Probing the Charge Transfer in a Frustrated Lewis Pair by Resonance Raman Spectroscopy and DFT Calculations

A classical Lewis adduct derives from a covalent bond between a Lewis acid and a base. When the adduct formation is precluded by means of steric hindrance the association of the respective acid‐base molecular system is defined as a frustrated Lewis pair (FLP). In this work, the archetypal FLP Mes3P/...

Full description

Saved in:
Bibliographic Details
Published inChemphyschem Vol. 22; no. 6; pp. 522 - 525
Main Authors Marques, Leandro Ramos, Ando, Rômulo Augusto
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 17.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A classical Lewis adduct derives from a covalent bond between a Lewis acid and a base. When the adduct formation is precluded by means of steric hindrance the association of the respective acid‐base molecular system is defined as a frustrated Lewis pair (FLP). In this work, the archetypal FLP Mes3P/B(C6F5)3 was characterized for the first time by resonance Raman spectroscopy, and the results were supported by density functional theory (DFT) calculations. The charge transfer nature of the lowest energy electronic transition, from phosphine to borane, was confirmed by the selective enhancement of the Raman bands associated to the FLP chromophore at resonance condition. Herein, we demonstrate the use of resonance Raman spectroscopy as a distinguished technique to probe the weak interaction involved in FLP chemistry. The archetypal Mes3P/B(C6F5)3 frustrated Lewis pair (FLP) is characterized by Raman spectroscopy. The charge‐transfer interaction originating from the FLP encounter complex is probed by resonance Raman spectroscopy, where an enhancement of the bands assigned to the vibrational modes of both species confirms the chromophore regarding the electronic transition from the donor to acceptor orbitals.
AbstractList A classical Lewis adduct derives from a covalent bond between a Lewis acid and a base. When the adduct formation is precluded by means of steric hindrance the association of the respective acid-base molecular system is defined as a frustrated Lewis pair (FLP). In this work, the archetypal FLP Mes P/B(C F ) was characterized for the first time by resonance Raman spectroscopy, and the results were supported by density functional theory (DFT) calculations. The charge transfer nature of the lowest energy electronic transition, from phosphine to borane, was confirmed by the selective enhancement of the Raman bands associated to the FLP chromophore at resonance condition. Herein, we demonstrate the use of resonance Raman spectroscopy as a distinguished technique to probe the weak interaction involved in FLP chemistry.
A classical Lewis adduct derives from a covalent bond between a Lewis acid and a base. When the adduct formation is precluded by means of steric hindrance the association of the respective acid‐base molecular system is defined as a frustrated Lewis pair (FLP). In this work, the archetypal FLP Mes3P/B(C6F5)3 was characterized for the first time by resonance Raman spectroscopy, and the results were supported by density functional theory (DFT) calculations. The charge transfer nature of the lowest energy electronic transition, from phosphine to borane, was confirmed by the selective enhancement of the Raman bands associated to the FLP chromophore at resonance condition. Herein, we demonstrate the use of resonance Raman spectroscopy as a distinguished technique to probe the weak interaction involved in FLP chemistry.
A classical Lewis adduct derives from a covalent bond between a Lewis acid and a base. When the adduct formation is precluded by means of steric hindrance the association of the respective acid-base molecular system is defined as a frustrated Lewis pair (FLP). In this work, the archetypal FLP Mes3 P/B(C6 F5 )3 was characterized for the first time by resonance Raman spectroscopy, and the results were supported by density functional theory (DFT) calculations. The charge transfer nature of the lowest energy electronic transition, from phosphine to borane, was confirmed by the selective enhancement of the Raman bands associated to the FLP chromophore at resonance condition. Herein, we demonstrate the use of resonance Raman spectroscopy as a distinguished technique to probe the weak interaction involved in FLP chemistry.A classical Lewis adduct derives from a covalent bond between a Lewis acid and a base. When the adduct formation is precluded by means of steric hindrance the association of the respective acid-base molecular system is defined as a frustrated Lewis pair (FLP). In this work, the archetypal FLP Mes3 P/B(C6 F5 )3 was characterized for the first time by resonance Raman spectroscopy, and the results were supported by density functional theory (DFT) calculations. The charge transfer nature of the lowest energy electronic transition, from phosphine to borane, was confirmed by the selective enhancement of the Raman bands associated to the FLP chromophore at resonance condition. Herein, we demonstrate the use of resonance Raman spectroscopy as a distinguished technique to probe the weak interaction involved in FLP chemistry.
A classical Lewis adduct derives from a covalent bond between a Lewis acid and a base. When the adduct formation is precluded by means of steric hindrance the association of the respective acid‐base molecular system is defined as a frustrated Lewis pair (FLP). In this work, the archetypal FLP Mes 3 P/B(C 6 F 5 ) 3 was characterized for the first time by resonance Raman spectroscopy, and the results were supported by density functional theory (DFT) calculations. The charge transfer nature of the lowest energy electronic transition, from phosphine to borane, was confirmed by the selective enhancement of the Raman bands associated to the FLP chromophore at resonance condition. Herein, we demonstrate the use of resonance Raman spectroscopy as a distinguished technique to probe the weak interaction involved in FLP chemistry.
A classical Lewis adduct derives from a covalent bond between a Lewis acid and a base. When the adduct formation is precluded by means of steric hindrance the association of the respective acid‐base molecular system is defined as a frustrated Lewis pair (FLP). In this work, the archetypal FLP Mes3P/B(C6F5)3 was characterized for the first time by resonance Raman spectroscopy, and the results were supported by density functional theory (DFT) calculations. The charge transfer nature of the lowest energy electronic transition, from phosphine to borane, was confirmed by the selective enhancement of the Raman bands associated to the FLP chromophore at resonance condition. Herein, we demonstrate the use of resonance Raman spectroscopy as a distinguished technique to probe the weak interaction involved in FLP chemistry. The archetypal Mes3P/B(C6F5)3 frustrated Lewis pair (FLP) is characterized by Raman spectroscopy. The charge‐transfer interaction originating from the FLP encounter complex is probed by resonance Raman spectroscopy, where an enhancement of the bands assigned to the vibrational modes of both species confirms the chromophore regarding the electronic transition from the donor to acceptor orbitals.
Author Marques, Leandro Ramos
Ando, Rômulo Augusto
Author_xml – sequence: 1
  givenname: Leandro Ramos
  orcidid: 0000-0002-8868-1044
  surname: Marques
  fullname: Marques, Leandro Ramos
  organization: University of São Paulo
– sequence: 2
  givenname: Rômulo Augusto
  surname: Ando
  fullname: Ando, Rômulo Augusto
  email: raando@iq.usp.br
  organization: University of São Paulo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33512751$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1r2zAYh8VoWb923XEIdtkl2asPy_ZxeEs7CCy02VnI8utGnSN5kk3Jfz-nyToojJ6kw_O80vv7XZATHzwS8p7BnAHwz7bf2DkHDsCAyzfknElRznIl2cnxLrnIzshFSg8AUEDO3pIzITLG84ydk1-rGGrn7-mwQVptTLxHuo7GpxYjdZ4auohjGqIZsKFLfHSJroyLtN7RW0zBG2-R3pqt8fSuRzvEkGzod9T4hn5drGllOjt2ZnDBpyty2pou4bvjeUl-Lr6tq5vZ8sf19-rLcmZlBnImsLS2AYGFYNAoI2zGjJJG1NLKMlO1AgmlavMClW2VqpmqwWYlhyZr82ndS_LpMLeP4feIadBblyx2nfEYxqS5LETBcl6oCf34An0IY_TT7zTPgBXFlOCe-nCkxnqLje6j25q4039jnID5AbDT_ili-4ww0Pue9L4n_dzTJMgXgnXDU0pT1K77v1YetEfX4e6VR3S1uqn-uX8ABVClZQ
CitedBy_id crossref_primary_10_1002_cphc_202200715
crossref_primary_10_1021_acs_chemrev_3c00217
crossref_primary_10_1039_D4CS00185K
crossref_primary_10_1021_jacs_3c07070
crossref_primary_10_1039_D2DT00655C
crossref_primary_10_1021_jacs_4c02736
Cites_doi 10.1021/acs.biochem.5b00514
10.1002/anie.201914768
10.1038/nchem.2063
10.1002/chem.202001494
10.1002/anie.201101622
10.1002/anie.198601311
10.1016/j.vibspec.2018.08.015
10.1016/j.chempr.2017.05.022
10.1021/ja4012113
10.1039/B709602J
10.1016/j.ccr.2018.09.014
10.1039/c2cp41748k
10.1039/C4SC00395K
10.1039/C8CC03794A
10.1126/science.aab3591
10.1002/anie.200903708
10.1021/ar500375j
10.1002/anie.201503087
10.1016/j.xcrp.2020.100016
10.1126/science.1134230
10.1021/ja4119169
10.1021/ja01254a031
10.1021/jacs.5b06794
10.1021/ja402964h
10.1002/anie.201409800
10.1039/C6AN01009A
10.1021/ic200663v
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
K9.
7X8
DOI 10.1002/cphc.202001024
DatabaseName CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1439-7641
EndPage 525
ExternalDocumentID 33512751
10_1002_cphc_202001024
CPHC202001024
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: FAPESP
  funderid: 2016/21070-5
– fundername: CAPES
  funderid: 88887.341021/2019-00
– fundername: FAPESP/SHELL
  funderid: RGCI-CAB−P30-PSR-001-00
– fundername: FAPESP
  grantid: 2016/21070-5
– fundername: CAPES
  grantid: 88887.341021/2019-00
– fundername: FAPESP/SHELL
  grantid: RGCI-CAB-P30-PSR-001-00
GroupedDBID ---
-DZ
-~X
05W
0R~
1L6
1OC
29B
33P
3WU
4.4
4ZD
50Y
5GY
5VS
66C
6J9
77Q
8-0
8-1
8UM
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IH2
IX1
JPC
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MXFUL
MXSTM
MY~
NNB
O9-
OIG
P2P
P2W
P4E
PQQKQ
QRW
R.K
RNS
ROL
RWI
RX1
SUPJJ
SV3
UPT
V2E
W99
WBKPD
WH7
WJL
WOHZO
WXSBR
WYJ
XPP
XV2
Y6R
YZZ
ZZTAW
~S-
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
NPM
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
K9.
7X8
ID FETCH-LOGICAL-c4504-3e9ccd03e8310d6a3c51a64a3b4c4956b604096f78e6cf66b16b0c5920d5f7423
IEDL.DBID DR2
ISSN 1439-4235
1439-7641
IngestDate Thu Jul 10 18:04:47 EDT 2025
Fri Jul 25 12:12:48 EDT 2025
Thu Apr 03 06:56:20 EDT 2025
Tue Jul 01 01:51:50 EDT 2025
Thu Apr 24 23:03:41 EDT 2025
Wed Jan 22 16:29:31 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords DFT
frustrated Lewis pair
TDDFT
charge transfer
resonance Raman spectroscopy
Language English
License 2021 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4504-3e9ccd03e8310d6a3c51a64a3b4c4956b604096f78e6cf66b16b0c5920d5f7423
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8868-1044
OpenAccessLink http://doi.org/10.1002/cphc.202001024
PMID 33512751
PQID 2501884396
PQPubID 986334
PageCount 4
ParticipantIDs proquest_miscellaneous_2483817286
proquest_journals_2501884396
pubmed_primary_33512751
crossref_primary_10_1002_cphc_202001024
crossref_citationtrail_10_1002_cphc_202001024
wiley_primary_10_1002_cphc_202001024_CPHC202001024
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 17, 2021
PublicationDateYYYYMMDD 2021-03-17
PublicationDate_xml – month: 03
  year: 2021
  text: March 17, 2021
  day: 17
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Chemphyschem
PublicationTitleAlternate Chemphyschem
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 48
2014; 5
2010; 49
2017; 3
2020; 1
2015; 137
2017; 28
1986; 25
2015; 54
2011; 50
2020; 26
2020; 59
2013; 135
2008; 32
2015; 349
2006; 314
2012; 14
2018; 99
2019; 380
2018; 54
2014; 6
2014; 136
1942; 64
2016; 141
e_1_2_2_4_1
e_1_2_2_25_1
e_1_2_2_5_1
e_1_2_2_6_1
e_1_2_2_23_1
e_1_2_2_7_1
e_1_2_2_22_1
e_1_2_2_21_1
e_1_2_2_1_1
e_1_2_2_20_1
e_1_2_2_2_1
e_1_2_2_3_1
e_1_2_2_9_1
e_1_2_2_8_1
e_1_2_2_28_1
e_1_2_2_27_1
e_1_2_2_26_1
Monezi N. M. (e_1_2_2_24_1) 2017; 28
e_1_2_2_14_1
e_1_2_2_13_1
e_1_2_2_12_1
e_1_2_2_11_1
e_1_2_2_10_1
e_1_2_2_19_1
e_1_2_2_18_1
e_1_2_2_17_1
e_1_2_2_16_1
e_1_2_2_15_1
References_xml – volume: 64
  start-page: 325
  year: 1942
  end-page: 329
  publication-title: J. Am. Chem. Soc.
– volume: 135
  start-page: 3414
  year: 2013
  end-page: 3417
  publication-title: J. Am. Chem. Soc.
– volume: 314
  start-page: 1124
  year: 2006
  end-page: 1126
  publication-title: Science
– volume: 1
  year: 2020
  publication-title: Cell Rep. Phys. Sci.
– volume: 48
  start-page: 306
  year: 2015
  end-page: 316
  publication-title: Acc. Chem. Res.
– volume: 54
  start-page: 8689
  year: 2018
  end-page: 8692
  publication-title: Chem. Commun.
– volume: 135
  start-page: 6446
  year: 2013
  end-page: 6449
  publication-title: J. Am. Chem. Soc.
– volume: 349
  start-page: 513
  year: 2015
  end-page: 516
  publication-title: Science
– volume: 54
  start-page: 6400
  year: 2015
  end-page: 6441
  publication-title: Angew. Chem. Int. Ed.
– volume: 54
  start-page: 8511
  year: 2015
  end-page: 8514
  publication-title: Angew. Chem. Int. Ed.
– volume: 25
  start-page: 131
  year: 1986
  end-page: 158
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 3
  start-page: 259
  year: 2017
  end-page: 267
  publication-title: Chem
– volume: 136
  start-page: 112
  year: 2014
  end-page: 115
  publication-title: J. Am. Chem. Soc.
– volume: 28
  start-page: 1665
  year: 2017
  end-page: 1672
  publication-title: J. Braz. Chem. Soc.
– volume: 50
  start-page: 7567
  year: 2011
  end-page: 7571
  publication-title: Angew. Chem. Int. Ed.
– volume: 26
  start-page: 9005
  year: 2020
  end-page: 9011
  publication-title: Chem. Eur. J.
– volume: 54
  start-page: 4770
  year: 2015
  end-page: 4783
  publication-title: Biochemistry
– volume: 5
  start-page: 2625
  year: 2014
  end-page: 2641
  publication-title: Chem. Sci.
– volume: 49
  start-page: 46
  year: 2010
  end-page: 76
  publication-title: Angew. Chem. Int. Ed.
– volume: 59
  start-page: 2
  year: 2020
  end-page: 15
  publication-title: Angew. Chem. Int. Ed.
– volume: 99
  start-page: 67
  year: 2018
  end-page: 72
  publication-title: Vib. Spectrosc.
– volume: 14
  start-page: 11273
  year: 2012
  end-page: 11276
  publication-title: Phys. Chem. Chem. Phys.
– volume: 32
  start-page: 214
  year: 2008
  end-page: 231
  publication-title: New J. Chem.
– volume: 141
  start-page: 5020
  year: 2016
  end-page: 5036
  publication-title: Analyst
– volume: 380
  start-page: 170
  year: 2019
  end-page: 183
  publication-title: Coord. Chem. Rev.
– volume: 50
  start-page: 12338
  year: 2011
  end-page: 12348
  publication-title: Inorg. Chem.
– volume: 6
  start-page: 983
  year: 2014
  end-page: 988
  publication-title: Nat. Chem.
– volume: 137
  start-page: 10018
  year: 2015
  end-page: 10032
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_2_22_1
  doi: 10.1021/acs.biochem.5b00514
– ident: e_1_2_2_19_1
  doi: 10.1002/anie.201914768
– ident: e_1_2_2_16_1
  doi: 10.1038/nchem.2063
– ident: e_1_2_2_15_1
  doi: 10.1002/chem.202001494
– ident: e_1_2_2_10_1
  doi: 10.1002/anie.201101622
– ident: e_1_2_2_21_1
  doi: 10.1002/anie.198601311
– ident: e_1_2_2_25_1
  doi: 10.1016/j.vibspec.2018.08.015
– ident: e_1_2_2_13_1
  doi: 10.1016/j.chempr.2017.05.022
– ident: e_1_2_2_27_1
  doi: 10.1021/ja4012113
– ident: e_1_2_2_28_1
  doi: 10.1039/B709602J
– ident: e_1_2_2_11_1
  doi: 10.1016/j.ccr.2018.09.014
– ident: e_1_2_2_20_1
  doi: 10.1039/c2cp41748k
– ident: e_1_2_2_7_1
  doi: 10.1039/C4SC00395K
– ident: e_1_2_2_18_1
  doi: 10.1039/C8CC03794A
– ident: e_1_2_2_8_1
  doi: 10.1126/science.aab3591
– ident: e_1_2_2_12_1
  doi: 10.1002/anie.200903708
– ident: e_1_2_2_5_1
  doi: 10.1021/ar500375j
– ident: e_1_2_2_9_1
  doi: 10.1002/anie.201503087
– ident: e_1_2_2_14_1
  doi: 10.1016/j.xcrp.2020.100016
– ident: e_1_2_2_2_1
  doi: 10.1126/science.1134230
– ident: e_1_2_2_17_1
  doi: 10.1021/ja4119169
– volume: 28
  start-page: 1665
  year: 2017
  ident: e_1_2_2_24_1
  publication-title: J. Braz. Chem. Soc.
– ident: e_1_2_2_1_1
  doi: 10.1021/ja01254a031
– ident: e_1_2_2_4_1
  doi: 10.1021/jacs.5b06794
– ident: e_1_2_2_26_1
  doi: 10.1021/ja402964h
– ident: e_1_2_2_3_1
  doi: 10.1002/anie.201409800
– ident: e_1_2_2_23_1
  doi: 10.1039/C6AN01009A
– ident: e_1_2_2_6_1
  doi: 10.1021/ic200663v
SSID ssj0008071
Score 2.3592513
Snippet A classical Lewis adduct derives from a covalent bond between a Lewis acid and a base. When the adduct formation is precluded by means of steric hindrance the...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 522
SubjectTerms Charge transfer
Chromophores
Covalent bonds
Density functional theory
DFT
frustrated Lewis pair
Lewis acid
Mathematical analysis
Phosphines
Raman spectroscopy
Resonance
resonance Raman spectroscopy
Steric hindrance
TDDFT
Title Probing the Charge Transfer in a Frustrated Lewis Pair by Resonance Raman Spectroscopy and DFT Calculations
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcphc.202001024
https://www.ncbi.nlm.nih.gov/pubmed/33512751
https://www.proquest.com/docview/2501884396
https://www.proquest.com/docview/2483817286
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3bS9xAFIcH8UVfWq3WrpdyBMGn1WQymSSPJXZZSpFlUfAtnLnELq7ZZS-I_vWdk9u6lSK0TyFkhkzm-ps5J99h7AwjK9GQTZ2cw4QUsovkuWMC9GIV-cpdydviWvZvxY-78O7VX_wVH6I9cKORUc7XNMBRzS9X0FA9_UUIQl5S0QgISg5bpIqGK35U7FU7LkHmTh6EDbXR45fr2ddXpTdSc125lktP7yPDptCVx8nDxXKhLvTLHzzH__mqHfah1qXwrepIu2zDFp_YVtqEg9tjDwMiNhX34BQjkJH-3kK50OV2BqMCEHqz8tzESVj4aZ9GcxjgaAbqGchEQFwPC0N8xAIo5v2CKJqT6TNgYeCqdwMpjnUdSmy-z25732_SfreO1NDVIiTTik20Nl5gKWyZkRjo0EcpMFBC0w5MSTdXJDKPYit1LqXypfJ0mHDPhDnZij-zzWJS2C8M0LgtVI4-xzAQsUmSSJvYOiHBlXDiRXdYt2mpTNcYc4qmMc4qADPPqAqztgo77LxNP60AHn9Nedw0fFYP5HnGCXgYu_4jO-y0feyqnuwqWNjJ0qURMXEOeezSHFQdpn1VEISE0Pc7jJfN_k4ZsnTQT9u7w3_JdMS2OfndkM9hdMw2F7OlPXHCaaG-loPjN1pLDEU
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Zb9NAEIBHUB7KC_cRKDBISDyltdfrtf2IDFGAUEVVKvFmzR5uoxYnyiFUfj07vqqAEBI8WZZn5fWeMzvjbwDeUOIUWfapc3CYVFINiSN3bERBqpNQ-ytHWxyr8an89DXuogn5X5iGD9EfuPHMqNdrnuB8IH10TQ01y3NmEIoaiyZvwi1O611bVSfXBKk0aGwuyQ5PEcUdtzEQR7vld_el35TNXd213nxGd0F31W5iTi4Otxt9aH78QnT8r--6B3da1RTfNWPpPtxw1QPYz7uMcA_hYsrQpuoMvdKI7Kc_c1jvdaVb4bxCwtGqPjrxWixO3Pf5Gqc0X6G-QvYSMNrD4Ql9owo57f2GQZqL5RVSZfH9aIY5XZo2m9j6EZyOPszy8bBN1jA0MmbvisuMsUHkOHOZVRSZOCQlKdLSsBGmlV8uMlUmqVOmVEqHSgcmzkRg45LdxY9hr1pU7ikgWW9FlRQKiiOZ2ixLjE2d1yWEll5_MQMYdl1VmJZkzgk1LouGwSwKbsKib8IBvO3llw3D44-SB13PF-1cXheCmYepH0BqAK_7x77p2bVClVtsvYxMGXUoUi_zpBkx_auiKGaKfjgAUff7X-pQ5NNx3t89-5dCr2B_PPsyKSYfjz8_h9uCw3A4BDE5gL3NauteeD1qo1_WM-UnJR4QYA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEIBHUCTgQnmztICRkDhtmziO4xyrLNECVbWqWqm3aPxIu2rJrvYhVH49nrzaBSEkOEVRbMWxZ-yxZ_INwAdMnERLPnUKDhNSyCFS5I6NMFA6CbW_UrTFkRyfii9n8dmtv_gbPkR_4EaaUc_XpOBzW-7fQEPN_IIQhLymoom7cE_IQJFcj45vAFIqaLZcgvydPIo7bGPA9zfrby5Lv9mam6Zrvfbk24Bdq5uQk8u99UrvmR-_AB3_57Mew6PWMGUHjSQ9gTuuegoPsi4f3DO4nBCyqTpn3mRk5KU_d6xe6Uq3YNOKIcsX9cGJt2HZofs-XbIJThdMXzPyERDYw7Fj_IYVo6T3K8JozubXDCvLRvkJy_DKtLnEls_hNP90ko2HbaqGoREx-VZcaowNIkd5y6zEyMQhSoGRFoa2YFr6ySKVZaKcNKWUOpQ6MHHKAxuX5Cx-AVvVrHKvgKH1e6gSQ45xJJRN08RY5bwlwbXw1osZwLAbqcK0HHNKp3FVNARmXlAXFn0XDuBjX37eEDz-WHK3G_ii1eRlwYl4qLz8yAG87x_7rifHClZutvZlhCLQIVe-zMtGYPpXRVFMDP1wALwe9r-0ocgm46y_e_0vld7B_ckoLw4_H33dgYecYnAo_jDZha3VYu3eeCNqpd_WevIT9d0PGA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probing+the+Charge+Transfer+in+a+Frustrated+Lewis+Pair+by+Resonance+Raman+Spectroscopy+and+DFT+Calculations&rft.jtitle=Chemphyschem&rft.au=Marques%2C+Leandro+Ramos&rft.au=Ando%2C+R%C3%B4mulo+Augusto&rft.date=2021-03-17&rft.eissn=1439-7641&rft.volume=22&rft.issue=6&rft.spage=522&rft_id=info:doi/10.1002%2Fcphc.202001024&rft_id=info%3Apmid%2F33512751&rft.externalDocID=33512751
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1439-4235&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1439-4235&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1439-4235&client=summon