Oxygen Evolution Reaction in Alkaline Environment: Material Challenges and Solutions

The oxygen evolution reaction (OER) generally exists in electrochemistry‐enabled applications that are coupled with cathodic reactions like hydrogen evolution, carbon dioxide reduction, ammonia synthesis, and electrocatalytic hydrogenation. The OER heavily impacts the overall energy efficiency of th...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 32; no. 21
Main Authors Xie, Xiaohong, Du, Lei, Yan, Litao, Park, Sehkyu, Qiu, Yang, Sokolowski, Joshua, Wang, Wei, Shao, Yuyan
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.05.2022
Wiley Blackwell (John Wiley & Sons)
Subjects
Online AccessGet full text
ISSN1616-301X
1616-3028
DOI10.1002/adfm.202110036

Cover

Loading…
Abstract The oxygen evolution reaction (OER) generally exists in electrochemistry‐enabled applications that are coupled with cathodic reactions like hydrogen evolution, carbon dioxide reduction, ammonia synthesis, and electrocatalytic hydrogenation. The OER heavily impacts the overall energy efficiency of these devices because the sluggish OER kinetics result in a huge overpotential, thus, a large amount of efficient catalysts are needed. The benchmark iridium and ruthenium (Ir/Ru)‐based materials (mostly used in acid media) are, however, significantly limited by their scarcity. Non‐precious metal‐based catalysts (NPMCs) have emerged as the most promising alternatives; however, they tend to degrade quickly under the harsh operating conditions of typical OER devices. Another challenge is the unsatisfying performance of OER catalysts when integrated in real‐world devices. Herein, the OER active sites for three mainstream types of NPMCs including non‐precious transition metal oxides/(oxy)hydroxides, metal‐free carbon materials, and hybrid non‐precious metal and carbon composites are reviewed. In addition, possible degradation mechanisms for active sites and mitigation strategies are discussed in detail. This review also provides insights into the gaps between R&D of NPMCs for the OER and their applications in practical devices. Non‐precious metal‐based catalysts (NPMCs) are emerging as promising alternatives for the Ir‐/Ru‐based benchmarks for oxygen evolution reaction (OER) in alkaline systems, which, however, suffer severe degradation in practical operations. The identification of OER active sites and possible degradation mechanisms of NPMCs are reviewed. Materials‐based solutions are discussed to bridge the knowledge gap between material innovation and device integration.
AbstractList The oxygen evolution reaction (OER) generally exists in electrochemistry‐enabled applications that are coupled with cathodic reactions like hydrogen evolution, carbon dioxide reduction, ammonia synthesis, and electrocatalytic hydrogenation. The OER heavily impacts the overall energy efficiency of these devices because the sluggish OER kinetics result in a huge overpotential, thus, a large amount of efficient catalysts are needed. The benchmark iridium and ruthenium (Ir/Ru)‐based materials (mostly used in acid media) are, however, significantly limited by their scarcity. Non‐precious metal‐based catalysts (NPMCs) have emerged as the most promising alternatives; however, they tend to degrade quickly under the harsh operating conditions of typical OER devices. Another challenge is the unsatisfying performance of OER catalysts when integrated in real‐world devices. Herein, the OER active sites for three mainstream types of NPMCs including non‐precious transition metal oxides/(oxy)hydroxides, metal‐free carbon materials, and hybrid non‐precious metal and carbon composites are reviewed. In addition, possible degradation mechanisms for active sites and mitigation strategies are discussed in detail. This review also provides insights into the gaps between R&D of NPMCs for the OER and their applications in practical devices. Non‐precious metal‐based catalysts (NPMCs) are emerging as promising alternatives for the Ir‐/Ru‐based benchmarks for oxygen evolution reaction (OER) in alkaline systems, which, however, suffer severe degradation in practical operations. The identification of OER active sites and possible degradation mechanisms of NPMCs are reviewed. Materials‐based solutions are discussed to bridge the knowledge gap between material innovation and device integration.
The oxygen evolution reaction (OER) generally exists in electrochemistry‐enabled applications that are coupled with cathodic reactions like hydrogen evolution, carbon dioxide reduction, ammonia synthesis, and electrocatalytic hydrogenation. The OER heavily impacts the overall energy efficiency of these devices because the sluggish OER kinetics result in a huge overpotential, thus, a large amount of efficient catalysts are needed. The benchmark iridium and ruthenium (Ir/Ru)‐based materials (mostly used in acid media) are, however, significantly limited by their scarcity. Non‐precious metal‐based catalysts (NPMCs) have emerged as the most promising alternatives; however, they tend to degrade quickly under the harsh operating conditions of typical OER devices. Another challenge is the unsatisfying performance of OER catalysts when integrated in real‐world devices. Herein, the OER active sites for three mainstream types of NPMCs including non‐precious transition metal oxides/(oxy)hydroxides, metal‐free carbon materials, and hybrid non‐precious metal and carbon composites are reviewed. In addition, possible degradation mechanisms for active sites and mitigation strategies are discussed in detail. This review also provides insights into the gaps between R&D of NPMCs for the OER and their applications in practical devices.
Abstract The oxygen evolution reaction (OER) generally exists in electrochemistry‐enabled applications that are coupled with cathodic reactions like hydrogen evolution, carbon dioxide reduction, ammonia synthesis, and electrocatalytic hydrogenation. The OER heavily impacts the overall energy efficiency of these devices because the sluggish OER kinetics result in a huge overpotential, thus, a large amount of efficient catalysts are needed. The benchmark iridium and ruthenium (Ir/Ru)‐based materials (mostly used in acid media) are, however, significantly limited by their scarcity. Non‐precious metal‐based catalysts (NPMCs) have emerged as the most promising alternatives; however, they tend to degrade quickly under the harsh operating conditions of typical OER devices. Another challenge is the unsatisfying performance of OER catalysts when integrated in real‐world devices. Herein, the OER active sites for three mainstream types of NPMCs including non‐precious transition metal oxides/(oxy)hydroxides, metal‐free carbon materials, and hybrid non‐precious metal and carbon composites are reviewed. In addition, possible degradation mechanisms for active sites and mitigation strategies are discussed in detail. This review also provides insights into the gaps between R&D of NPMCs for the OER and their applications in practical devices.
Author Xie, Xiaohong
Sokolowski, Joshua
Du, Lei
Wang, Wei
Shao, Yuyan
Park, Sehkyu
Yan, Litao
Qiu, Yang
Author_xml – sequence: 1
  givenname: Xiaohong
  surname: Xie
  fullname: Xie, Xiaohong
  organization: Pacific Northwest National Laboratory
– sequence: 2
  givenname: Lei
  surname: Du
  fullname: Du, Lei
  organization: Guangzhou University
– sequence: 3
  givenname: Litao
  surname: Yan
  fullname: Yan, Litao
  email: litao.yan@pnnl.gov
  organization: Pacific Northwest National Laboratory
– sequence: 4
  givenname: Sehkyu
  surname: Park
  fullname: Park, Sehkyu
  organization: Kwangwwon University
– sequence: 5
  givenname: Yang
  surname: Qiu
  fullname: Qiu, Yang
  organization: Pacific Northwest National Laboratory
– sequence: 6
  givenname: Joshua
  surname: Sokolowski
  fullname: Sokolowski, Joshua
  organization: Pacific Northwest National Laboratory
– sequence: 7
  givenname: Wei
  surname: Wang
  fullname: Wang, Wei
  email: wei.wang@pnnl.gov
  organization: Pacific Northwest National Laboratory
– sequence: 8
  givenname: Yuyan
  orcidid: 0000-0001-5735-2670
  surname: Shao
  fullname: Shao, Yuyan
  email: yuyan.shao@pnnl.gov
  organization: Pacific Northwest National Laboratory
BackLink https://www.osti.gov/biblio/1854648$$D View this record in Osti.gov
BookMark eNqFkEFPAjEQRhuDiYBePW_0DHZ2u2XXG0FQE4iJYuKtqd1ZrJYW2wXl37sIwcTEeOo0ee_LzNciDessEnIKtAuUxheyKOfdmMZQ_xJ-QJrAgXcSGmeN_QxPR6QVwiul0OslrEmmd5_rGdpouHJmWWlno3uU6nvQNuqbN2m0xWhoV9o7O0dbXUYTWaHX0kSDF2kM2hmGSNoiethFhGNyWEoT8GT3tsnjaDgd3HTGd9e3g_64o1hKeSePe1xCwXiewjNPscgwRgDZo0VRcGA5lFAyyhkHWiiVxInipUwYgzylGU2TNjnb5rpQaRGUrlC9KGctqkpAljLOsho630IL796XGCrx6pbe1nuJmHPOoF5lQ7EtpbwLwWMp6jS5uabyUhsBVGxKFpuSxb7kWuv-0hZez6Vf_y3kW-FDG1z_Q4v-1Wjy434BalmP7A
CitedBy_id crossref_primary_10_31818_JKNST_2023_09_6_3_240
crossref_primary_10_1016_j_cej_2023_143764
crossref_primary_10_1007_s11837_024_06559_6
crossref_primary_10_1002_smll_202410390
crossref_primary_10_1002_smll_202403971
crossref_primary_10_1016_j_cap_2023_03_014
crossref_primary_10_1016_j_ccr_2022_214973
crossref_primary_10_1039_D4QI02487G
crossref_primary_10_1016_j_nanoen_2024_109402
crossref_primary_10_1088_2515_7655_ad040f
crossref_primary_10_1016_j_ijhydene_2024_03_318
crossref_primary_10_1021_acs_chemmater_4c01684
crossref_primary_10_1073_pnas_2316054120
crossref_primary_10_1016_j_seppur_2025_132364
crossref_primary_10_1016_j_mcat_2024_114709
crossref_primary_10_1002_celc_202300558
crossref_primary_10_1002_smll_202411479
crossref_primary_10_1021_acs_langmuir_3c01540
crossref_primary_10_1038_s41467_023_42696_3
crossref_primary_10_1016_j_apsusc_2024_161088
crossref_primary_10_1016_j_apmt_2025_102637
crossref_primary_10_1021_acs_inorgchem_4c04507
crossref_primary_10_3390_catal13121456
crossref_primary_10_1016_j_mtsust_2024_100947
crossref_primary_10_1016_j_mtcata_2023_100012
crossref_primary_10_3390_nano12121975
crossref_primary_10_1016_j_cej_2023_144839
crossref_primary_10_1021_acsaem_4c01987
crossref_primary_10_1016_j_apcatb_2024_124504
crossref_primary_10_1021_acsami_3c18637
crossref_primary_10_1063_5_0203381
crossref_primary_10_1016_j_jcis_2024_07_118
crossref_primary_10_1088_2631_7990_ac8e3a
crossref_primary_10_1002_aenm_202302170
crossref_primary_10_1016_j_scowo_2025_100046
crossref_primary_10_1016_j_cej_2025_160641
crossref_primary_10_1021_acs_energyfuels_3c02987
crossref_primary_10_1002_advs_202410812
crossref_primary_10_1016_j_jcis_2022_12_128
crossref_primary_10_1016_j_jallcom_2024_175879
crossref_primary_10_3390_ma16083280
crossref_primary_10_1016_j_apsusc_2025_162333
crossref_primary_10_1039_D4SE01034E
crossref_primary_10_1016_j_ijhydene_2024_10_416
crossref_primary_10_1021_acs_inorgchem_4c03510
crossref_primary_10_1039_D2TA09788E
crossref_primary_10_3389_fchem_2022_1071274
crossref_primary_10_1016_j_jelechem_2023_117703
crossref_primary_10_1016_j_jelechem_2022_116679
crossref_primary_10_1021_acsanm_4c04815
crossref_primary_10_1002_smll_202311675
crossref_primary_10_1016_j_apsusc_2023_158810
crossref_primary_10_1021_acsenergylett_3c02758
crossref_primary_10_1016_j_seppur_2025_132574
crossref_primary_10_1039_D4NJ04898A
crossref_primary_10_1016_j_ijhydene_2024_06_048
crossref_primary_10_1088_1361_648X_acdbab
crossref_primary_10_1016_j_jpowsour_2024_235942
crossref_primary_10_1039_D3RA07003D
crossref_primary_10_1039_D3RA05717H
crossref_primary_10_1002_eem2_12813
crossref_primary_10_1002_adfm_202421352
crossref_primary_10_1007_s41871_024_00224_x
crossref_primary_10_1016_j_cej_2024_149799
crossref_primary_10_1021_acs_jpcc_2c08946
crossref_primary_10_1039_D2NR05783B
crossref_primary_10_1016_j_mssp_2025_109396
crossref_primary_10_1016_j_cej_2025_160518
crossref_primary_10_1039_D3RA05164A
crossref_primary_10_1016_j_apcatb_2022_122296
crossref_primary_10_1016_j_apcatb_2022_122294
crossref_primary_10_1021_acs_inorgchem_4c04422
crossref_primary_10_1039_D3YA00572K
crossref_primary_10_1016_j_ijhydene_2022_08_186
crossref_primary_10_1021_acs_inorgchem_4c04788
crossref_primary_10_1002_adma_202304494
crossref_primary_10_1039_D2CC06790K
crossref_primary_10_1149_1945_7111_ad4a0c
crossref_primary_10_3740_MRSK_2022_32_8_339
crossref_primary_10_1039_D4RA03360D
crossref_primary_10_1016_j_ijhydene_2024_04_207
crossref_primary_10_1021_acs_est_4c10827
crossref_primary_10_1002_ente_202401512
crossref_primary_10_1039_D3NR03676F
crossref_primary_10_1039_D4CC00923A
crossref_primary_10_1007_s12274_023_5670_6
crossref_primary_10_1016_j_ceramint_2024_03_188
crossref_primary_10_1016_j_jcis_2023_05_032
crossref_primary_10_1021_acsami_4c19069
crossref_primary_10_1021_acscatal_4c06509
crossref_primary_10_1149_1945_7111_ad02c4
crossref_primary_10_1002_smll_202310318
crossref_primary_10_1002_inf2_12608
crossref_primary_10_20517_cs_2024_26
crossref_primary_10_1007_s40820_024_01505_2
crossref_primary_10_1016_j_ijhydene_2024_12_044
crossref_primary_10_1039_D2MH01143C
crossref_primary_10_1021_acscatal_4c04454
crossref_primary_10_3390_pr10081502
crossref_primary_10_1002_advs_202303321
crossref_primary_10_1021_acscatal_4c05108
crossref_primary_10_1039_D4TA05347H
crossref_primary_10_1016_j_fuel_2024_132539
crossref_primary_10_1039_D3TA08079J
crossref_primary_10_1016_j_jcat_2024_115352
crossref_primary_10_1002_asia_202301039
crossref_primary_10_1016_j_xcrp_2024_102165
crossref_primary_10_3866_PKU_WHXB202306029
crossref_primary_10_1002_ange_202303200
crossref_primary_10_1039_D3CP04701F
crossref_primary_10_1002_metm_11
crossref_primary_10_1002_adem_202400807
crossref_primary_10_1039_D3NA00074E
crossref_primary_10_1002_ange_202416141
crossref_primary_10_1016_j_jssc_2025_125301
crossref_primary_10_1002_advs_202310231
crossref_primary_10_1016_j_ijhydene_2022_12_066
crossref_primary_10_1002_advs_202309364
crossref_primary_10_1016_j_jallcom_2025_178464
crossref_primary_10_1021_acs_chemrev_3c00723
crossref_primary_10_1021_acsnano_4c07340
crossref_primary_10_2139_ssrn_4197768
crossref_primary_10_1016_j_ijhydene_2023_11_328
crossref_primary_10_1016_j_surfin_2023_102857
crossref_primary_10_1039_D3EE00987D
crossref_primary_10_1063_5_0154955
crossref_primary_10_1016_j_materresbull_2025_113333
crossref_primary_10_1002_tcr_202400151
crossref_primary_10_1021_acsenergylett_3c01040
crossref_primary_10_3390_catal13091240
crossref_primary_10_1016_j_mtchem_2024_102404
crossref_primary_10_1155_2024_7856850
crossref_primary_10_1016_j_fuel_2023_130083
crossref_primary_10_1016_j_ijhydene_2024_05_224
crossref_primary_10_1002_cctc_202400022
crossref_primary_10_1016_j_cej_2023_145993
crossref_primary_10_1016_j_nanoen_2024_110565
crossref_primary_10_1002_aenm_202200742
crossref_primary_10_1039_D4TA03872J
crossref_primary_10_1021_acs_jpcc_4c07614
crossref_primary_10_1016_j_materresbull_2024_113285
crossref_primary_10_1039_D4TA02771J
crossref_primary_10_3390_catal13091230
crossref_primary_10_3390_en17174514
crossref_primary_10_1039_D3TA05897B
crossref_primary_10_1039_D4TA07515C
crossref_primary_10_1021_acs_energyfuels_4c00801
crossref_primary_10_1039_D3QM00935A
crossref_primary_10_1021_acsaem_4c01920
crossref_primary_10_1002_cplu_202300323
crossref_primary_10_1002_ange_202314303
crossref_primary_10_1016_j_checat_2023_100643
crossref_primary_10_1016_j_applthermaleng_2024_122890
crossref_primary_10_1016_j_jcat_2024_115675
crossref_primary_10_1021_acs_energyfuels_4c05389
crossref_primary_10_1016_j_jcis_2024_06_057
crossref_primary_10_1021_acs_jpcc_2c08303
crossref_primary_10_1039_D4TA00131A
crossref_primary_10_1016_j_fuel_2024_131762
crossref_primary_10_1002_sstr_202300106
crossref_primary_10_1007_s41918_024_00219_8
crossref_primary_10_1016_j_jcis_2024_05_085
crossref_primary_10_1039_D4TA05436A
crossref_primary_10_1016_j_jcis_2024_03_124
crossref_primary_10_3390_nano14010064
crossref_primary_10_1016_j_partic_2024_06_014
crossref_primary_10_3390_catal15030292
crossref_primary_10_1021_acsami_3c04454
crossref_primary_10_1039_D4NR05492J
crossref_primary_10_1016_j_ijhydene_2023_11_333
crossref_primary_10_1016_j_materresbull_2024_113262
crossref_primary_10_1021_acssuschemeng_4c05913
crossref_primary_10_1016_j_jcis_2024_04_156
crossref_primary_10_1016_j_ijhydene_2024_07_226
crossref_primary_10_1021_acs_energyfuels_3c04077
crossref_primary_10_26599_NRE_2023_9120106
crossref_primary_10_1016_j_diamond_2025_112143
crossref_primary_10_1016_j_jpcs_2024_112055
crossref_primary_10_1002_adfm_202307010
crossref_primary_10_3389_fenrg_2024_1465349
crossref_primary_10_1016_j_jallcom_2024_175969
crossref_primary_10_1016_j_ijhydene_2024_08_036
crossref_primary_10_1002_smll_202207461
crossref_primary_10_1021_acsaem_2c02843
crossref_primary_10_1016_j_cej_2023_142443
crossref_primary_10_1021_acs_inorgchem_2c04154
crossref_primary_10_1016_j_jcis_2023_04_070
crossref_primary_10_1021_acsami_4c00185
crossref_primary_10_1149_2162_8777_aca793
crossref_primary_10_1002_smll_202405225
crossref_primary_10_1039_D4GC01788A
crossref_primary_10_1021_acs_inorgchem_4c02194
crossref_primary_10_1021_acsami_5c01010
crossref_primary_10_1002_adfm_202416834
crossref_primary_10_1039_D4TA02234C
crossref_primary_10_1002_aenm_202303350
crossref_primary_10_1016_j_carbon_2022_09_018
crossref_primary_10_1002_cssc_202402112
crossref_primary_10_1016_j_jallcom_2025_179378
crossref_primary_10_1016_j_mtchem_2023_101567
crossref_primary_10_1016_j_apcatb_2022_122311
crossref_primary_10_1016_j_apsusc_2024_159549
crossref_primary_10_1002_adfm_202208399
crossref_primary_10_1016_j_apsusc_2024_161747
crossref_primary_10_1039_D3QM00291H
crossref_primary_10_1002_anie_202311606
crossref_primary_10_1016_j_apsusc_2022_155741
crossref_primary_10_1002_cssc_202202126
crossref_primary_10_1016_j_inoche_2024_113421
crossref_primary_10_1016_j_apsusc_2023_158176
crossref_primary_10_1021_acsnano_4c08058
crossref_primary_10_1016_j_elecom_2023_107599
crossref_primary_10_1016_j_enchem_2022_100087
crossref_primary_10_26599_NR_2025_94907102
crossref_primary_10_3390_catal14090626
crossref_primary_10_1016_j_jallcom_2024_175051
crossref_primary_10_1039_D3RA01845H
crossref_primary_10_1038_s44172_025_00344_2
crossref_primary_10_1007_s11708_024_0916_x
crossref_primary_10_1016_j_jcis_2024_12_107
crossref_primary_10_1021_acsnano_5c00099
crossref_primary_10_1039_D2CS00698G
crossref_primary_10_1002_cctc_202200981
crossref_primary_10_1016_j_coelec_2022_101136
crossref_primary_10_1016_j_cej_2024_158738
crossref_primary_10_1016_j_apcatb_2023_122715
crossref_primary_10_1016_j_jelechem_2023_118012
crossref_primary_10_1021_acs_jpcc_2c06171
crossref_primary_10_1021_acssuschemeng_4c05790
crossref_primary_10_1016_j_jelechem_2025_118931
crossref_primary_10_1134_S1023193524700344
crossref_primary_10_1016_j_jcis_2022_09_053
crossref_primary_10_1007_s43207_024_00414_9
crossref_primary_10_1002_smll_202407564
crossref_primary_10_1016_j_electacta_2023_142851
crossref_primary_10_1016_j_ceramint_2024_05_319
crossref_primary_10_1016_j_jallcom_2022_168185
crossref_primary_10_1073_pnas_2317247121
crossref_primary_10_1016_j_ijhydene_2025_03_011
crossref_primary_10_1016_j_jelechem_2024_118424
crossref_primary_10_1039_D2DT00970F
crossref_primary_10_1021_acs_energyfuels_3c03298
crossref_primary_10_1039_D3CP02979D
crossref_primary_10_1021_acs_nanolett_4c01450
crossref_primary_10_1021_acsnano_4c09259
crossref_primary_10_1016_j_est_2025_116314
crossref_primary_10_3390_batteries10060197
crossref_primary_10_1002_adfm_202210101
crossref_primary_10_1002_adfm_202416117
crossref_primary_10_1016_j_jallcom_2023_171771
crossref_primary_10_1021_acsnano_3c05224
crossref_primary_10_1016_j_cej_2024_157869
crossref_primary_10_1002_smll_202305965
crossref_primary_10_1039_D3CE01266B
crossref_primary_10_1039_D4NR00170B
crossref_primary_10_1016_j_matre_2024_100283
crossref_primary_10_1039_D2DT02925A
crossref_primary_10_1002_advs_202205889
crossref_primary_10_1002_aenm_202400570
crossref_primary_10_1016_j_jcis_2023_12_159
crossref_primary_10_1002_smll_202308948
crossref_primary_10_1016_j_cej_2024_156764
crossref_primary_10_1016_j_cej_2022_139105
crossref_primary_10_1016_j_jallcom_2023_172314
crossref_primary_10_1039_D3TA05082C
crossref_primary_10_1002_cctc_202300562
crossref_primary_10_1016_j_cej_2022_140694
crossref_primary_10_3390_catal14110752
crossref_primary_10_1002_chem_202400651
crossref_primary_10_3390_molecules29246018
crossref_primary_10_1021_acscatal_4c03814
crossref_primary_10_1016_j_ijhydene_2023_08_279
crossref_primary_10_1039_D3TA03202G
crossref_primary_10_1016_j_jcis_2023_12_048
crossref_primary_10_1002_smll_202410739
crossref_primary_10_2174_0115734137274085231214100609
crossref_primary_10_1021_acs_inorgchem_3c03115
crossref_primary_10_1002_cnl2_195
crossref_primary_10_1021_acs_jpcc_3c01276
crossref_primary_10_3390_pr13030623
crossref_primary_10_1016_j_jpowsour_2025_236402
crossref_primary_10_1002_aenm_202303730
crossref_primary_10_1039_D3NH00336A
crossref_primary_10_1002_cplu_202400278
crossref_primary_10_1002_aesr_202300057
crossref_primary_10_1039_D3QM00940H
crossref_primary_10_1021_acsmaterialslett_4c00413
crossref_primary_10_1016_j_ijhydene_2024_09_104
crossref_primary_10_1021_acsmaterialslett_4c00659
crossref_primary_10_1002_adfm_202500861
crossref_primary_10_1016_j_ijhydene_2024_02_195
crossref_primary_10_1021_acsami_4c19869
crossref_primary_10_1016_j_jtice_2023_105201
crossref_primary_10_1016_j_nanoen_2024_110089
crossref_primary_10_1016_j_nanoen_2024_110088
crossref_primary_10_1039_D3CY00674C
crossref_primary_10_1039_D3QM00722G
crossref_primary_10_1016_j_mtener_2024_101652
crossref_primary_10_1021_acsami_2c18799
crossref_primary_10_1021_acs_inorgchem_4c05056
crossref_primary_10_1016_j_cej_2024_156977
crossref_primary_10_1002_chem_202401759
crossref_primary_10_1016_j_esci_2025_100398
crossref_primary_10_3390_nano13172463
crossref_primary_10_1007_s12598_022_02206_8
crossref_primary_10_54227_elab_20220013
crossref_primary_10_1039_D4MA00362D
crossref_primary_10_1021_acsmaterialslett_4c00409
crossref_primary_10_1021_acs_energyfuels_4c04645
crossref_primary_10_1002_tcr_202300330
crossref_primary_10_3390_jcs7120486
crossref_primary_10_1016_j_ijhydene_2024_02_344
crossref_primary_10_1002_aenm_202402034
crossref_primary_10_1002_cey2_630
crossref_primary_10_1039_D4DT00839A
crossref_primary_10_1016_j_ensm_2023_02_030
crossref_primary_10_1002_cey2_519
crossref_primary_10_1016_j_jece_2023_111492
crossref_primary_10_1002_adsu_202300193
crossref_primary_10_1002_smll_202407374
crossref_primary_10_1021_acsami_4c08677
crossref_primary_10_1016_j_cattod_2024_114597
crossref_primary_10_1016_j_cej_2023_148122
crossref_primary_10_1039_D4TA01193G
crossref_primary_10_1039_D2NJ04475G
crossref_primary_10_1002_advs_202408221
crossref_primary_10_1039_D3MH00644A
crossref_primary_10_1021_acs_inorgchem_3c01617
crossref_primary_10_1039_D2CP02594A
crossref_primary_10_1002_adfm_202406175
crossref_primary_10_1002_cey2_418
crossref_primary_10_1002_smll_202304007
crossref_primary_10_1016_j_ceramint_2023_11_082
crossref_primary_10_1021_acscentsci_4c01363
crossref_primary_10_1002_adma_202305844
crossref_primary_10_1021_acs_energyfuels_3c04525
crossref_primary_10_1039_D2GC02958H
crossref_primary_10_1002_smll_202401504
crossref_primary_10_1039_D4SE01073F
crossref_primary_10_1039_D3DT01739G
crossref_primary_10_1016_j_ijhydene_2024_03_065
crossref_primary_10_1039_D2TA09562A
crossref_primary_10_1002_ente_202401049
crossref_primary_10_1016_j_ijhydene_2024_10_255
crossref_primary_10_1016_j_electacta_2025_145864
crossref_primary_10_1039_D3MH01339A
crossref_primary_10_1002_cey2_708
crossref_primary_10_1021_acs_nanolett_5c00465
crossref_primary_10_1103_PhysRevB_108_155403
crossref_primary_10_1016_j_apsusc_2022_154695
crossref_primary_10_1016_j_fuel_2024_133029
crossref_primary_10_3390_ma17112617
crossref_primary_10_1002_adfm_202406587
crossref_primary_10_1016_j_jallcom_2023_171859
crossref_primary_10_1002_celc_202300647
crossref_primary_10_1016_j_jallcom_2023_170652
crossref_primary_10_1039_D4CP01213E
crossref_primary_10_1002_asia_202300946
crossref_primary_10_1002_smtd_202201130
crossref_primary_10_1039_D4NJ03648D
crossref_primary_10_1021_acs_energyfuels_2c02236
crossref_primary_10_1016_j_jcis_2023_07_130
crossref_primary_10_1021_acsmaterialslett_4c00716
crossref_primary_10_3390_nano15030210
crossref_primary_10_1016_j_jechem_2024_06_045
crossref_primary_10_1021_acsaem_4c02585
crossref_primary_10_1021_acsanm_4c02787
crossref_primary_10_1021_acsomega_2c04044
crossref_primary_10_1007_s11581_024_05443_2
crossref_primary_10_1039_D2CC05270A
crossref_primary_10_1016_j_colsurfa_2022_130070
crossref_primary_10_1016_j_jallcom_2022_168175
crossref_primary_10_1038_s41467_024_50325_w
crossref_primary_10_1002_eem2_12526
crossref_primary_10_1016_j_ijhydene_2024_03_007
crossref_primary_10_1002_anie_202303200
crossref_primary_10_1016_j_nanoen_2023_108884
crossref_primary_10_1002_cey2_608
crossref_primary_10_1002_eem2_12441
crossref_primary_10_1016_j_chphma_2022_11_001
crossref_primary_10_3390_molecules29133127
crossref_primary_10_1039_D2TA09039B
crossref_primary_10_1002_adma_202406251
crossref_primary_10_1016_j_cej_2022_139527
crossref_primary_10_1063_5_0232980
crossref_primary_10_1149_1945_7111_acc896
crossref_primary_10_1039_D4NR01144A
crossref_primary_10_1002_adfm_202302234
crossref_primary_10_1039_D2TA06858C
crossref_primary_10_1016_j_nxsust_2023_100023
crossref_primary_10_1002_smll_202309859
crossref_primary_10_1016_j_jallcom_2025_178952
crossref_primary_10_1021_acs_chemmater_4c02803
crossref_primary_10_1002_adfm_202410618
crossref_primary_10_1007_s12274_022_4874_7
crossref_primary_10_1016_j_diamond_2025_111980
crossref_primary_10_1002_anie_202314303
crossref_primary_10_1039_D4TA05168H
crossref_primary_10_1039_D3TA06817J
crossref_primary_10_1002_adma_202313378
crossref_primary_10_1016_j_ijhydene_2023_03_090
crossref_primary_10_1002_smll_202411579
crossref_primary_10_1016_j_ijhydene_2022_07_206
crossref_primary_10_1039_D3CS01031G
crossref_primary_10_1016_j_cej_2024_156219
crossref_primary_10_1002_ange_202311606
crossref_primary_10_1002_anie_202416141
crossref_primary_10_1016_j_mcat_2023_113383
Cites_doi 10.1038/s41467-019-12994-w
10.1149/1.2086015
10.1007/s40243-015-0046-9
10.1002/adma.201602912
10.1021/acs.chemmater.5b04457
10.1016/j.nanoen.2014.09.009
10.1039/C9NR07832K
10.1002/adma.201506112
10.1002/er.6983
10.1039/C6EE01046F
10.1021/ja509879r
10.1039/C9SE01240K
10.1021/acs.chemrev.6b00398
10.1039/C5EE03124A
10.1002/adma.201305608
10.1016/j.nanoen.2016.01.027
10.1039/C6TA04187F
10.1016/j.jcat.2017.07.001
10.1002/adma.201604942
10.2172/1507088
10.1016/j.jpowsour.2012.06.015
10.1002/adfm.201908167
10.1039/C7EE01702B
10.1002/adma.201606800
10.1002/adma.201802912
10.1126/sciadv.1501122
10.1002/adma.201902509
10.1002/anie.201311223
10.1039/C4CC07120D
10.1038/nmat4938
10.1021/acsnano.7b08721
10.1016/j.carbon.2012.03.050
10.1021/acs.chemmater.5b03148
10.1002/adfm.202102918
10.1002/anie.201409524
10.1149/2.1441704jes
10.1021/ja405351s
10.1002/cssc.201402118
10.1021/acscatal.5b02432
10.1038/ncomms2812
10.1038/s41560-020-0577-x
10.1021/acscentsci.5b00227
10.1002/adma.201601406
10.1016/j.jelechem.2010.10.004
10.1021/jacs.9b05006
10.1016/j.ijhydene.2019.01.022
10.1002/anie.201204958
10.2172/1557965
10.1021/la501246e
10.1002/celc.201402262
10.1021/acsnano.7b06595
10.1021/acs.chemrev.5b00073
10.1038/nmat3313
10.1002/cctc.201601268
10.1039/C5EE01155H
10.1149/2.0301908jes
10.1126/science.aaf1525
10.1021/acscatal.8b04001
10.1016/j.apcatb.2018.08.037
10.1038/s41929-019-0325-4
10.1002/cctc.201000126
10.1021/jp506946b
10.1038/nnano.2015.48
10.1002/adma.201703185
10.1016/0360-3199(83)90162-3
10.1002/smll.201802767
10.1038/ncomms12876
10.1016/j.apcatb.2020.118771
10.1016/j.jcat.2014.12.033
10.1021/jacs.5b10525
10.1021/acs.jpcc.8b03269
10.1002/anie.202015060
10.1002/tcr.201800162
10.1038/s41560-020-0576-y
10.1039/C4CS00448E
10.1038/s41560-019-0355-9
10.1039/C9EE01872G
10.1016/j.electacta.2016.09.116
10.1016/j.jcat.2018.10.025
10.1016/j.ijhydene.2016.08.118
10.1021/acsnano.6b05914
10.1016/j.nanoen.2015.07.008
10.1038/ncomms3390
10.1002/anie.201701531
10.1002/cssc.201301401
10.1021/ja405997s
10.1038/s41929-020-00525-6
10.1016/j.pecs.2009.11.002
10.1002/adma.201805876
10.1002/advs.201800036
10.1039/C5EE03316K
10.1016/j.joule.2021.05.006
10.1149/2.0641805jes
10.1038/nmat4738
10.1038/nenergy.2016.53
10.1039/C9CS00607A
10.1016/j.apcatb.2014.07.049
10.1039/c2ee22146b
10.1016/j.joule.2021.05.005
10.1021/acs.chemmater.9b02790
10.1103/PhysRevB.87.165401
10.1002/anie.201610119
10.1021/acs.jpcc.8b08519
10.1021/j100238a048
10.1126/science.1212858
10.1016/j.apcatb.2020.118967
10.3390/membranes11060397
10.1002/adma.201908126
10.1016/j.rser.2017.05.258
10.1038/nchem.2695
10.1080/1536383X.2018.1448793
10.1002/celc.201500268
10.1038/nmat3087
10.1021/jacs.5b00281
10.1016/j.apsusc.2019.06.076
10.1126/science.aad4998
10.1021/nl2031037
10.1038/s41929-017-0008-y
10.1038/s41929-020-0465-6
10.1039/C7TA10892C
10.1021/acsnano.7b03290
10.1021/jacs.5b11713
10.1021/acsenergylett.6b00681
10.1002/adma.201806326
10.1016/j.chempr.2017.12.005
10.1016/j.jelechem.2006.11.008
10.1002/adfm.201704638
10.1002/cctc.201702000
10.1038/s41467-020-16237-1
10.1038/ncomms4949
10.1021/ja107719u
10.1038/s41560-020-00720-6
10.1021/acsnano.8b06312
10.1021/ja510442p
10.1021/acscatal.0c04200
10.1002/anie.201910716
10.1038/s41929-020-0496-z
10.1021/acs.jpcc.8b01397
10.1021/jz501077u
10.1021/jacs.7b02622
10.1016/j.nanoen.2017.07.006
10.1021/acsenergylett.9b00382
10.3390/ma12020211
10.1039/C5MH00096C
10.1021/nl015549q
10.1021/acscatal.5b01638
10.1002/adma.201604437
10.1038/s41929-018-0162-x
10.1002/aenm.201602928
10.1021/jz301414z
10.1002/aenm.201501492
10.1002/anie.201710852
10.1002/adma.201606793
10.1021/acscatal.6b02479
10.1021/jacs.9b05268
10.1021/acscatal.5b00601
10.1016/j.nanoen.2015.04.005
10.1002/advs.201400015
10.1016/j.carbon.2017.08.003
10.1039/C4EE01303D
10.1021/acscatal.6b01503
10.1149/1945-7111/aba792
10.1149/2.0231611jes
10.1002/anie.201902114
10.1039/C6EE03265F
10.1002/smll.201603793
10.1016/j.electacta.2016.04.034
10.1002/adma.201602270
10.1126/science.aam7092
10.1002/adfm.201910741
10.1002/anie.201804349
ContentType Journal Article
Copyright 2022 Battelle Memorial Institute. Advanced Functional Materials published by Wiley‐VCH GmbH
2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 Battelle Memorial Institute. Advanced Functional Materials published by Wiley‐VCH GmbH
– notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
OTOTI
DOI 10.1002/adfm.202110036
DatabaseName Wiley Online Library Open Access
CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
OSTI.GOV
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
CrossRef
Materials Research Database

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 1854648
10_1002_adfm_202110036
ADFM202110036
Genre reviewArticle
GrantInformation_xml – fundername: Guangdong Natural Science Foundation
– fundername: U.S. Department of Energy
  funderid: DE‐AC05‐76RLO1830
– fundername: Energy Storage Materials Initiative
– fundername: National Natural Science Foundation of China
  funderid: 21805064
– fundername: Pacific Northwest National Laboratory
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
OTOTI
ID FETCH-LOGICAL-c4506-9276a1d46951b65ed8e2e11a70ddd61491f1f4064610dcc323c6fa34419508053
IEDL.DBID 24P
ISSN 1616-301X
IngestDate Sun Jul 13 03:03:15 EDT 2025
Fri Jul 25 06:11:52 EDT 2025
Tue Jul 01 00:30:26 EDT 2025
Thu Apr 24 22:54:42 EDT 2025
Wed Jan 22 16:26:15 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
License Attribution-NonCommercial
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4506-9276a1d46951b65ed8e2e11a70ddd61491f1f4064610dcc323c6fa34419508053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE
DE‐AC05‐76RLO1830
ORCID 0000-0001-5735-2670
0000000157352670
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202110036
PQID 2666415068
PQPubID 2045204
PageCount 19
ParticipantIDs osti_scitechconnect_1854648
proquest_journals_2666415068
crossref_citationtrail_10_1002_adfm_202110036
crossref_primary_10_1002_adfm_202110036
wiley_primary_10_1002_adfm_202110036_ADFM202110036
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: Germany
PublicationTitle Advanced functional materials
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Wiley Blackwell (John Wiley & Sons)
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley Blackwell (John Wiley & Sons)
References 2018; 165
2013; 4
2019; 11
2019; 10
2019; 12
2014; 26
2019; 19
1983; 8
2020; 167
2020; 11
2012; 11
2019; 166
2018; 6
2018; 5
2018; 4
2015; 137
2018; 1
2013; 52
2016; 41
2018; 30
2017; 164
2010; 2
2014; 10
2018; 28
2019; 9
2019; 4
2010; 36
2021; 45
2019; 31
2013; 87
2019; 2
2015; 51
2015; 54
2020; 269
2016; 204
2020; 32
2007; 607
2018; 26
2016; 163
2011; 133
2017; 139
2016; 4
2012; 50
2016; 6
2016; 7
2016; 1
2016; 2
2015; 115
2020; 30
2020; 272
2016; 218
2019; 44
2018; 239
2017; 56
1983; 87
2016; 29
2014; 30
2018; 12
2016; 28
2021; 60
2018; 10
2016; 9
2011; 660
2018; 14
2018; 122
2017; 7
2017; 2
2018; 368
2019; 58
2018; 81
2011; 11
2011; 10
2017; 353
2017; 355
2017; 9
2017; 358
2014; 1
2020; 5
2014; 5
2020; 4
2021; 31
2020; 3
2017; 39
2015; 44
2020; 49
2016; 352
2016; 116
2017; 123
2014; 7
2012; 217
2014; 53
2014; 118
2015; 2
2015; 1
2015; 163
2011; 334
2015; 15
2021; 5
2015; 5
2015; 16
2015; 4
2012
2015; 10
2017; 29
2015; 328
2019; 141
2015; 8
1991; 138
2015; 27
2012; 3
2021; 11
2017; 16
2017; 11
2017; 10
2017; 13
2019
2018
2013; 135
2016; 138
2001; 1
2019; 490
2012; 5
2018; 57
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_40_1
e_1_2_10_109_1
Bladergroen B. (e_1_2_10_147_1) 2012
e_1_2_10_131_1
e_1_2_10_158_1
e_1_2_10_70_1
e_1_2_10_93_1
e_1_2_10_2_1
e_1_2_10_139_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_116_1
e_1_2_10_150_1
e_1_2_10_6_1
e_1_2_10_55_1
e_1_2_10_135_1
e_1_2_10_173_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_78_1
e_1_2_10_112_1
e_1_2_10_154_1
e_1_2_10_13_1
e_1_2_10_32_1
e_1_2_10_51_1
e_1_2_10_120_1
e_1_2_10_166_1
e_1_2_10_82_1
e_1_2_10_128_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_105_1
e_1_2_10_124_1
e_1_2_10_162_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_101_1
e_1_2_10_143_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_41_1
e_1_2_10_132_1
e_1_2_10_155_1
e_1_2_10_159_1
e_1_2_10_90_1
e_1_2_10_71_1
e_1_2_10_117_1
e_1_2_10_170_1
e_1_2_10_94_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_113_1
e_1_2_10_136_1
e_1_2_10_151_1
e_1_2_10_174_1
e_1_2_10_38_1
e_1_2_10_98_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_121_1
e_1_2_10_144_1
e_1_2_10_167_1
e_1_2_10_148_1
e_1_2_10_60_1
e_1_2_10_106_1
e_1_2_10_129_1
e_1_2_10_83_1
e_1_2_10_64_1
e_1_2_10_102_1
e_1_2_10_125_1
e_1_2_10_140_1
e_1_2_10_163_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_68_1
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_42_1
e_1_2_10_110_1
e_1_2_10_156_1
e_1_2_10_91_1
e_1_2_10_72_1
e_1_2_10_95_1
e_1_2_10_118_1
e_1_2_10_4_1
e_1_2_10_53_1
e_1_2_10_137_1
e_1_2_10_171_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_99_1
e_1_2_10_114_1
e_1_2_10_152_1
e_1_2_10_8_1
e_1_2_10_57_1
e_1_2_10_133_1
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_30_1
e_1_2_10_119_1
e_1_2_10_145_1
e_1_2_10_168_1
e_1_2_10_80_1
e_1_2_10_149_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_107_1
e_1_2_10_126_1
e_1_2_10_160_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_103_1
e_1_2_10_141_1
e_1_2_10_122_1
e_1_2_10_164_1
e_1_2_10_24_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_108_1
e_1_2_10_130_1
e_1_2_10_157_1
e_1_2_10_92_1
e_1_2_10_1_1
e_1_2_10_73_1
e_1_2_10_115_1
e_1_2_10_138_1
e_1_2_10_172_1
e_1_2_10_96_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_77_1
e_1_2_10_111_1
e_1_2_10_134_1
e_1_2_10_153_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_146_1
e_1_2_10_169_1
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_104_1
e_1_2_10_127_1
e_1_2_10_161_1
e_1_2_10_85_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_100_1
e_1_2_10_123_1
e_1_2_10_142_1
e_1_2_10_165_1
e_1_2_10_47_1
e_1_2_10_89_1
References_xml – volume: 87
  start-page: 2960
  year: 1983
  publication-title: J. Phys. Chem.
– volume: 10
  start-page: 742
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 2
  start-page: 763
  year: 2019
  publication-title: Nat. Catal.
– volume: 137
  start-page: 4347
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 44
  start-page: 5148
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 138
  start-page: 36
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 378
  year: 2020
  publication-title: Nat. Energy
– volume: 6
  start-page: 1153
  year: 2016
  publication-title: ACS Catal.
– volume: 4
  start-page: 2390
  year: 2013
  publication-title: Nat. Commun.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 7
  start-page: 1669
  year: 2014
  publication-title: ChemSusChem
– volume: 51
  start-page: 1616
  year: 2015
  publication-title: Chem. Commun.
– volume: 2
  start-page: 1929
  year: 2015
  publication-title: ChemElectroChem
– volume: 138
  start-page: 2549
  year: 1991
  publication-title: J. Electrochem. Soc.
– volume: 4
  start-page: 329
  year: 2019
  publication-title: Nat. Energy
– volume: 39
  start-page: 245
  year: 2017
  publication-title: Nano Energy
– volume: 11
  start-page: 7293
  year: 2017
  publication-title: ACS Nano
– volume: 4
  start-page: 987
  year: 2019
  publication-title: ACS Energy. Lett.
– volume: 54
  start-page: 2100
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 122
  year: 2018
  publication-title: J. Phys. Chem. C
– volume: 272
  year: 2020
  publication-title: Appl. Catal., B
– volume: 28
  start-page: 3000
  year: 2016
  publication-title: Adv. Mater.
– volume: 49
  start-page: 2196
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 16
  start-page: 57
  year: 2017
  publication-title: Nat. Mater.
– volume: 9
  start-page: 457
  year: 2017
  publication-title: Nat. Chem.
– volume: 1
  start-page: 63
  year: 2018
  publication-title: Nat. Catal.
– volume: 11
  year: 2019
  publication-title: Nanoscale
– volume: 123
  start-page: 558
  year: 2017
  publication-title: Carbon
– volume: 137
  start-page: 2901
  year: 2015
  publication-title: J. Am. Chem. Soc.
– year: 2019
– volume: 11
  start-page: 550
  year: 2012
  publication-title: Nat. Mater.
– volume: 12
  start-page: 211
  year: 2019
  publication-title: Materials
– volume: 4
  start-page: 285
  year: 2018
  publication-title: Chem
– volume: 57
  start-page: 1856
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 163
  year: 2016
  publication-title: J. Electrochem. Soc.
– volume: 4
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 2114
  year: 2020
  publication-title: Sustain. Energy Fuels
– volume: 5
  start-page: 5380
  year: 2015
  publication-title: ACS Catal.
– volume: 6
  start-page: 7034
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 58
  start-page: 6042
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 27
  start-page: 7549
  year: 2015
  publication-title: Chem. Mater.
– volume: 56
  start-page: 8539
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 1
  start-page: 820
  year: 2018
  publication-title: Nat. Catal.
– volume: 5
  year: 2018
  publication-title: Adv. Sci.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 31
  start-page: 7732
  year: 2019
  publication-title: Chem. Mater.
– volume: 9
  start-page: 7
  year: 2019
  publication-title: ACS Catal.
– volume: 28
  start-page: 1691
  year: 2016
  publication-title: Chem. Mater.
– volume: 30
  start-page: 7893
  year: 2014
  publication-title: Langmuir
– volume: 10
  start-page: 2312
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 122
  start-page: 8445
  year: 2018
  publication-title: J. Phys. Chem. C
– volume: 353
  start-page: 19
  year: 2017
  publication-title: J. Catal.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 11
  start-page: 397
  year: 2021
  publication-title: Membranes
– volume: 9
  start-page: 176
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 358
  start-page: 751
  year: 2017
  publication-title: Science
– volume: 15
  start-page: 92
  year: 2015
  publication-title: Nano Energy
– volume: 352
  start-page: 333
  year: 2016
  publication-title: Science
– volume: 166
  start-page: F458
  year: 2019
  publication-title: J. Electrochem. Soc.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 36
  start-page: 307
  year: 2010
  publication-title: Prog. Energy Combust. Sci.
– volume: 133
  start-page: 2541
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 192
  year: 2014
  publication-title: Nano Energy
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 269
  year: 2020
  publication-title: Appl. Catal., B
– volume: 3
  start-page: 985
  year: 2020
  publication-title: Nat. Catal.
– volume: 11
  start-page: 264
  year: 2021
  publication-title: ACS Catal.
– volume: 1
  start-page: 2075
  year: 2014
  publication-title: ChemElectroChem
– volume: 163
  start-page: 96
  year: 2015
  publication-title: Appl. Catal., B
– volume: 4
  start-page: 1805
  year: 2013
  publication-title: Nat. Commun.
– volume: 10
  start-page: 444
  year: 2015
  publication-title: Nat. Nanotechnol.
– volume: 26
  start-page: 2925
  year: 2014
  publication-title: Adv. Mater.
– volume: 13
  year: 2017
  publication-title: Small
– volume: 1
  start-page: 244
  year: 2015
  publication-title: ACS Central Sci
– volume: 6
  start-page: 6335
  year: 2016
  publication-title: ACS Catal.
– volume: 11
  start-page: 5401
  year: 2011
  publication-title: Nano Lett.
– volume: 8
  start-page: 401
  year: 1983
  publication-title: Int. J. Hydrogen Energy
– volume: 9
  start-page: 123
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 141
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 347
  year: 2017
  publication-title: ACS Nano
– volume: 5
  start-page: 4133
  year: 2015
  publication-title: ACS Catal.
– volume: 81
  start-page: 1690
  year: 2018
  publication-title: Renew. Sustain. Energy Rev.
– volume: 12
  start-page: 3548
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 1704
  year: 2021
  publication-title: Joule
– volume: 10
  start-page: 780
  year: 2011
  publication-title: Nat. Mater.
– volume: 2
  year: 2016
  publication-title: Sci. Adv.
– volume: 5
  start-page: 7869
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 2
  start-page: 294
  year: 2017
  publication-title: ACS Energy. Lett.
– volume: 10
  start-page: 4993
  year: 2019
  publication-title: Nat. Commun.
– volume: 60
  start-page: 7418
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– year: 2018
– volume: 7
  start-page: 2125
  year: 2014
  publication-title: ChemSusChem
– volume: 19
  start-page: 2130
  year: 2019
  publication-title: Chem. Rec.
– volume: 29
  start-page: 4
  year: 2016
  publication-title: Nano Energy
– volume: 56
  start-page: 610
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 135
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 846
  year: 2017
  publication-title: ChemCatChem
– volume: 167
  year: 2020
  publication-title: J. Electrochem. Soc.
– volume: 11
  year: 2017
  publication-title: ACS Nano
– volume: 87
  year: 2013
  publication-title: Phys. Rev. B
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 28
  start-page: 9532
  year: 2016
  publication-title: Adv. Mater.
– volume: 4
  start-page: 5
  year: 2015
  publication-title: Mater. Renew. Sustain. Energy
– volume: 16
  start-page: 925
  year: 2017
  publication-title: Nat. Mater.
– volume: 218
  start-page: 156
  year: 2016
  publication-title: Electrochim. Acta
– volume: 2
  start-page: 724
  year: 2010
  publication-title: ChemCatChem
– volume: 137
  start-page: 3638
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 2347
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 1776
  year: 2021
  publication-title: Joule
– volume: 204
  start-page: 169
  year: 2016
  publication-title: Electrochim. Acta
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 2522
  year: 2020
  publication-title: Nat. Commun.
– volume: 2
  year: 2015
  publication-title: Adv. Sci.
– volume: 5
  start-page: 3949
  year: 2014
  publication-title: Nat. Commun.
– volume: 52
  start-page: 371
  year: 2013
  publication-title: Angew. Chem., Int. Ed.
– volume: 115
  start-page: 9869
  year: 2015
  publication-title: Chem. Rev.
– volume: 26
  start-page: 479
  year: 2018
  publication-title: Fullerenes, Nanotubes, Carbon Nanostruct.
– volume: 217
  start-page: 392
  year: 2012
  publication-title: J. Power Sources
– volume: 355
  start-page: 6321
  year: 2017
  publication-title: Science
– volume: 164
  start-page: F387
  year: 2017
  publication-title: J. Electrochem. Soc.
– volume: 28
  start-page: 9266
  year: 2016
  publication-title: Adv. Mater.
– volume: 45
  year: 2021
  publication-title: Int. J. Energy Res.
– volume: 1
  start-page: 457
  year: 2001
  publication-title: Nano Lett.
– volume: 490
  start-page: 47
  year: 2019
  publication-title: Appl. Surf. Sci.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 5
  start-page: 910
  year: 2020
  publication-title: Nat. Energy
– volume: 41
  year: 2016
  publication-title: Int. J. Hydrogen Energy
– volume: 3
  start-page: 743
  year: 2020
  publication-title: Nat. Catal.
– volume: 16
  start-page: 357
  year: 2015
  publication-title: Nano Energy
– volume: 138
  start-page: 2488
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 554
  year: 2020
  publication-title: Nat. Catal.
– volume: 12
  start-page: 1894
  year: 2018
  publication-title: ACS Nano
– volume: 50
  start-page: 3753
  year: 2012
  publication-title: Carbon
– volume: 12
  year: 2018
  publication-title: ACS Nano
– volume: 368
  start-page: 279
  year: 2018
  publication-title: J. Catal.
– volume: 9
  start-page: 2020
  year: 2016
  publication-title: Energy Environ. Sci.
– year: 2012
– volume: 607
  start-page: 83
  year: 2007
  publication-title: J. Electroanal. Chem.
– volume: 5
  start-page: 2370
  year: 2014
  publication-title: J. Phys. Chem. Lett.
– volume: 10
  start-page: 3260
  year: 2018
  publication-title: ChemCatChem
– volume: 116
  year: 2016
  publication-title: Chem. Rev.
– volume: 165
  start-page: F305
  year: 2018
  publication-title: J. Electrochem. Soc.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 3
  start-page: 3264
  year: 2012
  publication-title: J. Phys. Chem. Lett.
– volume: 660
  start-page: 254
  year: 2011
  publication-title: J. Electroanal. Chem.
– volume: 57
  start-page: 8614
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 53
  start-page: 4582
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 5
  start-page: 222
  year: 2020
  publication-title: Nat. Energy
– volume: 2
  start-page: 495
  year: 2015
  publication-title: Mater. Horiz.
– volume: 139
  start-page: 6270
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 3135
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 328
  start-page: 36
  year: 2015
  publication-title: J. Catal.
– volume: 239
  start-page: 425
  year: 2018
  publication-title: Appl. Catal., B
– volume: 118
  year: 2014
  publication-title: J. Phys. Chem. C
– volume: 6
  start-page: 8069
  year: 2016
  publication-title: ACS Catal.
– volume: 334
  start-page: 1383
  year: 2011
  publication-title: Science
– volume: 44
  start-page: 4771
  year: 2019
  publication-title: Int. J. Hydrogen Energy
– volume: 28
  start-page: 6845
  year: 2016
  publication-title: Adv. Mater.
– ident: e_1_2_10_23_1
  doi: 10.1038/s41467-019-12994-w
– ident: e_1_2_10_115_1
  doi: 10.1149/1.2086015
– ident: e_1_2_10_127_1
  doi: 10.1007/s40243-015-0046-9
– ident: e_1_2_10_118_1
  doi: 10.1002/adma.201602912
– ident: e_1_2_10_48_1
  doi: 10.1021/acs.chemmater.5b04457
– ident: e_1_2_10_166_1
  doi: 10.1016/j.nanoen.2014.09.009
– ident: e_1_2_10_43_1
  doi: 10.1039/C9NR07832K
– ident: e_1_2_10_111_1
  doi: 10.1002/adma.201506112
– ident: e_1_2_10_159_1
  doi: 10.1002/er.6983
– ident: e_1_2_10_143_1
  doi: 10.1039/C6EE01046F
– ident: e_1_2_10_117_1
  doi: 10.1021/ja509879r
– ident: e_1_2_10_162_1
  doi: 10.1039/C9SE01240K
– ident: e_1_2_10_15_1
  doi: 10.1021/acs.chemrev.6b00398
– ident: e_1_2_10_77_1
  doi: 10.1039/C5EE03124A
– volume-title: Electrolysis
  year: 2012
  ident: e_1_2_10_147_1
– ident: e_1_2_10_99_1
  doi: 10.1002/adma.201305608
– ident: e_1_2_10_16_1
  doi: 10.1016/j.nanoen.2016.01.027
– ident: e_1_2_10_121_1
  doi: 10.1039/C6TA04187F
– ident: e_1_2_10_122_1
  doi: 10.1016/j.jcat.2017.07.001
– ident: e_1_2_10_107_1
  doi: 10.1002/adma.201604942
– ident: e_1_2_10_156_1
  doi: 10.2172/1507088
– ident: e_1_2_10_120_1
  doi: 10.1016/j.jpowsour.2012.06.015
– ident: e_1_2_10_170_1
  doi: 10.1002/adfm.201908167
– ident: e_1_2_10_112_1
  doi: 10.1039/C7EE01702B
– ident: e_1_2_10_45_1
  doi: 10.1002/adma.201606800
– ident: e_1_2_10_58_1
  doi: 10.1002/adma.201802912
– ident: e_1_2_10_86_1
  doi: 10.1126/sciadv.1501122
– ident: e_1_2_10_53_1
  doi: 10.1002/adma.201902509
– ident: e_1_2_10_4_1
– ident: e_1_2_10_79_1
  doi: 10.1002/anie.201311223
– ident: e_1_2_10_131_1
  doi: 10.1039/C4CC07120D
– ident: e_1_2_10_68_1
  doi: 10.1038/nmat4938
– ident: e_1_2_10_133_1
  doi: 10.1021/acsnano.7b08721
– ident: e_1_2_10_124_1
  doi: 10.1016/j.carbon.2012.03.050
– ident: e_1_2_10_59_1
  doi: 10.1021/acs.chemmater.5b03148
– ident: e_1_2_10_38_1
  doi: 10.1002/adfm.202102918
– ident: e_1_2_10_130_1
  doi: 10.1002/anie.201409524
– ident: e_1_2_10_8_1
  doi: 10.1149/2.1441704jes
– ident: e_1_2_10_61_1
  doi: 10.1021/ja405351s
– ident: e_1_2_10_84_1
  doi: 10.1002/cssc.201402118
– ident: e_1_2_10_34_1
  doi: 10.1021/acscatal.5b02432
– ident: e_1_2_10_174_1
  doi: 10.1038/ncomms2812
– ident: e_1_2_10_145_1
  doi: 10.1038/s41560-020-0577-x
– ident: e_1_2_10_40_1
  doi: 10.1021/acscentsci.5b00227
– ident: e_1_2_10_87_1
  doi: 10.1002/adma.201601406
– ident: e_1_2_10_24_1
  doi: 10.1016/j.jelechem.2010.10.004
– ident: e_1_2_10_113_1
  doi: 10.1021/jacs.9b05006
– ident: e_1_2_10_125_1
  doi: 10.1016/j.ijhydene.2019.01.022
– ident: e_1_2_10_129_1
  doi: 10.1002/anie.201204958
– ident: e_1_2_10_6_1
  doi: 10.2172/1557965
– ident: e_1_2_10_62_1
  doi: 10.1021/la501246e
– ident: e_1_2_10_74_1
  doi: 10.1002/celc.201402262
– ident: e_1_2_10_171_1
  doi: 10.1021/acsnano.7b06595
– ident: e_1_2_10_2_1
  doi: 10.1021/acs.chemrev.5b00073
– ident: e_1_2_10_9_1
  doi: 10.1038/nmat3313
– ident: e_1_2_10_85_1
  doi: 10.1002/cctc.201601268
– ident: e_1_2_10_39_1
  doi: 10.1039/C5EE01155H
– ident: e_1_2_10_169_1
  doi: 10.1149/2.0301908jes
– ident: e_1_2_10_10_1
  doi: 10.1126/science.aaf1525
– ident: e_1_2_10_155_1
  doi: 10.1021/acscatal.8b04001
– ident: e_1_2_10_146_1
  doi: 10.1016/j.apcatb.2018.08.037
– ident: e_1_2_10_57_1
  doi: 10.1038/s41929-019-0325-4
– ident: e_1_2_10_20_1
  doi: 10.1002/cctc.201000126
– ident: e_1_2_10_54_1
  doi: 10.1021/jp506946b
– ident: e_1_2_10_105_1
  doi: 10.1038/nnano.2015.48
– ident: e_1_2_10_132_1
  doi: 10.1002/adma.201703185
– ident: e_1_2_10_149_1
  doi: 10.1016/0360-3199(83)90162-3
– ident: e_1_2_10_173_1
  doi: 10.1002/smll.201802767
– ident: e_1_2_10_27_1
  doi: 10.1038/ncomms12876
– ident: e_1_2_10_163_1
  doi: 10.1016/j.apcatb.2020.118771
– ident: e_1_2_10_22_1
  doi: 10.1016/j.jcat.2014.12.033
– ident: e_1_2_10_63_1
  doi: 10.1021/jacs.5b10525
– ident: e_1_2_10_93_1
  doi: 10.1021/acs.jpcc.8b03269
– ident: e_1_2_10_70_1
  doi: 10.1002/anie.202015060
– ident: e_1_2_10_73_1
  doi: 10.1002/tcr.201800162
– ident: e_1_2_10_81_1
  doi: 10.1038/s41560-020-0576-y
– ident: e_1_2_10_17_1
  doi: 10.1039/C4CS00448E
– ident: e_1_2_10_50_1
  doi: 10.1038/s41560-019-0355-9
– ident: e_1_2_10_72_1
  doi: 10.1039/C9EE01872G
– ident: e_1_2_10_67_1
  doi: 10.1016/j.electacta.2016.09.116
– ident: e_1_2_10_137_1
  doi: 10.1016/j.jcat.2018.10.025
– ident: e_1_2_10_119_1
  doi: 10.1016/j.ijhydene.2016.08.118
– ident: e_1_2_10_103_1
  doi: 10.1021/acsnano.6b05914
– ident: e_1_2_10_126_1
  doi: 10.1016/j.nanoen.2015.07.008
– ident: e_1_2_10_90_1
  doi: 10.1038/ncomms3390
– ident: e_1_2_10_30_1
  doi: 10.1002/anie.201701531
– ident: e_1_2_10_78_1
  doi: 10.1002/cssc.201301401
– ident: e_1_2_10_71_1
  doi: 10.1021/ja405997s
– ident: e_1_2_10_64_1
  doi: 10.1038/s41929-020-00525-6
– ident: e_1_2_10_148_1
  doi: 10.1016/j.pecs.2009.11.002
– ident: e_1_2_10_154_1
  doi: 10.1002/adma.201805876
– ident: e_1_2_10_104_1
  doi: 10.1002/advs.201800036
– ident: e_1_2_10_12_1
  doi: 10.1039/C5EE03316K
– ident: e_1_2_10_151_1
  doi: 10.1016/j.joule.2021.05.006
– ident: e_1_2_10_7_1
  doi: 10.1149/2.0641805jes
– ident: e_1_2_10_18_1
  doi: 10.1038/nmat4738
– ident: e_1_2_10_31_1
  doi: 10.1038/nenergy.2016.53
– ident: e_1_2_10_32_1
  doi: 10.1039/C9CS00607A
– ident: e_1_2_10_114_1
  doi: 10.1016/j.apcatb.2014.07.049
– ident: e_1_2_10_157_1
  doi: 10.1039/c2ee22146b
– ident: e_1_2_10_33_1
  doi: 10.1016/j.joule.2021.05.005
– ident: e_1_2_10_41_1
  doi: 10.1021/acs.chemmater.9b02790
– ident: e_1_2_10_89_1
  doi: 10.1103/PhysRevB.87.165401
– ident: e_1_2_10_135_1
  doi: 10.1002/anie.201610119
– ident: e_1_2_10_92_1
  doi: 10.1021/acs.jpcc.8b08519
– ident: e_1_2_10_37_1
  doi: 10.1021/j100238a048
– ident: e_1_2_10_91_1
  doi: 10.1126/science.1212858
– ident: e_1_2_10_138_1
  doi: 10.1016/j.apcatb.2020.118967
– ident: e_1_2_10_160_1
  doi: 10.3390/membranes11060397
– ident: e_1_2_10_25_1
  doi: 10.1002/adma.201908126
– ident: e_1_2_10_153_1
  doi: 10.1016/j.rser.2017.05.258
– ident: e_1_2_10_35_1
  doi: 10.1038/nchem.2695
– ident: e_1_2_10_98_1
  doi: 10.1080/1536383X.2018.1448793
– ident: e_1_2_10_144_1
  doi: 10.1002/celc.201500268
– ident: e_1_2_10_168_1
  doi: 10.1038/nmat3087
– ident: e_1_2_10_60_1
  doi: 10.1021/jacs.5b00281
– ident: e_1_2_10_109_1
  doi: 10.1016/j.apsusc.2019.06.076
– ident: e_1_2_10_1_1
  doi: 10.1126/science.aad4998
– ident: e_1_2_10_116_1
  doi: 10.1021/nl2031037
– ident: e_1_2_10_46_1
  doi: 10.1038/nchem.2695
– ident: e_1_2_10_139_1
  doi: 10.1038/s41929-017-0008-y
– ident: e_1_2_10_52_1
  doi: 10.1038/s41929-020-0465-6
– ident: e_1_2_10_69_1
  doi: 10.1039/C7TA10892C
– ident: e_1_2_10_123_1
  doi: 10.1021/acsnano.7b03290
– ident: e_1_2_10_29_1
  doi: 10.1021/jacs.5b11713
– ident: e_1_2_10_95_1
  doi: 10.1021/acsenergylett.6b00681
– ident: e_1_2_10_150_1
  doi: 10.1002/adma.201806326
– ident: e_1_2_10_140_1
  doi: 10.1016/j.chempr.2017.12.005
– ident: e_1_2_10_21_1
  doi: 10.1016/j.jelechem.2006.11.008
– ident: e_1_2_10_134_1
  doi: 10.1002/adfm.201704638
– ident: e_1_2_10_110_1
  doi: 10.1002/cctc.201702000
– ident: e_1_2_10_51_1
  doi: 10.1038/s41467-020-16237-1
– ident: e_1_2_10_55_1
  doi: 10.1038/ncomms4949
– ident: e_1_2_10_165_1
  doi: 10.1021/ja107719u
– ident: e_1_2_10_5_1
  doi: 10.1038/s41560-020-00720-6
– ident: e_1_2_10_76_1
  doi: 10.1021/acsnano.8b06312
– ident: e_1_2_10_3_1
  doi: 10.1021/ja510442p
– ident: e_1_2_10_158_1
  doi: 10.1021/acscatal.0c04200
– ident: e_1_2_10_42_1
  doi: 10.1002/anie.201910716
– ident: e_1_2_10_82_1
  doi: 10.1038/s41929-020-0496-z
– ident: e_1_2_10_65_1
  doi: 10.1021/acs.jpcc.8b01397
– ident: e_1_2_10_56_1
  doi: 10.1021/jz501077u
– ident: e_1_2_10_47_1
  doi: 10.1021/jacs.7b02622
– ident: e_1_2_10_19_1
  doi: 10.1016/j.nanoen.2017.07.006
– ident: e_1_2_10_44_1
  doi: 10.1021/acsenergylett.9b00382
– ident: e_1_2_10_96_1
  doi: 10.3390/ma12020211
– ident: e_1_2_10_80_1
  doi: 10.1039/C5MH00096C
– ident: e_1_2_10_88_1
  doi: 10.1021/nl015549q
– ident: e_1_2_10_26_1
  doi: 10.1021/acscatal.5b01638
– ident: e_1_2_10_11_1
  doi: 10.1002/adma.201604437
– ident: e_1_2_10_75_1
  doi: 10.1038/s41929-018-0162-x
– ident: e_1_2_10_102_1
  doi: 10.1002/aenm.201602928
– ident: e_1_2_10_66_1
  doi: 10.1021/jz301414z
– ident: e_1_2_10_101_1
  doi: 10.1002/aenm.201501492
– ident: e_1_2_10_141_1
  doi: 10.1002/anie.201710852
– ident: e_1_2_10_28_1
  doi: 10.1002/adma.201606793
– ident: e_1_2_10_14_1
  doi: 10.1021/acscatal.6b02479
– ident: e_1_2_10_142_1
  doi: 10.1021/jacs.9b05268
– ident: e_1_2_10_106_1
  doi: 10.1021/acscatal.5b00601
– ident: e_1_2_10_172_1
  doi: 10.1016/j.nanoen.2015.04.005
– ident: e_1_2_10_83_1
  doi: 10.1002/advs.201400015
– ident: e_1_2_10_94_1
  doi: 10.1016/j.carbon.2017.08.003
– ident: e_1_2_10_161_1
  doi: 10.1039/C4EE01303D
– ident: e_1_2_10_128_1
  doi: 10.1021/acscatal.6b01503
– ident: e_1_2_10_152_1
  doi: 10.1149/1945-7111/aba792
– ident: e_1_2_10_164_1
  doi: 10.1149/2.0231611jes
– ident: e_1_2_10_49_1
  doi: 10.1002/anie.201902114
– ident: e_1_2_10_108_1
  doi: 10.1039/C6EE03265F
– ident: e_1_2_10_167_1
  doi: 10.1002/smll.201603793
– ident: e_1_2_10_100_1
  doi: 10.1016/j.electacta.2016.04.034
– ident: e_1_2_10_13_1
  doi: 10.1002/adma.201602270
– ident: e_1_2_10_36_1
  doi: 10.1126/science.aam7092
– ident: e_1_2_10_97_1
  doi: 10.1002/adfm.201910741
– ident: e_1_2_10_136_1
  doi: 10.1002/anie.201804349
SSID ssj0017734
Score 2.7279224
SecondaryResourceType review_article
Snippet The oxygen evolution reaction (OER) generally exists in electrochemistry‐enabled applications that are coupled with cathodic reactions like hydrogen evolution,...
Abstract The oxygen evolution reaction (OER) generally exists in electrochemistry‐enabled applications that are coupled with cathodic reactions like hydrogen...
SourceID osti
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms alkaline electrolyzer
Ammonia
Carbon
Carbon dioxide
Catalysts
catalytic activity site
degradation mechanism
Devices
Electrochemistry
Hydrogen evolution
Hydroxides
Iridium
Materials science
Noble metals
non‐precious metal‐based catalysts
oxygen evolution reaction
Oxygen evolution reactions
Precious metals
Ruthenium
Transition metal oxides
Title Oxygen Evolution Reaction in Alkaline Environment: Material Challenges and Solutions
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202110036
https://www.proquest.com/docview/2666415068
https://www.osti.gov/biblio/1854648
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA86L3oQP3FuSg6Cp7ImTdPV29gHQ5jK2GC3kCYpiKMTN0X_e99ru7odRPBSKE0ofR95vybv_R4hN0yj3Rjupc5PPWFi4SUiibycKw7ipxU2T5B9kMOpuJ-Fs40q_oIfotpwQ8_I12t0cJ0sWz-kodqmWEmOPzCwCu-SPayvxR4GXDxV5whRVJwrS4YZXmy2pm30eWt7_lZYqi3AvbYg5yZwzSPP4IgclpCRdgodH5Mdl52Qgw0iwVMyefz8Akug_Y_SkujYFRUL9DmjnfmLxu-l_Z-qtjs60qvc-mh33U9lSXVmabVRdkamg_6kO_TKfgmeEaEvvZhHUjMLP7whS2TobNtxx5iOfGsthOGYpSyFAI4U69aYgAdGpjoAQIStYMEbz0ktW2TugtCQ2yBIpHBJOxFB5IP-mIlA23HkA6CSdeKtxaVMSSaOPS3mqqBB5grFqyrx1sltNf61oNH4dWQDpa8AACCLrcF0H7NSACuEFO06aa6VokpnWyrAGFIgUyI85rmi_niH6vQGo-ru8j-TGmSfYyFEnvrYJLXV27u7AniySq5zC4Rrb8y_AewZ2ew
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA86D-pB_MS5qTkInsqaNE03b2NuTN2myITdQpukII5O3BT9732vX24HETyWJpS-j7xfkvd-j5ALFqLdaO7E1o0doVvCiUQUOClXHMRPI0yaIDuS_SdxO_GLbEKshcn4IcoDN_SMdL1GB8cD6cYPa2hoYiwlxx0MLMPrZEMAOEfD5uKhvEgIguxiWTJM8WKTgrfR5Y3V-StxqTID_1rBnMvINQ09vV2yk2NG2s6UvEfWbLJPtpeYBA_I-P7zC0yBdj9yU6KPNitZoM8JbU9fQvxh2v0pa7uiw3CRmh_tFA1V5jRMDC1Pyg7JU6877vSdvGGCo4XvSqfFAxkyAzten0XSt6ZpuWUsDFxjDMThFotZDBEcOdaN1h73tIxDDxAR9oIFdzwilWSW2GNCfW48L5LCRs1IeIELCmQ6AHW3AhcQlawSpxCX0jmbODa1mKqMB5krFK8qxVsll-X414xH49eRNZS-AgSANLYa8330QgGuEFI0q6ReKEXl3jZXADKkQKpEeM1TRf3xDdW-7g3Lp5P_TDonm_3xcKAGN6O7GtniWBWR5kHWSWXx9m5PAassorPUGr8Btb7ceA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA46QfRBvOKclzwIPpU1aZpuvo25MS-bQzbYW2iTFESpolX033tOb9seRPCxNKH0XHK-JOd8h5BzFqLdaO7E1o0dodvCiUQUOBlXHMRPI0yWIDuSg6m4mfmzhSr-nB-iOnBDz8jWa3TwVxM356ShoYmxkhw3MLAKr5I1vPHDpD4uxtU9QhDk98qSYYYXm5W0jS5vLs9fCku1F3CvJci5CFyzyNPfJlsFZKSdXMc7ZMUmu2RzgUhwj0zuv77BEmjvs7Ak-mDzigX6mNDO81OI_0t786q2SzoM08z6aLfsp_JOw8TQ6qBsn0z7vUl34BT9EhwtfFc6bR7IkBnY8Poskr41LcstY2HgGmMgDLdZzGII4EixbrT2uKdlHHoAiLAVLHjjAaklL4k9JNTnxvMiKWzUioQXuKA_pgPQdjtwAVDJOnFKcSldkIljT4tnldMgc4XiVZV46-SiGv-a02j8OrKB0lcAAJDFVmO6j04VwAohRatOjkulqMLZ3hVgDCmQKRFe80xRf3xDda76w-rp6D-Tzsj6-Kqv7q5Htw2ywbEmIsuCPCa19O3DngBSSaPTzBh_AGtO26E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oxygen+Evolution+Reaction+in+Alkaline+Environment%3A+Material+Challenges+and+Solutions&rft.jtitle=Advanced+functional+materials&rft.au=Xie%2C+Xiaohong&rft.au=Du%2C+Lei&rft.au=Yan%2C+Litao&rft.au=Park%2C+Sehkyu&rft.date=2022-05-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=32&rft.issue=21&rft_id=info:doi/10.1002%2Fadfm.202110036&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202110036
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon