Oxygen Evolution Reaction in Alkaline Environment: Material Challenges and Solutions
The oxygen evolution reaction (OER) generally exists in electrochemistry‐enabled applications that are coupled with cathodic reactions like hydrogen evolution, carbon dioxide reduction, ammonia synthesis, and electrocatalytic hydrogenation. The OER heavily impacts the overall energy efficiency of th...
Saved in:
Published in | Advanced functional materials Vol. 32; no. 21 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.05.2022
Wiley Blackwell (John Wiley & Sons) |
Subjects | |
Online Access | Get full text |
ISSN | 1616-301X 1616-3028 |
DOI | 10.1002/adfm.202110036 |
Cover
Loading…
Abstract | The oxygen evolution reaction (OER) generally exists in electrochemistry‐enabled applications that are coupled with cathodic reactions like hydrogen evolution, carbon dioxide reduction, ammonia synthesis, and electrocatalytic hydrogenation. The OER heavily impacts the overall energy efficiency of these devices because the sluggish OER kinetics result in a huge overpotential, thus, a large amount of efficient catalysts are needed. The benchmark iridium and ruthenium (Ir/Ru)‐based materials (mostly used in acid media) are, however, significantly limited by their scarcity. Non‐precious metal‐based catalysts (NPMCs) have emerged as the most promising alternatives; however, they tend to degrade quickly under the harsh operating conditions of typical OER devices. Another challenge is the unsatisfying performance of OER catalysts when integrated in real‐world devices. Herein, the OER active sites for three mainstream types of NPMCs including non‐precious transition metal oxides/(oxy)hydroxides, metal‐free carbon materials, and hybrid non‐precious metal and carbon composites are reviewed. In addition, possible degradation mechanisms for active sites and mitigation strategies are discussed in detail. This review also provides insights into the gaps between R&D of NPMCs for the OER and their applications in practical devices.
Non‐precious metal‐based catalysts (NPMCs) are emerging as promising alternatives for the Ir‐/Ru‐based benchmarks for oxygen evolution reaction (OER) in alkaline systems, which, however, suffer severe degradation in practical operations. The identification of OER active sites and possible degradation mechanisms of NPMCs are reviewed. Materials‐based solutions are discussed to bridge the knowledge gap between material innovation and device integration. |
---|---|
AbstractList | The oxygen evolution reaction (OER) generally exists in electrochemistry‐enabled applications that are coupled with cathodic reactions like hydrogen evolution, carbon dioxide reduction, ammonia synthesis, and electrocatalytic hydrogenation. The OER heavily impacts the overall energy efficiency of these devices because the sluggish OER kinetics result in a huge overpotential, thus, a large amount of efficient catalysts are needed. The benchmark iridium and ruthenium (Ir/Ru)‐based materials (mostly used in acid media) are, however, significantly limited by their scarcity. Non‐precious metal‐based catalysts (NPMCs) have emerged as the most promising alternatives; however, they tend to degrade quickly under the harsh operating conditions of typical OER devices. Another challenge is the unsatisfying performance of OER catalysts when integrated in real‐world devices. Herein, the OER active sites for three mainstream types of NPMCs including non‐precious transition metal oxides/(oxy)hydroxides, metal‐free carbon materials, and hybrid non‐precious metal and carbon composites are reviewed. In addition, possible degradation mechanisms for active sites and mitigation strategies are discussed in detail. This review also provides insights into the gaps between R&D of NPMCs for the OER and their applications in practical devices.
Non‐precious metal‐based catalysts (NPMCs) are emerging as promising alternatives for the Ir‐/Ru‐based benchmarks for oxygen evolution reaction (OER) in alkaline systems, which, however, suffer severe degradation in practical operations. The identification of OER active sites and possible degradation mechanisms of NPMCs are reviewed. Materials‐based solutions are discussed to bridge the knowledge gap between material innovation and device integration. The oxygen evolution reaction (OER) generally exists in electrochemistry‐enabled applications that are coupled with cathodic reactions like hydrogen evolution, carbon dioxide reduction, ammonia synthesis, and electrocatalytic hydrogenation. The OER heavily impacts the overall energy efficiency of these devices because the sluggish OER kinetics result in a huge overpotential, thus, a large amount of efficient catalysts are needed. The benchmark iridium and ruthenium (Ir/Ru)‐based materials (mostly used in acid media) are, however, significantly limited by their scarcity. Non‐precious metal‐based catalysts (NPMCs) have emerged as the most promising alternatives; however, they tend to degrade quickly under the harsh operating conditions of typical OER devices. Another challenge is the unsatisfying performance of OER catalysts when integrated in real‐world devices. Herein, the OER active sites for three mainstream types of NPMCs including non‐precious transition metal oxides/(oxy)hydroxides, metal‐free carbon materials, and hybrid non‐precious metal and carbon composites are reviewed. In addition, possible degradation mechanisms for active sites and mitigation strategies are discussed in detail. This review also provides insights into the gaps between R&D of NPMCs for the OER and their applications in practical devices. Abstract The oxygen evolution reaction (OER) generally exists in electrochemistry‐enabled applications that are coupled with cathodic reactions like hydrogen evolution, carbon dioxide reduction, ammonia synthesis, and electrocatalytic hydrogenation. The OER heavily impacts the overall energy efficiency of these devices because the sluggish OER kinetics result in a huge overpotential, thus, a large amount of efficient catalysts are needed. The benchmark iridium and ruthenium (Ir/Ru)‐based materials (mostly used in acid media) are, however, significantly limited by their scarcity. Non‐precious metal‐based catalysts (NPMCs) have emerged as the most promising alternatives; however, they tend to degrade quickly under the harsh operating conditions of typical OER devices. Another challenge is the unsatisfying performance of OER catalysts when integrated in real‐world devices. Herein, the OER active sites for three mainstream types of NPMCs including non‐precious transition metal oxides/(oxy)hydroxides, metal‐free carbon materials, and hybrid non‐precious metal and carbon composites are reviewed. In addition, possible degradation mechanisms for active sites and mitigation strategies are discussed in detail. This review also provides insights into the gaps between R&D of NPMCs for the OER and their applications in practical devices. |
Author | Xie, Xiaohong Sokolowski, Joshua Du, Lei Wang, Wei Shao, Yuyan Park, Sehkyu Yan, Litao Qiu, Yang |
Author_xml | – sequence: 1 givenname: Xiaohong surname: Xie fullname: Xie, Xiaohong organization: Pacific Northwest National Laboratory – sequence: 2 givenname: Lei surname: Du fullname: Du, Lei organization: Guangzhou University – sequence: 3 givenname: Litao surname: Yan fullname: Yan, Litao email: litao.yan@pnnl.gov organization: Pacific Northwest National Laboratory – sequence: 4 givenname: Sehkyu surname: Park fullname: Park, Sehkyu organization: Kwangwwon University – sequence: 5 givenname: Yang surname: Qiu fullname: Qiu, Yang organization: Pacific Northwest National Laboratory – sequence: 6 givenname: Joshua surname: Sokolowski fullname: Sokolowski, Joshua organization: Pacific Northwest National Laboratory – sequence: 7 givenname: Wei surname: Wang fullname: Wang, Wei email: wei.wang@pnnl.gov organization: Pacific Northwest National Laboratory – sequence: 8 givenname: Yuyan orcidid: 0000-0001-5735-2670 surname: Shao fullname: Shao, Yuyan email: yuyan.shao@pnnl.gov organization: Pacific Northwest National Laboratory |
BackLink | https://www.osti.gov/biblio/1854648$$D View this record in Osti.gov |
BookMark | eNqFkEFPAjEQRhuDiYBePW_0DHZ2u2XXG0FQE4iJYuKtqd1ZrJYW2wXl37sIwcTEeOo0ee_LzNciDessEnIKtAuUxheyKOfdmMZQ_xJ-QJrAgXcSGmeN_QxPR6QVwiul0OslrEmmd5_rGdpouHJmWWlno3uU6nvQNuqbN2m0xWhoV9o7O0dbXUYTWaHX0kSDF2kM2hmGSNoiethFhGNyWEoT8GT3tsnjaDgd3HTGd9e3g_64o1hKeSePe1xCwXiewjNPscgwRgDZo0VRcGA5lFAyyhkHWiiVxInipUwYgzylGU2TNjnb5rpQaRGUrlC9KGctqkpAljLOsho630IL796XGCrx6pbe1nuJmHPOoF5lQ7EtpbwLwWMp6jS5uabyUhsBVGxKFpuSxb7kWuv-0hZez6Vf_y3kW-FDG1z_Q4v-1Wjy434BalmP7A |
CitedBy_id | crossref_primary_10_31818_JKNST_2023_09_6_3_240 crossref_primary_10_1016_j_cej_2023_143764 crossref_primary_10_1007_s11837_024_06559_6 crossref_primary_10_1002_smll_202410390 crossref_primary_10_1002_smll_202403971 crossref_primary_10_1016_j_cap_2023_03_014 crossref_primary_10_1016_j_ccr_2022_214973 crossref_primary_10_1039_D4QI02487G crossref_primary_10_1016_j_nanoen_2024_109402 crossref_primary_10_1088_2515_7655_ad040f crossref_primary_10_1016_j_ijhydene_2024_03_318 crossref_primary_10_1021_acs_chemmater_4c01684 crossref_primary_10_1073_pnas_2316054120 crossref_primary_10_1016_j_seppur_2025_132364 crossref_primary_10_1016_j_mcat_2024_114709 crossref_primary_10_1002_celc_202300558 crossref_primary_10_1002_smll_202411479 crossref_primary_10_1021_acs_langmuir_3c01540 crossref_primary_10_1038_s41467_023_42696_3 crossref_primary_10_1016_j_apsusc_2024_161088 crossref_primary_10_1016_j_apmt_2025_102637 crossref_primary_10_1021_acs_inorgchem_4c04507 crossref_primary_10_3390_catal13121456 crossref_primary_10_1016_j_mtsust_2024_100947 crossref_primary_10_1016_j_mtcata_2023_100012 crossref_primary_10_3390_nano12121975 crossref_primary_10_1016_j_cej_2023_144839 crossref_primary_10_1021_acsaem_4c01987 crossref_primary_10_1016_j_apcatb_2024_124504 crossref_primary_10_1021_acsami_3c18637 crossref_primary_10_1063_5_0203381 crossref_primary_10_1016_j_jcis_2024_07_118 crossref_primary_10_1088_2631_7990_ac8e3a crossref_primary_10_1002_aenm_202302170 crossref_primary_10_1016_j_scowo_2025_100046 crossref_primary_10_1016_j_cej_2025_160641 crossref_primary_10_1021_acs_energyfuels_3c02987 crossref_primary_10_1002_advs_202410812 crossref_primary_10_1016_j_jcis_2022_12_128 crossref_primary_10_1016_j_jallcom_2024_175879 crossref_primary_10_3390_ma16083280 crossref_primary_10_1016_j_apsusc_2025_162333 crossref_primary_10_1039_D4SE01034E crossref_primary_10_1016_j_ijhydene_2024_10_416 crossref_primary_10_1021_acs_inorgchem_4c03510 crossref_primary_10_1039_D2TA09788E crossref_primary_10_3389_fchem_2022_1071274 crossref_primary_10_1016_j_jelechem_2023_117703 crossref_primary_10_1016_j_jelechem_2022_116679 crossref_primary_10_1021_acsanm_4c04815 crossref_primary_10_1002_smll_202311675 crossref_primary_10_1016_j_apsusc_2023_158810 crossref_primary_10_1021_acsenergylett_3c02758 crossref_primary_10_1016_j_seppur_2025_132574 crossref_primary_10_1039_D4NJ04898A crossref_primary_10_1016_j_ijhydene_2024_06_048 crossref_primary_10_1088_1361_648X_acdbab crossref_primary_10_1016_j_jpowsour_2024_235942 crossref_primary_10_1039_D3RA07003D crossref_primary_10_1039_D3RA05717H crossref_primary_10_1002_eem2_12813 crossref_primary_10_1002_adfm_202421352 crossref_primary_10_1007_s41871_024_00224_x crossref_primary_10_1016_j_cej_2024_149799 crossref_primary_10_1021_acs_jpcc_2c08946 crossref_primary_10_1039_D2NR05783B crossref_primary_10_1016_j_mssp_2025_109396 crossref_primary_10_1016_j_cej_2025_160518 crossref_primary_10_1039_D3RA05164A crossref_primary_10_1016_j_apcatb_2022_122296 crossref_primary_10_1016_j_apcatb_2022_122294 crossref_primary_10_1021_acs_inorgchem_4c04422 crossref_primary_10_1039_D3YA00572K crossref_primary_10_1016_j_ijhydene_2022_08_186 crossref_primary_10_1021_acs_inorgchem_4c04788 crossref_primary_10_1002_adma_202304494 crossref_primary_10_1039_D2CC06790K crossref_primary_10_1149_1945_7111_ad4a0c crossref_primary_10_3740_MRSK_2022_32_8_339 crossref_primary_10_1039_D4RA03360D crossref_primary_10_1016_j_ijhydene_2024_04_207 crossref_primary_10_1021_acs_est_4c10827 crossref_primary_10_1002_ente_202401512 crossref_primary_10_1039_D3NR03676F crossref_primary_10_1039_D4CC00923A crossref_primary_10_1007_s12274_023_5670_6 crossref_primary_10_1016_j_ceramint_2024_03_188 crossref_primary_10_1016_j_jcis_2023_05_032 crossref_primary_10_1021_acsami_4c19069 crossref_primary_10_1021_acscatal_4c06509 crossref_primary_10_1149_1945_7111_ad02c4 crossref_primary_10_1002_smll_202310318 crossref_primary_10_1002_inf2_12608 crossref_primary_10_20517_cs_2024_26 crossref_primary_10_1007_s40820_024_01505_2 crossref_primary_10_1016_j_ijhydene_2024_12_044 crossref_primary_10_1039_D2MH01143C crossref_primary_10_1021_acscatal_4c04454 crossref_primary_10_3390_pr10081502 crossref_primary_10_1002_advs_202303321 crossref_primary_10_1021_acscatal_4c05108 crossref_primary_10_1039_D4TA05347H crossref_primary_10_1016_j_fuel_2024_132539 crossref_primary_10_1039_D3TA08079J crossref_primary_10_1016_j_jcat_2024_115352 crossref_primary_10_1002_asia_202301039 crossref_primary_10_1016_j_xcrp_2024_102165 crossref_primary_10_3866_PKU_WHXB202306029 crossref_primary_10_1002_ange_202303200 crossref_primary_10_1039_D3CP04701F crossref_primary_10_1002_metm_11 crossref_primary_10_1002_adem_202400807 crossref_primary_10_1039_D3NA00074E crossref_primary_10_1002_ange_202416141 crossref_primary_10_1016_j_jssc_2025_125301 crossref_primary_10_1002_advs_202310231 crossref_primary_10_1016_j_ijhydene_2022_12_066 crossref_primary_10_1002_advs_202309364 crossref_primary_10_1016_j_jallcom_2025_178464 crossref_primary_10_1021_acs_chemrev_3c00723 crossref_primary_10_1021_acsnano_4c07340 crossref_primary_10_2139_ssrn_4197768 crossref_primary_10_1016_j_ijhydene_2023_11_328 crossref_primary_10_1016_j_surfin_2023_102857 crossref_primary_10_1039_D3EE00987D crossref_primary_10_1063_5_0154955 crossref_primary_10_1016_j_materresbull_2025_113333 crossref_primary_10_1002_tcr_202400151 crossref_primary_10_1021_acsenergylett_3c01040 crossref_primary_10_3390_catal13091240 crossref_primary_10_1016_j_mtchem_2024_102404 crossref_primary_10_1155_2024_7856850 crossref_primary_10_1016_j_fuel_2023_130083 crossref_primary_10_1016_j_ijhydene_2024_05_224 crossref_primary_10_1002_cctc_202400022 crossref_primary_10_1016_j_cej_2023_145993 crossref_primary_10_1016_j_nanoen_2024_110565 crossref_primary_10_1002_aenm_202200742 crossref_primary_10_1039_D4TA03872J crossref_primary_10_1021_acs_jpcc_4c07614 crossref_primary_10_1016_j_materresbull_2024_113285 crossref_primary_10_1039_D4TA02771J crossref_primary_10_3390_catal13091230 crossref_primary_10_3390_en17174514 crossref_primary_10_1039_D3TA05897B crossref_primary_10_1039_D4TA07515C crossref_primary_10_1021_acs_energyfuels_4c00801 crossref_primary_10_1039_D3QM00935A crossref_primary_10_1021_acsaem_4c01920 crossref_primary_10_1002_cplu_202300323 crossref_primary_10_1002_ange_202314303 crossref_primary_10_1016_j_checat_2023_100643 crossref_primary_10_1016_j_applthermaleng_2024_122890 crossref_primary_10_1016_j_jcat_2024_115675 crossref_primary_10_1021_acs_energyfuels_4c05389 crossref_primary_10_1016_j_jcis_2024_06_057 crossref_primary_10_1021_acs_jpcc_2c08303 crossref_primary_10_1039_D4TA00131A crossref_primary_10_1016_j_fuel_2024_131762 crossref_primary_10_1002_sstr_202300106 crossref_primary_10_1007_s41918_024_00219_8 crossref_primary_10_1016_j_jcis_2024_05_085 crossref_primary_10_1039_D4TA05436A crossref_primary_10_1016_j_jcis_2024_03_124 crossref_primary_10_3390_nano14010064 crossref_primary_10_1016_j_partic_2024_06_014 crossref_primary_10_3390_catal15030292 crossref_primary_10_1021_acsami_3c04454 crossref_primary_10_1039_D4NR05492J crossref_primary_10_1016_j_ijhydene_2023_11_333 crossref_primary_10_1016_j_materresbull_2024_113262 crossref_primary_10_1021_acssuschemeng_4c05913 crossref_primary_10_1016_j_jcis_2024_04_156 crossref_primary_10_1016_j_ijhydene_2024_07_226 crossref_primary_10_1021_acs_energyfuels_3c04077 crossref_primary_10_26599_NRE_2023_9120106 crossref_primary_10_1016_j_diamond_2025_112143 crossref_primary_10_1016_j_jpcs_2024_112055 crossref_primary_10_1002_adfm_202307010 crossref_primary_10_3389_fenrg_2024_1465349 crossref_primary_10_1016_j_jallcom_2024_175969 crossref_primary_10_1016_j_ijhydene_2024_08_036 crossref_primary_10_1002_smll_202207461 crossref_primary_10_1021_acsaem_2c02843 crossref_primary_10_1016_j_cej_2023_142443 crossref_primary_10_1021_acs_inorgchem_2c04154 crossref_primary_10_1016_j_jcis_2023_04_070 crossref_primary_10_1021_acsami_4c00185 crossref_primary_10_1149_2162_8777_aca793 crossref_primary_10_1002_smll_202405225 crossref_primary_10_1039_D4GC01788A crossref_primary_10_1021_acs_inorgchem_4c02194 crossref_primary_10_1021_acsami_5c01010 crossref_primary_10_1002_adfm_202416834 crossref_primary_10_1039_D4TA02234C crossref_primary_10_1002_aenm_202303350 crossref_primary_10_1016_j_carbon_2022_09_018 crossref_primary_10_1002_cssc_202402112 crossref_primary_10_1016_j_jallcom_2025_179378 crossref_primary_10_1016_j_mtchem_2023_101567 crossref_primary_10_1016_j_apcatb_2022_122311 crossref_primary_10_1016_j_apsusc_2024_159549 crossref_primary_10_1002_adfm_202208399 crossref_primary_10_1016_j_apsusc_2024_161747 crossref_primary_10_1039_D3QM00291H crossref_primary_10_1002_anie_202311606 crossref_primary_10_1016_j_apsusc_2022_155741 crossref_primary_10_1002_cssc_202202126 crossref_primary_10_1016_j_inoche_2024_113421 crossref_primary_10_1016_j_apsusc_2023_158176 crossref_primary_10_1021_acsnano_4c08058 crossref_primary_10_1016_j_elecom_2023_107599 crossref_primary_10_1016_j_enchem_2022_100087 crossref_primary_10_26599_NR_2025_94907102 crossref_primary_10_3390_catal14090626 crossref_primary_10_1016_j_jallcom_2024_175051 crossref_primary_10_1039_D3RA01845H crossref_primary_10_1038_s44172_025_00344_2 crossref_primary_10_1007_s11708_024_0916_x crossref_primary_10_1016_j_jcis_2024_12_107 crossref_primary_10_1021_acsnano_5c00099 crossref_primary_10_1039_D2CS00698G crossref_primary_10_1002_cctc_202200981 crossref_primary_10_1016_j_coelec_2022_101136 crossref_primary_10_1016_j_cej_2024_158738 crossref_primary_10_1016_j_apcatb_2023_122715 crossref_primary_10_1016_j_jelechem_2023_118012 crossref_primary_10_1021_acs_jpcc_2c06171 crossref_primary_10_1021_acssuschemeng_4c05790 crossref_primary_10_1016_j_jelechem_2025_118931 crossref_primary_10_1134_S1023193524700344 crossref_primary_10_1016_j_jcis_2022_09_053 crossref_primary_10_1007_s43207_024_00414_9 crossref_primary_10_1002_smll_202407564 crossref_primary_10_1016_j_electacta_2023_142851 crossref_primary_10_1016_j_ceramint_2024_05_319 crossref_primary_10_1016_j_jallcom_2022_168185 crossref_primary_10_1073_pnas_2317247121 crossref_primary_10_1016_j_ijhydene_2025_03_011 crossref_primary_10_1016_j_jelechem_2024_118424 crossref_primary_10_1039_D2DT00970F crossref_primary_10_1021_acs_energyfuels_3c03298 crossref_primary_10_1039_D3CP02979D crossref_primary_10_1021_acs_nanolett_4c01450 crossref_primary_10_1021_acsnano_4c09259 crossref_primary_10_1016_j_est_2025_116314 crossref_primary_10_3390_batteries10060197 crossref_primary_10_1002_adfm_202210101 crossref_primary_10_1002_adfm_202416117 crossref_primary_10_1016_j_jallcom_2023_171771 crossref_primary_10_1021_acsnano_3c05224 crossref_primary_10_1016_j_cej_2024_157869 crossref_primary_10_1002_smll_202305965 crossref_primary_10_1039_D3CE01266B crossref_primary_10_1039_D4NR00170B crossref_primary_10_1016_j_matre_2024_100283 crossref_primary_10_1039_D2DT02925A crossref_primary_10_1002_advs_202205889 crossref_primary_10_1002_aenm_202400570 crossref_primary_10_1016_j_jcis_2023_12_159 crossref_primary_10_1002_smll_202308948 crossref_primary_10_1016_j_cej_2024_156764 crossref_primary_10_1016_j_cej_2022_139105 crossref_primary_10_1016_j_jallcom_2023_172314 crossref_primary_10_1039_D3TA05082C crossref_primary_10_1002_cctc_202300562 crossref_primary_10_1016_j_cej_2022_140694 crossref_primary_10_3390_catal14110752 crossref_primary_10_1002_chem_202400651 crossref_primary_10_3390_molecules29246018 crossref_primary_10_1021_acscatal_4c03814 crossref_primary_10_1016_j_ijhydene_2023_08_279 crossref_primary_10_1039_D3TA03202G crossref_primary_10_1016_j_jcis_2023_12_048 crossref_primary_10_1002_smll_202410739 crossref_primary_10_2174_0115734137274085231214100609 crossref_primary_10_1021_acs_inorgchem_3c03115 crossref_primary_10_1002_cnl2_195 crossref_primary_10_1021_acs_jpcc_3c01276 crossref_primary_10_3390_pr13030623 crossref_primary_10_1016_j_jpowsour_2025_236402 crossref_primary_10_1002_aenm_202303730 crossref_primary_10_1039_D3NH00336A crossref_primary_10_1002_cplu_202400278 crossref_primary_10_1002_aesr_202300057 crossref_primary_10_1039_D3QM00940H crossref_primary_10_1021_acsmaterialslett_4c00413 crossref_primary_10_1016_j_ijhydene_2024_09_104 crossref_primary_10_1021_acsmaterialslett_4c00659 crossref_primary_10_1002_adfm_202500861 crossref_primary_10_1016_j_ijhydene_2024_02_195 crossref_primary_10_1021_acsami_4c19869 crossref_primary_10_1016_j_jtice_2023_105201 crossref_primary_10_1016_j_nanoen_2024_110089 crossref_primary_10_1016_j_nanoen_2024_110088 crossref_primary_10_1039_D3CY00674C crossref_primary_10_1039_D3QM00722G crossref_primary_10_1016_j_mtener_2024_101652 crossref_primary_10_1021_acsami_2c18799 crossref_primary_10_1021_acs_inorgchem_4c05056 crossref_primary_10_1016_j_cej_2024_156977 crossref_primary_10_1002_chem_202401759 crossref_primary_10_1016_j_esci_2025_100398 crossref_primary_10_3390_nano13172463 crossref_primary_10_1007_s12598_022_02206_8 crossref_primary_10_54227_elab_20220013 crossref_primary_10_1039_D4MA00362D crossref_primary_10_1021_acsmaterialslett_4c00409 crossref_primary_10_1021_acs_energyfuels_4c04645 crossref_primary_10_1002_tcr_202300330 crossref_primary_10_3390_jcs7120486 crossref_primary_10_1016_j_ijhydene_2024_02_344 crossref_primary_10_1002_aenm_202402034 crossref_primary_10_1002_cey2_630 crossref_primary_10_1039_D4DT00839A crossref_primary_10_1016_j_ensm_2023_02_030 crossref_primary_10_1002_cey2_519 crossref_primary_10_1016_j_jece_2023_111492 crossref_primary_10_1002_adsu_202300193 crossref_primary_10_1002_smll_202407374 crossref_primary_10_1021_acsami_4c08677 crossref_primary_10_1016_j_cattod_2024_114597 crossref_primary_10_1016_j_cej_2023_148122 crossref_primary_10_1039_D4TA01193G crossref_primary_10_1039_D2NJ04475G crossref_primary_10_1002_advs_202408221 crossref_primary_10_1039_D3MH00644A crossref_primary_10_1021_acs_inorgchem_3c01617 crossref_primary_10_1039_D2CP02594A crossref_primary_10_1002_adfm_202406175 crossref_primary_10_1002_cey2_418 crossref_primary_10_1002_smll_202304007 crossref_primary_10_1016_j_ceramint_2023_11_082 crossref_primary_10_1021_acscentsci_4c01363 crossref_primary_10_1002_adma_202305844 crossref_primary_10_1021_acs_energyfuels_3c04525 crossref_primary_10_1039_D2GC02958H crossref_primary_10_1002_smll_202401504 crossref_primary_10_1039_D4SE01073F crossref_primary_10_1039_D3DT01739G crossref_primary_10_1016_j_ijhydene_2024_03_065 crossref_primary_10_1039_D2TA09562A crossref_primary_10_1002_ente_202401049 crossref_primary_10_1016_j_ijhydene_2024_10_255 crossref_primary_10_1016_j_electacta_2025_145864 crossref_primary_10_1039_D3MH01339A crossref_primary_10_1002_cey2_708 crossref_primary_10_1021_acs_nanolett_5c00465 crossref_primary_10_1103_PhysRevB_108_155403 crossref_primary_10_1016_j_apsusc_2022_154695 crossref_primary_10_1016_j_fuel_2024_133029 crossref_primary_10_3390_ma17112617 crossref_primary_10_1002_adfm_202406587 crossref_primary_10_1016_j_jallcom_2023_171859 crossref_primary_10_1002_celc_202300647 crossref_primary_10_1016_j_jallcom_2023_170652 crossref_primary_10_1039_D4CP01213E crossref_primary_10_1002_asia_202300946 crossref_primary_10_1002_smtd_202201130 crossref_primary_10_1039_D4NJ03648D crossref_primary_10_1021_acs_energyfuels_2c02236 crossref_primary_10_1016_j_jcis_2023_07_130 crossref_primary_10_1021_acsmaterialslett_4c00716 crossref_primary_10_3390_nano15030210 crossref_primary_10_1016_j_jechem_2024_06_045 crossref_primary_10_1021_acsaem_4c02585 crossref_primary_10_1021_acsanm_4c02787 crossref_primary_10_1021_acsomega_2c04044 crossref_primary_10_1007_s11581_024_05443_2 crossref_primary_10_1039_D2CC05270A crossref_primary_10_1016_j_colsurfa_2022_130070 crossref_primary_10_1016_j_jallcom_2022_168175 crossref_primary_10_1038_s41467_024_50325_w crossref_primary_10_1002_eem2_12526 crossref_primary_10_1016_j_ijhydene_2024_03_007 crossref_primary_10_1002_anie_202303200 crossref_primary_10_1016_j_nanoen_2023_108884 crossref_primary_10_1002_cey2_608 crossref_primary_10_1002_eem2_12441 crossref_primary_10_1016_j_chphma_2022_11_001 crossref_primary_10_3390_molecules29133127 crossref_primary_10_1039_D2TA09039B crossref_primary_10_1002_adma_202406251 crossref_primary_10_1016_j_cej_2022_139527 crossref_primary_10_1063_5_0232980 crossref_primary_10_1149_1945_7111_acc896 crossref_primary_10_1039_D4NR01144A crossref_primary_10_1002_adfm_202302234 crossref_primary_10_1039_D2TA06858C crossref_primary_10_1016_j_nxsust_2023_100023 crossref_primary_10_1002_smll_202309859 crossref_primary_10_1016_j_jallcom_2025_178952 crossref_primary_10_1021_acs_chemmater_4c02803 crossref_primary_10_1002_adfm_202410618 crossref_primary_10_1007_s12274_022_4874_7 crossref_primary_10_1016_j_diamond_2025_111980 crossref_primary_10_1002_anie_202314303 crossref_primary_10_1039_D4TA05168H crossref_primary_10_1039_D3TA06817J crossref_primary_10_1002_adma_202313378 crossref_primary_10_1016_j_ijhydene_2023_03_090 crossref_primary_10_1002_smll_202411579 crossref_primary_10_1016_j_ijhydene_2022_07_206 crossref_primary_10_1039_D3CS01031G crossref_primary_10_1016_j_cej_2024_156219 crossref_primary_10_1002_ange_202311606 crossref_primary_10_1002_anie_202416141 crossref_primary_10_1016_j_mcat_2023_113383 |
Cites_doi | 10.1038/s41467-019-12994-w 10.1149/1.2086015 10.1007/s40243-015-0046-9 10.1002/adma.201602912 10.1021/acs.chemmater.5b04457 10.1016/j.nanoen.2014.09.009 10.1039/C9NR07832K 10.1002/adma.201506112 10.1002/er.6983 10.1039/C6EE01046F 10.1021/ja509879r 10.1039/C9SE01240K 10.1021/acs.chemrev.6b00398 10.1039/C5EE03124A 10.1002/adma.201305608 10.1016/j.nanoen.2016.01.027 10.1039/C6TA04187F 10.1016/j.jcat.2017.07.001 10.1002/adma.201604942 10.2172/1507088 10.1016/j.jpowsour.2012.06.015 10.1002/adfm.201908167 10.1039/C7EE01702B 10.1002/adma.201606800 10.1002/adma.201802912 10.1126/sciadv.1501122 10.1002/adma.201902509 10.1002/anie.201311223 10.1039/C4CC07120D 10.1038/nmat4938 10.1021/acsnano.7b08721 10.1016/j.carbon.2012.03.050 10.1021/acs.chemmater.5b03148 10.1002/adfm.202102918 10.1002/anie.201409524 10.1149/2.1441704jes 10.1021/ja405351s 10.1002/cssc.201402118 10.1021/acscatal.5b02432 10.1038/ncomms2812 10.1038/s41560-020-0577-x 10.1021/acscentsci.5b00227 10.1002/adma.201601406 10.1016/j.jelechem.2010.10.004 10.1021/jacs.9b05006 10.1016/j.ijhydene.2019.01.022 10.1002/anie.201204958 10.2172/1557965 10.1021/la501246e 10.1002/celc.201402262 10.1021/acsnano.7b06595 10.1021/acs.chemrev.5b00073 10.1038/nmat3313 10.1002/cctc.201601268 10.1039/C5EE01155H 10.1149/2.0301908jes 10.1126/science.aaf1525 10.1021/acscatal.8b04001 10.1016/j.apcatb.2018.08.037 10.1038/s41929-019-0325-4 10.1002/cctc.201000126 10.1021/jp506946b 10.1038/nnano.2015.48 10.1002/adma.201703185 10.1016/0360-3199(83)90162-3 10.1002/smll.201802767 10.1038/ncomms12876 10.1016/j.apcatb.2020.118771 10.1016/j.jcat.2014.12.033 10.1021/jacs.5b10525 10.1021/acs.jpcc.8b03269 10.1002/anie.202015060 10.1002/tcr.201800162 10.1038/s41560-020-0576-y 10.1039/C4CS00448E 10.1038/s41560-019-0355-9 10.1039/C9EE01872G 10.1016/j.electacta.2016.09.116 10.1016/j.jcat.2018.10.025 10.1016/j.ijhydene.2016.08.118 10.1021/acsnano.6b05914 10.1016/j.nanoen.2015.07.008 10.1038/ncomms3390 10.1002/anie.201701531 10.1002/cssc.201301401 10.1021/ja405997s 10.1038/s41929-020-00525-6 10.1016/j.pecs.2009.11.002 10.1002/adma.201805876 10.1002/advs.201800036 10.1039/C5EE03316K 10.1016/j.joule.2021.05.006 10.1149/2.0641805jes 10.1038/nmat4738 10.1038/nenergy.2016.53 10.1039/C9CS00607A 10.1016/j.apcatb.2014.07.049 10.1039/c2ee22146b 10.1016/j.joule.2021.05.005 10.1021/acs.chemmater.9b02790 10.1103/PhysRevB.87.165401 10.1002/anie.201610119 10.1021/acs.jpcc.8b08519 10.1021/j100238a048 10.1126/science.1212858 10.1016/j.apcatb.2020.118967 10.3390/membranes11060397 10.1002/adma.201908126 10.1016/j.rser.2017.05.258 10.1038/nchem.2695 10.1080/1536383X.2018.1448793 10.1002/celc.201500268 10.1038/nmat3087 10.1021/jacs.5b00281 10.1016/j.apsusc.2019.06.076 10.1126/science.aad4998 10.1021/nl2031037 10.1038/s41929-017-0008-y 10.1038/s41929-020-0465-6 10.1039/C7TA10892C 10.1021/acsnano.7b03290 10.1021/jacs.5b11713 10.1021/acsenergylett.6b00681 10.1002/adma.201806326 10.1016/j.chempr.2017.12.005 10.1016/j.jelechem.2006.11.008 10.1002/adfm.201704638 10.1002/cctc.201702000 10.1038/s41467-020-16237-1 10.1038/ncomms4949 10.1021/ja107719u 10.1038/s41560-020-00720-6 10.1021/acsnano.8b06312 10.1021/ja510442p 10.1021/acscatal.0c04200 10.1002/anie.201910716 10.1038/s41929-020-0496-z 10.1021/acs.jpcc.8b01397 10.1021/jz501077u 10.1021/jacs.7b02622 10.1016/j.nanoen.2017.07.006 10.1021/acsenergylett.9b00382 10.3390/ma12020211 10.1039/C5MH00096C 10.1021/nl015549q 10.1021/acscatal.5b01638 10.1002/adma.201604437 10.1038/s41929-018-0162-x 10.1002/aenm.201602928 10.1021/jz301414z 10.1002/aenm.201501492 10.1002/anie.201710852 10.1002/adma.201606793 10.1021/acscatal.6b02479 10.1021/jacs.9b05268 10.1021/acscatal.5b00601 10.1016/j.nanoen.2015.04.005 10.1002/advs.201400015 10.1016/j.carbon.2017.08.003 10.1039/C4EE01303D 10.1021/acscatal.6b01503 10.1149/1945-7111/aba792 10.1149/2.0231611jes 10.1002/anie.201902114 10.1039/C6EE03265F 10.1002/smll.201603793 10.1016/j.electacta.2016.04.034 10.1002/adma.201602270 10.1126/science.aam7092 10.1002/adfm.201910741 10.1002/anie.201804349 |
ContentType | Journal Article |
Copyright | 2022 Battelle Memorial Institute. Advanced Functional Materials published by Wiley‐VCH GmbH 2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 Battelle Memorial Institute. Advanced Functional Materials published by Wiley‐VCH GmbH – notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M OTOTI |
DOI | 10.1002/adfm.202110036 |
DatabaseName | Wiley Online Library Open Access CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace OSTI.GOV |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 1854648 10_1002_adfm_202110036 ADFM202110036 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: Guangdong Natural Science Foundation – fundername: U.S. Department of Energy funderid: DE‐AC05‐76RLO1830 – fundername: Energy Storage Materials Initiative – fundername: National Natural Science Foundation of China funderid: 21805064 – fundername: Pacific Northwest National Laboratory |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M OTOTI |
ID | FETCH-LOGICAL-c4506-9276a1d46951b65ed8e2e11a70ddd61491f1f4064610dcc323c6fa34419508053 |
IEDL.DBID | 24P |
ISSN | 1616-301X |
IngestDate | Sun Jul 13 03:03:15 EDT 2025 Fri Jul 25 06:11:52 EDT 2025 Tue Jul 01 00:30:26 EDT 2025 Thu Apr 24 22:54:42 EDT 2025 Wed Jan 22 16:26:15 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
License | Attribution-NonCommercial |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4506-9276a1d46951b65ed8e2e11a70ddd61491f1f4064610dcc323c6fa34419508053 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE DE‐AC05‐76RLO1830 |
ORCID | 0000-0001-5735-2670 0000000157352670 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202110036 |
PQID | 2666415068 |
PQPubID | 2045204 |
PageCount | 19 |
ParticipantIDs | osti_scitechconnect_1854648 proquest_journals_2666415068 crossref_citationtrail_10_1002_adfm_202110036 crossref_primary_10_1002_adfm_202110036 wiley_primary_10_1002_adfm_202110036_ADFM202110036 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-01 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: Germany |
PublicationTitle | Advanced functional materials |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc Wiley Blackwell (John Wiley & Sons) |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley Blackwell (John Wiley & Sons) |
References | 2018; 165 2013; 4 2019; 11 2019; 10 2019; 12 2014; 26 2019; 19 1983; 8 2020; 167 2020; 11 2012; 11 2019; 166 2018; 6 2018; 5 2018; 4 2015; 137 2018; 1 2013; 52 2016; 41 2018; 30 2017; 164 2010; 2 2014; 10 2018; 28 2019; 9 2019; 4 2010; 36 2021; 45 2019; 31 2013; 87 2019; 2 2015; 51 2015; 54 2020; 269 2016; 204 2020; 32 2007; 607 2018; 26 2016; 163 2011; 133 2017; 139 2016; 4 2012; 50 2016; 6 2016; 7 2016; 1 2016; 2 2015; 115 2020; 30 2020; 272 2016; 218 2019; 44 2018; 239 2017; 56 1983; 87 2016; 29 2014; 30 2018; 12 2016; 28 2021; 60 2018; 10 2016; 9 2011; 660 2018; 14 2018; 122 2017; 7 2017; 2 2018; 368 2019; 58 2018; 81 2011; 11 2011; 10 2017; 353 2017; 355 2017; 9 2017; 358 2014; 1 2020; 5 2014; 5 2020; 4 2021; 31 2020; 3 2017; 39 2015; 44 2020; 49 2016; 352 2016; 116 2017; 123 2014; 7 2012; 217 2014; 53 2014; 118 2015; 2 2015; 1 2015; 163 2011; 334 2015; 15 2021; 5 2015; 5 2015; 16 2015; 4 2012 2015; 10 2017; 29 2015; 328 2019; 141 2015; 8 1991; 138 2015; 27 2012; 3 2021; 11 2017; 16 2017; 11 2017; 10 2017; 13 2019 2018 2013; 135 2016; 138 2001; 1 2019; 490 2012; 5 2018; 57 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_40_1 e_1_2_10_109_1 Bladergroen B. (e_1_2_10_147_1) 2012 e_1_2_10_131_1 e_1_2_10_158_1 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_139_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_116_1 e_1_2_10_150_1 e_1_2_10_6_1 e_1_2_10_55_1 e_1_2_10_135_1 e_1_2_10_173_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_78_1 e_1_2_10_112_1 e_1_2_10_154_1 e_1_2_10_13_1 e_1_2_10_32_1 e_1_2_10_51_1 e_1_2_10_120_1 e_1_2_10_166_1 e_1_2_10_82_1 e_1_2_10_128_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_105_1 e_1_2_10_124_1 e_1_2_10_162_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_101_1 e_1_2_10_143_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_41_1 e_1_2_10_132_1 e_1_2_10_155_1 e_1_2_10_159_1 e_1_2_10_90_1 e_1_2_10_71_1 e_1_2_10_117_1 e_1_2_10_170_1 e_1_2_10_94_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_113_1 e_1_2_10_136_1 e_1_2_10_151_1 e_1_2_10_174_1 e_1_2_10_38_1 e_1_2_10_98_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_121_1 e_1_2_10_144_1 e_1_2_10_167_1 e_1_2_10_148_1 e_1_2_10_60_1 e_1_2_10_106_1 e_1_2_10_129_1 e_1_2_10_83_1 e_1_2_10_64_1 e_1_2_10_102_1 e_1_2_10_125_1 e_1_2_10_140_1 e_1_2_10_163_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_68_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_42_1 e_1_2_10_110_1 e_1_2_10_156_1 e_1_2_10_91_1 e_1_2_10_72_1 e_1_2_10_95_1 e_1_2_10_118_1 e_1_2_10_4_1 e_1_2_10_53_1 e_1_2_10_137_1 e_1_2_10_171_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_114_1 e_1_2_10_152_1 e_1_2_10_8_1 e_1_2_10_57_1 e_1_2_10_133_1 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_30_1 e_1_2_10_119_1 e_1_2_10_145_1 e_1_2_10_168_1 e_1_2_10_80_1 e_1_2_10_149_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_107_1 e_1_2_10_126_1 e_1_2_10_160_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_103_1 e_1_2_10_141_1 e_1_2_10_122_1 e_1_2_10_164_1 e_1_2_10_24_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_108_1 e_1_2_10_130_1 e_1_2_10_157_1 e_1_2_10_92_1 e_1_2_10_1_1 e_1_2_10_73_1 e_1_2_10_115_1 e_1_2_10_138_1 e_1_2_10_172_1 e_1_2_10_96_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 e_1_2_10_111_1 e_1_2_10_134_1 e_1_2_10_153_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_146_1 e_1_2_10_169_1 e_1_2_10_81_1 e_1_2_10_62_1 e_1_2_10_104_1 e_1_2_10_127_1 e_1_2_10_161_1 e_1_2_10_85_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_100_1 e_1_2_10_123_1 e_1_2_10_142_1 e_1_2_10_165_1 e_1_2_10_47_1 e_1_2_10_89_1 |
References_xml | – volume: 87 start-page: 2960 year: 1983 publication-title: J. Phys. Chem. – volume: 10 start-page: 742 year: 2017 publication-title: Energy Environ. Sci. – volume: 2 start-page: 763 year: 2019 publication-title: Nat. Catal. – volume: 137 start-page: 4347 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 44 start-page: 5148 year: 2015 publication-title: Chem. Soc. Rev. – volume: 138 start-page: 36 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 378 year: 2020 publication-title: Nat. Energy – volume: 6 start-page: 1153 year: 2016 publication-title: ACS Catal. – volume: 4 start-page: 2390 year: 2013 publication-title: Nat. Commun. – volume: 14 year: 2018 publication-title: Small – volume: 7 start-page: 1669 year: 2014 publication-title: ChemSusChem – volume: 51 start-page: 1616 year: 2015 publication-title: Chem. Commun. – volume: 2 start-page: 1929 year: 2015 publication-title: ChemElectroChem – volume: 138 start-page: 2549 year: 1991 publication-title: J. Electrochem. Soc. – volume: 4 start-page: 329 year: 2019 publication-title: Nat. Energy – volume: 39 start-page: 245 year: 2017 publication-title: Nano Energy – volume: 11 start-page: 7293 year: 2017 publication-title: ACS Nano – volume: 4 start-page: 987 year: 2019 publication-title: ACS Energy. Lett. – volume: 54 start-page: 2100 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 122 year: 2018 publication-title: J. Phys. Chem. C – volume: 272 year: 2020 publication-title: Appl. Catal., B – volume: 28 start-page: 3000 year: 2016 publication-title: Adv. Mater. – volume: 49 start-page: 2196 year: 2020 publication-title: Chem. Soc. Rev. – volume: 16 start-page: 57 year: 2017 publication-title: Nat. Mater. – volume: 9 start-page: 457 year: 2017 publication-title: Nat. Chem. – volume: 1 start-page: 63 year: 2018 publication-title: Nat. Catal. – volume: 11 year: 2019 publication-title: Nanoscale – volume: 123 start-page: 558 year: 2017 publication-title: Carbon – volume: 137 start-page: 2901 year: 2015 publication-title: J. Am. Chem. Soc. – year: 2019 – volume: 11 start-page: 550 year: 2012 publication-title: Nat. Mater. – volume: 12 start-page: 211 year: 2019 publication-title: Materials – volume: 4 start-page: 285 year: 2018 publication-title: Chem – volume: 57 start-page: 1856 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 163 year: 2016 publication-title: J. Electrochem. Soc. – volume: 4 year: 2016 publication-title: J. Mater. Chem. A – volume: 4 start-page: 2114 year: 2020 publication-title: Sustain. Energy Fuels – volume: 5 start-page: 5380 year: 2015 publication-title: ACS Catal. – volume: 6 start-page: 7034 year: 2018 publication-title: J. Mater. Chem. A – volume: 58 start-page: 6042 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 27 start-page: 7549 year: 2015 publication-title: Chem. Mater. – volume: 56 start-page: 8539 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 1 start-page: 820 year: 2018 publication-title: Nat. Catal. – volume: 5 year: 2018 publication-title: Adv. Sci. – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 31 start-page: 7732 year: 2019 publication-title: Chem. Mater. – volume: 9 start-page: 7 year: 2019 publication-title: ACS Catal. – volume: 28 start-page: 1691 year: 2016 publication-title: Chem. Mater. – volume: 30 start-page: 7893 year: 2014 publication-title: Langmuir – volume: 10 start-page: 2312 year: 2017 publication-title: Energy Environ. Sci. – volume: 122 start-page: 8445 year: 2018 publication-title: J. Phys. Chem. C – volume: 353 start-page: 19 year: 2017 publication-title: J. Catal. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 11 start-page: 397 year: 2021 publication-title: Membranes – volume: 9 start-page: 176 year: 2016 publication-title: Energy Environ. Sci. – volume: 358 start-page: 751 year: 2017 publication-title: Science – volume: 15 start-page: 92 year: 2015 publication-title: Nano Energy – volume: 352 start-page: 333 year: 2016 publication-title: Science – volume: 166 start-page: F458 year: 2019 publication-title: J. Electrochem. Soc. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 36 start-page: 307 year: 2010 publication-title: Prog. Energy Combust. Sci. – volume: 133 start-page: 2541 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 192 year: 2014 publication-title: Nano Energy – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 269 year: 2020 publication-title: Appl. Catal., B – volume: 3 start-page: 985 year: 2020 publication-title: Nat. Catal. – volume: 11 start-page: 264 year: 2021 publication-title: ACS Catal. – volume: 1 start-page: 2075 year: 2014 publication-title: ChemElectroChem – volume: 163 start-page: 96 year: 2015 publication-title: Appl. Catal., B – volume: 4 start-page: 1805 year: 2013 publication-title: Nat. Commun. – volume: 10 start-page: 444 year: 2015 publication-title: Nat. Nanotechnol. – volume: 26 start-page: 2925 year: 2014 publication-title: Adv. Mater. – volume: 13 year: 2017 publication-title: Small – volume: 1 start-page: 244 year: 2015 publication-title: ACS Central Sci – volume: 6 start-page: 6335 year: 2016 publication-title: ACS Catal. – volume: 11 start-page: 5401 year: 2011 publication-title: Nano Lett. – volume: 8 start-page: 401 year: 1983 publication-title: Int. J. Hydrogen Energy – volume: 9 start-page: 123 year: 2016 publication-title: Energy Environ. Sci. – volume: 141 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 347 year: 2017 publication-title: ACS Nano – volume: 5 start-page: 4133 year: 2015 publication-title: ACS Catal. – volume: 81 start-page: 1690 year: 2018 publication-title: Renew. Sustain. Energy Rev. – volume: 12 start-page: 3548 year: 2019 publication-title: Energy Environ. Sci. – volume: 5 start-page: 1704 year: 2021 publication-title: Joule – volume: 10 start-page: 780 year: 2011 publication-title: Nat. Mater. – volume: 2 year: 2016 publication-title: Sci. Adv. – volume: 5 start-page: 7869 year: 2012 publication-title: Energy Environ. Sci. – volume: 2 start-page: 294 year: 2017 publication-title: ACS Energy. Lett. – volume: 10 start-page: 4993 year: 2019 publication-title: Nat. Commun. – volume: 60 start-page: 7418 year: 2021 publication-title: Angew. Chem., Int. Ed. – year: 2018 – volume: 7 start-page: 2125 year: 2014 publication-title: ChemSusChem – volume: 19 start-page: 2130 year: 2019 publication-title: Chem. Rec. – volume: 29 start-page: 4 year: 2016 publication-title: Nano Energy – volume: 56 start-page: 610 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 135 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 846 year: 2017 publication-title: ChemCatChem – volume: 167 year: 2020 publication-title: J. Electrochem. Soc. – volume: 11 year: 2017 publication-title: ACS Nano – volume: 87 year: 2013 publication-title: Phys. Rev. B – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 28 start-page: 9532 year: 2016 publication-title: Adv. Mater. – volume: 4 start-page: 5 year: 2015 publication-title: Mater. Renew. Sustain. Energy – volume: 16 start-page: 925 year: 2017 publication-title: Nat. Mater. – volume: 218 start-page: 156 year: 2016 publication-title: Electrochim. Acta – volume: 2 start-page: 724 year: 2010 publication-title: ChemCatChem – volume: 137 start-page: 3638 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 2347 year: 2015 publication-title: Energy Environ. Sci. – volume: 5 start-page: 1776 year: 2021 publication-title: Joule – volume: 204 start-page: 169 year: 2016 publication-title: Electrochim. Acta – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 11 start-page: 2522 year: 2020 publication-title: Nat. Commun. – volume: 2 year: 2015 publication-title: Adv. Sci. – volume: 5 start-page: 3949 year: 2014 publication-title: Nat. Commun. – volume: 52 start-page: 371 year: 2013 publication-title: Angew. Chem., Int. Ed. – volume: 115 start-page: 9869 year: 2015 publication-title: Chem. Rev. – volume: 26 start-page: 479 year: 2018 publication-title: Fullerenes, Nanotubes, Carbon Nanostruct. – volume: 217 start-page: 392 year: 2012 publication-title: J. Power Sources – volume: 355 start-page: 6321 year: 2017 publication-title: Science – volume: 164 start-page: F387 year: 2017 publication-title: J. Electrochem. Soc. – volume: 28 start-page: 9266 year: 2016 publication-title: Adv. Mater. – volume: 45 year: 2021 publication-title: Int. J. Energy Res. – volume: 1 start-page: 457 year: 2001 publication-title: Nano Lett. – volume: 490 start-page: 47 year: 2019 publication-title: Appl. Surf. Sci. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 5 start-page: 910 year: 2020 publication-title: Nat. Energy – volume: 41 year: 2016 publication-title: Int. J. Hydrogen Energy – volume: 3 start-page: 743 year: 2020 publication-title: Nat. Catal. – volume: 16 start-page: 357 year: 2015 publication-title: Nano Energy – volume: 138 start-page: 2488 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 554 year: 2020 publication-title: Nat. Catal. – volume: 12 start-page: 1894 year: 2018 publication-title: ACS Nano – volume: 50 start-page: 3753 year: 2012 publication-title: Carbon – volume: 12 year: 2018 publication-title: ACS Nano – volume: 368 start-page: 279 year: 2018 publication-title: J. Catal. – volume: 9 start-page: 2020 year: 2016 publication-title: Energy Environ. Sci. – year: 2012 – volume: 607 start-page: 83 year: 2007 publication-title: J. Electroanal. Chem. – volume: 5 start-page: 2370 year: 2014 publication-title: J. Phys. Chem. Lett. – volume: 10 start-page: 3260 year: 2018 publication-title: ChemCatChem – volume: 116 year: 2016 publication-title: Chem. Rev. – volume: 165 start-page: F305 year: 2018 publication-title: J. Electrochem. Soc. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 3 start-page: 3264 year: 2012 publication-title: J. Phys. Chem. Lett. – volume: 660 start-page: 254 year: 2011 publication-title: J. Electroanal. Chem. – volume: 57 start-page: 8614 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 53 start-page: 4582 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 5 start-page: 222 year: 2020 publication-title: Nat. Energy – volume: 2 start-page: 495 year: 2015 publication-title: Mater. Horiz. – volume: 139 start-page: 6270 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 3135 year: 2014 publication-title: Energy Environ. Sci. – volume: 328 start-page: 36 year: 2015 publication-title: J. Catal. – volume: 239 start-page: 425 year: 2018 publication-title: Appl. Catal., B – volume: 118 year: 2014 publication-title: J. Phys. Chem. C – volume: 6 start-page: 8069 year: 2016 publication-title: ACS Catal. – volume: 334 start-page: 1383 year: 2011 publication-title: Science – volume: 44 start-page: 4771 year: 2019 publication-title: Int. J. Hydrogen Energy – volume: 28 start-page: 6845 year: 2016 publication-title: Adv. Mater. – ident: e_1_2_10_23_1 doi: 10.1038/s41467-019-12994-w – ident: e_1_2_10_115_1 doi: 10.1149/1.2086015 – ident: e_1_2_10_127_1 doi: 10.1007/s40243-015-0046-9 – ident: e_1_2_10_118_1 doi: 10.1002/adma.201602912 – ident: e_1_2_10_48_1 doi: 10.1021/acs.chemmater.5b04457 – ident: e_1_2_10_166_1 doi: 10.1016/j.nanoen.2014.09.009 – ident: e_1_2_10_43_1 doi: 10.1039/C9NR07832K – ident: e_1_2_10_111_1 doi: 10.1002/adma.201506112 – ident: e_1_2_10_159_1 doi: 10.1002/er.6983 – ident: e_1_2_10_143_1 doi: 10.1039/C6EE01046F – ident: e_1_2_10_117_1 doi: 10.1021/ja509879r – ident: e_1_2_10_162_1 doi: 10.1039/C9SE01240K – ident: e_1_2_10_15_1 doi: 10.1021/acs.chemrev.6b00398 – ident: e_1_2_10_77_1 doi: 10.1039/C5EE03124A – volume-title: Electrolysis year: 2012 ident: e_1_2_10_147_1 – ident: e_1_2_10_99_1 doi: 10.1002/adma.201305608 – ident: e_1_2_10_16_1 doi: 10.1016/j.nanoen.2016.01.027 – ident: e_1_2_10_121_1 doi: 10.1039/C6TA04187F – ident: e_1_2_10_122_1 doi: 10.1016/j.jcat.2017.07.001 – ident: e_1_2_10_107_1 doi: 10.1002/adma.201604942 – ident: e_1_2_10_156_1 doi: 10.2172/1507088 – ident: e_1_2_10_120_1 doi: 10.1016/j.jpowsour.2012.06.015 – ident: e_1_2_10_170_1 doi: 10.1002/adfm.201908167 – ident: e_1_2_10_112_1 doi: 10.1039/C7EE01702B – ident: e_1_2_10_45_1 doi: 10.1002/adma.201606800 – ident: e_1_2_10_58_1 doi: 10.1002/adma.201802912 – ident: e_1_2_10_86_1 doi: 10.1126/sciadv.1501122 – ident: e_1_2_10_53_1 doi: 10.1002/adma.201902509 – ident: e_1_2_10_4_1 – ident: e_1_2_10_79_1 doi: 10.1002/anie.201311223 – ident: e_1_2_10_131_1 doi: 10.1039/C4CC07120D – ident: e_1_2_10_68_1 doi: 10.1038/nmat4938 – ident: e_1_2_10_133_1 doi: 10.1021/acsnano.7b08721 – ident: e_1_2_10_124_1 doi: 10.1016/j.carbon.2012.03.050 – ident: e_1_2_10_59_1 doi: 10.1021/acs.chemmater.5b03148 – ident: e_1_2_10_38_1 doi: 10.1002/adfm.202102918 – ident: e_1_2_10_130_1 doi: 10.1002/anie.201409524 – ident: e_1_2_10_8_1 doi: 10.1149/2.1441704jes – ident: e_1_2_10_61_1 doi: 10.1021/ja405351s – ident: e_1_2_10_84_1 doi: 10.1002/cssc.201402118 – ident: e_1_2_10_34_1 doi: 10.1021/acscatal.5b02432 – ident: e_1_2_10_174_1 doi: 10.1038/ncomms2812 – ident: e_1_2_10_145_1 doi: 10.1038/s41560-020-0577-x – ident: e_1_2_10_40_1 doi: 10.1021/acscentsci.5b00227 – ident: e_1_2_10_87_1 doi: 10.1002/adma.201601406 – ident: e_1_2_10_24_1 doi: 10.1016/j.jelechem.2010.10.004 – ident: e_1_2_10_113_1 doi: 10.1021/jacs.9b05006 – ident: e_1_2_10_125_1 doi: 10.1016/j.ijhydene.2019.01.022 – ident: e_1_2_10_129_1 doi: 10.1002/anie.201204958 – ident: e_1_2_10_6_1 doi: 10.2172/1557965 – ident: e_1_2_10_62_1 doi: 10.1021/la501246e – ident: e_1_2_10_74_1 doi: 10.1002/celc.201402262 – ident: e_1_2_10_171_1 doi: 10.1021/acsnano.7b06595 – ident: e_1_2_10_2_1 doi: 10.1021/acs.chemrev.5b00073 – ident: e_1_2_10_9_1 doi: 10.1038/nmat3313 – ident: e_1_2_10_85_1 doi: 10.1002/cctc.201601268 – ident: e_1_2_10_39_1 doi: 10.1039/C5EE01155H – ident: e_1_2_10_169_1 doi: 10.1149/2.0301908jes – ident: e_1_2_10_10_1 doi: 10.1126/science.aaf1525 – ident: e_1_2_10_155_1 doi: 10.1021/acscatal.8b04001 – ident: e_1_2_10_146_1 doi: 10.1016/j.apcatb.2018.08.037 – ident: e_1_2_10_57_1 doi: 10.1038/s41929-019-0325-4 – ident: e_1_2_10_20_1 doi: 10.1002/cctc.201000126 – ident: e_1_2_10_54_1 doi: 10.1021/jp506946b – ident: e_1_2_10_105_1 doi: 10.1038/nnano.2015.48 – ident: e_1_2_10_132_1 doi: 10.1002/adma.201703185 – ident: e_1_2_10_149_1 doi: 10.1016/0360-3199(83)90162-3 – ident: e_1_2_10_173_1 doi: 10.1002/smll.201802767 – ident: e_1_2_10_27_1 doi: 10.1038/ncomms12876 – ident: e_1_2_10_163_1 doi: 10.1016/j.apcatb.2020.118771 – ident: e_1_2_10_22_1 doi: 10.1016/j.jcat.2014.12.033 – ident: e_1_2_10_63_1 doi: 10.1021/jacs.5b10525 – ident: e_1_2_10_93_1 doi: 10.1021/acs.jpcc.8b03269 – ident: e_1_2_10_70_1 doi: 10.1002/anie.202015060 – ident: e_1_2_10_73_1 doi: 10.1002/tcr.201800162 – ident: e_1_2_10_81_1 doi: 10.1038/s41560-020-0576-y – ident: e_1_2_10_17_1 doi: 10.1039/C4CS00448E – ident: e_1_2_10_50_1 doi: 10.1038/s41560-019-0355-9 – ident: e_1_2_10_72_1 doi: 10.1039/C9EE01872G – ident: e_1_2_10_67_1 doi: 10.1016/j.electacta.2016.09.116 – ident: e_1_2_10_137_1 doi: 10.1016/j.jcat.2018.10.025 – ident: e_1_2_10_119_1 doi: 10.1016/j.ijhydene.2016.08.118 – ident: e_1_2_10_103_1 doi: 10.1021/acsnano.6b05914 – ident: e_1_2_10_126_1 doi: 10.1016/j.nanoen.2015.07.008 – ident: e_1_2_10_90_1 doi: 10.1038/ncomms3390 – ident: e_1_2_10_30_1 doi: 10.1002/anie.201701531 – ident: e_1_2_10_78_1 doi: 10.1002/cssc.201301401 – ident: e_1_2_10_71_1 doi: 10.1021/ja405997s – ident: e_1_2_10_64_1 doi: 10.1038/s41929-020-00525-6 – ident: e_1_2_10_148_1 doi: 10.1016/j.pecs.2009.11.002 – ident: e_1_2_10_154_1 doi: 10.1002/adma.201805876 – ident: e_1_2_10_104_1 doi: 10.1002/advs.201800036 – ident: e_1_2_10_12_1 doi: 10.1039/C5EE03316K – ident: e_1_2_10_151_1 doi: 10.1016/j.joule.2021.05.006 – ident: e_1_2_10_7_1 doi: 10.1149/2.0641805jes – ident: e_1_2_10_18_1 doi: 10.1038/nmat4738 – ident: e_1_2_10_31_1 doi: 10.1038/nenergy.2016.53 – ident: e_1_2_10_32_1 doi: 10.1039/C9CS00607A – ident: e_1_2_10_114_1 doi: 10.1016/j.apcatb.2014.07.049 – ident: e_1_2_10_157_1 doi: 10.1039/c2ee22146b – ident: e_1_2_10_33_1 doi: 10.1016/j.joule.2021.05.005 – ident: e_1_2_10_41_1 doi: 10.1021/acs.chemmater.9b02790 – ident: e_1_2_10_89_1 doi: 10.1103/PhysRevB.87.165401 – ident: e_1_2_10_135_1 doi: 10.1002/anie.201610119 – ident: e_1_2_10_92_1 doi: 10.1021/acs.jpcc.8b08519 – ident: e_1_2_10_37_1 doi: 10.1021/j100238a048 – ident: e_1_2_10_91_1 doi: 10.1126/science.1212858 – ident: e_1_2_10_138_1 doi: 10.1016/j.apcatb.2020.118967 – ident: e_1_2_10_160_1 doi: 10.3390/membranes11060397 – ident: e_1_2_10_25_1 doi: 10.1002/adma.201908126 – ident: e_1_2_10_153_1 doi: 10.1016/j.rser.2017.05.258 – ident: e_1_2_10_35_1 doi: 10.1038/nchem.2695 – ident: e_1_2_10_98_1 doi: 10.1080/1536383X.2018.1448793 – ident: e_1_2_10_144_1 doi: 10.1002/celc.201500268 – ident: e_1_2_10_168_1 doi: 10.1038/nmat3087 – ident: e_1_2_10_60_1 doi: 10.1021/jacs.5b00281 – ident: e_1_2_10_109_1 doi: 10.1016/j.apsusc.2019.06.076 – ident: e_1_2_10_1_1 doi: 10.1126/science.aad4998 – ident: e_1_2_10_116_1 doi: 10.1021/nl2031037 – ident: e_1_2_10_46_1 doi: 10.1038/nchem.2695 – ident: e_1_2_10_139_1 doi: 10.1038/s41929-017-0008-y – ident: e_1_2_10_52_1 doi: 10.1038/s41929-020-0465-6 – ident: e_1_2_10_69_1 doi: 10.1039/C7TA10892C – ident: e_1_2_10_123_1 doi: 10.1021/acsnano.7b03290 – ident: e_1_2_10_29_1 doi: 10.1021/jacs.5b11713 – ident: e_1_2_10_95_1 doi: 10.1021/acsenergylett.6b00681 – ident: e_1_2_10_150_1 doi: 10.1002/adma.201806326 – ident: e_1_2_10_140_1 doi: 10.1016/j.chempr.2017.12.005 – ident: e_1_2_10_21_1 doi: 10.1016/j.jelechem.2006.11.008 – ident: e_1_2_10_134_1 doi: 10.1002/adfm.201704638 – ident: e_1_2_10_110_1 doi: 10.1002/cctc.201702000 – ident: e_1_2_10_51_1 doi: 10.1038/s41467-020-16237-1 – ident: e_1_2_10_55_1 doi: 10.1038/ncomms4949 – ident: e_1_2_10_165_1 doi: 10.1021/ja107719u – ident: e_1_2_10_5_1 doi: 10.1038/s41560-020-00720-6 – ident: e_1_2_10_76_1 doi: 10.1021/acsnano.8b06312 – ident: e_1_2_10_3_1 doi: 10.1021/ja510442p – ident: e_1_2_10_158_1 doi: 10.1021/acscatal.0c04200 – ident: e_1_2_10_42_1 doi: 10.1002/anie.201910716 – ident: e_1_2_10_82_1 doi: 10.1038/s41929-020-0496-z – ident: e_1_2_10_65_1 doi: 10.1021/acs.jpcc.8b01397 – ident: e_1_2_10_56_1 doi: 10.1021/jz501077u – ident: e_1_2_10_47_1 doi: 10.1021/jacs.7b02622 – ident: e_1_2_10_19_1 doi: 10.1016/j.nanoen.2017.07.006 – ident: e_1_2_10_44_1 doi: 10.1021/acsenergylett.9b00382 – ident: e_1_2_10_96_1 doi: 10.3390/ma12020211 – ident: e_1_2_10_80_1 doi: 10.1039/C5MH00096C – ident: e_1_2_10_88_1 doi: 10.1021/nl015549q – ident: e_1_2_10_26_1 doi: 10.1021/acscatal.5b01638 – ident: e_1_2_10_11_1 doi: 10.1002/adma.201604437 – ident: e_1_2_10_75_1 doi: 10.1038/s41929-018-0162-x – ident: e_1_2_10_102_1 doi: 10.1002/aenm.201602928 – ident: e_1_2_10_66_1 doi: 10.1021/jz301414z – ident: e_1_2_10_101_1 doi: 10.1002/aenm.201501492 – ident: e_1_2_10_141_1 doi: 10.1002/anie.201710852 – ident: e_1_2_10_28_1 doi: 10.1002/adma.201606793 – ident: e_1_2_10_14_1 doi: 10.1021/acscatal.6b02479 – ident: e_1_2_10_142_1 doi: 10.1021/jacs.9b05268 – ident: e_1_2_10_106_1 doi: 10.1021/acscatal.5b00601 – ident: e_1_2_10_172_1 doi: 10.1016/j.nanoen.2015.04.005 – ident: e_1_2_10_83_1 doi: 10.1002/advs.201400015 – ident: e_1_2_10_94_1 doi: 10.1016/j.carbon.2017.08.003 – ident: e_1_2_10_161_1 doi: 10.1039/C4EE01303D – ident: e_1_2_10_128_1 doi: 10.1021/acscatal.6b01503 – ident: e_1_2_10_152_1 doi: 10.1149/1945-7111/aba792 – ident: e_1_2_10_164_1 doi: 10.1149/2.0231611jes – ident: e_1_2_10_49_1 doi: 10.1002/anie.201902114 – ident: e_1_2_10_108_1 doi: 10.1039/C6EE03265F – ident: e_1_2_10_167_1 doi: 10.1002/smll.201603793 – ident: e_1_2_10_100_1 doi: 10.1016/j.electacta.2016.04.034 – ident: e_1_2_10_13_1 doi: 10.1002/adma.201602270 – ident: e_1_2_10_36_1 doi: 10.1126/science.aam7092 – ident: e_1_2_10_97_1 doi: 10.1002/adfm.201910741 – ident: e_1_2_10_136_1 doi: 10.1002/anie.201804349 |
SSID | ssj0017734 |
Score | 2.7279224 |
SecondaryResourceType | review_article |
Snippet | The oxygen evolution reaction (OER) generally exists in electrochemistry‐enabled applications that are coupled with cathodic reactions like hydrogen evolution,... Abstract The oxygen evolution reaction (OER) generally exists in electrochemistry‐enabled applications that are coupled with cathodic reactions like hydrogen... |
SourceID | osti proquest crossref wiley |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | alkaline electrolyzer Ammonia Carbon Carbon dioxide Catalysts catalytic activity site degradation mechanism Devices Electrochemistry Hydrogen evolution Hydroxides Iridium Materials science Noble metals non‐precious metal‐based catalysts oxygen evolution reaction Oxygen evolution reactions Precious metals Ruthenium Transition metal oxides |
Title | Oxygen Evolution Reaction in Alkaline Environment: Material Challenges and Solutions |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202110036 https://www.proquest.com/docview/2666415068 https://www.osti.gov/biblio/1854648 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA86L3oQP3FuSg6Cp7ImTdPV29gHQ5jK2GC3kCYpiKMTN0X_e99ru7odRPBSKE0ofR95vybv_R4hN0yj3Rjupc5PPWFi4SUiibycKw7ipxU2T5B9kMOpuJ-Fs40q_oIfotpwQ8_I12t0cJ0sWz-kodqmWEmOPzCwCu-SPayvxR4GXDxV5whRVJwrS4YZXmy2pm30eWt7_lZYqi3AvbYg5yZwzSPP4IgclpCRdgodH5Mdl52Qgw0iwVMyefz8Akug_Y_SkujYFRUL9DmjnfmLxu-l_Z-qtjs60qvc-mh33U9lSXVmabVRdkamg_6kO_TKfgmeEaEvvZhHUjMLP7whS2TobNtxx5iOfGsthOGYpSyFAI4U69aYgAdGpjoAQIStYMEbz0ktW2TugtCQ2yBIpHBJOxFB5IP-mIlA23HkA6CSdeKtxaVMSSaOPS3mqqBB5grFqyrx1sltNf61oNH4dWQDpa8AACCLrcF0H7NSACuEFO06aa6VokpnWyrAGFIgUyI85rmi_niH6vQGo-ru8j-TGmSfYyFEnvrYJLXV27u7AniySq5zC4Rrb8y_AewZ2ew |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA86D-pB_MS5qTkInsqaNE03b2NuTN2myITdQpukII5O3BT9732vX24HETyWJpS-j7xfkvd-j5ALFqLdaO7E1o0doVvCiUQUOClXHMRPI0yaIDuS_SdxO_GLbEKshcn4IcoDN_SMdL1GB8cD6cYPa2hoYiwlxx0MLMPrZEMAOEfD5uKhvEgIguxiWTJM8WKTgrfR5Y3V-StxqTID_1rBnMvINQ09vV2yk2NG2s6UvEfWbLJPtpeYBA_I-P7zC0yBdj9yU6KPNitZoM8JbU9fQvxh2v0pa7uiw3CRmh_tFA1V5jRMDC1Pyg7JU6877vSdvGGCo4XvSqfFAxkyAzten0XSt6ZpuWUsDFxjDMThFotZDBEcOdaN1h73tIxDDxAR9oIFdzwilWSW2GNCfW48L5LCRs1IeIELCmQ6AHW3AhcQlawSpxCX0jmbODa1mKqMB5krFK8qxVsll-X414xH49eRNZS-AgSANLYa8330QgGuEFI0q6ReKEXl3jZXADKkQKpEeM1TRf3xDdW-7g3Lp5P_TDonm_3xcKAGN6O7GtniWBWR5kHWSWXx9m5PAassorPUGr8Btb7ceA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA46QfRBvOKclzwIPpU1aZpuvo25MS-bQzbYW2iTFESpolX033tOb9seRPCxNKH0XHK-JOd8h5BzFqLdaO7E1o0dodvCiUQUOBlXHMRPI0yWIDuSg6m4mfmzhSr-nB-iOnBDz8jWa3TwVxM356ShoYmxkhw3MLAKr5I1vPHDpD4uxtU9QhDk98qSYYYXm5W0jS5vLs9fCku1F3CvJci5CFyzyNPfJlsFZKSdXMc7ZMUmu2RzgUhwj0zuv77BEmjvs7Ak-mDzigX6mNDO81OI_0t786q2SzoM08z6aLfsp_JOw8TQ6qBsn0z7vUl34BT9EhwtfFc6bR7IkBnY8Poskr41LcstY2HgGmMgDLdZzGII4EixbrT2uKdlHHoAiLAVLHjjAaklL4k9JNTnxvMiKWzUioQXuKA_pgPQdjtwAVDJOnFKcSldkIljT4tnldMgc4XiVZV46-SiGv-a02j8OrKB0lcAAJDFVmO6j04VwAohRatOjkulqMLZ3hVgDCmQKRFe80xRf3xDda76w-rp6D-Tzsj6-Kqv7q5Htw2ywbEmIsuCPCa19O3DngBSSaPTzBh_AGtO26E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oxygen+Evolution+Reaction+in+Alkaline+Environment%3A+Material+Challenges+and+Solutions&rft.jtitle=Advanced+functional+materials&rft.au=Xie%2C+Xiaohong&rft.au=Du%2C+Lei&rft.au=Yan%2C+Litao&rft.au=Park%2C+Sehkyu&rft.date=2022-05-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=32&rft.issue=21&rft_id=info:doi/10.1002%2Fadfm.202110036&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202110036 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |