Optimization of orifice position in particle-excitation valve for proportional flow control
This paper reports an improvement of the particle-excitation flow control valve. The valve that we have designed in previous reports can control air flow, using particle excitation by piezoelectric resonance, and has the following advantages: small size, lightweight, high response and continuous air...
Saved in:
Published in | ROBOMECH journal Vol. 4; no. 1; pp. 1 - 11 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
11.10.2017
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
ISSN | 2197-4225 2197-4225 |
DOI | 10.1186/s40648-017-0093-3 |
Cover
Abstract | This paper reports an improvement of the particle-excitation flow control valve. The valve that we have designed in previous reports can control air flow, using particle excitation by piezoelectric resonance, and has the following advantages: small size, lightweight, high response and continuous airflow control. However, in our previous models, the relationship between the driving voltage and the flow quantity was nonlinear. In this report, we improved the valve to realize proportional flow control. The valve consists of the orifice plate, that has some orifices, and steel particles to seal the orifices and piezoelectric transducer. It controls air flow by the voltage applied to the transducer. For proportional flow control, it is important to adjust the orifice position adequately. In this report, we optimized the orifice position, considering resonance condition of the valve. We designed the experimental prototype using a bolt-clamped Langevin type transducer and decided orifice position. And we evaluated its vibration properties and flow-rate characteristics. The experimental results showed that our designed prototype can proportionally control airflow. |
---|---|
AbstractList | This paper reports an improvement of the particle-excitation flow control valve. The valve that we have designed in previous reports can control air flow, using particle excitation by piezoelectric resonance, and has the following advantages: small size, lightweight, high response and continuous airflow control. However, in our previous models, the relationship between the driving voltage and the flow quantity was nonlinear. In this report, we improved the valve to realize proportional flow control. The valve consists of the orifice plate, that has some orifices, and steel particles to seal the orifices and piezoelectric transducer. It controls air flow by the voltage applied to the transducer. For proportional flow control, it is important to adjust the orifice position adequately. In this report, we optimized the orifice position, considering resonance condition of the valve. We designed the experimental prototype using a bolt-clamped Langevin type transducer and decided orifice position. And we evaluated its vibration properties and flow-rate characteristics. The experimental results showed that our designed prototype can proportionally control airflow. Abstract This paper reports an improvement of the particle-excitation flow control valve. The valve that we have designed in previous reports can control air flow, using particle excitation by piezoelectric resonance, and has the following advantages: small size, lightweight, high response and continuous airflow control. However, in our previous models, the relationship between the driving voltage and the flow quantity was nonlinear. In this report, we improved the valve to realize proportional flow control. The valve consists of the orifice plate, that has some orifices, and steel particles to seal the orifices and piezoelectric transducer. It controls air flow by the voltage applied to the transducer. For proportional flow control, it is important to adjust the orifice position adequately. In this report, we optimized the orifice position, considering resonance condition of the valve. We designed the experimental prototype using a bolt-clamped Langevin type transducer and decided orifice position. And we evaluated its vibration properties and flow-rate characteristics. The experimental results showed that our designed prototype can proportionally control airflow. |
ArticleNumber | 25 |
Author | Hirooka, Daisuke Suzumori, Koichi Yamaguchi, Tomomi Kanda, Takefumi Furushiro, Naomichi |
Author_xml | – sequence: 1 givenname: Daisuke surname: Hirooka fullname: Hirooka, Daisuke email: hirooka@kansai-u.ac.jp organization: Department of Mechanical Engineering, Kansai University – sequence: 2 givenname: Tomomi surname: Yamaguchi fullname: Yamaguchi, Tomomi organization: Department of Mechanical Engineering, Kansai University – sequence: 3 givenname: Naomichi surname: Furushiro fullname: Furushiro, Naomichi organization: Department of Mechanical Engineering, Kansai University – sequence: 4 givenname: Koichi surname: Suzumori fullname: Suzumori, Koichi organization: Graduate School of Engineering, Tokyo Institute of Technology – sequence: 5 givenname: Takefumi surname: Kanda fullname: Kanda, Takefumi organization: Graduate School of National Science and Technology, Okayama University |
BookMark | eNp9UctKxTAUDKLg636Au4Lrap5NshTxBcLd6MpFOE0TyaU2NanPrzfXKoigq3MYZoYzZ3bR5hAHh9ABwUeEqOY4c9xwVWMia4w1q9kG2qFEy5pTKjZ_7NtokfMK48JsGCd6B90txyk8hHeYQhyq6KuYgg_WVWPM4RMLQzVCmoLtXe1ebZhm6jP0z67yMVVjimNMaxD6yvfxpbJxmFLs99GWhz67xdfcQ7fnZzenl_X18uLq9OS6tlxgVguNhXTKa2eZEEqJTnUdlhyAtC00UkpQDQfGACinnLdUYy9BO9ly4rRme-hq9u0irMyYwgOkNxMhmE8gpnvzFcB0XCrl265zreeMOEW9KD5SWtFYDb54Hc5eJdXjk8uTWcWnVJJlQ7RoVKOJpoUlZ5ZNMefkvPn-y5Qg9IZgsy7GzMWY8m6zLsawoiS_lN_3_qehsyYX7nDv0o-b_hR9AADLowI |
CitedBy_id | crossref_primary_10_2493_jjspe_85_640 crossref_primary_10_5739_jfps_50_1 crossref_primary_10_20965_jrm_2022_p0422 |
Cites_doi | 10.1109/EMBC.2015.7319469 10.1016/j.sna.2009.07.005 10.1016/S0957-4158(99)00028-8 10.1016/j.mechatronics.2014.06.002 10.20965/ijat.2011.p0502 10.1109/IROS.2015.7354282 10.1007/s10832-007-9172-9 10.1115/1.482439 10.1109/ICIT.2016.7474994 10.20965/ijat.2013.p0228 10.1016/j.sna.2009.11.014 10.1299/jamdsm.6.1154 10.1186/s40648-016-0061-3 10.20965/ijat.2009.p0716 10.1109/ASC-ICSC.2008.4675447 10.1109/AIM.2016.7576748 10.1109/AIM.2015.7222641 10.1016/j.sna.2011.07.009 10.1016/j.enconman.2012.11.004 10.20965/jrm.2010.p0091 10.20965/ijat.2016.p0494 10.1109/FPM.2011.6045755 10.1541/ieejsmas.137.32 10.1016/j.proeng.2012.01.1154 10.20965/ijat.2016.p0540 |
ContentType | Journal Article |
Copyright | The Author(s) 2017 ROBOMECH Journal is a copyright of Springer, 2017. |
Copyright_xml | – notice: The Author(s) 2017 – notice: ROBOMECH Journal is a copyright of Springer, 2017. |
DBID | C6C AAYXX CITATION 3V. 7XB 8AL 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M0N M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
DOI | 10.1186/s40648-017-0093-3 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2197-4225 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_d4788fbddebf431e82f5e7b77c56c9af 10_1186_s40648_017_0093_3 |
GrantInformation_xml | – fundername: Japan Society for the Promotion of Science grantid: 15K21519 funderid: http://dx.doi.org/10.13039/501100001691 |
GroupedDBID | 0R~ 3V. 5VS 8FE 8FG AAFWJ AAJSJ AAKKN ABEEZ ABFTD ABJCF ABUWG ACACY ACGFS ACULB ADBBV ADINQ ADMLS AFGXO AFKRA AFPKN AHBYD AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP ARAPS ASPBG AZQEC BCNDV BENPR BGLVJ BPHCQ C24 C6C CCPQU DWQXO EBLON EBS EJD GNUQQ GROUPED_DOAJ HCIFZ K6V K7- KQ8 L6V M0N M7S M~E OK1 P62 PIMPY PQQKQ PROAC PTHSS RSV SOJ AASML AAYXX CITATION PHGZM PHGZT 7XB 8AL 8FK JQ2 PKEHL PQEST PQGLB PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c4503-59057e8f9ec355885d8dd074aa1bba6777a864a33aa24244b290f7a9e7b41e993 |
IEDL.DBID | BENPR |
ISSN | 2197-4225 |
IngestDate | Wed Aug 27 01:22:17 EDT 2025 Fri Jul 25 11:13:28 EDT 2025 Tue Jul 01 01:15:06 EDT 2025 Thu Apr 24 23:07:22 EDT 2025 Fri Feb 21 02:34:32 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | PZT Flow control valve Pneumatic actuator Proportional flow control valve Pneumatic valve |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4503-59057e8f9ec355885d8dd074aa1bba6777a864a33aa24244b290f7a9e7b41e993 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/1956869192?pq-origsite=%requestingapplication%&accountid=15518 |
PQID | 1956869192 |
PQPubID | 2034667 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d4788fbddebf431e82f5e7b77c56c9af proquest_journals_1956869192 crossref_citationtrail_10_1186_s40648_017_0093_3 crossref_primary_10_1186_s40648_017_0093_3 springer_journals_10_1186_s40648_017_0093_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20171011 |
PublicationDateYYYYMMDD | 2017-10-11 |
PublicationDate_xml | – month: 10 year: 2017 text: 20171011 day: 11 |
PublicationDecade | 2010 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Heidelberg |
PublicationTitle | ROBOMECH journal |
PublicationTitleAbbrev | Robomech J |
PublicationYear | 2017 |
Publisher | Springer International Publishing Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: SpringerOpen |
References | ZengHYuanRBSunCZhangZStudy on performance of laminated piezoelectric pneumatic servo valveProc Eng2012311140114810.1016/j.proeng.2012.01.1154 KarunanidhiSSingaperumalMDesign, analysis and simulation of magnetostrictive actuator and its application to high dynamic servo valveSens Actuators A201015718519710.1016/j.sna.2009.11.014 TimoshenkoSKriegerSWTheory of plates and shells19592New YorkMcGraw-Hill0114.40801 Fritz KP, Mayer V, Steffens T, Kück H (2010) Switching valve with isolated impact actuator. In: 12th International conference on new actuators, pp 242–245 HirookaDSuzumoriKKandaTDesign and evaluation of orifice arrangement for particle-excitation flow control valveSens Actuators A2011171228329110.1016/j.sna.2011.07.009 RibuanMNWakimotoSSuzumoriKKandaTOmnidirectional soft robot platform with flexible actuators for medical assistive deviceIJAT201610449750110.20965/ijat.2016.p0494 Lindler JE, Anderson EH (2002) Piezoelectric direct drive servovalve. In: Industrial and commercial applications of smart structures technologies 2002, 4698-53, pp 1–9 Lingcong N, Xiaoxian Y, Qing L (2008) Modeling and simulation of ultrasonic motor driving jet-pipe servo valve system. In: 2008 Asia simulation conference-7th international conference on system simulation and scientific computing, pp 689–692 KawashimaKKagawaTFujitaTInstantaneous flow rate measurement of ideal gasesJ Dyn Syst Meas Control200012217417810.1115/1.482439 YunSNHamYBParkJHSoHJLeeIYPneumatic valve with a pressure regulator for bimorph type PZT actuatorJ Electroceramics20082021522010.1007/s10832-007-9172-9 Yun SN, Jeong HH, Kim DG, Jeong EA, Kim HH (2011) New strategy for design and fabricating of a grain sorting system using high-speed piezoelectric valves. In: Proceedings of the 8th JFPS international symposium on fluid power, OKINAWA 2011, 1D-1, pp 270–275 Bang YB, Joo CS, Lee KL, Hur JW, Lim WK (2003) Development of a two-stage high, speed electrohydraulic servo valve system using stack-type piezoelectric-elements. In: Proceedings of the 2003 IEEE/ASME international conference on advanced intelligent mechatronics, pp 131–136 HirookaDYamaguchiTFurushiroNSuzumoriKKandaTParticle-excitation flow control valve using piezo vibration-improvement for high flow rate and research on controllabilityIEEJ Trans Sens Micromach20171371323710.1541/ieejsmas.137.32 LiBGaoLYangGEvaluation and compensation of steady gas flow force on the high-pressure electro-pneumatic servo valve direct-driven by voice coil motorEnergy Convers Manag2013679210210.1016/j.enconman.2012.11.004 ParkJHYoshidaKYokotaSResonantly driven piezoelectric micropump fabrication of a micropump having high power densityMechatronics1999968770210.1016/S0957-4158(99)00028-8 JeonJNguyenQHHanYMChoiSBDesign and evaluation of a direct drive valve actuated by piezostack actuatorAdv Mech Eng2013986812112 KurumayaSSuzumoriKNabaeHWakimotoSMusculoskeletal lower-limb robot driven by multifilament musclesRobomech J201631810.1186/s40648-016-0061-3 ZhouMGaoWYangZTianYHigh precise fuzzy control for piezoelectric direct drive electro-hydraulic servo valveJ Adv Mech Des Syst Manuf2012671154116710.1299/jamdsm.6.1154 Hong YP, Koo D, Park J, Kim S, Kim KS (2015) The Softgait: a simple and powerful weight-support device for walking and squatting. In: 2015 IEEE/RSJ international conference on intelligent robots and systems, pp 6338–6341 Ueda H, Akagi T, Dohta S (2010) Development of 2-position 3-port control valve with self-holding function. In: Proceedings of SICE annual conference 2010, pp 1239–1243 Hashimoto Y, Nagase J, Saga N, Satoh T (2016) Development and control of support function for upper limb support device. In: 2016 IEEE international conference on industrial technology, pp 1566–1571 LiXNoritsuguTTakaiwaVSasakiDDesign of wearable power assist wear for low back support using pneumatic actuatorsInt J Autom Technol20137222823610.20965/ijat.2013.p0228 SanadaKAkiyamaYPower-assist chair using pneumatic actuatorInt J Autom Technol20115450250710.20965/ijat.2011.p0502 HirookaDYamaguchiTFurushiroNSuzumoriKKandaTDevelopment of novel particle excitation flow control valve for stable flow characteristicsInt J Autom Technol201610454054810.20965/ijat.2016.p0540 Akagi T, Dohta S, Matsui Y, Tamaki H, Kato N (2016) Low-cost wearable rehabilitation devices using flexible pneumatic cylinder with built-in pneumatic driving system. In: 2016 IEEE international conference on advanced intelligent mechatronics (AIM), pp 89–93 Sente P, Vloebergh C, Labrique F, Alexandre P (2008) Control of a direct-drive servo-valve actuated by a linear amplified piezoelectric. In: Proceedings of the 2008 international conference on electrical machines, 1051, pp 1–6 YagiEHaradaDKobayashiMUpper-limb power-assist control for agriculture load liftingInt J Autom Technol20093671672210.20965/ijat.2009.p0716 Gang B, Tinghai C, Yao H, Xiangdong G, Han G (2011) A nozzle flapper electro-pneumatic proportional pressure valve driven by piezoelectric motor. In: Proceedings of 2011 international conference on fluid power and mechatronics, pp 191–195 Nomura K, Yonezawa T, Ogitsu T, Mizoguchi H, Takemura H (2015) Development of stewart platform type ankle-foot device for trip prevention support. In: 2015 37th annual international conference of the IEEE engineering in medicine and biology society, pp 4808–4811 ZhangDLvJJiangYChenHFuJA piezoelectric microvalve with a flexure-hinged driving frame and microfabricated silicon sealing pairMechatronics20142451151810.1016/j.mechatronics.2014.06.002 JienSHiraiSHondaKMiniaturization design of piezoelectric vibration-driven pneumatic unconstrained valvesJRM2010221919910.20965/jrm.2010.p0091 Loh CT, Tsukagoshi H (2014) Pneumatic big-hand gripper with slip-in tip aimed for the transfer support of the human body. In: 2014 IEEE international conference on robotics & automation, pp 475–481 Nasir A, Akagi T, Dohta S, Ono A (2015) Analysis of low-cost wearable servo valve using buckled tubes for optimal arrangement of tubes. In: 2015 IEEE international conference on advanced intelligent mechatronics, pp 831–835 HirookaDSuzumoriKKandaTFlow control valve for pneumatic actuators using particle excitation by PZT vibratorSens Actuators A2009155228528910.1016/j.sna.2009.07.005 93_CR3 S Kurumaya (93_CR10) 2016; 3 93_CR2 X Li (93_CR6) 2013; 7 MN Ribuan (93_CR7) 2016; 10 93_CR1 D Hirooka (93_CR31) 2011; 171 M Zhou (93_CR28) 2012; 6 D Zhang (93_CR25) 2014; 24 JH Park (93_CR19) 1999; 9 93_CR22 93_CR24 S Jien (93_CR14) 2010; 22 S Timoshenko (93_CR34) 1959 93_CR20 J Jeon (93_CR26) 2013; 986812 93_CR21 K Sanada (93_CR4) 2011; 5 S Karunanidhi (93_CR23) 2010; 157 SN Yun (93_CR16) 2008; 20 93_CR27 H Zeng (93_CR18) 2012; 31 D Hirooka (93_CR30) 2016; 10 D Hirooka (93_CR29) 2009; 155 93_CR11 D Hirooka (93_CR32) 2017; 137 93_CR12 B Li (93_CR13) 2013; 67 E Yagi (93_CR5) 2009; 3 K Kawashima (93_CR33) 2000; 122 93_CR9 93_CR8 93_CR15 93_CR17 |
References_xml | – reference: Akagi T, Dohta S, Matsui Y, Tamaki H, Kato N (2016) Low-cost wearable rehabilitation devices using flexible pneumatic cylinder with built-in pneumatic driving system. In: 2016 IEEE international conference on advanced intelligent mechatronics (AIM), pp 89–93 – reference: HirookaDYamaguchiTFurushiroNSuzumoriKKandaTParticle-excitation flow control valve using piezo vibration-improvement for high flow rate and research on controllabilityIEEJ Trans Sens Micromach20171371323710.1541/ieejsmas.137.32 – reference: JienSHiraiSHondaKMiniaturization design of piezoelectric vibration-driven pneumatic unconstrained valvesJRM2010221919910.20965/jrm.2010.p0091 – reference: KarunanidhiSSingaperumalMDesign, analysis and simulation of magnetostrictive actuator and its application to high dynamic servo valveSens Actuators A201015718519710.1016/j.sna.2009.11.014 – reference: ParkJHYoshidaKYokotaSResonantly driven piezoelectric micropump fabrication of a micropump having high power densityMechatronics1999968770210.1016/S0957-4158(99)00028-8 – reference: HirookaDYamaguchiTFurushiroNSuzumoriKKandaTDevelopment of novel particle excitation flow control valve for stable flow characteristicsInt J Autom Technol201610454054810.20965/ijat.2016.p0540 – reference: TimoshenkoSKriegerSWTheory of plates and shells19592New YorkMcGraw-Hill0114.40801 – reference: Lingcong N, Xiaoxian Y, Qing L (2008) Modeling and simulation of ultrasonic motor driving jet-pipe servo valve system. In: 2008 Asia simulation conference-7th international conference on system simulation and scientific computing, pp 689–692 – reference: Sente P, Vloebergh C, Labrique F, Alexandre P (2008) Control of a direct-drive servo-valve actuated by a linear amplified piezoelectric. In: Proceedings of the 2008 international conference on electrical machines, 1051, pp 1–6 – reference: SanadaKAkiyamaYPower-assist chair using pneumatic actuatorInt J Autom Technol20115450250710.20965/ijat.2011.p0502 – reference: LiBGaoLYangGEvaluation and compensation of steady gas flow force on the high-pressure electro-pneumatic servo valve direct-driven by voice coil motorEnergy Convers Manag2013679210210.1016/j.enconman.2012.11.004 – reference: ZhangDLvJJiangYChenHFuJA piezoelectric microvalve with a flexure-hinged driving frame and microfabricated silicon sealing pairMechatronics20142451151810.1016/j.mechatronics.2014.06.002 – reference: Bang YB, Joo CS, Lee KL, Hur JW, Lim WK (2003) Development of a two-stage high, speed electrohydraulic servo valve system using stack-type piezoelectric-elements. In: Proceedings of the 2003 IEEE/ASME international conference on advanced intelligent mechatronics, pp 131–136 – reference: Nomura K, Yonezawa T, Ogitsu T, Mizoguchi H, Takemura H (2015) Development of stewart platform type ankle-foot device for trip prevention support. In: 2015 37th annual international conference of the IEEE engineering in medicine and biology society, pp 4808–4811 – reference: Lindler JE, Anderson EH (2002) Piezoelectric direct drive servovalve. In: Industrial and commercial applications of smart structures technologies 2002, 4698-53, pp 1–9 – reference: HirookaDSuzumoriKKandaTDesign and evaluation of orifice arrangement for particle-excitation flow control valveSens Actuators A2011171228329110.1016/j.sna.2011.07.009 – reference: KurumayaSSuzumoriKNabaeHWakimotoSMusculoskeletal lower-limb robot driven by multifilament musclesRobomech J201631810.1186/s40648-016-0061-3 – reference: KawashimaKKagawaTFujitaTInstantaneous flow rate measurement of ideal gasesJ Dyn Syst Meas Control200012217417810.1115/1.482439 – reference: Nasir A, Akagi T, Dohta S, Ono A (2015) Analysis of low-cost wearable servo valve using buckled tubes for optimal arrangement of tubes. In: 2015 IEEE international conference on advanced intelligent mechatronics, pp 831–835 – reference: YagiEHaradaDKobayashiMUpper-limb power-assist control for agriculture load liftingInt J Autom Technol20093671672210.20965/ijat.2009.p0716 – reference: Fritz KP, Mayer V, Steffens T, Kück H (2010) Switching valve with isolated impact actuator. In: 12th International conference on new actuators, pp 242–245 – reference: JeonJNguyenQHHanYMChoiSBDesign and evaluation of a direct drive valve actuated by piezostack actuatorAdv Mech Eng2013986812112 – reference: Ueda H, Akagi T, Dohta S (2010) Development of 2-position 3-port control valve with self-holding function. In: Proceedings of SICE annual conference 2010, pp 1239–1243 – reference: HirookaDSuzumoriKKandaTFlow control valve for pneumatic actuators using particle excitation by PZT vibratorSens Actuators A2009155228528910.1016/j.sna.2009.07.005 – reference: LiXNoritsuguTTakaiwaVSasakiDDesign of wearable power assist wear for low back support using pneumatic actuatorsInt J Autom Technol20137222823610.20965/ijat.2013.p0228 – reference: ZhouMGaoWYangZTianYHigh precise fuzzy control for piezoelectric direct drive electro-hydraulic servo valveJ Adv Mech Des Syst Manuf2012671154116710.1299/jamdsm.6.1154 – reference: ZengHYuanRBSunCZhangZStudy on performance of laminated piezoelectric pneumatic servo valveProc Eng2012311140114810.1016/j.proeng.2012.01.1154 – reference: Hong YP, Koo D, Park J, Kim S, Kim KS (2015) The Softgait: a simple and powerful weight-support device for walking and squatting. In: 2015 IEEE/RSJ international conference on intelligent robots and systems, pp 6338–6341 – reference: RibuanMNWakimotoSSuzumoriKKandaTOmnidirectional soft robot platform with flexible actuators for medical assistive deviceIJAT201610449750110.20965/ijat.2016.p0494 – reference: Loh CT, Tsukagoshi H (2014) Pneumatic big-hand gripper with slip-in tip aimed for the transfer support of the human body. In: 2014 IEEE international conference on robotics & automation, pp 475–481 – reference: Yun SN, Jeong HH, Kim DG, Jeong EA, Kim HH (2011) New strategy for design and fabricating of a grain sorting system using high-speed piezoelectric valves. In: Proceedings of the 8th JFPS international symposium on fluid power, OKINAWA 2011, 1D-1, pp 270–275 – reference: Gang B, Tinghai C, Yao H, Xiangdong G, Han G (2011) A nozzle flapper electro-pneumatic proportional pressure valve driven by piezoelectric motor. In: Proceedings of 2011 international conference on fluid power and mechatronics, pp 191–195 – reference: Hashimoto Y, Nagase J, Saga N, Satoh T (2016) Development and control of support function for upper limb support device. In: 2016 IEEE international conference on industrial technology, pp 1566–1571 – reference: YunSNHamYBParkJHSoHJLeeIYPneumatic valve with a pressure regulator for bimorph type PZT actuatorJ Electroceramics20082021522010.1007/s10832-007-9172-9 – ident: 93_CR3 doi: 10.1109/EMBC.2015.7319469 – volume: 155 start-page: 285 issue: 2 year: 2009 ident: 93_CR29 publication-title: Sens Actuators A doi: 10.1016/j.sna.2009.07.005 – ident: 93_CR24 – ident: 93_CR11 – volume: 9 start-page: 687 year: 1999 ident: 93_CR19 publication-title: Mechatronics doi: 10.1016/S0957-4158(99)00028-8 – volume: 24 start-page: 511 year: 2014 ident: 93_CR25 publication-title: Mechatronics doi: 10.1016/j.mechatronics.2014.06.002 – volume: 5 start-page: 502 issue: 4 year: 2011 ident: 93_CR4 publication-title: Int J Autom Technol doi: 10.20965/ijat.2011.p0502 – ident: 93_CR1 doi: 10.1109/IROS.2015.7354282 – volume: 20 start-page: 215 year: 2008 ident: 93_CR16 publication-title: J Electroceramics doi: 10.1007/s10832-007-9172-9 – volume: 122 start-page: 174 year: 2000 ident: 93_CR33 publication-title: J Dyn Syst Meas Control doi: 10.1115/1.482439 – volume-title: Theory of plates and shells year: 1959 ident: 93_CR34 – ident: 93_CR2 doi: 10.1109/ICIT.2016.7474994 – volume: 7 start-page: 228 issue: 2 year: 2013 ident: 93_CR6 publication-title: Int J Autom Technol doi: 10.20965/ijat.2013.p0228 – volume: 157 start-page: 185 year: 2010 ident: 93_CR23 publication-title: Sens Actuators A doi: 10.1016/j.sna.2009.11.014 – volume: 6 start-page: 1154 issue: 7 year: 2012 ident: 93_CR28 publication-title: J Adv Mech Des Syst Manuf doi: 10.1299/jamdsm.6.1154 – volume: 3 start-page: 18 year: 2016 ident: 93_CR10 publication-title: Robomech J doi: 10.1186/s40648-016-0061-3 – ident: 93_CR27 – volume: 3 start-page: 716 issue: 6 year: 2009 ident: 93_CR5 publication-title: Int J Autom Technol doi: 10.20965/ijat.2009.p0716 – ident: 93_CR21 doi: 10.1109/ASC-ICSC.2008.4675447 – ident: 93_CR8 doi: 10.1109/AIM.2016.7576748 – ident: 93_CR12 doi: 10.1109/AIM.2015.7222641 – volume: 171 start-page: 283 issue: 2 year: 2011 ident: 93_CR31 publication-title: Sens Actuators A doi: 10.1016/j.sna.2011.07.009 – volume: 67 start-page: 92 year: 2013 ident: 93_CR13 publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2012.11.004 – volume: 22 start-page: 91 issue: 1 year: 2010 ident: 93_CR14 publication-title: JRM doi: 10.20965/jrm.2010.p0091 – volume: 10 start-page: 497 issue: 4 year: 2016 ident: 93_CR7 publication-title: IJAT doi: 10.20965/ijat.2016.p0494 – volume: 986812 start-page: 1 year: 2013 ident: 93_CR26 publication-title: Adv Mech Eng – ident: 93_CR20 doi: 10.1109/FPM.2011.6045755 – volume: 137 start-page: 32 issue: 1 year: 2017 ident: 93_CR32 publication-title: IEEJ Trans Sens Micromach doi: 10.1541/ieejsmas.137.32 – ident: 93_CR15 – volume: 31 start-page: 1140 year: 2012 ident: 93_CR18 publication-title: Proc Eng doi: 10.1016/j.proeng.2012.01.1154 – ident: 93_CR17 – ident: 93_CR22 – ident: 93_CR9 – volume: 10 start-page: 540 issue: 4 year: 2016 ident: 93_CR30 publication-title: Int J Autom Technol doi: 10.20965/ijat.2016.p0540 |
SSID | ssj0001763419 |
Score | 2.0205574 |
Snippet | This paper reports an improvement of the particle-excitation flow control valve. The valve that we have designed in previous reports can control air flow,... Abstract This paper reports an improvement of the particle-excitation flow control valve. The valve that we have designed in previous reports can control air... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Air flow Artificial Intelligence Computational Intelligence Control and Systems Theory Control valves Electric potential Engineering Excitation Flow control Flow control valve Mechatronics Orifices Piezoelectricity Pneumatic actuator Pneumatic valve Proportional flow control valve PZT Research Article Robotics and Automation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE-uLHDwpwaZNk-ao4iKCelEQPIQ8QVi3y-76-PlO2lRWQb14bROYTmY63ySTbxA6ZJUvuPSMaGpzwgDAEm25I6KwkkoXBPcxUby-4Zf37Oqhephr9RVrwjp64E5xJy7yuwcDXmgCBDtfF6HywghhK26lDvHvm8t8Lplqd1fAbRiV6RiT1vxkCpGLxbotQWIWT8ovgajl6_8CMr-di7bhZrCKVhJOxKedfGtowY_W0fIce-AGerwFd39O9yhxE3AziXU_HveFWPhphMfpC4l_t4mOG4NxvXoMaBWPY4-ESbcdiMOwecOpdH0T3Q8u7s4vSeqVQCyr8pJUEoCXr4P0NhKm15WrnQN4oDU1RnMhhK4502WpdbwQwkwh8yC0BFUy6gGkbKHFUTPy2wgLaZgrWZ273DEJCRbVlha6KCvuvTEuQ3mvONVLHvtZDFWbUNRcdbpWoGsVda3KDB19Thl3LBq_DT6Lq_E5MBJgtw_ALFRSmvrLLDK016-lSl45Ve3dSA42WGTouF_fudc_SbTzHxLtoqUiWl-shqF7aHE2efH7AGhm5qC13Q-3sPLQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFA4uFz2IK46OkoMnJdi0WZqjiiKCelEQPISsIOjMMOP2833ppOMoKnhtE0jf0nwv770vCO0xHkqhAiOGuoIwALDEOOGJLJ2iykcpQgoUL6_E-S27uON3mSw69cJM5-9pLQ5HsOGwVG4lSQq-STWL5jmtRJOXFSefxyngJ4yqnLf8ceaXnach6P-CKr8lQpv95WwZLWVgiI_GmlxBM6G3ihan6ALX0P01-PdTbpzE_Yj7w1ToE3BbeYUfeniQbYGEd5f5tzFY02vAAE_xIF2KMByf_-H42H_DuVZ9Hd2end6cnJN8OQJxjBcV4QqQVqijCi4xpNfc194DHjCGWmuElNLUgpmqMiZ1gDBbqiJKo4K0jAZAJRtortfvhU2EpbLMV6wufOGZgoiKGkdLU1ZchGCt76CiFZxuV54usHjUTQRRCz2WtQZZ6yRrXXXQ_mTKYEyb8dfg46SNycDEeN08AEPQWWjaJ57_aOFvbCOAnlCXkcO3SOm4cMrEDuq2utTZDUe6aYYUYHRlBx20-p16_duKtv41ehstlMnMUp0L7aK55-FL2AGo8mx3GyP9AEG24P4 priority: 102 providerName: Springer Nature |
Title | Optimization of orifice position in particle-excitation valve for proportional flow control |
URI | https://link.springer.com/article/10.1186/s40648-017-0093-3 https://www.proquest.com/docview/1956869192 https://doaj.org/article/d4788fbddebf431e82f5e7b77c56c9af |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LaxsxEB6S-NIeStMHdZMYHXJqEdmHVo9DKY6JGwx1S9tAoAehZyikXsdJHz-_o7U2j0Jy2YNWWlYzo9E3o9EMwD5rQsVVYNSUrqAMASw1jnsqKqdK5aPgIRmKH-f8-ITNTpvTDZj3d2FSWGWvEztF7VuXfOQH3b02juOr98sLmqpGpdPVvoSGyaUV_LsuxdgmDFAlS5T7weHR_POXG68LLidWqny8WUp-cIk7GkvxXIIm657WdzaoLo__HfD533lptw1Nn8KTjB_JeM3wbdgIi2fw-FZWwefw_ROqgZ_5fiVpI8FpRNQHpA_QIj8WZJlFhoa_LqfpJih0vwNBFEuWqXbCau0mJPG8_UNySPsLOJkefZsc01xDgTrWFDVtFAKyIKMKLiVSl42X3iNsMKa01nAhhJGcmbo2Jl0UYbZSRRRGBWFZGRC8vIStRbsIr4AIZZmvmSx84ZlCw6s0rqxMVTc8BGv9EIqecLr_81Tn4lx3hobkek1rjbTWida6HsKb6yHLdXaNhzofJm5cd0yJsbuGdnWmM9G0T-UAokWlbSNioyCr2OBchHANd8rEIez2vNR5tV7qG9kawtuev7de3_dHrx_-2A48qpJcpfiXche2rla_wh5CmCs7gk05_TCCwXg8-zobZSnF1knF0pNPRp1z4B-qbfRD |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxQxDI6qcgAOiKdYKJADXEBRZ5JMMjkgVB7Llj64tFIlDiHPCqnsLLuF0j_V31h7Hn0g0VuvM8koYzu249j-CHkpq8SVSZK5MhRMggPLXFCRaR5MaWLWKuFBcWtbTXbll71qb4mcDLUwmFY56MRWUccmYIx8ta1rUzCfv5v9YogahberA4RGJxYb6fgIjmyLt-sfgb-vOB9_2vkwYT2qAAuyKgSrDLgoqc4mBWwtXlexjhEMqXOl905prV2tpBPCOSydkJ6bImtnkvayTAabL4HKvyGFMAgVUY8_n8d0YLPK0vSXp2WtVhdgLyVmi2mGsQMmLpm_FiXgkmv7z21sa-TGd8md3jula5043SNLaXqf3L7Qs_AB-fYVlMzPvnqTNpkCkTJoGzqkf9EfUzrrBZKlv6FvAk5BpP8kCj4ynSEyw7wLQtJ80BzRPmH-Idm9Flo-IsvTZpoeE6qNl1HIuohFlAaOdaULJXdcVCol7-OIFAPh7LByRNE4sO0xpla2o7UFWluktRUj8vpsyqzr3XHV4PfIjbOB2Ha7fdDM921PNBsRbCB7MAk-g-eVap4r-BetQ6WCcXlEVgZe2l4XLOy55I7Im4G_F17_b0VPrv7YC3JzsrO1aTfXtzeeklscZQwzbcoVsnw4_52egbN06J-3EkrJ9-veEqeVoyQ9 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0KpaCcGhKi-xpYAPcAFZmziOHR8QAsrSUigcqFSJg_ETIZXNdrel8Gt8HTOJ0wcSvfWa2JEzM573g5DHoo5c6iiYLX3BBCiwzHoZmOJelzokJSMaih925daeeLdf7y-RP0MtDKZVDjyxY9Sh9egjH3d1bRL283HKaRGfNicvZocMJ0hhpHUYp9GTyE78fQLm2-L59ibg-gnnkzefX2-xPGGAeVEXFas1qCuxSTp6bDPe1KEJAYSqtaVzViqlbCOFrSprsYxCOK6LpKyOyokyamzEBOx_RVVKo-HXTN6e-Xfg4opS50Bq2cjxAmSnwMwxxdCPwKoLorCbGHBBzf0nMtsJvMkaWc2aKn3Zk9ZNshSnt8iNc_0Lb5MvH4Hh_MiVnLRNFICUgPPQIRWMfp_SWSZOFn_53BCcAnn_jBT0ZTrDKQ3z3iFJ00F7QnPy_B2ydyWwvEuWp-003iNUaSdCJZoiFEFoMPFK60tueVXLGJ0LI1IMgDPDyXGixoHpTJpGmh7WBmBtENamGpGnp1tmfR-Pyxa_QmycLsQW3N2Ddv7NZKCZgIMHkgPx4BJoYbHhqYZ_UcrX0mubRmRjwKXJfGFhzqh4RJ4N-D33-n8nWr_8Y4_INbgM5v327s59cp0jiWHSTblBlo_mx_EB6E1H7mFHoJR8veob8RdHLCh8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+orifice+position+in+particle-excitation+valve+for+proportional+flow+control&rft.jtitle=ROBOMECH+journal&rft.au=Hirooka%2C+Daisuke&rft.au=Yamaguchi%2C+Tomomi&rft.au=Furushiro%2C+Naomichi&rft.au=Suzumori%2C+Koichi&rft.date=2017-10-11&rft.issn=2197-4225&rft.eissn=2197-4225&rft.volume=4&rft.issue=1&rft_id=info:doi/10.1186%2Fs40648-017-0093-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s40648_017_0093_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2197-4225&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2197-4225&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2197-4225&client=summon |