Probing the Charge Transfer in a Frustrated Lewis Pair by Resonance Raman Spectroscopy and DFT Calculations
A classical Lewis adduct derives from a covalent bond between a Lewis acid and a base. When the adduct formation is precluded by means of steric hindrance the association of the respective acid‐base molecular system is defined as a frustrated Lewis pair (FLP). In this work, the archetypal FLP Mes3P/...
Saved in:
Published in | Chemphyschem Vol. 22; no. 6; pp. 522 - 525 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
17.03.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A classical Lewis adduct derives from a covalent bond between a Lewis acid and a base. When the adduct formation is precluded by means of steric hindrance the association of the respective acid‐base molecular system is defined as a frustrated Lewis pair (FLP). In this work, the archetypal FLP Mes3P/B(C6F5)3 was characterized for the first time by resonance Raman spectroscopy, and the results were supported by density functional theory (DFT) calculations. The charge transfer nature of the lowest energy electronic transition, from phosphine to borane, was confirmed by the selective enhancement of the Raman bands associated to the FLP chromophore at resonance condition. Herein, we demonstrate the use of resonance Raman spectroscopy as a distinguished technique to probe the weak interaction involved in FLP chemistry.
The archetypal Mes3P/B(C6F5)3 frustrated Lewis pair (FLP) is characterized by Raman spectroscopy. The charge‐transfer interaction originating from the FLP encounter complex is probed by resonance Raman spectroscopy, where an enhancement of the bands assigned to the vibrational modes of both species confirms the chromophore regarding the electronic transition from the donor to acceptor orbitals. |
---|---|
AbstractList | A classical Lewis adduct derives from a covalent bond between a Lewis acid and a base. When the adduct formation is precluded by means of steric hindrance the association of the respective acid-base molecular system is defined as a frustrated Lewis pair (FLP). In this work, the archetypal FLP Mes
P/B(C
F
)
was characterized for the first time by resonance Raman spectroscopy, and the results were supported by density functional theory (DFT) calculations. The charge transfer nature of the lowest energy electronic transition, from phosphine to borane, was confirmed by the selective enhancement of the Raman bands associated to the FLP chromophore at resonance condition. Herein, we demonstrate the use of resonance Raman spectroscopy as a distinguished technique to probe the weak interaction involved in FLP chemistry. A classical Lewis adduct derives from a covalent bond between a Lewis acid and a base. When the adduct formation is precluded by means of steric hindrance the association of the respective acid‐base molecular system is defined as a frustrated Lewis pair (FLP). In this work, the archetypal FLP Mes3P/B(C6F5)3 was characterized for the first time by resonance Raman spectroscopy, and the results were supported by density functional theory (DFT) calculations. The charge transfer nature of the lowest energy electronic transition, from phosphine to borane, was confirmed by the selective enhancement of the Raman bands associated to the FLP chromophore at resonance condition. Herein, we demonstrate the use of resonance Raman spectroscopy as a distinguished technique to probe the weak interaction involved in FLP chemistry. A classical Lewis adduct derives from a covalent bond between a Lewis acid and a base. When the adduct formation is precluded by means of steric hindrance the association of the respective acid-base molecular system is defined as a frustrated Lewis pair (FLP). In this work, the archetypal FLP Mes3 P/B(C6 F5 )3 was characterized for the first time by resonance Raman spectroscopy, and the results were supported by density functional theory (DFT) calculations. The charge transfer nature of the lowest energy electronic transition, from phosphine to borane, was confirmed by the selective enhancement of the Raman bands associated to the FLP chromophore at resonance condition. Herein, we demonstrate the use of resonance Raman spectroscopy as a distinguished technique to probe the weak interaction involved in FLP chemistry.A classical Lewis adduct derives from a covalent bond between a Lewis acid and a base. When the adduct formation is precluded by means of steric hindrance the association of the respective acid-base molecular system is defined as a frustrated Lewis pair (FLP). In this work, the archetypal FLP Mes3 P/B(C6 F5 )3 was characterized for the first time by resonance Raman spectroscopy, and the results were supported by density functional theory (DFT) calculations. The charge transfer nature of the lowest energy electronic transition, from phosphine to borane, was confirmed by the selective enhancement of the Raman bands associated to the FLP chromophore at resonance condition. Herein, we demonstrate the use of resonance Raman spectroscopy as a distinguished technique to probe the weak interaction involved in FLP chemistry. A classical Lewis adduct derives from a covalent bond between a Lewis acid and a base. When the adduct formation is precluded by means of steric hindrance the association of the respective acid‐base molecular system is defined as a frustrated Lewis pair (FLP). In this work, the archetypal FLP Mes 3 P/B(C 6 F 5 ) 3 was characterized for the first time by resonance Raman spectroscopy, and the results were supported by density functional theory (DFT) calculations. The charge transfer nature of the lowest energy electronic transition, from phosphine to borane, was confirmed by the selective enhancement of the Raman bands associated to the FLP chromophore at resonance condition. Herein, we demonstrate the use of resonance Raman spectroscopy as a distinguished technique to probe the weak interaction involved in FLP chemistry. A classical Lewis adduct derives from a covalent bond between a Lewis acid and a base. When the adduct formation is precluded by means of steric hindrance the association of the respective acid‐base molecular system is defined as a frustrated Lewis pair (FLP). In this work, the archetypal FLP Mes3P/B(C6F5)3 was characterized for the first time by resonance Raman spectroscopy, and the results were supported by density functional theory (DFT) calculations. The charge transfer nature of the lowest energy electronic transition, from phosphine to borane, was confirmed by the selective enhancement of the Raman bands associated to the FLP chromophore at resonance condition. Herein, we demonstrate the use of resonance Raman spectroscopy as a distinguished technique to probe the weak interaction involved in FLP chemistry. The archetypal Mes3P/B(C6F5)3 frustrated Lewis pair (FLP) is characterized by Raman spectroscopy. The charge‐transfer interaction originating from the FLP encounter complex is probed by resonance Raman spectroscopy, where an enhancement of the bands assigned to the vibrational modes of both species confirms the chromophore regarding the electronic transition from the donor to acceptor orbitals. |
Author | Marques, Leandro Ramos Ando, Rômulo Augusto |
Author_xml | – sequence: 1 givenname: Leandro Ramos orcidid: 0000-0002-8868-1044 surname: Marques fullname: Marques, Leandro Ramos organization: University of São Paulo – sequence: 2 givenname: Rômulo Augusto surname: Ando fullname: Ando, Rômulo Augusto email: raando@iq.usp.br organization: University of São Paulo |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33512751$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1r2zAYh8VoWb923XEIdtkl2asPy_ZxeEs7CCy02VnI8utGnSN5kk3Jfz-nyToojJ6kw_O80vv7XZATHzwS8p7BnAHwz7bf2DkHDsCAyzfknElRznIl2cnxLrnIzshFSg8AUEDO3pIzITLG84ydk1-rGGrn7-mwQVptTLxHuo7GpxYjdZ4auohjGqIZsKFLfHSJroyLtN7RW0zBG2-R3pqt8fSuRzvEkGzod9T4hn5drGllOjt2ZnDBpyty2pou4bvjeUl-Lr6tq5vZ8sf19-rLcmZlBnImsLS2AYGFYNAoI2zGjJJG1NLKMlO1AgmlavMClW2VqpmqwWYlhyZr82ndS_LpMLeP4feIadBblyx2nfEYxqS5LETBcl6oCf34An0IY_TT7zTPgBXFlOCe-nCkxnqLje6j25q4039jnID5AbDT_ili-4ww0Pue9L4n_dzTJMgXgnXDU0pT1K77v1YetEfX4e6VR3S1uqn-uX8ABVClZQ |
CitedBy_id | crossref_primary_10_1002_cphc_202200715 crossref_primary_10_1021_acs_chemrev_3c00217 crossref_primary_10_1039_D4CS00185K crossref_primary_10_1021_jacs_3c07070 crossref_primary_10_1039_D2DT00655C crossref_primary_10_1021_jacs_4c02736 |
Cites_doi | 10.1021/acs.biochem.5b00514 10.1002/anie.201914768 10.1038/nchem.2063 10.1002/chem.202001494 10.1002/anie.201101622 10.1002/anie.198601311 10.1016/j.vibspec.2018.08.015 10.1016/j.chempr.2017.05.022 10.1021/ja4012113 10.1039/B709602J 10.1016/j.ccr.2018.09.014 10.1039/c2cp41748k 10.1039/C4SC00395K 10.1039/C8CC03794A 10.1126/science.aab3591 10.1002/anie.200903708 10.1021/ar500375j 10.1002/anie.201503087 10.1016/j.xcrp.2020.100016 10.1126/science.1134230 10.1021/ja4119169 10.1021/ja01254a031 10.1021/jacs.5b06794 10.1021/ja402964h 10.1002/anie.201409800 10.1039/C6AN01009A 10.1021/ic200663v |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM K9. 7X8 |
DOI | 10.1002/cphc.202001024 |
DatabaseName | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1439-7641 |
EndPage | 525 |
ExternalDocumentID | 33512751 10_1002_cphc_202001024 CPHC202001024 |
Genre | shortCommunication Journal Article |
GrantInformation_xml | – fundername: FAPESP funderid: 2016/21070-5 – fundername: CAPES funderid: 88887.341021/2019-00 – fundername: FAPESP/SHELL funderid: RGCI-CAB−P30-PSR-001-00 – fundername: FAPESP grantid: 2016/21070-5 – fundername: CAPES grantid: 88887.341021/2019-00 – fundername: FAPESP/SHELL grantid: RGCI-CAB-P30-PSR-001-00 |
GroupedDBID | --- -DZ -~X 05W 0R~ 1L6 1OC 29B 33P 3WU 4.4 4ZD 50Y 5GY 5VS 66C 6J9 77Q 8-0 8-1 8UM A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IH2 IX1 JPC KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MXFUL MXSTM MY~ NNB O9- OIG P2P P2W P4E PQQKQ QRW R.K RNS ROL RWI RX1 SUPJJ SV3 UPT V2E W99 WBKPD WH7 WJL WOHZO WXSBR WYJ XPP XV2 Y6R YZZ ZZTAW ~S- AAYXX AEYWJ AGHNM AGYGG CITATION NPM AAMMB AEFGJ AGXDD AIDQK AIDYY K9. 7X8 |
ID | FETCH-LOGICAL-c4504-3e9ccd03e8310d6a3c51a64a3b4c4956b604096f78e6cf66b16b0c5920d5f7423 |
IEDL.DBID | DR2 |
ISSN | 1439-4235 1439-7641 |
IngestDate | Thu Jul 10 18:04:47 EDT 2025 Fri Jul 25 12:12:48 EDT 2025 Thu Apr 03 06:56:20 EDT 2025 Tue Jul 01 01:51:50 EDT 2025 Thu Apr 24 23:03:41 EDT 2025 Wed Jan 22 16:29:31 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | DFT frustrated Lewis pair TDDFT charge transfer resonance Raman spectroscopy |
Language | English |
License | 2021 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4504-3e9ccd03e8310d6a3c51a64a3b4c4956b604096f78e6cf66b16b0c5920d5f7423 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8868-1044 |
OpenAccessLink | http://doi.org/10.1002/cphc.202001024 |
PMID | 33512751 |
PQID | 2501884396 |
PQPubID | 986334 |
PageCount | 4 |
ParticipantIDs | proquest_miscellaneous_2483817286 proquest_journals_2501884396 pubmed_primary_33512751 crossref_primary_10_1002_cphc_202001024 crossref_citationtrail_10_1002_cphc_202001024 wiley_primary_10_1002_cphc_202001024_CPHC202001024 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 17, 2021 |
PublicationDateYYYYMMDD | 2021-03-17 |
PublicationDate_xml | – month: 03 year: 2021 text: March 17, 2021 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Chemphyschem |
PublicationTitleAlternate | Chemphyschem |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 48 2014; 5 2010; 49 2017; 3 2020; 1 2015; 137 2017; 28 1986; 25 2015; 54 2011; 50 2020; 26 2020; 59 2013; 135 2008; 32 2015; 349 2006; 314 2012; 14 2018; 99 2019; 380 2018; 54 2014; 6 2014; 136 1942; 64 2016; 141 e_1_2_2_4_1 e_1_2_2_25_1 e_1_2_2_5_1 e_1_2_2_6_1 e_1_2_2_23_1 e_1_2_2_7_1 e_1_2_2_22_1 e_1_2_2_21_1 e_1_2_2_1_1 e_1_2_2_20_1 e_1_2_2_2_1 e_1_2_2_3_1 e_1_2_2_9_1 e_1_2_2_8_1 e_1_2_2_28_1 e_1_2_2_27_1 e_1_2_2_26_1 Monezi N. M. (e_1_2_2_24_1) 2017; 28 e_1_2_2_14_1 e_1_2_2_13_1 e_1_2_2_12_1 e_1_2_2_11_1 e_1_2_2_10_1 e_1_2_2_19_1 e_1_2_2_18_1 e_1_2_2_17_1 e_1_2_2_16_1 e_1_2_2_15_1 |
References_xml | – volume: 64 start-page: 325 year: 1942 end-page: 329 publication-title: J. Am. Chem. Soc. – volume: 135 start-page: 3414 year: 2013 end-page: 3417 publication-title: J. Am. Chem. Soc. – volume: 314 start-page: 1124 year: 2006 end-page: 1126 publication-title: Science – volume: 1 year: 2020 publication-title: Cell Rep. Phys. Sci. – volume: 48 start-page: 306 year: 2015 end-page: 316 publication-title: Acc. Chem. Res. – volume: 54 start-page: 8689 year: 2018 end-page: 8692 publication-title: Chem. Commun. – volume: 135 start-page: 6446 year: 2013 end-page: 6449 publication-title: J. Am. Chem. Soc. – volume: 349 start-page: 513 year: 2015 end-page: 516 publication-title: Science – volume: 54 start-page: 6400 year: 2015 end-page: 6441 publication-title: Angew. Chem. Int. Ed. – volume: 54 start-page: 8511 year: 2015 end-page: 8514 publication-title: Angew. Chem. Int. Ed. – volume: 25 start-page: 131 year: 1986 end-page: 158 publication-title: Angew. Chem. Int. Ed. Engl. – volume: 3 start-page: 259 year: 2017 end-page: 267 publication-title: Chem – volume: 136 start-page: 112 year: 2014 end-page: 115 publication-title: J. Am. Chem. Soc. – volume: 28 start-page: 1665 year: 2017 end-page: 1672 publication-title: J. Braz. Chem. Soc. – volume: 50 start-page: 7567 year: 2011 end-page: 7571 publication-title: Angew. Chem. Int. Ed. – volume: 26 start-page: 9005 year: 2020 end-page: 9011 publication-title: Chem. Eur. J. – volume: 54 start-page: 4770 year: 2015 end-page: 4783 publication-title: Biochemistry – volume: 5 start-page: 2625 year: 2014 end-page: 2641 publication-title: Chem. Sci. – volume: 49 start-page: 46 year: 2010 end-page: 76 publication-title: Angew. Chem. Int. Ed. – volume: 59 start-page: 2 year: 2020 end-page: 15 publication-title: Angew. Chem. Int. Ed. – volume: 99 start-page: 67 year: 2018 end-page: 72 publication-title: Vib. Spectrosc. – volume: 14 start-page: 11273 year: 2012 end-page: 11276 publication-title: Phys. Chem. Chem. Phys. – volume: 32 start-page: 214 year: 2008 end-page: 231 publication-title: New J. Chem. – volume: 141 start-page: 5020 year: 2016 end-page: 5036 publication-title: Analyst – volume: 380 start-page: 170 year: 2019 end-page: 183 publication-title: Coord. Chem. Rev. – volume: 50 start-page: 12338 year: 2011 end-page: 12348 publication-title: Inorg. Chem. – volume: 6 start-page: 983 year: 2014 end-page: 988 publication-title: Nat. Chem. – volume: 137 start-page: 10018 year: 2015 end-page: 10032 publication-title: J. Am. Chem. Soc. – ident: e_1_2_2_22_1 doi: 10.1021/acs.biochem.5b00514 – ident: e_1_2_2_19_1 doi: 10.1002/anie.201914768 – ident: e_1_2_2_16_1 doi: 10.1038/nchem.2063 – ident: e_1_2_2_15_1 doi: 10.1002/chem.202001494 – ident: e_1_2_2_10_1 doi: 10.1002/anie.201101622 – ident: e_1_2_2_21_1 doi: 10.1002/anie.198601311 – ident: e_1_2_2_25_1 doi: 10.1016/j.vibspec.2018.08.015 – ident: e_1_2_2_13_1 doi: 10.1016/j.chempr.2017.05.022 – ident: e_1_2_2_27_1 doi: 10.1021/ja4012113 – ident: e_1_2_2_28_1 doi: 10.1039/B709602J – ident: e_1_2_2_11_1 doi: 10.1016/j.ccr.2018.09.014 – ident: e_1_2_2_20_1 doi: 10.1039/c2cp41748k – ident: e_1_2_2_7_1 doi: 10.1039/C4SC00395K – ident: e_1_2_2_18_1 doi: 10.1039/C8CC03794A – ident: e_1_2_2_8_1 doi: 10.1126/science.aab3591 – ident: e_1_2_2_12_1 doi: 10.1002/anie.200903708 – ident: e_1_2_2_5_1 doi: 10.1021/ar500375j – ident: e_1_2_2_9_1 doi: 10.1002/anie.201503087 – ident: e_1_2_2_14_1 doi: 10.1016/j.xcrp.2020.100016 – ident: e_1_2_2_2_1 doi: 10.1126/science.1134230 – ident: e_1_2_2_17_1 doi: 10.1021/ja4119169 – volume: 28 start-page: 1665 year: 2017 ident: e_1_2_2_24_1 publication-title: J. Braz. Chem. Soc. – ident: e_1_2_2_1_1 doi: 10.1021/ja01254a031 – ident: e_1_2_2_4_1 doi: 10.1021/jacs.5b06794 – ident: e_1_2_2_26_1 doi: 10.1021/ja402964h – ident: e_1_2_2_3_1 doi: 10.1002/anie.201409800 – ident: e_1_2_2_23_1 doi: 10.1039/C6AN01009A – ident: e_1_2_2_6_1 doi: 10.1021/ic200663v |
SSID | ssj0008071 |
Score | 2.3592513 |
Snippet | A classical Lewis adduct derives from a covalent bond between a Lewis acid and a base. When the adduct formation is precluded by means of steric hindrance the... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 522 |
SubjectTerms | Charge transfer Chromophores Covalent bonds Density functional theory DFT frustrated Lewis pair Lewis acid Mathematical analysis Phosphines Raman spectroscopy Resonance resonance Raman spectroscopy Steric hindrance TDDFT |
Title | Probing the Charge Transfer in a Frustrated Lewis Pair by Resonance Raman Spectroscopy and DFT Calculations |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcphc.202001024 https://www.ncbi.nlm.nih.gov/pubmed/33512751 https://www.proquest.com/docview/2501884396 https://www.proquest.com/docview/2483817286 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3bS9xAFIcH8UVfWq3WrpdyBMGn1WQymSSPJXZZSpFlUfAtnLnELq7ZZS-I_vWdk9u6lSK0TyFkhkzm-ps5J99h7AwjK9GQTZ2cw4QUsovkuWMC9GIV-cpdydviWvZvxY-78O7VX_wVH6I9cKORUc7XNMBRzS9X0FA9_UUIQl5S0QgISg5bpIqGK35U7FU7LkHmTh6EDbXR45fr2ddXpTdSc125lktP7yPDptCVx8nDxXKhLvTLHzzH__mqHfah1qXwrepIu2zDFp_YVtqEg9tjDwMiNhX34BQjkJH-3kK50OV2BqMCEHqz8tzESVj4aZ9GcxjgaAbqGchEQFwPC0N8xAIo5v2CKJqT6TNgYeCqdwMpjnUdSmy-z25732_SfreO1NDVIiTTik20Nl5gKWyZkRjo0EcpMFBC0w5MSTdXJDKPYit1LqXypfJ0mHDPhDnZij-zzWJS2C8M0LgtVI4-xzAQsUmSSJvYOiHBlXDiRXdYt2mpTNcYc4qmMc4qADPPqAqztgo77LxNP60AHn9Nedw0fFYP5HnGCXgYu_4jO-y0feyqnuwqWNjJ0qURMXEOeezSHFQdpn1VEISE0Pc7jJfN_k4ZsnTQT9u7w3_JdMS2OfndkM9hdMw2F7OlPXHCaaG-loPjN1pLDEU |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Zb9NAEIBHUB7KC_cRKDBISDyltdfrtf2IDFGAUEVVKvFmzR5uoxYnyiFUfj07vqqAEBI8WZZn5fWeMzvjbwDeUOIUWfapc3CYVFINiSN3bERBqpNQ-ytHWxyr8an89DXuogn5X5iGD9EfuPHMqNdrnuB8IH10TQ01y3NmEIoaiyZvwi1O611bVSfXBKk0aGwuyQ5PEcUdtzEQR7vld_el35TNXd213nxGd0F31W5iTi4Otxt9aH78QnT8r--6B3da1RTfNWPpPtxw1QPYz7uMcA_hYsrQpuoMvdKI7Kc_c1jvdaVb4bxCwtGqPjrxWixO3Pf5Gqc0X6G-QvYSMNrD4Ql9owo57f2GQZqL5RVSZfH9aIY5XZo2m9j6EZyOPszy8bBN1jA0MmbvisuMsUHkOHOZVRSZOCQlKdLSsBGmlV8uMlUmqVOmVEqHSgcmzkRg45LdxY9hr1pU7ikgWW9FlRQKiiOZ2ixLjE2d1yWEll5_MQMYdl1VmJZkzgk1LouGwSwKbsKib8IBvO3llw3D44-SB13PF-1cXheCmYepH0BqAK_7x77p2bVClVtsvYxMGXUoUi_zpBkx_auiKGaKfjgAUff7X-pQ5NNx3t89-5dCr2B_PPsyKSYfjz8_h9uCw3A4BDE5gL3NauteeD1qo1_WM-UnJR4QYA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEIBHUCTgQnmztICRkDhtmziO4xyrLNECVbWqWqm3aPxIu2rJrvYhVH49nrzaBSEkOEVRbMWxZ-yxZ_INwAdMnERLPnUKDhNSyCFS5I6NMFA6CbW_UrTFkRyfii9n8dmtv_gbPkR_4EaaUc_XpOBzW-7fQEPN_IIQhLymoom7cE_IQJFcj45vAFIqaLZcgvydPIo7bGPA9zfrby5Lv9mam6Zrvfbk24Bdq5uQk8u99UrvmR-_AB3_57Mew6PWMGUHjSQ9gTuuegoPsi4f3DO4nBCyqTpn3mRk5KU_d6xe6Uq3YNOKIcsX9cGJt2HZofs-XbIJThdMXzPyERDYw7Fj_IYVo6T3K8JozubXDCvLRvkJy_DKtLnEls_hNP90ko2HbaqGoREx-VZcaowNIkd5y6zEyMQhSoGRFoa2YFr6ySKVZaKcNKWUOpQ6MHHKAxuX5Cx-AVvVrHKvgKH1e6gSQ45xJJRN08RY5bwlwbXw1osZwLAbqcK0HHNKp3FVNARmXlAXFn0XDuBjX37eEDz-WHK3G_ii1eRlwYl4qLz8yAG87x_7rifHClZutvZlhCLQIVe-zMtGYPpXRVFMDP1wALwe9r-0ocgm46y_e_0vld7B_ckoLw4_H33dgYecYnAo_jDZha3VYu3eeCNqpd_WevIT9d0PGA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probing+the+Charge+Transfer+in+a+Frustrated+Lewis+Pair+by+Resonance+Raman+Spectroscopy+and+DFT+Calculations&rft.jtitle=Chemphyschem&rft.au=Marques%2C+Leandro+Ramos&rft.au=Ando%2C+R%C3%B4mulo+Augusto&rft.date=2021-03-17&rft.eissn=1439-7641&rft.volume=22&rft.issue=6&rft.spage=522&rft_id=info:doi/10.1002%2Fcphc.202001024&rft_id=info%3Apmid%2F33512751&rft.externalDocID=33512751 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1439-4235&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1439-4235&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1439-4235&client=summon |