Tailoring Mid‐Gap States of Chalcogenide Glass by Pressure‐Induced Hypervalent Bonding Towards the Design of Electrical Switching Materials
Phase change memory (PCM) and ovonic threshold switching (OTS) materials using chalcogenide glass are essential elements in advanced 3D memory chips. The mid‐gap states, induced by the disorder and defects in the glass, are the physical mechanisms of the electrical switching behavior, while the orig...
Saved in:
Published in | Advanced functional materials Vol. 33; no. 45 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.11.2023
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Phase change memory (PCM) and ovonic threshold switching (OTS) materials using chalcogenide glass are essential elements in advanced 3D memory chips. The mid‐gap states, induced by the disorder and defects in the glass, are the physical mechanisms of the electrical switching behavior, while the origin of these trap states is still under debate and the medium‐range clusters that break the global octet rule, such as over‐coordinated atoms, are known to be responsible in various glass. Here, it is discovered that a large fraction of over‐coordinated clusters fails to generate mid‐gap states, which are probably caused by hypervalent bonding, a multi‐centered covalent bond participated by delocalized lone‐pair electrons. This is confirmed by the pressure‐driven simulations of amorphous GeSe models, in which it is found that octahedral motifs and hypervalent bonds prevent the over‐coordinated medium‐range clusters from providing excessive electrons. In practical applications, compatible dopants can be used to change the number of hypervalent bonds, thus controlling the number of mid‐gap states and consequently the performance of PCM and OTS materials. These results reveal the origin of mid‐gap states in chalcogenide glasses, enabling extensive control in the development of pioneering electrical switching materials.
The pressure‐driven ab initio molecular dynamics simulations elucidate the underlying relationship between the chemical bonding and electronic states in chalcogenide glasses. Changing the dopants and stoichiometry could tailor the hypervalent bonds and the number of defect states, thus enabling comprehensive control in the development of innovative electrical switching materials for 3D phase change memory (PCM) chips. |
---|---|
AbstractList | Phase change memory (PCM) and ovonic threshold switching (OTS) materials using chalcogenide glass are essential elements in advanced 3D memory chips. The mid‐gap states, induced by the disorder and defects in the glass, are the physical mechanisms of the electrical switching behavior, while the origin of these trap states is still under debate and the medium‐range clusters that break the global octet rule, such as over‐coordinated atoms, are known to be responsible in various glass. Here, it is discovered that a large fraction of over‐coordinated clusters fails to generate mid‐gap states, which are probably caused by hypervalent bonding, a multi‐centered covalent bond participated by delocalized lone‐pair electrons. This is confirmed by the pressure‐driven simulations of amorphous GeSe models, in which it is found that octahedral motifs and hypervalent bonds prevent the over‐coordinated medium‐range clusters from providing excessive electrons. In practical applications, compatible dopants can be used to change the number of hypervalent bonds, thus controlling the number of mid‐gap states and consequently the performance of PCM and OTS materials. These results reveal the origin of mid‐gap states in chalcogenide glasses, enabling extensive control in the development of pioneering electrical switching materials. Phase change memory (PCM) and ovonic threshold switching (OTS) materials using chalcogenide glass are essential elements in advanced 3D memory chips. The mid–gap states, induced by the disorder and defects in the glass, are the physical mechanisms of the electrical switching behavior, while the origin of these trap states is still under debate and the medium–range clusters that break the global octet rule, such as over–coordinated atoms, are known to be responsible in various glass. Here, it is discovered that a large fraction of over–coordinated clusters fails to generate mid–gap states, which are probably caused by hypervalent bonding, a multi–centered covalent bond participated by delocalized lone–pair electrons. This is confirmed by the pressure–driven simulations of amorphous GeSe models, in which it is found that octahedral motifs and hypervalent bonds prevent the over–coordinated medium–range clusters from providing excessive electrons. In practical applications, compatible dopants can be used to change the number of hypervalent bonds, thus controlling the number of mid–gap states and consequently the performance of PCM and OTS materials. Finally, these results reveal the origin of mid–gap states in chalcogenide glasses, enabling extensive control in the development of pioneering electrical switching materials. Phase change memory (PCM) and ovonic threshold switching (OTS) materials using chalcogenide glass are essential elements in advanced 3D memory chips. The mid‐gap states, induced by the disorder and defects in the glass, are the physical mechanisms of the electrical switching behavior, while the origin of these trap states is still under debate and the medium‐range clusters that break the global octet rule, such as over‐coordinated atoms, are known to be responsible in various glass. Here, it is discovered that a large fraction of over‐coordinated clusters fails to generate mid‐gap states, which are probably caused by hypervalent bonding, a multi‐centered covalent bond participated by delocalized lone‐pair electrons. This is confirmed by the pressure‐driven simulations of amorphous GeSe models, in which it is found that octahedral motifs and hypervalent bonds prevent the over‐coordinated medium‐range clusters from providing excessive electrons. In practical applications, compatible dopants can be used to change the number of hypervalent bonds, thus controlling the number of mid‐gap states and consequently the performance of PCM and OTS materials. These results reveal the origin of mid‐gap states in chalcogenide glasses, enabling extensive control in the development of pioneering electrical switching materials. The pressure‐driven ab initio molecular dynamics simulations elucidate the underlying relationship between the chemical bonding and electronic states in chalcogenide glasses. Changing the dopants and stoichiometry could tailor the hypervalent bonds and the number of defect states, thus enabling comprehensive control in the development of innovative electrical switching materials for 3D phase change memory (PCM) chips. |
Author | Miao, Xiangshui Gu, Rongchuan Xu, Qundao Wang, Cai‐Zhuang Wang, Zhongrui Ho, Kai‐Ming Xu, Ming Wang, Songyou Xu, Meng |
Author_xml | – sequence: 1 givenname: Meng orcidid: 0000-0003-1674-6037 surname: Xu fullname: Xu, Meng email: mengxu@hku.hk organization: The University of Hong Kong – sequence: 2 givenname: Qundao surname: Xu fullname: Xu, Qundao organization: Huazhong University of Science and Technology – sequence: 3 givenname: Rongchuan surname: Gu fullname: Gu, Rongchuan organization: Huazhong University of Science and Technology – sequence: 4 givenname: Songyou orcidid: 0000-0002-4249-3427 surname: Wang fullname: Wang, Songyou organization: Fudan University – sequence: 5 givenname: Cai‐Zhuang orcidid: 0000-0002-0269-4785 surname: Wang fullname: Wang, Cai‐Zhuang organization: Iowa State University – sequence: 6 givenname: Kai‐Ming orcidid: 0000-0003-2703-0560 surname: Ho fullname: Ho, Kai‐Ming organization: Iowa State University – sequence: 7 givenname: Zhongrui orcidid: 0000-0003-2264-0677 surname: Wang fullname: Wang, Zhongrui organization: The University of Hong Kong – sequence: 8 givenname: Ming orcidid: 0000-0002-2730-283X surname: Xu fullname: Xu, Ming email: mxu@hust.edu.cn organization: Huazhong University of Science and Technology – sequence: 9 givenname: Xiangshui orcidid: 0000-0002-3999-7421 surname: Miao fullname: Miao, Xiangshui organization: Huazhong University of Science and Technology |
BackLink | https://www.osti.gov/servlets/purl/1998937$$D View this record in Osti.gov |
BookMark | eNqFkc1uUzEQha9QkWgLW9YWrBPs6_u7LGmbVmoFUoPEzpqMx4mrWzvYTqPseAN4Rp4EX4KKhIRYzSy-c86Mzklx5Lyjongt-FRwXr4DbR6mJS8lr_qyeVYci0Y0E8nL7uhpF59fFCcx3nMu2lZWx8W3BdjBB-tW7NbqH1-_z2HD7hIkiswbNlvDgH5Fzmpi8wFiZMs9-xgoxm2gjF87vUXS7Gq_ofAIA7nE3nunR8OF30HQkaU1sXOKduVGy4uBMAWLMLC7nU24_pWdA4OFIb4snps86NXveVp8urxYzK4mNx_m17OzmwlWNW8mIPsGJQrU-Yua2t4saxDLmne6k3WjsSY0rdTIM9OBaQCwFSUaANMvjZanxZuDr4_Jqog2Ea7RO5ePU6Lvu162GXp7gDbBf9lSTOreb4PLd6my6-pS8EqM1PRAYfAxBjJqE-wDhL0SXI3NqLEZ9dRMFlR_CXI8JOtdCrmNf8v6g2xnB9r_J0SdnV_e_tH-BPayqis |
CitedBy_id | crossref_primary_10_1063_5_0168408 crossref_primary_10_1039_D3TC02984K crossref_primary_10_1002_adfm_202415462 crossref_primary_10_1039_D4TC01237B crossref_primary_10_1016_j_jallcom_2024_173427 crossref_primary_10_1016_j_jallcom_2024_178319 crossref_primary_10_1021_acsnano_4c06909 crossref_primary_10_1016_j_jallcom_2024_176011 crossref_primary_10_1016_j_jallcom_2025_179764 crossref_primary_10_1038_s41524_024_01387_3 crossref_primary_10_1016_j_actamat_2025_120896 crossref_primary_10_1016_j_jallcom_2025_179253 crossref_primary_10_1016_j_ceramint_2024_08_405 crossref_primary_10_1038_s41467_023_43457_y crossref_primary_10_1039_D4TC04697H crossref_primary_10_1016_j_ceramint_2025_01_314 crossref_primary_10_1088_1674_4926_24040013 crossref_primary_10_1021_acs_jpcc_3c07110 crossref_primary_10_1039_D3TC04586B crossref_primary_10_1039_D4NR04728A crossref_primary_10_1039_D4TC03146F crossref_primary_10_1016_j_jallcom_2024_177579 crossref_primary_10_1016_j_jallcom_2024_178067 crossref_primary_10_1016_j_jnoncrysol_2024_122980 crossref_primary_10_1039_D4TC03586K |
Cites_doi | 10.1103/PhysRevB.59.1758 10.1109/LED.2021.3109582 10.1038/s41467-019-10980-w 10.1103/PhysRevLett.37.1504 10.1080/00268978400101201 10.1002/adma.202000340 10.1002/adma.202208065 10.1063/1.2931951 10.1016/j.mattod.2020.07.016 10.1016/j.scriptamat.2022.114834 10.1103/PhysRevB.93.115201 10.1126/science.aay0291 10.1088/0953-8984/22/39/399801 10.1063/1.2773688 10.1038/s41598-018-37717-x 10.1126/science.abi6332 10.1038/s41578-019-0159-3 10.1016/j.tsf.2021.138837 10.1109/TED.2004.825805 10.1002/jcc.24300 10.1109/TCAD.2020.3018403 10.1103/PhysRevB.76.235201 10.1002/adma.201700814 10.1016/j.cpc.2019.106949 10.1016/j.scib.2022.05.003 10.1002/aelm.202200150 10.1103/RevModPhys.73.515 10.1038/s41524-021-00496-7 10.1063/1.478401 10.1002/jcc.21057 10.1063/1.2801626 10.1038/ncomms8467 10.1002/adma.202300836 10.1103/PhysRevB.54.11169 10.1063/1.449071 10.1038/natrevmats.2016.70 10.1063/1.5008927 10.1109/LED.2022.3152207 10.1002/aelm.201900196 10.1038/s41467-022-29054-5 10.1038/s41467-020-18382-z 10.1126/sciadv.aay2830 10.1016/j.eng.2020.05.007 10.1039/D1TC01433A 10.1002/adfm.201500825 10.1109/JPROC.2017.2731776 10.1103/PhysRevB.96.019902 10.1002/adma.202300893 10.1039/C9TC04810C 10.1002/inf2.12315 10.1002/adma.201803777 10.1021/acsami.0c03027 10.1103/PhysRevB.59.7413 10.1126/sciadv.ade0828 10.1002/anie.202101283 10.1002/adma.202208485 10.1016/j.cpc.2021.108033 10.1080/00107517808210876 10.1103/PhysRevB.93.214205 10.1103/PhysRevB.87.184115 10.1557/mrs.2019.206 10.1063/1.2930680 10.1002/adma.201908302 10.1021/jp202489s |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH |
CorporateAuthor | Ames Laboratory (AMES), Ames, IA (United States) |
CorporateAuthor_xml | – name: Ames Laboratory (AMES), Ames, IA (United States) |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M OIOZB OTOTI |
DOI | 10.1002/adfm.202304926 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 1998937 10_1002_adfm_202304926 ADFM202304926 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 62174060 – fundername: Iowa State University funderid: DE‐AC02‐07CH11358 – fundername: National Key R&D Plan of China funderid: 2022ZD0117600 – fundername: Fundamental Research Funds for the Central Universities funderid: 2021GCRC051 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M ACXME OIOZB OTOTI |
ID | FETCH-LOGICAL-c4506-a396c3c1cd7345e79fb5a1b508d8356dc5ecf73dc0c1c8af6aac712cfaaf9bfd3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Mon Aug 05 07:10:23 EDT 2024 Fri Jul 25 07:50:12 EDT 2025 Tue Jul 01 00:30:47 EDT 2025 Thu Apr 24 22:53:59 EDT 2025 Wed Jan 22 16:17:23 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 45 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4506-a396c3c1cd7345e79fb5a1b508d8356dc5ecf73dc0c1c8af6aac712cfaaf9bfd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE Office of Science (SC), Basic Energy Sciences (BES). Materials Sciences & Engineering Division (MSE) IS-J-11,127 AC02-07CH11358; 2022ZD0117600; 62174060 National Key Research and Development Plan of China National Natural Science Foundation of China (NSFC) |
ORCID | 0000-0002-4249-3427 0000-0002-0269-4785 0000-0003-1674-6037 0000-0003-2703-0560 0000-0003-2264-0677 0000-0002-3999-7421 0000-0002-2730-283X 0000000202694785 0000000327030560 0000000322640677 000000022730283X 0000000239997421 0000000242493427 0000000316746037 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1998937 |
PQID | 2885210417 |
PQPubID | 2045204 |
PageCount | 10 |
ParticipantIDs | osti_scitechconnect_1998937 proquest_journals_2885210417 crossref_primary_10_1002_adfm_202304926 crossref_citationtrail_10_1002_adfm_202304926 wiley_primary_10_1002_adfm_202304926_ADFM202304926 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-01 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: United States |
PublicationTitle | Advanced functional materials |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc Wiley |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley |
References | 2011; 115 2007; 102 2023; 35 2019; 10 2022; 67 2020; 247 2019; 366 2020; 12 2008; 103 2020; 11 2022; 218 2017; 111 2007; 76 2016; 37 2020; 8 2010; 22 2020; 6 2020; 5 2008; 29 1999; 59 2018; 30 2021; 40 1976; 37 2021; 9 2021; 7 2019; 9 2015; 6 2006; 52 2021; 42 2019; 5 2021; 267 2013; 87 2020; 41 1978; 19 2007; 91 2016; 93 2017; 29 2022; 43 2020; 32 1985; 83 2008; 92 1996; 54 2015; 25 2017; 96 2016; 1 2004; 51 2023 2022; 4 2019; 44 2022; 8 2021; 734 2022; 13 1999; 110 2021; 374 2021; 60 2001; 73 2017; 105 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_70_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_1_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 |
References_xml | – volume: 4 year: 2022 publication-title: InfoMat – volume: 29 year: 2017 – volume: 91 year: 2007 publication-title: Appl. Phys. Lett. – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 73 start-page: 515 year: 2001 publication-title: Rev. Mod. Phys. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – year: 2023 publication-title: Adv. Mater. – volume: 218 year: 2022 publication-title: Scr. Mater. – volume: 8 year: 2022 publication-title: Adv. Electron. Mater. – volume: 8 year: 2022 publication-title: Sci. Adv. – volume: 5 start-page: 173 year: 2020 publication-title: Nat. Rev. Mater. – volume: 366 start-page: 210 year: 2019 publication-title: Science – volume: 22 year: 2010 publication-title: J. Phys.: Condens. Matter – volume: 374 start-page: 1390 year: 2021 publication-title: Science – volume: 67 start-page: 1197 year: 2022 publication-title: Sci. Bull. – volume: 52 start-page: 255 year: 2006 publication-title: Mol. Phys. – volume: 734 year: 2021 publication-title: Thin Solid Films – volume: 111 year: 2017 publication-title: Appl. Phys. Lett. – volume: 87 year: 2013 publication-title: Phys. Rev. B – volume: 93 year: 2016 publication-title: Phys. Rev. B – volume: 5 year: 2019 publication-title: Adv. Electron. Mater. – volume: 54 year: 1996 publication-title: Phys. Rev. B – volume: 6 start-page: 585 year: 2020 publication-title: Engineering – volume: 9 start-page: 8057 year: 2021 publication-title: J. Mater. Chem. C – volume: 1 year: 2016 publication-title: Nat. Rev. Mater. – volume: 110 start-page: 5029 year: 1999 publication-title: J. Chem. Phys. – volume: 29 start-page: 2044 year: 2008 publication-title: J. Comput. Chem. – volume: 37 start-page: 1030 year: 2016 publication-title: J. Comput. Chem. – volume: 44 start-page: 715 year: 2019 publication-title: MRS Bull. – volume: 96 year: 2017 publication-title: Phys. Rev. B – volume: 43 start-page: 643 year: 2022 publication-title: IEEE Electron Device Lett. – volume: 51 start-page: 714 year: 2004 publication-title: IEEE Trans. Electron Devices – volume: 92 year: 2008 publication-title: Appl. Phys. Lett. – volume: 7 start-page: 29 year: 2021 publication-title: npj Comput. Mater. – volume: 25 start-page: 6306 year: 2015 publication-title: Adv. Funct. Mater. – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 13 start-page: 1458 year: 2022 publication-title: Nat. Commun. – volume: 8 start-page: 71 year: 2020 publication-title: J. Mater. Chem. C – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 83 start-page: 4069 year: 1985 publication-title: J. Chem. Phys. – volume: 10 start-page: 3065 year: 2019 publication-title: Nat. Commun. – volume: 115 start-page: 5461 year: 2011 publication-title: J. Phys. Chem. A – volume: 19 start-page: 109 year: 1978 publication-title: Contemp. Phys. – volume: 105 start-page: 1822 year: 2017 publication-title: Proc. IEEE – volume: 59 start-page: 1758 year: 1999 publication-title: Phys. Rev. B – volume: 40 start-page: 1327 year: 2021 publication-title: IEEE Trans. Comput.–Aided Des. Integr. Circuits Syst. – volume: 42 start-page: 1148 year: 2021 publication-title: IEEE Electron Device Lett. – volume: 59 start-page: 7413 year: 1999 publication-title: Phys. Rev. B – volume: 11 start-page: 4636 year: 2020 publication-title: Nat. Commun. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 37 start-page: 1504 year: 1976 publication-title: Phys. Rev. Lett. – volume: 267 year: 2021 publication-title: Comput. Phys. Commun. – volume: 76 year: 2007 publication-title: Phys. Rev. B – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 102 year: 2007 publication-title: J. Appl. Phys. – volume: 6 start-page: 7467 year: 2015 publication-title: Nat. Commun. – volume: 103 year: 2008 publication-title: J. Appl. Phys. – volume: 41 start-page: 156 year: 2020 publication-title: Mater. Today – volume: 9 start-page: 1867 year: 2019 publication-title: Sci. Rep. – volume: 247 year: 2020 publication-title: Comput. Phys. Commun. – ident: e_1_2_9_64_1 doi: 10.1103/PhysRevB.59.1758 – ident: e_1_2_9_13_1 doi: 10.1109/LED.2021.3109582 – ident: e_1_2_9_16_1 doi: 10.1038/s41467-019-10980-w – ident: e_1_2_9_25_1 doi: 10.1103/PhysRevLett.37.1504 – ident: e_1_2_9_67_1 doi: 10.1080/00268978400101201 – ident: e_1_2_9_38_1 doi: 10.1002/adma.202000340 – ident: e_1_2_9_9_1 doi: 10.1002/adma.202208065 – ident: e_1_2_9_19_1 doi: 10.1063/1.2931951 – ident: e_1_2_9_49_1 doi: 10.1016/j.mattod.2020.07.016 – ident: e_1_2_9_41_1 doi: 10.1016/j.scriptamat.2022.114834 – ident: e_1_2_9_30_1 doi: 10.1103/PhysRevB.93.115201 – ident: e_1_2_9_11_1 doi: 10.1126/science.aay0291 – ident: e_1_2_9_28_1 doi: 10.1088/0953-8984/22/39/399801 – ident: e_1_2_9_18_1 doi: 10.1063/1.2773688 – ident: e_1_2_9_31_1 doi: 10.1038/s41598-018-37717-x – ident: e_1_2_9_5_1 doi: 10.1126/science.abi6332 – ident: e_1_2_9_2_1 doi: 10.1038/s41578-019-0159-3 – ident: e_1_2_9_57_1 doi: 10.1016/j.tsf.2021.138837 – ident: e_1_2_9_17_1 doi: 10.1109/TED.2004.825805 – ident: e_1_2_9_52_1 doi: 10.1002/jcc.24300 – ident: e_1_2_9_3_1 doi: 10.1109/TCAD.2020.3018403 – ident: e_1_2_9_27_1 doi: 10.1103/PhysRevB.76.235201 – ident: e_1_2_9_54_1 doi: 10.1002/adma.201700814 – ident: e_1_2_9_8_1 – ident: e_1_2_9_46_1 doi: 10.1016/j.cpc.2019.106949 – ident: e_1_2_9_14_1 doi: 10.1016/j.scib.2022.05.003 – ident: e_1_2_9_60_1 doi: 10.1002/aelm.202200150 – ident: e_1_2_9_70_1 doi: 10.1103/RevModPhys.73.515 – ident: e_1_2_9_43_1 doi: 10.1038/s41524-021-00496-7 – ident: e_1_2_9_65_1 doi: 10.1063/1.478401 – ident: e_1_2_9_63_1 doi: 10.1002/jcc.21057 – ident: e_1_2_9_26_1 doi: 10.1063/1.2801626 – ident: e_1_2_9_50_1 doi: 10.1038/ncomms8467 – ident: e_1_2_9_39_1 doi: 10.1002/adma.202300836 – ident: e_1_2_9_62_1 doi: 10.1103/PhysRevB.54.11169 – ident: e_1_2_9_68_1 doi: 10.1063/1.449071 – ident: e_1_2_9_1_1 doi: 10.1038/natrevmats.2016.70 – ident: e_1_2_9_56_1 doi: 10.1063/1.5008927 – ident: e_1_2_9_59_1 doi: 10.1109/LED.2022.3152207 – ident: e_1_2_9_12_1 doi: 10.1002/aelm.201900196 – ident: e_1_2_9_37_1 doi: 10.1038/s41467-022-29054-5 – ident: e_1_2_9_29_1 doi: 10.1038/s41467-020-18382-z – ident: e_1_2_9_51_1 doi: 10.1126/sciadv.aay2830 – ident: e_1_2_9_7_1 – ident: e_1_2_9_15_1 doi: 10.1016/j.eng.2020.05.007 – ident: e_1_2_9_42_1 doi: 10.1039/D1TC01433A – ident: e_1_2_9_58_1 – ident: e_1_2_9_21_1 doi: 10.1002/adfm.201500825 – ident: e_1_2_9_40_1 – ident: e_1_2_9_4_1 doi: 10.1109/JPROC.2017.2731776 – ident: e_1_2_9_44_1 doi: 10.1103/PhysRevB.96.019902 – ident: e_1_2_9_47_1 doi: 10.1002/adma.202300893 – ident: e_1_2_9_55_1 doi: 10.1039/C9TC04810C – ident: e_1_2_9_23_1 doi: 10.1002/inf2.12315 – ident: e_1_2_9_6_1 doi: 10.1038/s41578-019-0159-3 – ident: e_1_2_9_34_1 doi: 10.1002/adma.201803777 – ident: e_1_2_9_10_1 doi: 10.1021/acsami.0c03027 – ident: e_1_2_9_66_1 doi: 10.1103/PhysRevB.59.7413 – ident: e_1_2_9_33_1 doi: 10.1126/sciadv.ade0828 – ident: e_1_2_9_48_1 doi: 10.1002/anie.202101283 – ident: e_1_2_9_36_1 doi: 10.1002/adma.202208485 – ident: e_1_2_9_69_1 doi: 10.1016/j.cpc.2021.108033 – ident: e_1_2_9_24_1 doi: 10.1080/00107517808210876 – ident: e_1_2_9_32_1 doi: 10.1103/PhysRevB.93.214205 – ident: e_1_2_9_45_1 doi: 10.1103/PhysRevB.87.184115 – ident: e_1_2_9_22_1 doi: 10.1557/mrs.2019.206 – ident: e_1_2_9_61_1 – ident: e_1_2_9_20_1 doi: 10.1063/1.2930680 – ident: e_1_2_9_35_1 doi: 10.1002/adma.201908302 – ident: e_1_2_9_53_1 doi: 10.1021/jp202489s |
SSID | ssj0017734 |
Score | 2.5452793 |
Snippet | Phase change memory (PCM) and ovonic threshold switching (OTS) materials using chalcogenide glass are essential elements in advanced 3D memory chips. The... |
SourceID | osti proquest crossref wiley |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | chalcogenide glass Chalcogenides Chips (memory devices) Clusters Covalent bonds Electrons hypervalent bonds MATERIALS SCIENCE mid-gap states ovonic threshold switching phase change memory Switching |
Title | Tailoring Mid‐Gap States of Chalcogenide Glass by Pressure‐Induced Hypervalent Bonding Towards the Design of Electrical Switching Materials |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202304926 https://www.proquest.com/docview/2885210417 https://www.osti.gov/servlets/purl/1998937 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbhMxELZQuMCBf0TaUvmAxGnbtdf7d4yaplHV5UBTKbeVPV6LiCqpkq0QnHgDeEaehBk7WRKkConevNqxd9eesT-vZ75h7J2CxmY6iyPhYhep3MrIgNKRE7FFDSkTBbRRrD5k4yt1Pk2nW1H8gR-i--FGluHnazJwbVbHf0hDtXUUSe7PiSRxbpPDFqGijx1_lMjzcKycCXLwEtMNa2Msj3er76xKvQVa1w7i3MatfuEZPWV688rB3-Tz0W1rjuDbX2yO9_mmZ-zJGpXyQVCj5-xBM3_BHm9xFb5kPyZ6Frz1eDWzv77_PNM3PEBVvnD85JO-hgVq48w2_IwgOTdfeQg-XDYoTjlCcMT4GDe-S1RvXOw45TSmBifed3fFEYzyoXcpoSZPfYYeUiJ--WXWeqdPXuk22MwrdjU6nZyMo3U2hwhUGmeRTsoMEhBgcVDSJi-dSbUwCBAtosDMQtqAyxMLMcoU2mVaQy4kOK1daZxNXrPefDFv3jCucpAlYjWDWEiVBWicRBB3YbkspLFxn0Wb0axhTXVOGTeu60DSLGvq6Lrr6D5738nfBJKPOyX3STlqhCfEsQvkjARtTYGKiPP67GCjM_V6KljVsigQIsVK4G3pB_8fz6gHw1HVXe39T6V99ojKIWbygPXa5W3zFsFTaw7Zw8Gwurg89IbyG1_6Fes |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELbKcgAO_COWFvABxClt4jh_Bw5Vt9stbXqArbQ344xjsaLarXZTVeXEG8Cr8Co8Ak_CTJyELhJCQuqBW34mTmTP2N84M98w9kJCaWId-15gfevJxAivAKk9G_gGNSQLJZCjmB_Fo2P5ZhJN1ti3NhfG8UN0G25kGfV8TQZOG9Jbv1hDtbGUSl7_KBJxE1d5UF6co9e2fL0_wCF-KcRwd7wz8prCAh7ICD1oHWYxhBCASUIZlUlmi0gHBWIVg4AkNhCVYJPQgI8yqbax1pAEAqzWNiusCbHda-w6lREnuv7B246xKkgS9yM7DiikLJi0PJG-2Fr93pV1sDdHe17BuJeRcr3UDe-w720nuQiXj5tnVbEJn37jj_yvevEuu90Ab77tLOUeWytn99mtS3SMD9iXsZ66gESeT82Pz1_39Cl3aJzPLd_5oE9gjgY3NSXfI6-DFxfc5VcuShSnMiiolHyEvv0CLRjXc05lm6nBcR2evOSIt_mgjpqhJnfrIkRkJ_zd-bSq41p5ris3LTxkx1fSI49YbzaflY8ZlwmIDOFogXBPZilonCcRWuJxlorC-H3mteqjoGFzp6IiJ8rxUAtFA6u6ge2zV538qeMx-aPkOmmjQgRGNMJA8VZQKcrFRCjbZxutkqpmtlsqkaaIAn0Z4G1Ra9tf3qG2B8O8O3vyLw89ZzdG4_xQHe4fHayzm3TdpYhusF61OCufIlasime1dXL2_qoV-SeXynaS |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VRUJw4B-xbQEfQJzSJo43PwcOVdPtlrIVgq20N-OMY7FqtbvaTVWVE28Aj8Kr8Ao8CeM4CV0khITUA7f8TJzInrG_iWe-AXgusNCRinwvML7xRKy5l6NQngl8TRqShgKtozg8igbH4vW4N16Db00ujOOHaH-4Wcuo5mtr4HNttn-RhiptbCZ5tU_Eozqs8rC4OCenbfnqIKMRfsF5f2-0O_DqugIeih450CpMIwwxQB2HolfEqcl7KsgJqmjCI5HGXoEmDjX6JJMoEymFccDRKGXS3OiQ2r0G10Xkp7ZYRPauJawK4tjtY0eBjSgLxg1NpM-3V793ZRnszMicVyDuZaBcrXT9O_C96SMX4HKydVbmW_jpN_rI_6kT78LtGnazHWcn92CtmN6HW5fIGB_Al5GauHBENpzoH5-_7qs5c1iczQzb_ahOcUbmNtEF27c-B8svmMuuXBQkbougkEqyAXn2C7JfWs2ZLdpsGxxVwclLRmibZVXMjG1yrypBZK2EvT-flFVUKxuq0k0KD-H4SnrkEXSms2nxGJiIkacERnMCeyJNUNEsScCSjtOE59rvgtdoj8Say92WFDmVjoWaSzuwsh3YLrxs5eeOxeSPkhtWGSXhL0sijDbaCktpMzEJyHZhs9FRWc91S8mThDCgLwK6zStl-8s75E7WH7Zn6__y0DO48TbryzcHR4cbcNNedvmhm9ApF2fFEwKKZf60sk0GH65aj38Ctjl1QQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tailoring+Mid%E2%80%90Gap+States+of+Chalcogenide+Glass+by+Pressure%E2%80%90Induced+Hypervalent+Bonding+Towards+the+Design+of+Electrical+Switching+Materials&rft.jtitle=Advanced+functional+materials&rft.au=Xu%2C+Meng&rft.au=Xu%2C+Qundao&rft.au=Gu%2C+Rongchuan&rft.au=Wang%2C+Songyou&rft.date=2023-11-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=33&rft.issue=45&rft_id=info:doi/10.1002%2Fadfm.202304926&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202304926 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |