Tacky Elastomers to Enable Tear‐Resistant and Autonomous Self‐Healing Semiconductor Composites

Mechanical failure of π‐conjugated polymer thin films is unavoidable under cyclic loading conditions, due to intrinsic defects and poor resistance to crack propagation. Here, the first tear‐resistant and room‐temperature self‐healable semiconducting composite is presented, consisting of conjugated p...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 30; no. 27
Main Authors Zhang, Song, Cheng, Yu‐Hsuan, Galuska, Luke, Roy, Anirban, Lorenz, Matthias, Chen, Beibei, Luo, Shaochuan, Li, Yen‐Ting, Hung, Chih‐Chien, Qian, Zhiyuan, St. Onge, Peter Blake Joseph, Mason, Gage T., Cowen, Lewis, Zhou, Dongshan, Nazarenko, Sergei I., Storey, Robson F., Schroeder, Bob C., Rondeau‐Gagné, Simon, Chiu, Yu‐Cheng, Gu, Xiaodan
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.07.2020
Wiley Blackwell (John Wiley & Sons)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mechanical failure of π‐conjugated polymer thin films is unavoidable under cyclic loading conditions, due to intrinsic defects and poor resistance to crack propagation. Here, the first tear‐resistant and room‐temperature self‐healable semiconducting composite is presented, consisting of conjugated polymers and butyl rubber elastomers. This new composite displays both a record‐low elastic modulus (<1 MPa) and ultrahigh deformability with fracture strain above 800%. More importantly, failure behavior is not sensitive to precut notches under deformation. Autonomous self‐healing at room temperature, both mechanical and electronic, is demonstrated through the physical contact of two separate films. The composite film also shows device stability in the ambient environment over 5 months due to much‐improved barrier property to both oxygen and water. Butyl rubber is broadly applicable to various p‐type and n‐type semiconducting polymers for fabricating self‐healable electronics to provide new resilient electronics that mimic the tear resistance and healable property of human skin. A mechanically durable and electronically stable semiconducting composite is engineered by introducing a blend of donor–acceptor polymer and butyl rubber elastomer. The composite exhibits ultralow modulus, ultrahigh deformability, tear resistance, and self‐healing performance, as well as ambient stable device stability. This method is widely applicable to different semiconducting polymers.
AbstractList Mechanical failure of π‐conjugated polymer thin films is unavoidable under cyclic loading conditions, due to intrinsic defects and poor resistance to crack propagation. Here, the first tear‐resistant and room‐temperature self‐healable semiconducting composite is presented, consisting of conjugated polymers and butyl rubber elastomers. This new composite displays both a record‐low elastic modulus (<1 MPa) and ultrahigh deformability with fracture strain above 800%. More importantly, failure behavior is not sensitive to precut notches under deformation. Autonomous self‐healing at room temperature, both mechanical and electronic, is demonstrated through the physical contact of two separate films. The composite film also shows device stability in the ambient environment over 5 months due to much‐improved barrier property to both oxygen and water. Butyl rubber is broadly applicable to various p‐type and n‐type semiconducting polymers for fabricating self‐healable electronics to provide new resilient electronics that mimic the tear resistance and healable property of human skin.
Mechanical failure of π‐conjugated polymer thin films is unavoidable under cyclic loading conditions, due to intrinsic defects and poor resistance to crack propagation. Here, the first tear‐resistant and room‐temperature self‐healable semiconducting composite is presented, consisting of conjugated polymers and butyl rubber elastomers. This new composite displays both a record‐low elastic modulus (<1 MPa) and ultrahigh deformability with fracture strain above 800%. More importantly, failure behavior is not sensitive to precut notches under deformation. Autonomous self‐healing at room temperature, both mechanical and electronic, is demonstrated through the physical contact of two separate films. The composite film also shows device stability in the ambient environment over 5 months due to much‐improved barrier property to both oxygen and water. Butyl rubber is broadly applicable to various p‐type and n‐type semiconducting polymers for fabricating self‐healable electronics to provide new resilient electronics that mimic the tear resistance and healable property of human skin. A mechanically durable and electronically stable semiconducting composite is engineered by introducing a blend of donor–acceptor polymer and butyl rubber elastomer. The composite exhibits ultralow modulus, ultrahigh deformability, tear resistance, and self‐healing performance, as well as ambient stable device stability. This method is widely applicable to different semiconducting polymers.
Author Chen, Beibei
Hung, Chih‐Chien
Li, Yen‐Ting
Zhou, Dongshan
St. Onge, Peter Blake Joseph
Nazarenko, Sergei I.
Chiu, Yu‐Cheng
Qian, Zhiyuan
Luo, Shaochuan
Mason, Gage T.
Gu, Xiaodan
Rondeau‐Gagné, Simon
Zhang, Song
Cowen, Lewis
Galuska, Luke
Storey, Robson F.
Cheng, Yu‐Hsuan
Schroeder, Bob C.
Roy, Anirban
Lorenz, Matthias
Author_xml – sequence: 1
  givenname: Song
  orcidid: 0000-0001-9815-7046
  surname: Zhang
  fullname: Zhang, Song
  organization: The University of Southern Mississippi
– sequence: 2
  givenname: Yu‐Hsuan
  surname: Cheng
  fullname: Cheng, Yu‐Hsuan
  organization: National Taiwan University
– sequence: 3
  givenname: Luke
  surname: Galuska
  fullname: Galuska, Luke
  organization: The University of Southern Mississippi
– sequence: 4
  givenname: Anirban
  surname: Roy
  fullname: Roy, Anirban
  organization: Bruker Corporation
– sequence: 5
  givenname: Matthias
  surname: Lorenz
  fullname: Lorenz, Matthias
  organization: Oak Ridge National Laboratory
– sequence: 6
  givenname: Beibei
  surname: Chen
  fullname: Chen, Beibei
  organization: The University of Southern Mississippi
– sequence: 7
  givenname: Shaochuan
  surname: Luo
  fullname: Luo, Shaochuan
  organization: Nanjing University
– sequence: 8
  givenname: Yen‐Ting
  surname: Li
  fullname: Li, Yen‐Ting
  organization: National Taiwan University
– sequence: 9
  givenname: Chih‐Chien
  surname: Hung
  fullname: Hung, Chih‐Chien
  organization: National Taiwan University
– sequence: 10
  givenname: Zhiyuan
  surname: Qian
  fullname: Qian, Zhiyuan
  organization: The University of Southern Mississippi
– sequence: 11
  givenname: Peter Blake Joseph
  surname: St. Onge
  fullname: St. Onge, Peter Blake Joseph
  organization: University of Windsor
– sequence: 12
  givenname: Gage T.
  surname: Mason
  fullname: Mason, Gage T.
  organization: University of Windsor
– sequence: 13
  givenname: Lewis
  surname: Cowen
  fullname: Cowen, Lewis
  organization: University College London
– sequence: 14
  givenname: Dongshan
  surname: Zhou
  fullname: Zhou, Dongshan
  organization: Nanjing University
– sequence: 15
  givenname: Sergei I.
  surname: Nazarenko
  fullname: Nazarenko, Sergei I.
  organization: The University of Southern Mississippi
– sequence: 16
  givenname: Robson F.
  surname: Storey
  fullname: Storey, Robson F.
  organization: The University of Southern Mississippi
– sequence: 17
  givenname: Bob C.
  surname: Schroeder
  fullname: Schroeder, Bob C.
  organization: University College London
– sequence: 18
  givenname: Simon
  surname: Rondeau‐Gagné
  fullname: Rondeau‐Gagné, Simon
  organization: University of Windsor
– sequence: 19
  givenname: Yu‐Cheng
  surname: Chiu
  fullname: Chiu, Yu‐Cheng
  email: ycchiu@mail.ntust.edu.tw
  organization: National Taiwan University
– sequence: 20
  givenname: Xiaodan
  orcidid: 0000-0002-1123-3673
  surname: Gu
  fullname: Gu, Xiaodan
  email: xiaodan.gu@usm.edu
  organization: The University of Southern Mississippi
BackLink https://www.osti.gov/biblio/1630208$$D View this record in Osti.gov
BookMark eNqFkM9qGzEQxkVIoYmTa89Le7Y7-rPy-mhcOwmkFBIHchNa7WyqdFdyJS3BtzxCnjFPEhkXFwqhp5lhvt98w3dKjp13SMgnChMKwL7qpu0nDBgASMmPyAmVVI45sOr40NP7j-Q0xkcAOp1ycULqtTa_tsWy0zH5HkMski-WTtcdFmvU4fX55QajjUm7VGjXFPMheed7P8TiFrs27y9Rd9Y95LG3xrtmMMmHYuH7jY82YTwjH1rdRTz_U0fkbrVcLy7H1z8urhbz67ERJfCxqSmVdVs2zGisZFlraLSYsYYDN2bazCqJyKjmNeWV5ChZCdgKIWFKBUjBR-Tz_q6Pyaposrf5mR9yaJKiMgcBVRZ92Ys2wf8eMCb16Ifg8l-KCTrjtBRid2qyV5ngYwzYqk2wvQ5bRUHtwla7sNUh7AyIf4Bsr5P1LgVtu_ex2R57sh1u_2Oi5t9W3_-yb9sYl-4
CitedBy_id crossref_primary_10_1021_acs_macromol_4c00035
crossref_primary_10_1021_jacs_2c00072
crossref_primary_10_1002_adfm_202303031
crossref_primary_10_1002_smtd_202301220
crossref_primary_10_1039_D4MH00587B
crossref_primary_10_1002_pol_20210623
crossref_primary_10_1021_acs_macromol_1c01537
crossref_primary_10_3390_chemosensors10060201
crossref_primary_10_1002_aelm_202400317
crossref_primary_10_1002_marc_202401057
crossref_primary_10_1021_acsami_3c10499
crossref_primary_10_1021_acsaelm_1c00932
crossref_primary_10_1021_acsaelm_2c01791
crossref_primary_10_1021_acspolymersau_1c00005
crossref_primary_10_1002_macp_202400364
crossref_primary_10_3390_ma15051661
crossref_primary_10_1002_mame_202300058
crossref_primary_10_1039_D0TC06059C
crossref_primary_10_1002_anie_202403139
crossref_primary_10_1016_j_cej_2024_158735
crossref_primary_10_1038_s41467_021_25719_9
crossref_primary_10_1109_LED_2023_3314268
crossref_primary_10_1021_acs_chemrev_2c00231
crossref_primary_10_1002_adfm_202100161
crossref_primary_10_1021_acs_macromol_1c00936
crossref_primary_10_1021_acsapm_3c02649
crossref_primary_10_1021_acs_chemmater_3c02394
crossref_primary_10_1002_adfm_202105456
crossref_primary_10_1002_aenm_202404233
crossref_primary_10_1002_admi_202202053
crossref_primary_10_1039_D3CP01309J
crossref_primary_10_1039_D1PY01154E
crossref_primary_10_1002_pen_26296
crossref_primary_10_1021_acsapm_2c01352
crossref_primary_10_1002_pol_20210281
crossref_primary_10_1002_adfm_202110244
crossref_primary_10_1021_acsami_1c02860
crossref_primary_10_1038_s41428_022_00683_3
crossref_primary_10_1021_acs_macromol_1c00268
crossref_primary_10_1039_D2MA00581F
crossref_primary_10_1039_D3FD00152K
crossref_primary_10_1039_D4CS01182A
crossref_primary_10_1021_acsmaterialslett_2c00749
crossref_primary_10_1021_acs_macromol_2c00765
crossref_primary_10_1002_admi_202202186
crossref_primary_10_1038_s41428_022_00729_6
crossref_primary_10_1021_acs_macromol_1c00534
crossref_primary_10_1002_adma_202312805
crossref_primary_10_1021_acs_chemmater_0c03854
crossref_primary_10_1039_D3LP00106G
crossref_primary_10_1039_D3TC03027J
crossref_primary_10_1021_acsanm_4c06456
crossref_primary_10_1016_j_cej_2023_143603
crossref_primary_10_3390_molecules26206130
crossref_primary_10_1039_D4LP00163J
crossref_primary_10_1021_acs_chemmater_3c02131
crossref_primary_10_1007_s40843_022_2331_8
crossref_primary_10_1002_adfm_202306576
crossref_primary_10_1002_adfm_202105482
crossref_primary_10_1002_marc_202000762
crossref_primary_10_1002_ange_202403139
crossref_primary_10_1002_cphc_202100725
crossref_primary_10_1021_acs_chemmater_3c02417
crossref_primary_10_1039_D3SC00983A
crossref_primary_10_1021_acsapm_2c01336
crossref_primary_10_1021_acs_chemmater_1c04085
crossref_primary_10_1002_advs_202100332
crossref_primary_10_1002_adma_202202989
crossref_primary_10_1039_D2NJ06190B
crossref_primary_10_1002_adma_202200682
crossref_primary_10_1002_smtd_202100676
crossref_primary_10_1002_advs_202305800
crossref_primary_10_1021_acs_nanolett_3c04248
crossref_primary_10_1021_acs_macromol_2c00741
crossref_primary_10_1039_D0TA11497A
crossref_primary_10_1039_D3MH00956D
crossref_primary_10_3390_polym12092118
crossref_primary_10_1021_acsami_2c07445
crossref_primary_10_1021_acsami_2c07202
crossref_primary_10_1002_smll_202206938
crossref_primary_10_1039_D1QM01521D
crossref_primary_10_1002_marc_202300169
crossref_primary_10_1021_acs_macromol_0c01665
crossref_primary_10_1039_D2TC04896E
crossref_primary_10_1021_acsaelm_1c01212
crossref_primary_10_1021_acsaelm_3c01719
crossref_primary_10_1039_D3NR00886J
crossref_primary_10_1016_j_polymer_2023_125986
crossref_primary_10_1016_j_ijbiomac_2024_130511
crossref_primary_10_1021_acs_macromol_3c01888
crossref_primary_10_1021_acs_macromol_2c00957
crossref_primary_10_1002_admt_202101506
crossref_primary_10_1002_aelm_202200438
crossref_primary_10_1126_science_adp9314
crossref_primary_10_1021_acs_macromol_3c00703
crossref_primary_10_1002_aelm_202300816
crossref_primary_10_1021_acs_macromol_1c02111
crossref_primary_10_1021_acs_chemmater_1c04055
Cites_doi 10.1021/acs.macromol.7b00860
10.1038/ncomms7649
10.1038/s41563-019-0340-5
10.1002/adma.201902743
10.1021/nn1018768
10.1038/nature07727
10.1038/nature13854
10.1038/nmat3722
10.1177/0954411918759801
10.1021/acs.macromol.6b02145
10.1002/adfm.201602603
10.1201/9781420018271
10.1002/adfm.201804838
10.1002/adfm.201905426
10.1002/adma.201201318
10.1021/ja400881n
10.1002/adma.201601422
10.1002/adfm.200601248
10.1021/acs.macromol.5b01473
10.1002/adfm.201302612
10.1039/C8CS00706C
10.1002/adma.201404602
10.1002/aelm.201500250
10.1002/adfm.201905809
10.1038/s41928-019-0235-0
10.1021/acs.chemmater.5b04804
10.1038/nmat1612
10.1039/C7TC01680H
10.1063/1.2181206
10.1002/adfm.201905340
10.1126/sciadv.aav3097
10.1002/admt.201800043
10.1038/nmat1779
10.1002/macp.201900062
10.1021/acs.chemrev.7b00003
10.1016/j.mejo.2012.07.016
10.1039/C7PY00435D
10.1038/nature20102
10.1002/adma.201801079
10.5254/1.3601131
10.1002/marc.201800092
10.1038/nmat4645
10.1021/acs.macromol.6b02158
10.1021/acs.chemmater.8b03791
10.1126/science.aah4496
10.1038/s41565-018-0226-8
10.1039/C4TC02476A
10.1021/ma8012543
10.1038/nmat4671
10.1021/acs.chemmater.7b00242
10.1002/aelm.201800899
10.1002/aelm.201600388
10.1021/acs.chemrev.6b00448
10.1021/acs.chemmater.8b04314
10.1021/acs.macromol.8b00846
10.1021/la904840q
ContentType Journal Article
Copyright 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
OTOTI
DOI 10.1002/adfm.202000663
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
OSTI.GOV
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 1630208
10_1002_adfm_202000663
ADFM202000663
Genre article
GrantInformation_xml – fundername: Advanced Light Source
– fundername: National Natural Science Foundation of China
  funderid: 21790345
– fundername: Ministry of Science and Technology, Taiwan
  funderid: 108‐3017‐F‐002‐002
– fundername: National Science Foundation
  funderid: CHM#1807096; CHM‐#1807096
– fundername: National Science Foundation Division of Graduate Education
  funderid: DGE‐1449999
– fundername: Ministry of Education
  funderid: 108L9006
– fundername: U.S. Department of Energy
– fundername: Higher Education Sprout
– fundername: Basic Energy Sciences
  funderid: DE‐AC02‐76SF00515; DE‐SC0019361
– fundername: Royal Society
  funderid: RG/R2/180437
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
AAPBV
ABHUG
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
OTOTI
ID FETCH-LOGICAL-c4503-cb116bf5d2cae865ba0da492d303cc7d986ee21a3b13863e6250ef44607140643
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri May 19 00:39:18 EDT 2023
Fri Jul 25 04:37:56 EDT 2025
Tue Jul 01 04:12:13 EDT 2025
Thu Apr 24 22:53:59 EDT 2025
Wed Jan 22 16:35:25 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 27
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4503-cb116bf5d2cae865ba0da492d303cc7d986ee21a3b13863e6250ef44607140643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
DE‐AC02‐76SF00515; DE‐SC0019361
USDOE Office of Science (SC), Basic Energy Sciences (BES)
ORCID 0000-0002-1123-3673
0000-0001-9815-7046
0000000211233673
0000000198157046
OpenAccessLink https://www.osti.gov/biblio/1630208
PQID 2419315444
PQPubID 2045204
PageCount 10
ParticipantIDs osti_scitechconnect_1630208
proquest_journals_2419315444
crossref_primary_10_1002_adfm_202000663
crossref_citationtrail_10_1002_adfm_202000663
wiley_primary_10_1002_adfm_202000663_ADFM202000663
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: Germany
PublicationTitle Advanced functional materials
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Wiley Blackwell (John Wiley & Sons)
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley Blackwell (John Wiley & Sons)
References 2007; 17
2017; 5
2014; 515
2017; 8
2015; 6
2017; 3
2019; 5
2015; 3
2019; 31
2019; 2
2011; 84
2006; 5
2007
2019; 18
2014; 24
2017; 29
2020; 32
2017; 355
2016; 15
2017; 117
2009; 457
2019; 220
2017; 50
2018; 232
2015; 48
2018; 39
2018; 3
2015; 27
2010; 26
2016; 2
2016; 539
2018; 117
2020; 30
2013; 12
2006; 88
2019; 48
2013; 135
2019; 29
2018; 30
2018; 51
2008; 41
2016; 28
2012; 24
2016; 49
2016; 26
2010; 4
2012; 43
2018; 13
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 515
  start-page: 384
  year: 2014
  publication-title: Nature
– volume: 15
  start-page: 746
  year: 2016
  publication-title: Nat. Mater.
– volume: 539
  start-page: 411
  year: 2016
  publication-title: Nature
– volume: 31
  start-page: 6465
  year: 2019
  publication-title: Chem. Mater.
– volume: 5
  start-page: 328
  year: 2006
  publication-title: Nat. Mater.
– volume: 2
  start-page: 144
  year: 2019
  publication-title: Nat. Electron.
– volume: 39
  year: 2018
  publication-title: Macromol. Rapid Commun.
– volume: 457
  start-page: 679
  year: 2009
  publication-title: Nature
– volume: 28
  start-page: 1196
  year: 2016
  publication-title: Chem. Mater.
– volume: 4
  start-page: 7538
  year: 2010
  publication-title: ACS Nano
– volume: 27
  start-page: 1255
  year: 2015
  publication-title: Adv. Mater.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 5
  year: 2019
  publication-title: Adv. Electron. Mater.
– volume: 2
  year: 2016
  publication-title: Adv. Electron. Mater.
– volume: 117
  start-page: 6467
  year: 2017
  publication-title: Chem. Rev.
– volume: 50
  start-page: 2024
  year: 2017
  publication-title: Macromolecules
– volume: 220
  year: 2019
  publication-title: Macromol. Chem. Phys.
– volume: 84
  start-page: 425
  year: 2011
  publication-title: Rubber Chem. Technol.
– volume: 28
  start-page: 4177
  year: 2016
  publication-title: Adv. Mater.
– volume: 355
  start-page: 59
  year: 2017
  publication-title: Science
– volume: 49
  start-page: 8540
  year: 2016
  publication-title: Macromolecules
– volume: 24
  start-page: 1474
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 17
  start-page: 2674
  year: 2007
  publication-title: Adv. Funct. Mater.
– volume: 43
  start-page: 985
  year: 2012
  publication-title: Microelectron. J.
– volume: 41
  start-page: 7662
  year: 2008
  publication-title: Macromolecules
– volume: 5
  start-page: 950
  year: 2006
  publication-title: Nat. Mater.
– volume: 3
  start-page: 3599
  year: 2015
  publication-title: J. Mater. Chem. C
– volume: 135
  start-page: 6724
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 50
  start-page: 4982
  year: 2017
  publication-title: Macromolecules
– volume: 15
  start-page: 937
  year: 2016
  publication-title: Nat. Mater.
– volume: 3
  year: 2018
  publication-title: Adv. Mater. Technol.
– volume: 232
  start-page: 323
  year: 2018
  publication-title: Proc. Inst. Mech. Eng., Part H
– volume: 13
  start-page: 1048
  year: 2018
  publication-title: Nat. Nanotechnol.
– volume: 30
  start-page: 8314
  year: 2018
  publication-title: Chem. Mater.
– year: 2007
– volume: 48
  start-page: 1566
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 24
  start-page: 4618
  year: 2012
  publication-title: Adv. Mater.
– volume: 8
  start-page: 5185
  year: 2017
  publication-title: Polym. Chem.
– volume: 51
  start-page: 5944
  year: 2018
  publication-title: Macromolecules
– volume: 18
  start-page: 594
  year: 2019
  publication-title: Nat. Mater.
– volume: 5
  start-page: 8654
  year: 2017
  publication-title: J. Mater. Chem. C
– volume: 48
  start-page: 6534
  year: 2015
  publication-title: Macromolecules
– volume: 6
  start-page: 6649
  year: 2015
  publication-title: Nat. Commun.
– volume: 29
  start-page: 2646
  year: 2017
  publication-title: Chem. Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 3
  year: 2017
  publication-title: Adv. Electron. Mater.
– volume: 88
  year: 2006
  publication-title: Appl. Phys. Lett.
– volume: 26
  start-page: 7254
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– volume: 12
  start-page: 1038
  year: 2013
  publication-title: Nat. Mater.
– volume: 26
  start-page: 9146
  year: 2010
  publication-title: Langmuir
– volume: 117
  start-page: 5146
  year: 2018
  publication-title: Chem. Rev.
– ident: e_1_2_7_38_1
  doi: 10.1021/acs.macromol.7b00860
– ident: e_1_2_7_30_1
  doi: 10.1038/ncomms7649
– ident: e_1_2_7_25_1
  doi: 10.1038/s41563-019-0340-5
– ident: e_1_2_7_24_1
  doi: 10.1002/adma.201902743
– ident: e_1_2_7_39_1
  doi: 10.1021/nn1018768
– ident: e_1_2_7_53_1
  doi: 10.1038/nature07727
– ident: e_1_2_7_5_1
  doi: 10.1038/nature13854
– ident: e_1_2_7_1_1
  doi: 10.1038/nmat3722
– ident: e_1_2_7_18_1
  doi: 10.1177/0954411918759801
– ident: e_1_2_7_40_1
  doi: 10.1021/acs.macromol.6b02145
– ident: e_1_2_7_12_1
  doi: 10.1002/adfm.201602603
– ident: e_1_2_7_33_1
  doi: 10.1201/9781420018271
– ident: e_1_2_7_48_1
  doi: 10.1002/adfm.201804838
– ident: e_1_2_7_28_1
  doi: 10.1002/adfm.201905426
– ident: e_1_2_7_34_1
  doi: 10.1002/adma.201201318
– ident: e_1_2_7_2_1
  doi: 10.1021/ja400881n
– ident: e_1_2_7_9_1
  doi: 10.1002/adma.201601422
– ident: e_1_2_7_10_1
  doi: 10.1002/adfm.200601248
– ident: e_1_2_7_36_1
  doi: 10.1021/acs.macromol.5b01473
– ident: e_1_2_7_44_1
  doi: 10.1002/adfm.201302612
– ident: e_1_2_7_55_1
  doi: 10.1039/C8CS00706C
– ident: e_1_2_7_19_1
  doi: 10.1002/adma.201404602
– ident: e_1_2_7_22_1
  doi: 10.1002/aelm.201500250
– ident: e_1_2_7_29_1
  doi: 10.1002/adfm.201905809
– ident: e_1_2_7_31_1
  doi: 10.1038/s41928-019-0235-0
– ident: e_1_2_7_21_1
  doi: 10.1021/acs.chemmater.5b04804
– ident: e_1_2_7_52_1
  doi: 10.1038/nmat1612
– ident: e_1_2_7_54_1
  doi: 10.1039/C7TC01680H
– ident: e_1_2_7_45_1
  doi: 10.1063/1.2181206
– ident: e_1_2_7_16_1
  doi: 10.1002/adfm.201905340
– ident: e_1_2_7_32_1
  doi: 10.1126/sciadv.aav3097
– ident: e_1_2_7_20_1
  doi: 10.1002/admt.201800043
– ident: e_1_2_7_26_1
  doi: 10.1038/nmat1779
– ident: e_1_2_7_49_1
  doi: 10.1002/macp.201900062
– ident: e_1_2_7_8_1
  doi: 10.1021/acs.chemrev.7b00003
– ident: e_1_2_7_46_1
  doi: 10.1016/j.mejo.2012.07.016
– ident: e_1_2_7_37_1
  doi: 10.1039/C7PY00435D
– ident: e_1_2_7_6_1
  doi: 10.1038/nature20102
– ident: e_1_2_7_3_1
  doi: 10.1002/adma.201801079
– ident: e_1_2_7_43_1
  doi: 10.5254/1.3601131
– ident: e_1_2_7_35_1
  doi: 10.1002/marc.201800092
– ident: e_1_2_7_4_1
  doi: 10.1038/nmat4645
– ident: e_1_2_7_11_1
  doi: 10.1021/acs.macromol.6b02158
– ident: e_1_2_7_14_1
  doi: 10.1021/acs.chemmater.8b03791
– ident: e_1_2_7_23_1
  doi: 10.1126/science.aah4496
– ident: e_1_2_7_51_1
  doi: 10.1038/s41565-018-0226-8
– ident: e_1_2_7_42_1
  doi: 10.1039/C4TC02476A
– ident: e_1_2_7_47_1
  doi: 10.1021/ma8012543
– ident: e_1_2_7_7_1
  doi: 10.1038/nmat4671
– ident: e_1_2_7_13_1
  doi: 10.1021/acs.chemmater.7b00242
– ident: e_1_2_7_17_1
  doi: 10.1002/aelm.201800899
– ident: e_1_2_7_27_1
  doi: 10.1002/aelm.201600388
– ident: e_1_2_7_50_1
  doi: 10.1021/acs.chemrev.6b00448
– ident: e_1_2_7_15_1
  doi: 10.1021/acs.chemmater.8b04314
– ident: e_1_2_7_41_1
  doi: 10.1021/acs.macromol.8b00846
– ident: e_1_2_7_56_1
  doi: 10.1021/la904840q
SSID ssj0017734
Score 2.6010752
Snippet Mechanical failure of π‐conjugated polymer thin films is unavoidable under cyclic loading conditions, due to intrinsic defects and poor resistance to crack...
SourceID osti
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms air‐stable devices
autonomous self‐healing
Butyl rubber
Crack propagation
crack resistance
Cyclic loads
Elastic deformation
Elastomers
Electronics
Formability
Healing
Materials science
Modulus of elasticity
Notches
Polymer films
Polymer matrix composites
Polymers
Room temperature
semiconducting polymers
Strain
Thin films
Title Tacky Elastomers to Enable Tear‐Resistant and Autonomous Self‐Healing Semiconductor Composites
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202000663
https://www.proquest.com/docview/2419315444
https://www.osti.gov/biblio/1630208
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB6tymX3AOxLlJd8WGlPAcfOozlW0Aqh7R6gSL1ZfuUCJIikh90TP4HfyC9hJmlDi7RaCW6xYuflGc9nZ77PAD8yJyKbRSKQNuU4QYlskDVJjkkcS-FdHnMiJ09-J2dX0fksnq2w-Ft9iG7BjTyjGa_JwbWpjl9EQ7XLiUku2qiJgzAlbBEquuj0o8I0bX8rJyEleIWzpWojF8frzdeiUq9E71pDnKu4tQk84y3Qy0du802uj-a1ObJ_X6k5vuedtmFzgUrZsDWjz_DBF1_g04pW4VcwU22v_7ARou26pMVuVpds1DCv2BTd5enh8cJXhEaLmunCseG8JsJEOa_Ypb_J8TxRnvBaWLxF-ytIaba8ZzQiUeaYr77B1Xg0PTkLFhs0BDaKuQysCcPE5LETVvtBEhvNnY4y4TAuWpu6bJB4L0ItTSgHifQ41-I-xwkosaYIC32HXlEWfgeYjE3iECukxK6ykmc6czzVkeY5tpCmD8Gyg5RdqJfTJho3qtVdFoq-neq-XR9-dvXvWt2Of9bco_5WiDhINtdSfpGtFeJU2r-0D_tLM1AL764Uop5MkoxR1AfR9Od_7qGGp-NJV9p9S6M9-EjHbabwPvTq-7k_QDxUm0PYGJ5Ofl0eNrb_DHsGA34
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6V5QAc-EcsLeADiFNax87P5sBhxe5qS7s9lK20N-PYzqUlQU1WqJx4BF6FV-EReBJm8kcXCSEh9cAxie049sz4G2fmM8CLxIrAJIHwpIk5OiiB8ZI6yDEKQymczUJOycmLo2h-Erxdhast-NblwjT8EP2GG2lGba9JwWlDeu8Xa6i2GaWSi2bZbOMqD9zFJ_Taytf7E5zil0LMpss3c689WMAzQcilZ1Lfj9IstMJoN4rCVHOrg0RYtOfGxDYZRc4JX8vUl6NIOvQRuMvQcaJsH1rDsd1rcJ2OESe6_slxz1jlx3HzIzvyKaTMX3U8kVzsbfZ3Yx0cFKjPGxj3MlKul7rZHfjeDVIT4XK6u67SXfP5N_7I_2oU78LtFnizcaMp92DL5ffh1iU6xgeQLrU5vWBTdCiqgvbzWVWwaZ1cxpbY4x9fvh67kgB3XjGdWzZeV5QTUqxL9s6dZficsrqwLbz8gCqWE5lucc7I6FJwnCsfwsmVfOQjGORF7h4Dk2EaWYRDMSWQGckTnVge60DzDGvIdAheJxHKtATtdE7ImWqopYWiuVL9XA3hVV_-Y0NN8seS2yRgCkEVMQMbCqEylUIoTke0DmGnkzvVGrBSIbBLJDE1BUMQtQD95R1qPJkt-qsn_1LpOdyYLxeH6nD_6GAbbtL9JjB6BwbV-do9RfhXpc9qhWPw_qpl8yeoO15G
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VRUL0wH_F0gI-gDildez8bA4cVuyuWkorVLbS3oxjO5eWpGqyqsqJR-BReBVegSdhJn90kRASUg8cndiJY8_Y3zgz3wC8SKwITBIIT5qYo4ESGC-pnRyjMJTC2SzkFJx8cBjtHgdvF-FiDb51sTANP0R_4EaaUa_XpOBnNtv5RRqqbUaR5KLZNVu3yn13eYFGW_l6b4Iz_FKI2XT-Ztdr8wp4Jgi59Ezq-1GahVYY7UZRmGpudZAIi8u5MbFNRpFzwtcy9eUokg5NBO4ytJso2Ie2cHzuDbiJ5YSSRUyOesIqP46b_9iRTx5l_qKjieRiZ7W_K9vgoEB1XoG4V4FyvdPN7sL3bowaB5eT7WWVbpvPv9FH_k-DeA_utLCbjRs9uQ9rLn8A61fIGB9COtfm5JJN0ZyoCjrNZ1XBpnVoGZtjj398-XrkSoLbecV0btl4WVFESLEs2Qd3muF9iunCZ2HxEypYTlS6xTmjJZdc41z5CI6v5SM3YJAXuXsMTIZpZBEMxRQ-ZiRPdGJ5rAPNM2wh0yF4nUAo09KzU5aQU9UQSwtFc6X6uRrCq77-WUNM8seamyRfCiEV8QIbcqAylUIgTglah7DViZ1ql69SIaxLJPE0BUMQtfz85R1qPJkd9KUn_9LoOdx6P5mpd3uH-5twmy43XtFbMKjOl-4pYr8qfVarG4OP1y2aPwEL4lz1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tacky+Elastomers+to+Enable+Tear%E2%80%90Resistant+and+Autonomous+Self%E2%80%90Healing+Semiconductor+Composites&rft.jtitle=Advanced+functional+materials&rft.au=Zhang%2C+Song&rft.au=Yu%E2%80%90Hsuan+Cheng&rft.au=Galuska%2C+Luke&rft.au=Roy%2C+Anirban&rft.date=2020-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=30&rft.issue=27&rft_id=info:doi/10.1002%2Fadfm.202000663&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon