dopants can be used to change the number of hypervalent bonds, thus controlling the number of mid‐gap states and consequently the performance of PCM and OTS materials. These results reveal the origin of mid‐gap states in chalcogenide glasses, enabling extensive control in the development of pioneering electrical switching materials. The pressure‐driven ab initio molecular dynamics simulations elucidate the underlying relationship between the chemical bonding and electronic states in chalcogenide glasses. Changing the dopants and stoichiometry could tailor the hypervalent bonds and the number of defect states, thus enabling comprehensive control in the development of innovative electrical switching materials for 3D phase change memory (PCM) chips.
AbstractList Phase change memory (PCM) and ovonic threshold switching (OTS) materials using chalcogenide glass are essential elements in advanced 3D memory chips. The mid‐gap states, induced by the disorder and defects in the glass, are the physical mechanisms of the electrical switching behavior, while the origin of these trap states is still under debate and the medium‐range clusters that break the global octet rule, such as over‐coordinated atoms, are known to be responsible in various glass. Here, it is discovered that a large fraction of over‐coordinated clusters fails to generate mid‐gap states, which are probably caused by hypervalent bonding, a multi‐centered covalent bond participated by delocalized lone‐pair electrons. This is confirmed by the pressure‐driven simulations of amorphous GeSe models, in which it is found that octahedral motifs and hypervalent bonds prevent the over‐coordinated medium‐range clusters from providing excessive electrons. In practical applications, compatible dopants can be used to change the number of hypervalent bonds, thus controlling the number of mid‐gap states and consequently the performance of PCM and OTS materials. These results reveal the origin of mid‐gap states in chalcogenide glasses, enabling extensive control in the development of pioneering electrical switching materials.
Phase change memory (PCM) and ovonic threshold switching (OTS) materials using chalcogenide glass are essential elements in advanced 3D memory chips. The mid–gap states, induced by the disorder and defects in the glass, are the physical mechanisms of the electrical switching behavior, while the origin of these trap states is still under debate and the medium–range clusters that break the global octet rule, such as over–coordinated atoms, are known to be responsible in various glass. Here, it is discovered that a large fraction of over–coordinated clusters fails to generate mid–gap states, which are probably caused by hypervalent bonding, a multi–centered covalent bond participated by delocalized lone–pair electrons. This is confirmed by the pressure–driven simulations of amorphous GeSe models, in which it is found that octahedral motifs and hypervalent bonds prevent the over–coordinated medium–range clusters from providing excessive electrons. In practical applications, compatible dopants can be used to change the number of hypervalent bonds, thus controlling the number of mid–gap states and consequently the performance of PCM and OTS materials. Finally, these results reveal the origin of mid–gap states in chalcogenide glasses, enabling extensive control in the development of pioneering electrical switching materials.
Phase change memory (PCM) and ovonic threshold switching (OTS) materials using chalcogenide glass are essential elements in advanced 3D memory chips. The mid‐gap states, induced by the disorder and defects in the glass, are the physical mechanisms of the electrical switching behavior, while the origin of these trap states is still under debate and the medium‐range clusters that break the global octet rule, such as over‐coordinated atoms, are known to be responsible in various glass. Here, it is discovered that a large fraction of over‐coordinated clusters fails to generate mid‐gap states, which are probably caused by hypervalent bonding, a multi‐centered covalent bond participated by delocalized lone‐pair electrons. This is confirmed by the pressure‐driven simulations of amorphous GeSe models, in which it is found that octahedral motifs and hypervalent bonds prevent the over‐coordinated medium‐range clusters from providing excessive electrons. In practical applications, compatible dopants can be used to change the number of hypervalent bonds, thus controlling the number of mid‐gap states and consequently the performance of PCM and OTS materials. These results reveal the origin of mid‐gap states in chalcogenide glasses, enabling extensive control in the development of pioneering electrical switching materials. The pressure‐driven ab initio molecular dynamics simulations elucidate the underlying relationship between the chemical bonding and electronic states in chalcogenide glasses. Changing the dopants and stoichiometry could tailor the hypervalent bonds and the number of defect states, thus enabling comprehensive control in the development of innovative electrical switching materials for 3D phase change memory (PCM) chips.
Author Miao, Xiangshui
Gu, Rongchuan
Xu, Qundao
Wang, Cai‐Zhuang
Wang, Zhongrui
Ho, Kai‐Ming
Xu, Ming
Wang, Songyou
Xu, Meng
Author_xml – sequence: 1
  givenname: Meng
  orcidid: 0000-0003-1674-6037
  surname: Xu
  fullname: Xu, Meng
  email: mengxu@hku.hk
  organization: The University of Hong Kong
– sequence: 2
  givenname: Qundao
  surname: Xu
  fullname: Xu, Qundao
  organization: Huazhong University of Science and Technology
– sequence: 3
  givenname: Rongchuan
  surname: Gu
  fullname: Gu, Rongchuan
  organization: Huazhong University of Science and Technology
– sequence: 4
  givenname: Songyou
  orcidid: 0000-0002-4249-3427
  surname: Wang
  fullname: Wang, Songyou
  organization: Fudan University
– sequence: 5
  givenname: Cai‐Zhuang
  orcidid: 0000-0002-0269-4785
  surname: Wang
  fullname: Wang, Cai‐Zhuang
  organization: Iowa State University
– sequence: 6
  givenname: Kai‐Ming
  orcidid: 0000-0003-2703-0560
  surname: Ho
  fullname: Ho, Kai‐Ming
  organization: Iowa State University
– sequence: 7
  givenname: Zhongrui
  orcidid: 0000-0003-2264-0677
  surname: Wang
  fullname: Wang, Zhongrui
  organization: The University of Hong Kong
– sequence: 8
  givenname: Ming
  orcidid: 0000-0002-2730-283X
  surname: Xu
  fullname: Xu, Ming
  email: mxu@hust.edu.cn
  organization: Huazhong University of Science and Technology
– sequence: 9
  givenname: Xiangshui
  orcidid: 0000-0002-3999-7421
  surname: Miao
  fullname: Miao, Xiangshui
  organization: Huazhong University of Science and Technology
BackLink https://www.osti.gov/servlets/purl/1998937$$D View this record in Osti.gov
BookMark eNqFkc1uUzEQha9QkWgLW9YWrBPs6_u7LGmbVmoFUoPEzpqMx4mrWzvYTqPseAN4Rp4EX4KKhIRYzSy-c86Mzklx5Lyjongt-FRwXr4DbR6mJS8lr_qyeVYci0Y0E8nL7uhpF59fFCcx3nMu2lZWx8W3BdjBB-tW7NbqH1-_z2HD7hIkiswbNlvDgH5Fzmpi8wFiZMs9-xgoxm2gjF87vUXS7Gq_ofAIA7nE3nunR8OF30HQkaU1sXOKduVGy4uBMAWLMLC7nU24_pWdA4OFIb4snps86NXveVp8urxYzK4mNx_m17OzmwlWNW8mIPsGJQrU-Yua2t4saxDLmne6k3WjsSY0rdTIM9OBaQCwFSUaANMvjZanxZuDr4_Jqog2Ea7RO5ePU6Lvu162GXp7gDbBf9lSTOreb4PLd6my6-pS8EqM1PRAYfAxBjJqE-wDhL0SXI3NqLEZ9dRMFlR_CXI8JOtdCrmNf8v6g2xnB9r_J0SdnV_e_tH-BPayqis
CitedBy_id crossref_primary_10_1063_5_0168408
crossref_primary_10_1039_D3TC02984K
crossref_primary_10_1002_adfm_202415462
crossref_primary_10_1039_D4TC01237B
crossref_primary_10_1016_j_jallcom_2024_173427
crossref_primary_10_1016_j_jallcom_2024_178319
crossref_primary_10_1021_acsnano_4c06909
crossref_primary_10_1016_j_jallcom_2024_176011
crossref_primary_10_1016_j_jallcom_2025_179764
crossref_primary_10_1038_s41524_024_01387_3
crossref_primary_10_1016_j_actamat_2025_120896
crossref_primary_10_1016_j_jallcom_2025_179253
crossref_primary_10_1016_j_ceramint_2024_08_405
crossref_primary_10_1038_s41467_023_43457_y
crossref_primary_10_1039_D4TC04697H
crossref_primary_10_1016_j_ceramint_2025_01_314
crossref_primary_10_1088_1674_4926_24040013
crossref_primary_10_1021_acs_jpcc_3c07110
crossref_primary_10_1039_D3TC04586B
crossref_primary_10_1039_D4NR04728A
crossref_primary_10_1039_D4TC03146F
crossref_primary_10_1016_j_jallcom_2024_177579
crossref_primary_10_1016_j_jallcom_2024_178067
crossref_primary_10_1016_j_jnoncrysol_2024_122980
crossref_primary_10_1039_D4TC03586K
Cites_doi 10.1103/PhysRevB.59.1758
10.1109/LED.2021.3109582
10.1038/s41467-019-10980-w
10.1103/PhysRevLett.37.1504
10.1080/00268978400101201
10.1002/adma.202000340
10.1002/adma.202208065
10.1063/1.2931951
10.1016/j.mattod.2020.07.016
10.1016/j.scriptamat.2022.114834
10.1103/PhysRevB.93.115201
10.1126/science.aay0291
10.1088/0953-8984/22/39/399801
10.1063/1.2773688
10.1038/s41598-018-37717-x
10.1126/science.abi6332
10.1038/s41578-019-0159-3
10.1016/j.tsf.2021.138837
10.1109/TED.2004.825805
10.1002/jcc.24300
10.1109/TCAD.2020.3018403
10.1103/PhysRevB.76.235201
10.1002/adma.201700814
10.1016/j.cpc.2019.106949
10.1016/j.scib.2022.05.003
10.1002/aelm.202200150
10.1103/RevModPhys.73.515
10.1038/s41524-021-00496-7
10.1063/1.478401
10.1002/jcc.21057
10.1063/1.2801626
10.1038/ncomms8467
10.1002/adma.202300836
10.1103/PhysRevB.54.11169
10.1063/1.449071
10.1038/natrevmats.2016.70
10.1063/1.5008927
10.1109/LED.2022.3152207
10.1002/aelm.201900196
10.1038/s41467-022-29054-5
10.1038/s41467-020-18382-z
10.1126/sciadv.aay2830
10.1016/j.eng.2020.05.007
10.1039/D1TC01433A
10.1002/adfm.201500825
10.1109/JPROC.2017.2731776
10.1103/PhysRevB.96.019902
10.1002/adma.202300893
10.1039/C9TC04810C
10.1002/inf2.12315
10.1002/adma.201803777
10.1021/acsami.0c03027
10.1103/PhysRevB.59.7413
10.1126/sciadv.ade0828
10.1002/anie.202101283
10.1002/adma.202208485
10.1016/j.cpc.2021.108033
10.1080/00107517808210876
10.1103/PhysRevB.93.214205
10.1103/PhysRevB.87.184115
10.1557/mrs.2019.206
10.1063/1.2930680
10.1002/adma.201908302
10.1021/jp202489s
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
CorporateAuthor Ames Laboratory (AMES), Ames, IA (United States)
CorporateAuthor_xml – name: Ames Laboratory (AMES), Ames, IA (United States)
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
OIOZB
OTOTI
DOI 10.1002/adfm.202304926
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef
Materials Research Database


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 1998937
10_1002_adfm_202304926
ADFM202304926
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 62174060
– fundername: Iowa State University
  funderid: DE‐AC02‐07CH11358
– fundername: National Key R&D Plan of China
  funderid: 2022ZD0117600
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 2021GCRC051
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ACXME
OIOZB
OTOTI
ID FETCH-LOGICAL-c4506-a396c3c1cd7345e79fb5a1b508d8356dc5ecf73dc0c1c8af6aac712cfaaf9bfd3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Mon Aug 05 07:10:23 EDT 2024
Fri Jul 25 07:50:12 EDT 2025
Tue Jul 01 00:30:47 EDT 2025
Thu Apr 24 22:53:59 EDT 2025
Wed Jan 22 16:17:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 45
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4506-a396c3c1cd7345e79fb5a1b508d8356dc5ecf73dc0c1c8af6aac712cfaaf9bfd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE Office of Science (SC), Basic Energy Sciences (BES). Materials Sciences & Engineering Division (MSE)
IS-J-11,127
AC02-07CH11358; 2022ZD0117600; 62174060
National Key Research and Development Plan of China
National Natural Science Foundation of China (NSFC)
ORCID 0000-0002-4249-3427
0000-0002-0269-4785
0000-0003-1674-6037
0000-0003-2703-0560
0000-0003-2264-0677
0000-0002-3999-7421
0000-0002-2730-283X
0000000202694785
0000000327030560
0000000322640677
000000022730283X
0000000239997421
0000000242493427
0000000316746037
OpenAccessLink https://www.osti.gov/servlets/purl/1998937
PQID 2885210417
PQPubID 2045204
PageCount 10
ParticipantIDs osti_scitechconnect_1998937
proquest_journals_2885210417
crossref_primary_10_1002_adfm_202304926
crossref_citationtrail_10_1002_adfm_202304926
wiley_primary_10_1002_adfm_202304926_ADFM202304926
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Advanced functional materials
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley
References 2011; 115
2007; 102
2023; 35
2019; 10
2022; 67
2020; 247
2019; 366
2020; 12
2008; 103
2020; 11
2022; 218
2017; 111
2007; 76
2016; 37
2020; 8
2010; 22
2020; 6
2020; 5
2008; 29
1999; 59
2018; 30
2021; 40
1976; 37
2021; 9
2021; 7
2019; 9
2015; 6
2006; 52
2021; 42
2019; 5
2021; 267
2013; 87
2020; 41
1978; 19
2007; 91
2016; 93
2017; 29
2022; 43
2020; 32
1985; 83
2008; 92
1996; 54
2015; 25
2017; 96
2016; 1
2004; 51
2023
2022; 4
2019; 44
2022; 8
2021; 734
2022; 13
1999; 110
2021; 374
2021; 60
2001; 73
2017; 105
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_70_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_1_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – volume: 4
  year: 2022
  publication-title: InfoMat
– volume: 29
  year: 2017
– volume: 91
  year: 2007
  publication-title: Appl. Phys. Lett.
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 73
  start-page: 515
  year: 2001
  publication-title: Rev. Mod. Phys.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– year: 2023
  publication-title: Adv. Mater.
– volume: 218
  year: 2022
  publication-title: Scr. Mater.
– volume: 8
  year: 2022
  publication-title: Adv. Electron. Mater.
– volume: 8
  year: 2022
  publication-title: Sci. Adv.
– volume: 5
  start-page: 173
  year: 2020
  publication-title: Nat. Rev. Mater.
– volume: 366
  start-page: 210
  year: 2019
  publication-title: Science
– volume: 22
  year: 2010
  publication-title: J. Phys.: Condens. Matter
– volume: 374
  start-page: 1390
  year: 2021
  publication-title: Science
– volume: 67
  start-page: 1197
  year: 2022
  publication-title: Sci. Bull.
– volume: 52
  start-page: 255
  year: 2006
  publication-title: Mol. Phys.
– volume: 734
  year: 2021
  publication-title: Thin Solid Films
– volume: 111
  year: 2017
  publication-title: Appl. Phys. Lett.
– volume: 87
  year: 2013
  publication-title: Phys. Rev. B
– volume: 93
  year: 2016
  publication-title: Phys. Rev. B
– volume: 5
  year: 2019
  publication-title: Adv. Electron. Mater.
– volume: 54
  year: 1996
  publication-title: Phys. Rev. B
– volume: 6
  start-page: 585
  year: 2020
  publication-title: Engineering
– volume: 9
  start-page: 8057
  year: 2021
  publication-title: J. Mater. Chem. C
– volume: 1
  year: 2016
  publication-title: Nat. Rev. Mater.
– volume: 110
  start-page: 5029
  year: 1999
  publication-title: J. Chem. Phys.
– volume: 29
  start-page: 2044
  year: 2008
  publication-title: J. Comput. Chem.
– volume: 37
  start-page: 1030
  year: 2016
  publication-title: J. Comput. Chem.
– volume: 44
  start-page: 715
  year: 2019
  publication-title: MRS Bull.
– volume: 96
  year: 2017
  publication-title: Phys. Rev. B
– volume: 43
  start-page: 643
  year: 2022
  publication-title: IEEE Electron Device Lett.
– volume: 51
  start-page: 714
  year: 2004
  publication-title: IEEE Trans. Electron Devices
– volume: 92
  year: 2008
  publication-title: Appl. Phys. Lett.
– volume: 7
  start-page: 29
  year: 2021
  publication-title: npj Comput. Mater.
– volume: 25
  start-page: 6306
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 13
  start-page: 1458
  year: 2022
  publication-title: Nat. Commun.
– volume: 8
  start-page: 71
  year: 2020
  publication-title: J. Mater. Chem. C
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 83
  start-page: 4069
  year: 1985
  publication-title: J. Chem. Phys.
– volume: 10
  start-page: 3065
  year: 2019
  publication-title: Nat. Commun.
– volume: 115
  start-page: 5461
  year: 2011
  publication-title: J. Phys. Chem. A
– volume: 19
  start-page: 109
  year: 1978
  publication-title: Contemp. Phys.
– volume: 105
  start-page: 1822
  year: 2017
  publication-title: Proc. IEEE
– volume: 59
  start-page: 1758
  year: 1999
  publication-title: Phys. Rev. B
– volume: 40
  start-page: 1327
  year: 2021
  publication-title: IEEE Trans. Comput.–Aided Des. Integr. Circuits Syst.
– volume: 42
  start-page: 1148
  year: 2021
  publication-title: IEEE Electron Device Lett.
– volume: 59
  start-page: 7413
  year: 1999
  publication-title: Phys. Rev. B
– volume: 11
  start-page: 4636
  year: 2020
  publication-title: Nat. Commun.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 37
  start-page: 1504
  year: 1976
  publication-title: Phys. Rev. Lett.
– volume: 267
  year: 2021
  publication-title: Comput. Phys. Commun.
– volume: 76
  year: 2007
  publication-title: Phys. Rev. B
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 102
  year: 2007
  publication-title: J. Appl. Phys.
– volume: 6
  start-page: 7467
  year: 2015
  publication-title: Nat. Commun.
– volume: 103
  year: 2008
  publication-title: J. Appl. Phys.
– volume: 41
  start-page: 156
  year: 2020
  publication-title: Mater. Today
– volume: 9
  start-page: 1867
  year: 2019
  publication-title: Sci. Rep.
– volume: 247
  year: 2020
  publication-title: Comput. Phys. Commun.
– ident: e_1_2_9_64_1
  doi: 10.1103/PhysRevB.59.1758
– ident: e_1_2_9_13_1
  doi: 10.1109/LED.2021.3109582
– ident: e_1_2_9_16_1
  doi: 10.1038/s41467-019-10980-w
– ident: e_1_2_9_25_1
  doi: 10.1103/PhysRevLett.37.1504
– ident: e_1_2_9_67_1
  doi: 10.1080/00268978400101201
– ident: e_1_2_9_38_1
  doi: 10.1002/adma.202000340
– ident: e_1_2_9_9_1
  doi: 10.1002/adma.202208065
– ident: e_1_2_9_19_1
  doi: 10.1063/1.2931951
– ident: e_1_2_9_49_1
  doi: 10.1016/j.mattod.2020.07.016
– ident: e_1_2_9_41_1
  doi: 10.1016/j.scriptamat.2022.114834
– ident: e_1_2_9_30_1
  doi: 10.1103/PhysRevB.93.115201
– ident: e_1_2_9_11_1
  doi: 10.1126/science.aay0291
– ident: e_1_2_9_28_1
  doi: 10.1088/0953-8984/22/39/399801
– ident: e_1_2_9_18_1
  doi: 10.1063/1.2773688
– ident: e_1_2_9_31_1
  doi: 10.1038/s41598-018-37717-x
– ident: e_1_2_9_5_1
  doi: 10.1126/science.abi6332
– ident: e_1_2_9_2_1
  doi: 10.1038/s41578-019-0159-3
– ident: e_1_2_9_57_1
  doi: 10.1016/j.tsf.2021.138837
– ident: e_1_2_9_17_1
  doi: 10.1109/TED.2004.825805
– ident: e_1_2_9_52_1
  doi: 10.1002/jcc.24300
– ident: e_1_2_9_3_1
  doi: 10.1109/TCAD.2020.3018403
– ident: e_1_2_9_27_1
  doi: 10.1103/PhysRevB.76.235201
– ident: e_1_2_9_54_1
  doi: 10.1002/adma.201700814
– ident: e_1_2_9_8_1
– ident: e_1_2_9_46_1
  doi: 10.1016/j.cpc.2019.106949
– ident: e_1_2_9_14_1
  doi: 10.1016/j.scib.2022.05.003
– ident: e_1_2_9_60_1
  doi: 10.1002/aelm.202200150
– ident: e_1_2_9_70_1
  doi: 10.1103/RevModPhys.73.515
– ident: e_1_2_9_43_1
  doi: 10.1038/s41524-021-00496-7
– ident: e_1_2_9_65_1
  doi: 10.1063/1.478401
– ident: e_1_2_9_63_1
  doi: 10.1002/jcc.21057
– ident: e_1_2_9_26_1
  doi: 10.1063/1.2801626
– ident: e_1_2_9_50_1
  doi: 10.1038/ncomms8467
– ident: e_1_2_9_39_1
  doi: 10.1002/adma.202300836
– ident: e_1_2_9_62_1
  doi: 10.1103/PhysRevB.54.11169
– ident: e_1_2_9_68_1
  doi: 10.1063/1.449071
– ident: e_1_2_9_1_1
  doi: 10.1038/natrevmats.2016.70
– ident: e_1_2_9_56_1
  doi: 10.1063/1.5008927
– ident: e_1_2_9_59_1
  doi: 10.1109/LED.2022.3152207
– ident: e_1_2_9_12_1
  doi: 10.1002/aelm.201900196
– ident: e_1_2_9_37_1
  doi: 10.1038/s41467-022-29054-5
– ident: e_1_2_9_29_1
  doi: 10.1038/s41467-020-18382-z
– ident: e_1_2_9_51_1
  doi: 10.1126/sciadv.aay2830
– ident: e_1_2_9_7_1
– ident: e_1_2_9_15_1
  doi: 10.1016/j.eng.2020.05.007
– ident: e_1_2_9_42_1
  doi: 10.1039/D1TC01433A
– ident: e_1_2_9_58_1
– ident: e_1_2_9_21_1
  doi: 10.1002/adfm.201500825
– ident: e_1_2_9_40_1
– ident: e_1_2_9_4_1
  doi: 10.1109/JPROC.2017.2731776
– ident: e_1_2_9_44_1
  doi: 10.1103/PhysRevB.96.019902
– ident: e_1_2_9_47_1
  doi: 10.1002/adma.202300893
– ident: e_1_2_9_55_1
  doi: 10.1039/C9TC04810C
– ident: e_1_2_9_23_1
  doi: 10.1002/inf2.12315
– ident: e_1_2_9_6_1
  doi: 10.1038/s41578-019-0159-3
– ident: e_1_2_9_34_1
  doi: 10.1002/adma.201803777
– ident: e_1_2_9_10_1
  doi: 10.1021/acsami.0c03027
– ident: e_1_2_9_66_1
  doi: 10.1103/PhysRevB.59.7413
– ident: e_1_2_9_33_1
  doi: 10.1126/sciadv.ade0828
– ident: e_1_2_9_48_1
  doi: 10.1002/anie.202101283
– ident: e_1_2_9_36_1
  doi: 10.1002/adma.202208485
– ident: e_1_2_9_69_1
  doi: 10.1016/j.cpc.2021.108033
– ident: e_1_2_9_24_1
  doi: 10.1080/00107517808210876
– ident: e_1_2_9_32_1
  doi: 10.1103/PhysRevB.93.214205
– ident: e_1_2_9_45_1
  doi: 10.1103/PhysRevB.87.184115
– ident: e_1_2_9_22_1
  doi: 10.1557/mrs.2019.206
– ident: e_1_2_9_61_1
– ident: e_1_2_9_20_1
  doi: 10.1063/1.2930680
– ident: e_1_2_9_35_1
  doi: 10.1002/adma.201908302
– ident: e_1_2_9_53_1
  doi: 10.1021/jp202489s
SSID ssj0017734
Score 2.5452793
Snippet Phase change memory (PCM) and ovonic threshold switching (OTS) materials using chalcogenide glass are essential elements in advanced 3D memory chips. The...
SourceID osti
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms chalcogenide glass
Chalcogenides
Chips (memory devices)
Clusters
Covalent bonds
Electrons
hypervalent bonds
MATERIALS SCIENCE
mid-gap states
ovonic threshold switching
phase change memory
Switching
Title Tailoring Mid‐Gap States of Chalcogenide Glass by Pressure‐Induced Hypervalent Bonding Towards the Design of Electrical Switching Materials
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202304926
https://www.proquest.com/docview/2885210417
https://www.osti.gov/servlets/purl/1998937
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbhMxELZQuMCBf0TaUvmAxGnbtdf7d4yaplHV5UBTKbeVPV6LiCqpkq0QnHgDeEaehBk7WRKkConevNqxd9eesT-vZ75h7J2CxmY6iyPhYhep3MrIgNKRE7FFDSkTBbRRrD5k4yt1Pk2nW1H8gR-i--FGluHnazJwbVbHf0hDtXUUSe7PiSRxbpPDFqGijx1_lMjzcKycCXLwEtMNa2Msj3er76xKvQVa1w7i3MatfuEZPWV688rB3-Tz0W1rjuDbX2yO9_mmZ-zJGpXyQVCj5-xBM3_BHm9xFb5kPyZ6Frz1eDWzv77_PNM3PEBVvnD85JO-hgVq48w2_IwgOTdfeQg-XDYoTjlCcMT4GDe-S1RvXOw45TSmBifed3fFEYzyoXcpoSZPfYYeUiJ--WXWeqdPXuk22MwrdjU6nZyMo3U2hwhUGmeRTsoMEhBgcVDSJi-dSbUwCBAtosDMQtqAyxMLMcoU2mVaQy4kOK1daZxNXrPefDFv3jCucpAlYjWDWEiVBWicRBB3YbkspLFxn0Wb0axhTXVOGTeu60DSLGvq6Lrr6D5738nfBJKPOyX3STlqhCfEsQvkjARtTYGKiPP67GCjM_V6KljVsigQIsVK4G3pB_8fz6gHw1HVXe39T6V99ojKIWbygPXa5W3zFsFTaw7Zw8Gwurg89IbyG1_6Fes
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELbKcgAO_COWFvABxClt4jh_Bw5Vt9stbXqArbQ344xjsaLarXZTVeXEG8Cr8Co8Ak_CTJyELhJCQuqBW34mTmTP2N84M98w9kJCaWId-15gfevJxAivAKk9G_gGNSQLJZCjmB_Fo2P5ZhJN1ti3NhfG8UN0G25kGfV8TQZOG9Jbv1hDtbGUSl7_KBJxE1d5UF6co9e2fL0_wCF-KcRwd7wz8prCAh7ICD1oHWYxhBCASUIZlUlmi0gHBWIVg4AkNhCVYJPQgI8yqbax1pAEAqzWNiusCbHda-w6lREnuv7B246xKkgS9yM7DiikLJi0PJG-2Fr93pV1sDdHe17BuJeRcr3UDe-w720nuQiXj5tnVbEJn37jj_yvevEuu90Ab77tLOUeWytn99mtS3SMD9iXsZ66gESeT82Pz1_39Cl3aJzPLd_5oE9gjgY3NSXfI6-DFxfc5VcuShSnMiiolHyEvv0CLRjXc05lm6nBcR2evOSIt_mgjpqhJnfrIkRkJ_zd-bSq41p5ris3LTxkx1fSI49YbzaflY8ZlwmIDOFogXBPZilonCcRWuJxlorC-H3mteqjoGFzp6IiJ8rxUAtFA6u6ge2zV538qeMx-aPkOmmjQgRGNMJA8VZQKcrFRCjbZxutkqpmtlsqkaaIAn0Z4G1Ra9tf3qG2B8O8O3vyLw89ZzdG4_xQHe4fHayzm3TdpYhusF61OCufIlasime1dXL2_qoV-SeXynaS
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VRUJw4B-xbQEfQJzSJo43PwcOVdPtlrIVgq20N-OMY7FqtbvaTVWVE28Aj8Kr8Ao8CeM4CV0khITUA7f8TJzInrG_iWe-AXgusNCRinwvML7xRKy5l6NQngl8TRqShgKtozg8igbH4vW4N16Db00ujOOHaH-4Wcuo5mtr4HNttn-RhiptbCZ5tU_Eozqs8rC4OCenbfnqIKMRfsF5f2-0O_DqugIeih450CpMIwwxQB2HolfEqcl7KsgJqmjCI5HGXoEmDjX6JJMoEymFccDRKGXS3OiQ2r0G10Xkp7ZYRPauJawK4tjtY0eBjSgLxg1NpM-3V793ZRnszMicVyDuZaBcrXT9O_C96SMX4HKydVbmW_jpN_rI_6kT78LtGnazHWcn92CtmN6HW5fIGB_Al5GauHBENpzoH5-_7qs5c1iczQzb_ahOcUbmNtEF27c-B8svmMuuXBQkbougkEqyAXn2C7JfWs2ZLdpsGxxVwclLRmibZVXMjG1yrypBZK2EvT-flFVUKxuq0k0KD-H4SnrkEXSms2nxGJiIkacERnMCeyJNUNEsScCSjtOE59rvgtdoj8Say92WFDmVjoWaSzuwsh3YLrxs5eeOxeSPkhtWGSXhL0sijDbaCktpMzEJyHZhs9FRWc91S8mThDCgLwK6zStl-8s75E7WH7Zn6__y0DO48TbryzcHR4cbcNNedvmhm9ApF2fFEwKKZf60sk0GH65aj38Ctjl1QQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tailoring+Mid%E2%80%90Gap+States+of+Chalcogenide+Glass+by+Pressure%E2%80%90Induced+Hypervalent+Bonding+Towards+the+Design+of+Electrical+Switching+Materials&rft.jtitle=Advanced+functional+materials&rft.au=Xu%2C+Meng&rft.au=Xu%2C+Qundao&rft.au=Gu%2C+Rongchuan&rft.au=Wang%2C+Songyou&rft.date=2023-11-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=33&rft.issue=45&rft_id=info:doi/10.1002%2Fadfm.202304926&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202304926
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon