Tacky Elastomers to Enable Tear‐Resistant and Autonomous Self‐Healing Semiconductor Composites
Mechanical failure of π‐conjugated polymer thin films is unavoidable under cyclic loading conditions, due to intrinsic defects and poor resistance to crack propagation. Here, the first tear‐resistant and room‐temperature self‐healable semiconducting composite is presented, consisting of conjugated p...
Saved in:
Published in | Advanced functional materials Vol. 30; no. 27 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.07.2020
Wiley Blackwell (John Wiley & Sons) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mechanical failure of π‐conjugated polymer thin films is unavoidable under cyclic loading conditions, due to intrinsic defects and poor resistance to crack propagation. Here, the first tear‐resistant and room‐temperature self‐healable semiconducting composite is presented, consisting of conjugated polymers and butyl rubber elastomers. This new composite displays both a record‐low elastic modulus (<1 MPa) and ultrahigh deformability with fracture strain above 800%. More importantly, failure behavior is not sensitive to precut notches under deformation. Autonomous self‐healing at room temperature, both mechanical and electronic, is demonstrated through the physical contact of two separate films. The composite film also shows device stability in the ambient environment over 5 months due to much‐improved barrier property to both oxygen and water. Butyl rubber is broadly applicable to various p‐type and n‐type semiconducting polymers for fabricating self‐healable electronics to provide new resilient electronics that mimic the tear resistance and healable property of human skin.
A mechanically durable and electronically stable semiconducting composite is engineered by introducing a blend of donor–acceptor polymer and butyl rubber elastomer. The composite exhibits ultralow modulus, ultrahigh deformability, tear resistance, and self‐healing performance, as well as ambient stable device stability. This method is widely applicable to different semiconducting polymers. |
---|---|
AbstractList | Mechanical failure of π‐conjugated polymer thin films is unavoidable under cyclic loading conditions, due to intrinsic defects and poor resistance to crack propagation. Here, the first tear‐resistant and room‐temperature self‐healable semiconducting composite is presented, consisting of conjugated polymers and butyl rubber elastomers. This new composite displays both a record‐low elastic modulus (<1 MPa) and ultrahigh deformability with fracture strain above 800%. More importantly, failure behavior is not sensitive to precut notches under deformation. Autonomous self‐healing at room temperature, both mechanical and electronic, is demonstrated through the physical contact of two separate films. The composite film also shows device stability in the ambient environment over 5 months due to much‐improved barrier property to both oxygen and water. Butyl rubber is broadly applicable to various p‐type and n‐type semiconducting polymers for fabricating self‐healable electronics to provide new resilient electronics that mimic the tear resistance and healable property of human skin. Mechanical failure of π‐conjugated polymer thin films is unavoidable under cyclic loading conditions, due to intrinsic defects and poor resistance to crack propagation. Here, the first tear‐resistant and room‐temperature self‐healable semiconducting composite is presented, consisting of conjugated polymers and butyl rubber elastomers. This new composite displays both a record‐low elastic modulus (<1 MPa) and ultrahigh deformability with fracture strain above 800%. More importantly, failure behavior is not sensitive to precut notches under deformation. Autonomous self‐healing at room temperature, both mechanical and electronic, is demonstrated through the physical contact of two separate films. The composite film also shows device stability in the ambient environment over 5 months due to much‐improved barrier property to both oxygen and water. Butyl rubber is broadly applicable to various p‐type and n‐type semiconducting polymers for fabricating self‐healable electronics to provide new resilient electronics that mimic the tear resistance and healable property of human skin. A mechanically durable and electronically stable semiconducting composite is engineered by introducing a blend of donor–acceptor polymer and butyl rubber elastomer. The composite exhibits ultralow modulus, ultrahigh deformability, tear resistance, and self‐healing performance, as well as ambient stable device stability. This method is widely applicable to different semiconducting polymers. |
Author | Chen, Beibei Hung, Chih‐Chien Li, Yen‐Ting Zhou, Dongshan St. Onge, Peter Blake Joseph Nazarenko, Sergei I. Chiu, Yu‐Cheng Qian, Zhiyuan Luo, Shaochuan Mason, Gage T. Gu, Xiaodan Rondeau‐Gagné, Simon Zhang, Song Cowen, Lewis Galuska, Luke Storey, Robson F. Cheng, Yu‐Hsuan Schroeder, Bob C. Roy, Anirban Lorenz, Matthias |
Author_xml | – sequence: 1 givenname: Song orcidid: 0000-0001-9815-7046 surname: Zhang fullname: Zhang, Song organization: The University of Southern Mississippi – sequence: 2 givenname: Yu‐Hsuan surname: Cheng fullname: Cheng, Yu‐Hsuan organization: National Taiwan University – sequence: 3 givenname: Luke surname: Galuska fullname: Galuska, Luke organization: The University of Southern Mississippi – sequence: 4 givenname: Anirban surname: Roy fullname: Roy, Anirban organization: Bruker Corporation – sequence: 5 givenname: Matthias surname: Lorenz fullname: Lorenz, Matthias organization: Oak Ridge National Laboratory – sequence: 6 givenname: Beibei surname: Chen fullname: Chen, Beibei organization: The University of Southern Mississippi – sequence: 7 givenname: Shaochuan surname: Luo fullname: Luo, Shaochuan organization: Nanjing University – sequence: 8 givenname: Yen‐Ting surname: Li fullname: Li, Yen‐Ting organization: National Taiwan University – sequence: 9 givenname: Chih‐Chien surname: Hung fullname: Hung, Chih‐Chien organization: National Taiwan University – sequence: 10 givenname: Zhiyuan surname: Qian fullname: Qian, Zhiyuan organization: The University of Southern Mississippi – sequence: 11 givenname: Peter Blake Joseph surname: St. Onge fullname: St. Onge, Peter Blake Joseph organization: University of Windsor – sequence: 12 givenname: Gage T. surname: Mason fullname: Mason, Gage T. organization: University of Windsor – sequence: 13 givenname: Lewis surname: Cowen fullname: Cowen, Lewis organization: University College London – sequence: 14 givenname: Dongshan surname: Zhou fullname: Zhou, Dongshan organization: Nanjing University – sequence: 15 givenname: Sergei I. surname: Nazarenko fullname: Nazarenko, Sergei I. organization: The University of Southern Mississippi – sequence: 16 givenname: Robson F. surname: Storey fullname: Storey, Robson F. organization: The University of Southern Mississippi – sequence: 17 givenname: Bob C. surname: Schroeder fullname: Schroeder, Bob C. organization: University College London – sequence: 18 givenname: Simon surname: Rondeau‐Gagné fullname: Rondeau‐Gagné, Simon organization: University of Windsor – sequence: 19 givenname: Yu‐Cheng surname: Chiu fullname: Chiu, Yu‐Cheng email: ycchiu@mail.ntust.edu.tw organization: National Taiwan University – sequence: 20 givenname: Xiaodan orcidid: 0000-0002-1123-3673 surname: Gu fullname: Gu, Xiaodan email: xiaodan.gu@usm.edu organization: The University of Southern Mississippi |
BackLink | https://www.osti.gov/biblio/1630208$$D View this record in Osti.gov |
BookMark | eNqFkM9qGzEQxkVIoYmTa89Le7Y7-rPy-mhcOwmkFBIHchNa7WyqdFdyJS3BtzxCnjFPEhkXFwqhp5lhvt98w3dKjp13SMgnChMKwL7qpu0nDBgASMmPyAmVVI45sOr40NP7j-Q0xkcAOp1ycULqtTa_tsWy0zH5HkMski-WTtcdFmvU4fX55QajjUm7VGjXFPMheed7P8TiFrs27y9Rd9Y95LG3xrtmMMmHYuH7jY82YTwjH1rdRTz_U0fkbrVcLy7H1z8urhbz67ERJfCxqSmVdVs2zGisZFlraLSYsYYDN2bazCqJyKjmNeWV5ChZCdgKIWFKBUjBR-Tz_q6Pyaposrf5mR9yaJKiMgcBVRZ92Ys2wf8eMCb16Ifg8l-KCTrjtBRid2qyV5ngYwzYqk2wvQ5bRUHtwla7sNUh7AyIf4Bsr5P1LgVtu_ex2R57sh1u_2Oi5t9W3_-yb9sYl-4 |
CitedBy_id | crossref_primary_10_1021_acs_macromol_4c00035 crossref_primary_10_1021_jacs_2c00072 crossref_primary_10_1002_adfm_202303031 crossref_primary_10_1002_smtd_202301220 crossref_primary_10_1039_D4MH00587B crossref_primary_10_1002_pol_20210623 crossref_primary_10_1021_acs_macromol_1c01537 crossref_primary_10_3390_chemosensors10060201 crossref_primary_10_1002_aelm_202400317 crossref_primary_10_1002_marc_202401057 crossref_primary_10_1021_acsami_3c10499 crossref_primary_10_1021_acsaelm_1c00932 crossref_primary_10_1021_acsaelm_2c01791 crossref_primary_10_1021_acspolymersau_1c00005 crossref_primary_10_1002_macp_202400364 crossref_primary_10_3390_ma15051661 crossref_primary_10_1002_mame_202300058 crossref_primary_10_1039_D0TC06059C crossref_primary_10_1002_anie_202403139 crossref_primary_10_1016_j_cej_2024_158735 crossref_primary_10_1038_s41467_021_25719_9 crossref_primary_10_1109_LED_2023_3314268 crossref_primary_10_1021_acs_chemrev_2c00231 crossref_primary_10_1002_adfm_202100161 crossref_primary_10_1021_acs_macromol_1c00936 crossref_primary_10_1021_acsapm_3c02649 crossref_primary_10_1021_acs_chemmater_3c02394 crossref_primary_10_1002_adfm_202105456 crossref_primary_10_1002_aenm_202404233 crossref_primary_10_1002_admi_202202053 crossref_primary_10_1039_D3CP01309J crossref_primary_10_1039_D1PY01154E crossref_primary_10_1002_pen_26296 crossref_primary_10_1021_acsapm_2c01352 crossref_primary_10_1002_pol_20210281 crossref_primary_10_1002_adfm_202110244 crossref_primary_10_1021_acsami_1c02860 crossref_primary_10_1038_s41428_022_00683_3 crossref_primary_10_1021_acs_macromol_1c00268 crossref_primary_10_1039_D2MA00581F crossref_primary_10_1039_D3FD00152K crossref_primary_10_1039_D4CS01182A crossref_primary_10_1021_acsmaterialslett_2c00749 crossref_primary_10_1021_acs_macromol_2c00765 crossref_primary_10_1002_admi_202202186 crossref_primary_10_1038_s41428_022_00729_6 crossref_primary_10_1021_acs_macromol_1c00534 crossref_primary_10_1002_adma_202312805 crossref_primary_10_1021_acs_chemmater_0c03854 crossref_primary_10_1039_D3LP00106G crossref_primary_10_1039_D3TC03027J crossref_primary_10_1021_acsanm_4c06456 crossref_primary_10_1016_j_cej_2023_143603 crossref_primary_10_3390_molecules26206130 crossref_primary_10_1039_D4LP00163J crossref_primary_10_1021_acs_chemmater_3c02131 crossref_primary_10_1007_s40843_022_2331_8 crossref_primary_10_1002_adfm_202306576 crossref_primary_10_1002_adfm_202105482 crossref_primary_10_1002_marc_202000762 crossref_primary_10_1002_ange_202403139 crossref_primary_10_1002_cphc_202100725 crossref_primary_10_1021_acs_chemmater_3c02417 crossref_primary_10_1039_D3SC00983A crossref_primary_10_1021_acsapm_2c01336 crossref_primary_10_1021_acs_chemmater_1c04085 crossref_primary_10_1002_advs_202100332 crossref_primary_10_1002_adma_202202989 crossref_primary_10_1039_D2NJ06190B crossref_primary_10_1002_adma_202200682 crossref_primary_10_1002_smtd_202100676 crossref_primary_10_1002_advs_202305800 crossref_primary_10_1021_acs_nanolett_3c04248 crossref_primary_10_1021_acs_macromol_2c00741 crossref_primary_10_1039_D0TA11497A crossref_primary_10_1039_D3MH00956D crossref_primary_10_3390_polym12092118 crossref_primary_10_1021_acsami_2c07445 crossref_primary_10_1021_acsami_2c07202 crossref_primary_10_1002_smll_202206938 crossref_primary_10_1039_D1QM01521D crossref_primary_10_1002_marc_202300169 crossref_primary_10_1021_acs_macromol_0c01665 crossref_primary_10_1039_D2TC04896E crossref_primary_10_1021_acsaelm_1c01212 crossref_primary_10_1021_acsaelm_3c01719 crossref_primary_10_1039_D3NR00886J crossref_primary_10_1016_j_polymer_2023_125986 crossref_primary_10_1016_j_ijbiomac_2024_130511 crossref_primary_10_1021_acs_macromol_3c01888 crossref_primary_10_1021_acs_macromol_2c00957 crossref_primary_10_1002_admt_202101506 crossref_primary_10_1002_aelm_202200438 crossref_primary_10_1126_science_adp9314 crossref_primary_10_1021_acs_macromol_3c00703 crossref_primary_10_1002_aelm_202300816 crossref_primary_10_1021_acs_macromol_1c02111 crossref_primary_10_1021_acs_chemmater_1c04055 |
Cites_doi | 10.1021/acs.macromol.7b00860 10.1038/ncomms7649 10.1038/s41563-019-0340-5 10.1002/adma.201902743 10.1021/nn1018768 10.1038/nature07727 10.1038/nature13854 10.1038/nmat3722 10.1177/0954411918759801 10.1021/acs.macromol.6b02145 10.1002/adfm.201602603 10.1201/9781420018271 10.1002/adfm.201804838 10.1002/adfm.201905426 10.1002/adma.201201318 10.1021/ja400881n 10.1002/adma.201601422 10.1002/adfm.200601248 10.1021/acs.macromol.5b01473 10.1002/adfm.201302612 10.1039/C8CS00706C 10.1002/adma.201404602 10.1002/aelm.201500250 10.1002/adfm.201905809 10.1038/s41928-019-0235-0 10.1021/acs.chemmater.5b04804 10.1038/nmat1612 10.1039/C7TC01680H 10.1063/1.2181206 10.1002/adfm.201905340 10.1126/sciadv.aav3097 10.1002/admt.201800043 10.1038/nmat1779 10.1002/macp.201900062 10.1021/acs.chemrev.7b00003 10.1016/j.mejo.2012.07.016 10.1039/C7PY00435D 10.1038/nature20102 10.1002/adma.201801079 10.5254/1.3601131 10.1002/marc.201800092 10.1038/nmat4645 10.1021/acs.macromol.6b02158 10.1021/acs.chemmater.8b03791 10.1126/science.aah4496 10.1038/s41565-018-0226-8 10.1039/C4TC02476A 10.1021/ma8012543 10.1038/nmat4671 10.1021/acs.chemmater.7b00242 10.1002/aelm.201800899 10.1002/aelm.201600388 10.1021/acs.chemrev.6b00448 10.1021/acs.chemmater.8b04314 10.1021/acs.macromol.8b00846 10.1021/la904840q |
ContentType | Journal Article |
Copyright | 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M OTOTI |
DOI | 10.1002/adfm.202000663 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace OSTI.GOV |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 1630208 10_1002_adfm_202000663 ADFM202000663 |
Genre | article |
GrantInformation_xml | – fundername: Advanced Light Source – fundername: National Natural Science Foundation of China funderid: 21790345 – fundername: Ministry of Science and Technology, Taiwan funderid: 108‐3017‐F‐002‐002 – fundername: National Science Foundation funderid: CHM#1807096; CHM‐#1807096 – fundername: National Science Foundation Division of Graduate Education funderid: DGE‐1449999 – fundername: Ministry of Education funderid: 108L9006 – fundername: U.S. Department of Energy – fundername: Higher Education Sprout – fundername: Basic Energy Sciences funderid: DE‐AC02‐76SF00515; DE‐SC0019361 – fundername: Royal Society funderid: RG/R2/180437 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M AAPBV ABHUG ACXME ADAWD ADDAD AFVGU AGJLS OTOTI |
ID | FETCH-LOGICAL-c4503-cb116bf5d2cae865ba0da492d303cc7d986ee21a3b13863e6250ef44607140643 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri May 19 00:39:18 EDT 2023 Fri Jul 25 04:37:56 EDT 2025 Tue Jul 01 04:12:13 EDT 2025 Thu Apr 24 22:53:59 EDT 2025 Wed Jan 22 16:35:25 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 27 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4503-cb116bf5d2cae865ba0da492d303cc7d986ee21a3b13863e6250ef44607140643 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 DE‐AC02‐76SF00515; DE‐SC0019361 USDOE Office of Science (SC), Basic Energy Sciences (BES) |
ORCID | 0000-0002-1123-3673 0000-0001-9815-7046 0000000211233673 0000000198157046 |
OpenAccessLink | https://www.osti.gov/biblio/1630208 |
PQID | 2419315444 |
PQPubID | 2045204 |
PageCount | 10 |
ParticipantIDs | osti_scitechconnect_1630208 proquest_journals_2419315444 crossref_primary_10_1002_adfm_202000663 crossref_citationtrail_10_1002_adfm_202000663 wiley_primary_10_1002_adfm_202000663_ADFM202000663 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-01 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: Germany |
PublicationTitle | Advanced functional materials |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc Wiley Blackwell (John Wiley & Sons) |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley Blackwell (John Wiley & Sons) |
References | 2007; 17 2017; 5 2014; 515 2017; 8 2015; 6 2017; 3 2019; 5 2015; 3 2019; 31 2019; 2 2011; 84 2006; 5 2007 2019; 18 2014; 24 2017; 29 2020; 32 2017; 355 2016; 15 2017; 117 2009; 457 2019; 220 2017; 50 2018; 232 2015; 48 2018; 39 2018; 3 2015; 27 2010; 26 2016; 2 2016; 539 2018; 117 2020; 30 2013; 12 2006; 88 2019; 48 2013; 135 2019; 29 2018; 30 2018; 51 2008; 41 2016; 28 2012; 24 2016; 49 2016; 26 2010; 4 2012; 43 2018; 13 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – volume: 515 start-page: 384 year: 2014 publication-title: Nature – volume: 15 start-page: 746 year: 2016 publication-title: Nat. Mater. – volume: 539 start-page: 411 year: 2016 publication-title: Nature – volume: 31 start-page: 6465 year: 2019 publication-title: Chem. Mater. – volume: 5 start-page: 328 year: 2006 publication-title: Nat. Mater. – volume: 2 start-page: 144 year: 2019 publication-title: Nat. Electron. – volume: 39 year: 2018 publication-title: Macromol. Rapid Commun. – volume: 457 start-page: 679 year: 2009 publication-title: Nature – volume: 28 start-page: 1196 year: 2016 publication-title: Chem. Mater. – volume: 4 start-page: 7538 year: 2010 publication-title: ACS Nano – volume: 27 start-page: 1255 year: 2015 publication-title: Adv. Mater. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 5 year: 2019 publication-title: Adv. Electron. Mater. – volume: 2 year: 2016 publication-title: Adv. Electron. Mater. – volume: 117 start-page: 6467 year: 2017 publication-title: Chem. Rev. – volume: 50 start-page: 2024 year: 2017 publication-title: Macromolecules – volume: 220 year: 2019 publication-title: Macromol. Chem. Phys. – volume: 84 start-page: 425 year: 2011 publication-title: Rubber Chem. Technol. – volume: 28 start-page: 4177 year: 2016 publication-title: Adv. Mater. – volume: 355 start-page: 59 year: 2017 publication-title: Science – volume: 49 start-page: 8540 year: 2016 publication-title: Macromolecules – volume: 24 start-page: 1474 year: 2014 publication-title: Adv. Funct. Mater. – volume: 17 start-page: 2674 year: 2007 publication-title: Adv. Funct. Mater. – volume: 43 start-page: 985 year: 2012 publication-title: Microelectron. J. – volume: 41 start-page: 7662 year: 2008 publication-title: Macromolecules – volume: 5 start-page: 950 year: 2006 publication-title: Nat. Mater. – volume: 3 start-page: 3599 year: 2015 publication-title: J. Mater. Chem. C – volume: 135 start-page: 6724 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 50 start-page: 4982 year: 2017 publication-title: Macromolecules – volume: 15 start-page: 937 year: 2016 publication-title: Nat. Mater. – volume: 3 year: 2018 publication-title: Adv. Mater. Technol. – volume: 232 start-page: 323 year: 2018 publication-title: Proc. Inst. Mech. Eng., Part H – volume: 13 start-page: 1048 year: 2018 publication-title: Nat. Nanotechnol. – volume: 30 start-page: 8314 year: 2018 publication-title: Chem. Mater. – year: 2007 – volume: 48 start-page: 1566 year: 2019 publication-title: Chem. Soc. Rev. – volume: 24 start-page: 4618 year: 2012 publication-title: Adv. Mater. – volume: 8 start-page: 5185 year: 2017 publication-title: Polym. Chem. – volume: 51 start-page: 5944 year: 2018 publication-title: Macromolecules – volume: 18 start-page: 594 year: 2019 publication-title: Nat. Mater. – volume: 5 start-page: 8654 year: 2017 publication-title: J. Mater. Chem. C – volume: 48 start-page: 6534 year: 2015 publication-title: Macromolecules – volume: 6 start-page: 6649 year: 2015 publication-title: Nat. Commun. – volume: 29 start-page: 2646 year: 2017 publication-title: Chem. Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 3 year: 2017 publication-title: Adv. Electron. Mater. – volume: 88 year: 2006 publication-title: Appl. Phys. Lett. – volume: 26 start-page: 7254 year: 2016 publication-title: Adv. Funct. Mater. – volume: 5 year: 2019 publication-title: Sci. Adv. – volume: 12 start-page: 1038 year: 2013 publication-title: Nat. Mater. – volume: 26 start-page: 9146 year: 2010 publication-title: Langmuir – volume: 117 start-page: 5146 year: 2018 publication-title: Chem. Rev. – ident: e_1_2_7_38_1 doi: 10.1021/acs.macromol.7b00860 – ident: e_1_2_7_30_1 doi: 10.1038/ncomms7649 – ident: e_1_2_7_25_1 doi: 10.1038/s41563-019-0340-5 – ident: e_1_2_7_24_1 doi: 10.1002/adma.201902743 – ident: e_1_2_7_39_1 doi: 10.1021/nn1018768 – ident: e_1_2_7_53_1 doi: 10.1038/nature07727 – ident: e_1_2_7_5_1 doi: 10.1038/nature13854 – ident: e_1_2_7_1_1 doi: 10.1038/nmat3722 – ident: e_1_2_7_18_1 doi: 10.1177/0954411918759801 – ident: e_1_2_7_40_1 doi: 10.1021/acs.macromol.6b02145 – ident: e_1_2_7_12_1 doi: 10.1002/adfm.201602603 – ident: e_1_2_7_33_1 doi: 10.1201/9781420018271 – ident: e_1_2_7_48_1 doi: 10.1002/adfm.201804838 – ident: e_1_2_7_28_1 doi: 10.1002/adfm.201905426 – ident: e_1_2_7_34_1 doi: 10.1002/adma.201201318 – ident: e_1_2_7_2_1 doi: 10.1021/ja400881n – ident: e_1_2_7_9_1 doi: 10.1002/adma.201601422 – ident: e_1_2_7_10_1 doi: 10.1002/adfm.200601248 – ident: e_1_2_7_36_1 doi: 10.1021/acs.macromol.5b01473 – ident: e_1_2_7_44_1 doi: 10.1002/adfm.201302612 – ident: e_1_2_7_55_1 doi: 10.1039/C8CS00706C – ident: e_1_2_7_19_1 doi: 10.1002/adma.201404602 – ident: e_1_2_7_22_1 doi: 10.1002/aelm.201500250 – ident: e_1_2_7_29_1 doi: 10.1002/adfm.201905809 – ident: e_1_2_7_31_1 doi: 10.1038/s41928-019-0235-0 – ident: e_1_2_7_21_1 doi: 10.1021/acs.chemmater.5b04804 – ident: e_1_2_7_52_1 doi: 10.1038/nmat1612 – ident: e_1_2_7_54_1 doi: 10.1039/C7TC01680H – ident: e_1_2_7_45_1 doi: 10.1063/1.2181206 – ident: e_1_2_7_16_1 doi: 10.1002/adfm.201905340 – ident: e_1_2_7_32_1 doi: 10.1126/sciadv.aav3097 – ident: e_1_2_7_20_1 doi: 10.1002/admt.201800043 – ident: e_1_2_7_26_1 doi: 10.1038/nmat1779 – ident: e_1_2_7_49_1 doi: 10.1002/macp.201900062 – ident: e_1_2_7_8_1 doi: 10.1021/acs.chemrev.7b00003 – ident: e_1_2_7_46_1 doi: 10.1016/j.mejo.2012.07.016 – ident: e_1_2_7_37_1 doi: 10.1039/C7PY00435D – ident: e_1_2_7_6_1 doi: 10.1038/nature20102 – ident: e_1_2_7_3_1 doi: 10.1002/adma.201801079 – ident: e_1_2_7_43_1 doi: 10.5254/1.3601131 – ident: e_1_2_7_35_1 doi: 10.1002/marc.201800092 – ident: e_1_2_7_4_1 doi: 10.1038/nmat4645 – ident: e_1_2_7_11_1 doi: 10.1021/acs.macromol.6b02158 – ident: e_1_2_7_14_1 doi: 10.1021/acs.chemmater.8b03791 – ident: e_1_2_7_23_1 doi: 10.1126/science.aah4496 – ident: e_1_2_7_51_1 doi: 10.1038/s41565-018-0226-8 – ident: e_1_2_7_42_1 doi: 10.1039/C4TC02476A – ident: e_1_2_7_47_1 doi: 10.1021/ma8012543 – ident: e_1_2_7_7_1 doi: 10.1038/nmat4671 – ident: e_1_2_7_13_1 doi: 10.1021/acs.chemmater.7b00242 – ident: e_1_2_7_17_1 doi: 10.1002/aelm.201800899 – ident: e_1_2_7_27_1 doi: 10.1002/aelm.201600388 – ident: e_1_2_7_50_1 doi: 10.1021/acs.chemrev.6b00448 – ident: e_1_2_7_15_1 doi: 10.1021/acs.chemmater.8b04314 – ident: e_1_2_7_41_1 doi: 10.1021/acs.macromol.8b00846 – ident: e_1_2_7_56_1 doi: 10.1021/la904840q |
SSID | ssj0017734 |
Score | 2.6010752 |
Snippet | Mechanical failure of π‐conjugated polymer thin films is unavoidable under cyclic loading conditions, due to intrinsic defects and poor resistance to crack... |
SourceID | osti proquest crossref wiley |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | air‐stable devices autonomous self‐healing Butyl rubber Crack propagation crack resistance Cyclic loads Elastic deformation Elastomers Electronics Formability Healing Materials science Modulus of elasticity Notches Polymer films Polymer matrix composites Polymers Room temperature semiconducting polymers Strain Thin films |
Title | Tacky Elastomers to Enable Tear‐Resistant and Autonomous Self‐Healing Semiconductor Composites |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202000663 https://www.proquest.com/docview/2419315444 https://www.osti.gov/biblio/1630208 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB6tymX3AOxLlJd8WGlPAcfOozlW0Aqh7R6gSL1ZfuUCJIikh90TP4HfyC9hJmlDi7RaCW6xYuflGc9nZ77PAD8yJyKbRSKQNuU4QYlskDVJjkkcS-FdHnMiJ09-J2dX0fksnq2w-Ft9iG7BjTyjGa_JwbWpjl9EQ7XLiUku2qiJgzAlbBEquuj0o8I0bX8rJyEleIWzpWojF8frzdeiUq9E71pDnKu4tQk84y3Qy0du802uj-a1ObJ_X6k5vuedtmFzgUrZsDWjz_DBF1_g04pW4VcwU22v_7ARou26pMVuVpds1DCv2BTd5enh8cJXhEaLmunCseG8JsJEOa_Ypb_J8TxRnvBaWLxF-ytIaba8ZzQiUeaYr77B1Xg0PTkLFhs0BDaKuQysCcPE5LETVvtBEhvNnY4y4TAuWpu6bJB4L0ItTSgHifQ41-I-xwkosaYIC32HXlEWfgeYjE3iECukxK6ykmc6czzVkeY5tpCmD8Gyg5RdqJfTJho3qtVdFoq-neq-XR9-dvXvWt2Of9bco_5WiDhINtdSfpGtFeJU2r-0D_tLM1AL764Uop5MkoxR1AfR9Od_7qGGp-NJV9p9S6M9-EjHbabwPvTq-7k_QDxUm0PYGJ5Ofl0eNrb_DHsGA34 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6V5QAc-EcsLeADiFNax87P5sBhxe5qS7s9lK20N-PYzqUlQU1WqJx4BF6FV-EReBJm8kcXCSEh9cAxie049sz4G2fmM8CLxIrAJIHwpIk5OiiB8ZI6yDEKQymczUJOycmLo2h-Erxdhast-NblwjT8EP2GG2lGba9JwWlDeu8Xa6i2GaWSi2bZbOMqD9zFJ_Taytf7E5zil0LMpss3c689WMAzQcilZ1Lfj9IstMJoN4rCVHOrg0RYtOfGxDYZRc4JX8vUl6NIOvQRuMvQcaJsH1rDsd1rcJ2OESe6_slxz1jlx3HzIzvyKaTMX3U8kVzsbfZ3Yx0cFKjPGxj3MlKul7rZHfjeDVIT4XK6u67SXfP5N_7I_2oU78LtFnizcaMp92DL5ffh1iU6xgeQLrU5vWBTdCiqgvbzWVWwaZ1cxpbY4x9fvh67kgB3XjGdWzZeV5QTUqxL9s6dZficsrqwLbz8gCqWE5lucc7I6FJwnCsfwsmVfOQjGORF7h4Dk2EaWYRDMSWQGckTnVge60DzDGvIdAheJxHKtATtdE7ImWqopYWiuVL9XA3hVV_-Y0NN8seS2yRgCkEVMQMbCqEylUIoTke0DmGnkzvVGrBSIbBLJDE1BUMQtQD95R1qPJkt-qsn_1LpOdyYLxeH6nD_6GAbbtL9JjB6BwbV-do9RfhXpc9qhWPw_qpl8yeoO15G |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VRUL0wH_F0gI-gDildez8bA4cVuyuWkorVLbS3oxjO5eWpGqyqsqJR-BReBVegSdhJn90kRASUg8cndiJY8_Y3zgz3wC8SKwITBIIT5qYo4ESGC-pnRyjMJTC2SzkFJx8cBjtHgdvF-FiDb51sTANP0R_4EaaUa_XpOBnNtv5RRqqbUaR5KLZNVu3yn13eYFGW_l6b4Iz_FKI2XT-Ztdr8wp4Jgi59Ezq-1GahVYY7UZRmGpudZAIi8u5MbFNRpFzwtcy9eUokg5NBO4ytJso2Ie2cHzuDbiJ5YSSRUyOesIqP46b_9iRTx5l_qKjieRiZ7W_K9vgoEB1XoG4V4FyvdPN7sL3bowaB5eT7WWVbpvPv9FH_k-DeA_utLCbjRs9uQ9rLn8A61fIGB9COtfm5JJN0ZyoCjrNZ1XBpnVoGZtjj398-XrkSoLbecV0btl4WVFESLEs2Qd3muF9iunCZ2HxEypYTlS6xTmjJZdc41z5CI6v5SM3YJAXuXsMTIZpZBEMxRQ-ZiRPdGJ5rAPNM2wh0yF4nUAo09KzU5aQU9UQSwtFc6X6uRrCq77-WUNM8seamyRfCiEV8QIbcqAylUIgTglah7DViZ1ql69SIaxLJPE0BUMQtfz85R1qPJkd9KUn_9LoOdx6P5mpd3uH-5twmy43XtFbMKjOl-4pYr8qfVarG4OP1y2aPwEL4lz1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tacky+Elastomers+to+Enable+Tear%E2%80%90Resistant+and+Autonomous+Self%E2%80%90Healing+Semiconductor+Composites&rft.jtitle=Advanced+functional+materials&rft.au=Zhang%2C+Song&rft.au=Yu%E2%80%90Hsuan+Cheng&rft.au=Galuska%2C+Luke&rft.au=Roy%2C+Anirban&rft.date=2020-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=30&rft.issue=27&rft_id=info:doi/10.1002%2Fadfm.202000663&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |