Engineering Self‐Supported Noble Metal Foams Toward Electrocatalysis and Beyond

Noble metals, despite their expensiveness, display irreplaceable roles in widespread fields. To acquire novel physicochemical properties and boost the performance‐to‐price ratio for practical applications, one core direction is to engineer noble metals into nanostructured porous networks. Noble meta...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 10; no. 11
Main Authors Du, Ran, Jin, Xinyi, Hübner, René, Fan, Xuelin, Hu, Yue, Eychmüller, Alexander
Format Journal Article
LanguageEnglish
Published 01.03.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Noble metals, despite their expensiveness, display irreplaceable roles in widespread fields. To acquire novel physicochemical properties and boost the performance‐to‐price ratio for practical applications, one core direction is to engineer noble metals into nanostructured porous networks. Noble metal foams (NMFs), featuring self‐supported, 3D interconnected networks structured from noble‐metal‐based building blocks, have drawn tremendous attention in the last two decades. Inheriting structural traits of foams and physicochemical properties of noble metals, NMFs showcase a variety of interesting properties and impressive prospect in diverse fields, including electrocatalysis, heterogeneous catalysis, surface‐enhanced Raman scattering, sensing and actuation, etc. A number of NMFs have been created and versatile synthetic approaches have been developed. However, because of the innate limitation of specific methods and the insufficient understanding of formation mechanisms, flexible manipulation of compositions, structures, and corresponding properties of NMFs are still challenging. Thus, the correlations between composition/structure and properties are seldom established, retarding material design/optimization for specific applications. This review is devoted to a comprehensive introduction of NMFs ranging from synthesis to applications, with an emphasis on electrocatalysis. Challenges and opportunities are also included to guide possible research directions in this field and promote the interest of interdisciplinary scientists. Noble metal foams (NMFs) are 3D interconnected networks structured from noble‐metal‐based building blocks. Featuring abundant active sites and 3D mass/electron transfer channels, they showcase a variety of interesting properties and impressive prospects in diverse fields. A comprehensive review on NMFs from synthesis to applications is given, with an emphasis on their applications in energy‐related fields.
AbstractList Noble metals, despite their expensiveness, display irreplaceable roles in widespread fields. To acquire novel physicochemical properties and boost the performance‐to‐price ratio for practical applications, one core direction is to engineer noble metals into nanostructured porous networks. Noble metal foams (NMFs), featuring self‐supported, 3D interconnected networks structured from noble‐metal‐based building blocks, have drawn tremendous attention in the last two decades. Inheriting structural traits of foams and physicochemical properties of noble metals, NMFs showcase a variety of interesting properties and impressive prospect in diverse fields, including electrocatalysis, heterogeneous catalysis, surface‐enhanced Raman scattering, sensing and actuation, etc. A number of NMFs have been created and versatile synthetic approaches have been developed. However, because of the innate limitation of specific methods and the insufficient understanding of formation mechanisms, flexible manipulation of compositions, structures, and corresponding properties of NMFs are still challenging. Thus, the correlations between composition/structure and properties are seldom established, retarding material design/optimization for specific applications. This review is devoted to a comprehensive introduction of NMFs ranging from synthesis to applications, with an emphasis on electrocatalysis. Challenges and opportunities are also included to guide possible research directions in this field and promote the interest of interdisciplinary scientists. Noble metal foams (NMFs) are 3D interconnected networks structured from noble‐metal‐based building blocks. Featuring abundant active sites and 3D mass/electron transfer channels, they showcase a variety of interesting properties and impressive prospects in diverse fields. A comprehensive review on NMFs from synthesis to applications is given, with an emphasis on their applications in energy‐related fields.
Author Du, Ran
Hübner, René
Fan, Xuelin
Hu, Yue
Jin, Xinyi
Eychmüller, Alexander
Author_xml – sequence: 1
  givenname: Ran
  surname: Du
  fullname: Du, Ran
  email: Ran.Du@chemie.tu-dresden.de
  organization: Technische Universität Dresden
– sequence: 2
  givenname: Xinyi
  surname: Jin
  fullname: Jin, Xinyi
  organization: Zhejiang University
– sequence: 3
  givenname: René
  surname: Hübner
  fullname: Hübner, René
  organization: Institute of Ion Beam Physics and Materials Research
– sequence: 4
  givenname: Xuelin
  surname: Fan
  fullname: Fan, Xuelin
  organization: Technische Universität Dresden
– sequence: 5
  givenname: Yue
  surname: Hu
  fullname: Hu, Yue
  organization: Wenzhou University
– sequence: 6
  givenname: Alexander
  orcidid: 0000-0001-9926-6279
  surname: Eychmüller
  fullname: Eychmüller, Alexander
  email: alexander.eychmueller@chemie.tu-dresden.de
  organization: Technische Universität Dresden
BookMark eNo9kM1Kw0AUhQepYK3dup4XSL13ZvIzy1pSFdqKtK7DNHNTIslMSColOx_BZ_RJbFFyOHDO4cJdfLds5Lwjxu4RZgggHgy5eiYA9dkqvGJjjFAFUaJgNHQpbti06z7gLKURpByzt9QdSkfUlu7At1QVP1_f28-m8e2RLN_4fUV8TUdT8aU3dcd3_mRay9OK8mPrc3O-9F3ZceMsf6TeO3vHrgtTdTT9zwl7X6a7xXOwen16WcxXQa5CCAOUmpREXUAc61CiUEC5jREVJCJJCiwkoQ4Jo8TqPNSRjIVV-1gbQAG0lxOm__6eyor6rGnL2rR9hpBdgGQXINkAJJunm_Ww5C9s6Fhu
CitedBy_id crossref_primary_10_1021_acscatal_3c00201
crossref_primary_10_1021_cbe_4c00001
crossref_primary_10_1016_j_cej_2023_146317
crossref_primary_10_1016_j_cej_2024_151348
crossref_primary_10_1016_j_apmt_2022_101670
crossref_primary_10_1002_ange_202208215
crossref_primary_10_1021_acs_langmuir_0c01431
crossref_primary_10_1021_acsami_3c02101
crossref_primary_10_1021_acssuschemeng_1c01498
crossref_primary_10_1016_j_apcatb_2022_121650
crossref_primary_10_1021_acsanm_1c02864
crossref_primary_10_1039_D1TB02620H
crossref_primary_10_3389_fmats_2022_998673
crossref_primary_10_1002_ange_201916484
crossref_primary_10_1039_D0CC06337A
crossref_primary_10_1016_j_jallcom_2020_156422
crossref_primary_10_1149_1945_7111_ac519c
crossref_primary_10_1002_asia_202300343
crossref_primary_10_1039_D2QI01494G
crossref_primary_10_1002_anie_202102832
crossref_primary_10_1007_s40242_020_0209_9
crossref_primary_10_1002_aenm_202200409
crossref_primary_10_1002_adfm_202103465
crossref_primary_10_1007_s12274_021_3301_7
crossref_primary_10_1038_s42004_023_00847_z
crossref_primary_10_1002_advs_202307061
crossref_primary_10_3390_catal13010167
crossref_primary_10_1002_advs_202207495
crossref_primary_10_1016_j_cej_2023_145777
crossref_primary_10_1039_D1CS00983D
crossref_primary_10_1039_D4MH00242C
crossref_primary_10_1021_acsami_0c14007
crossref_primary_10_1002_adhm_202301073
crossref_primary_10_1038_s41467_020_15391_w
crossref_primary_10_3390_catal10121376
crossref_primary_10_1002_slct_202202774
crossref_primary_10_1002_anie_201916484
crossref_primary_10_1021_acsanm_2c02003
crossref_primary_10_1021_acsnano_0c04628
crossref_primary_10_1002_VIW_20200124
crossref_primary_10_1021_acs_chemrev_2c00539
crossref_primary_10_1002_adom_202100352
crossref_primary_10_1016_j_apcatb_2024_124197
crossref_primary_10_1002_smll_202303005
crossref_primary_10_1039_D3EY00220A
crossref_primary_10_1016_j_jallcom_2023_172286
crossref_primary_10_1002_smll_202203663
crossref_primary_10_1016_j_mtchem_2022_101152
crossref_primary_10_1021_acsenergylett_3c00911
crossref_primary_10_1039_D3CC03278G
crossref_primary_10_3389_fchem_2020_00426
crossref_primary_10_1002_adma_202300945
crossref_primary_10_1039_D2MA00213B
crossref_primary_10_1021_acs_analchem_2c01836
crossref_primary_10_1002_cey2_491
crossref_primary_10_1021_acs_jpcc_3c01459
crossref_primary_10_1021_acs_jpcc_2c06382
crossref_primary_10_1038_s41467_022_28805_8
crossref_primary_10_1088_1361_6528_ac56bc
crossref_primary_10_1080_02670836_2023_2186068
crossref_primary_10_1002_adfm_202212160
crossref_primary_10_1186_s11671_021_03480_8
crossref_primary_10_1002_smll_202005354
crossref_primary_10_3390_met13071298
crossref_primary_10_1016_j_cej_2023_143060
crossref_primary_10_1021_acscatal_0c01081
crossref_primary_10_1002_adfm_202204166
crossref_primary_10_1002_aenm_202103916
crossref_primary_10_1002_adfm_202206263
crossref_primary_10_1016_j_ccr_2024_215952
crossref_primary_10_1002_aenm_201903857
crossref_primary_10_1016_j_ijbiomac_2023_125303
crossref_primary_10_1016_j_matchemphys_2023_127341
crossref_primary_10_1016_j_matt_2020_10_001
crossref_primary_10_1002_anie_202208215
crossref_primary_10_1039_D1TA03103A
crossref_primary_10_1002_celc_202400154
crossref_primary_10_1021_acs_energyfuels_1c04165
crossref_primary_10_1088_1361_6528_ac4287
crossref_primary_10_1002_aesr_202400050
crossref_primary_10_1002_smsc_202300227
crossref_primary_10_1016_j_apcatb_2022_122072
crossref_primary_10_1039_D1MA01057C
crossref_primary_10_1021_acs_accounts_2c00491
crossref_primary_10_1002_ange_202102832
crossref_primary_10_1002_smll_202301288
crossref_primary_10_1021_jacs_1c11680
crossref_primary_10_1021_acsanm_0c01438
crossref_primary_10_1002_cctc_202001145
crossref_primary_10_1021_acs_chemrev_2c00751
ContentType Journal Article
Copyright 2019 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID 24P
WIN
DOI 10.1002/aenm.201901945
DatabaseName Wiley Online Library Open Access
Wiley Online Library Free Content
DatabaseTitleList
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID AENM201901945
Genre reviewArticle
GrantInformation_xml – fundername: China Scholarship Council
– fundername: Alexander von Humboldt Foundation
– fundername: Natural Science Foundation of Zhejiang Province
  funderid: LY19E020008
– fundername: National Natural Science Foundation of China
  funderid: 51602226
– fundername: Federal Ministry of Education and Research
  funderid: 03SF0451
– fundername: ERC AdG AEROCAT
GroupedDBID 05W
0R~
1OC
24P
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAIHA
AANLZ
AASGY
AAXRX
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WIN
WOHZO
WXSBR
WYJ
ZZTAW
~S-
ID FETCH-LOGICAL-c4505-139e4319f0779531240ecd711408288f1f3e195e168d9c596372d4b79a0120eb3
IEDL.DBID 24P
ISSN 1614-6832
IngestDate Sat Aug 24 01:07:31 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4505-139e4319f0779531240ecd711408288f1f3e195e168d9c596372d4b79a0120eb3
ORCID 0000-0001-9926-6279
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201901945
PageCount 30
ParticipantIDs wiley_primary_10_1002_aenm_201901945_AENM201901945
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Advanced energy materials
PublicationYear 2020
References 2017; 5
2017; 8
2017; 1
2013; 25
2019; 15
2014; 26
2008; 37
2007; 79
2014; 136
2009; 48
2012; 51
2014; 20
2018; 6
2001; 410
2015; 48
2018; 8
2018; 3
2014; 4
2012; 134
2014; 2
2018; 4
1965; 6
2017; 32
2018; 258
2013; 52
2003; 2
2003; 3
2007; 9
2005; 307
2018; 30
2007; 2
1979; 282
2008; 112
2006; 128
2014; 53
2015; 2
2007; 19
2007; 129
2019; 5
2015; 3
2010; 327
2019; 1
2015; 11
2010; 487
2015; 54
2016; 10
2006; 8
2014; 47
2005
2017; 29
2009; 131
2011; 4
2011; 6
2003; 299
2005; 44
2016; 163
2016; 55
2017; 53
2016; 6
2018; 275
2010; 49
2012; 2
2012; 3
2006; 45
2017; 17
2007; 111
2017; 13
2017; 56
2019
2005; 4
2009; 8
1992; 68
1972; 31
2016; 138
2014
2008; 41
2011; 47
2009; 4
2016; 28
2018; 11
2005; 17
2018; 10
2018; 53
2016; 8
1963; 19
2016; 173
2018; 14
2018; 57
2016; 22
References_xml – year: 2005
– volume: 31
  start-page: 577
  year: 1972
  publication-title: Pure Appl. Chem.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 3
  start-page: 1241
  year: 2012
  publication-title: Nat. Commun.
– volume: 28
  start-page: 6477
  year: 2016
  publication-title: Chem. Mater.
– year: 2014
– volume: 41
  start-page: 1578
  year: 2008
  publication-title: Acc. Chem. Res.
– volume: 136
  start-page: 7993
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 39
  year: 2019
  publication-title: Matter
– volume: 299
  start-page: 1688
  year: 2003
  publication-title: Science
– volume: 29
  start-page: 9814
  year: 2017
  publication-title: Chem. Mater.
– volume: 48
  start-page: 60
  year: 2009
  publication-title: Angew. Chem., Int. Ed.
– volume: 32
  start-page: 4153
  year: 2017
  publication-title: J. Mater. Res.
– volume: 53
  start-page: 206
  year: 2018
  publication-title: Nano Energy
– volume: 131
  start-page: 602
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 482
  year: 2017
  publication-title: Mater. Chem. Front.
– volume: 6
  start-page: 7517
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 136
  start-page: 2719
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 28
  start-page: 7928
  year: 2016
  publication-title: Chem. Mater.
– volume: 9
  start-page: 27
  year: 2007
  publication-title: Solid State Sci.
– volume: 19
  start-page: 344
  year: 2007
  publication-title: Chem. Mater.
– year: 2019
– volume: 79
  start-page: 1801
  year: 2007
  publication-title: Pure Appl. Chem.
– volume: 136
  start-page: 2727
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 3
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 410
  start-page: 450
  year: 2001
  publication-title: Nature
– volume: 112
  year: 2008
  publication-title: J. Phys. Chem. C
– volume: 48
  start-page: 9731
  year: 2009
  publication-title: Angew. Chem., Int. Ed.
– volume: 17
  start-page: 7171
  year: 2017
  publication-title: Nano Lett.
– volume: 6
  year: 2018
  publication-title: APL Mater.
– volume: 19
  start-page: 373t
  year: 1963
  publication-title: Corrosion
– volume: 5
  start-page: eaaw4590
  year: 2019
  publication-title: Sci. Adv.
– volume: 134
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 787
  year: 2005
  publication-title: Nat. Mater.
– volume: 55
  start-page: 1200
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 49
  start-page: 4544
  year: 2010
  publication-title: Angew. Chem., Int. Ed.
– volume: 26
  start-page: 1074
  year: 2014
  publication-title: Chem. Mater.
– volume: 53
  start-page: 4561
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 26
  start-page: 8053
  year: 2014
  publication-title: Adv. Mater.
– volume: 57
  start-page: 2963
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 51
  start-page: 1698
  year: 2012
  publication-title: Angew. Chem., Int. Ed.
– volume: 163
  start-page: F998
  year: 2016
  publication-title: J. Electrochem. Soc.
– volume: 57
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 13
  year: 2017
  publication-title: Small
– volume: 2
  start-page: 107
  year: 2007
  publication-title: Plasmonics
– volume: 28
  start-page: 8779
  year: 2016
  publication-title: Adv. Mater.
– volume: 17
  start-page: 683
  year: 2005
  publication-title: Chem. Mater.
– volume: 10
  start-page: 2559
  year: 2016
  publication-title: ACS Nano
– volume: 6
  start-page: 534
  year: 2011
  publication-title: Nat. Nanotechnol.
– volume: 8
  start-page: 853
  year: 2006
  publication-title: Adv. Eng. Mater.
– volume: 44
  start-page: 7852
  year: 2005
  publication-title: Angew. Chem., Int. Ed.
– volume: 2
  start-page: 3648
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 56
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 22
  year: 2016
  publication-title: Chem. ‐ Eur. J.
– volume: 307
  start-page: 397
  year: 2005
  publication-title: Science
– volume: 11
  start-page: 3263
  year: 2015
  publication-title: Small
– volume: 8
  year: 2018
  publication-title: RSC Adv.
– volume: 3
  start-page: 75
  year: 2003
  publication-title: Chem. Rec.
– volume: 47
  start-page: 731
  year: 2014
  publication-title: Acc. Chem. Res.
– volume: 4
  start-page: eaas9459
  year: 2018
  publication-title: Sci. Adv.
– volume: 11
  start-page: 1354
  year: 2018
  publication-title: ChemSusChem
– volume: 45
  start-page: 8241
  year: 2006
  publication-title: Angew. Chem., Int. Ed.
– volume: 49
  year: 2010
  publication-title: Angew. Chem., Int. Ed.
– volume: 327
  start-page: 319
  year: 2010
  publication-title: Science
– volume: 111
  year: 2007
  publication-title: J. Phys. Chem. C
– volume: 8
  start-page: 47
  year: 2009
  publication-title: Nat. Mater.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 53
  year: 2017
  publication-title: Chem. Commun.
– volume: 48
  start-page: 154
  year: 2015
  publication-title: Acc. Chem. Res.
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 4
  start-page: 3167
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 2
  start-page: 386
  year: 2003
  publication-title: Nat. Mater.
– volume: 29
  start-page: 9208
  year: 2017
  publication-title: Chem. Mater.
– volume: 2
  year: 2015
  publication-title: Adv. Sci.
– volume: 47
  start-page: 6287
  year: 2011
  publication-title: Chem. Commun.
– volume: 68
  start-page: 1168
  year: 1992
  publication-title: Phys. Rev. Lett.
– volume: 129
  start-page: 42
  year: 2007
  publication-title: J. Am. Chem. Soc.
– volume: 51
  start-page: 5743
  year: 2012
  publication-title: Angew. Chem., Int. Ed.
– volume: 20
  start-page: 4380
  year: 2014
  publication-title: Chem. ‐ Eur. J.
– volume: 4
  start-page: 1402
  year: 2009
  publication-title: Chem. ‐ Asian J.
– volume: 2
  start-page: 849
  year: 2012
  publication-title: Sci. Rep.
– volume: 25
  start-page: 3528
  year: 2013
  publication-title: Chem. Mater.
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 112
  start-page: 9673
  year: 2008
  publication-title: J. Phys. Chem. C
– volume: 282
  start-page: 597
  year: 1979
  publication-title: Nature
– volume: 275
  start-page: 182
  year: 2018
  publication-title: Electrochim. Acta
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 8
  start-page: 2339
  year: 2017
  publication-title: J. Phys. Chem. Lett.
– volume: 28
  start-page: 472
  year: 2016
  publication-title: Adv. Mater.
– volume: 30
  start-page: 3894
  year: 2018
  publication-title: Chem. Mater.
– volume: 54
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 3
  start-page: 2038
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 15
  year: 2019
  publication-title: Small
– volume: 258
  start-page: 211
  year: 2018
  publication-title: Microporous Mesoporous Mater.
– volume: 6
  start-page: 107
  year: 1965
  publication-title: Trans. Jpn. Inst. Met.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 128
  start-page: 6589
  year: 2006
  publication-title: J. Am. Chem. Soc.
– volume: 37
  start-page: 1052
  year: 2008
  publication-title: Chem. Soc. Rev.
– volume: 4
  start-page: 7196
  year: 2014
  publication-title: RSC Adv.
– volume: 29
  start-page: 7704
  year: 2017
  publication-title: Chem. Mater.
– volume: 138
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 52
  start-page: 9849
  year: 2013
  publication-title: Angew. Chem., Int. Ed.
– volume: 487
  start-page: 153
  year: 2010
  publication-title: Chem. Phys. Lett.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 173
  start-page: 80
  year: 2016
  publication-title: Mater. Lett.
SSID ssj0000491033
Score 2.6074262
Snippet Noble metals, despite their expensiveness, display irreplaceable roles in widespread fields. To acquire novel physicochemical properties and boost the...
SourceID wiley
SourceType Publisher
SubjectTerms aerogels
electrocatalysis
foams
nanostructures
noble metals
Title Engineering Self‐Supported Noble Metal Foams Toward Electrocatalysis and Beyond
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201901945
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWgLDAgPsW3PLBajV07iccKtaqQWoFopW6RHV8mSBGUnZ_Ab-SXcOeU0K6MluwMZ1_eu9PdO8ZudeqcR2IgKqi00IjJIs-hFEEiWkBqAkSx5_EkHc30_dzM17r4G32INuFGnhH_1-Tgzr93_0RDHdTUSU6AZrXZZjvIbXJ610o_tFkW5L8yifPkkdlokeL7_VVuTFR38xOb9DTiy_CA7a-IIe83N3nItqA-YntrcoHH7HFtxZ_gufr-_KKpnFQvG_iEJsPwMSCb5sOFe3nn01gSywfNpJuYqCH9Ee7qwJvOlRM2Gw6mdyOxGokgSm1IM7RnASHfVkmWWXQfxGMoQ4ZBDUnR5ZWseiCtAZnmwZYGvStTQfvMOmqSxcD5lHXqRQ1njHuXBId0DTcZ7UzuNVipQhJ8ZWRI7TlT0RzFayN7UTQCx6ogqxWt1Yr-YDJuVxf_OXTJdhVFsbGy64p1lm8fcI1Qv_Q38TZ_AGBEoJo
link.rule.ids 315,786,790,11589,27955,27956,46085,46509
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ09T8MwEIYtKAMwID7FNx5YoyapncRjhRoVaCIQrcQWOfF5ghRB2fkJ_EZ-CXdOG9qVMVKSwc7lfX26e46xaxFpXaIx8CxY4QnUZC9JoPJMgGoBkTTgYM9ZHg0n4u5ZLqoJqRem4UO0CTeKDPe_pgCnhHT3jxqqoaZWclI0JeQ62xBEgyO4s3ho0yxogAPfDZRHayO8CD_gBbrRD7urr1j1p05g0l22M3eGvN9s5R5bg3qfbS_xAg_Y49IVf4IX-_P1TWM5qWDW8JxGw_AM0E7zdKpfP_jY1cTyQTPqxmVqCEDCdW1407pyyCbpYHwz9OYzEbxKSIKG9hSg5ivrx7HC-EFBhsrEeKohFl1iA9uDQEkIosSoSmJ4xaERZaw0dcniyfmIdeppDceMl9o3Gv0a3iSFlkkpQAWh8U1pZWAidcJCtxzFW8O9KBrCcVjQqhXtqhX9QZ61V6f_eeiKbQ7H2agY3eb3Z2wrpCOtK_M6Z53Z-ydcoO7Pyku3s78j_6QC
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagSAgGxFO88cBqNU7tJB4raFQejYpopW6RE58nSCsoOz-B38gv4eyU0K6MluIMZ5-_70533xFyLSKtCyQGzIIVTCAmsySBkhmOaAGRNODFngdZ1B-L-4mcLHXx1_oQTcLNeYZ_r52Dz4xt_4mGaqhcJ7kDNCXkOtkQEdIHp-0shk2WBfkvD_w8eWQ2gkV4f3-VG4OwvfqLVXrq8SXdJTsLYki79UnukTWo9sn2klzgAXlaWtFneLHfn19uKqerlzU0c5Nh6ACQTdN0ql_f6ciXxNJePenGJ2qc_gjVlaF158ohGae90U2fLUYisFJIpxnaUYCQr2wQxwrdB_EYShNjUOOk6BLLbQe4ksCjxKhSonfFoRFFrLRrksXA-Yi0qmkFx4QWOjAa6Rp-JIWWSSFA8dAEprCSm0idkNCbI5_Vshd5LXAc5s5qeWO1vNvLBs3q9D-brsjm8DbNH--yhzOyFbqA1hd5nZPW_O0DLhD158WlP9gfaAejKw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+Self%E2%80%90Supported+Noble+Metal+Foams+Toward+Electrocatalysis+and+Beyond&rft.jtitle=Advanced+energy+materials&rft.au=Du%2C+Ran&rft.au=Jin%2C+Xinyi&rft.au=H%C3%BCbner%2C+Ren%C3%A9&rft.au=Fan%2C+Xuelin&rft.date=2020-03-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=10&rft.issue=11&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.201901945&rft.externalDBID=10.1002%252Faenm.201901945&rft.externalDocID=AENM201901945
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon