Optimization of orifice position in particle-excitation valve for proportional flow control

This paper reports an improvement of the particle-excitation flow control valve. The valve that we have designed in previous reports can control air flow, using particle excitation by piezoelectric resonance, and has the following advantages: small size, lightweight, high response and continuous air...

Full description

Saved in:
Bibliographic Details
Published inROBOMECH journal Vol. 4; no. 1; pp. 1 - 11
Main Authors Hirooka, Daisuke, Yamaguchi, Tomomi, Furushiro, Naomichi, Suzumori, Koichi, Kanda, Takefumi
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 11.10.2017
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text
ISSN2197-4225
2197-4225
DOI10.1186/s40648-017-0093-3

Cover

Abstract This paper reports an improvement of the particle-excitation flow control valve. The valve that we have designed in previous reports can control air flow, using particle excitation by piezoelectric resonance, and has the following advantages: small size, lightweight, high response and continuous airflow control. However, in our previous models, the relationship between the driving voltage and the flow quantity was nonlinear. In this report, we improved the valve to realize proportional flow control. The valve consists of the orifice plate, that has some orifices, and steel particles to seal the orifices and piezoelectric transducer. It controls air flow by the voltage applied to the transducer. For proportional flow control, it is important to adjust the orifice position adequately. In this report, we optimized the orifice position, considering resonance condition of the valve. We designed the experimental prototype using a bolt-clamped Langevin type transducer and decided orifice position. And we evaluated its vibration properties and flow-rate characteristics. The experimental results showed that our designed prototype can proportionally control airflow.
AbstractList This paper reports an improvement of the particle-excitation flow control valve. The valve that we have designed in previous reports can control air flow, using particle excitation by piezoelectric resonance, and has the following advantages: small size, lightweight, high response and continuous airflow control. However, in our previous models, the relationship between the driving voltage and the flow quantity was nonlinear. In this report, we improved the valve to realize proportional flow control. The valve consists of the orifice plate, that has some orifices, and steel particles to seal the orifices and piezoelectric transducer. It controls air flow by the voltage applied to the transducer. For proportional flow control, it is important to adjust the orifice position adequately. In this report, we optimized the orifice position, considering resonance condition of the valve. We designed the experimental prototype using a bolt-clamped Langevin type transducer and decided orifice position. And we evaluated its vibration properties and flow-rate characteristics. The experimental results showed that our designed prototype can proportionally control airflow.
Abstract This paper reports an improvement of the particle-excitation flow control valve. The valve that we have designed in previous reports can control air flow, using particle excitation by piezoelectric resonance, and has the following advantages: small size, lightweight, high response and continuous airflow control. However, in our previous models, the relationship between the driving voltage and the flow quantity was nonlinear. In this report, we improved the valve to realize proportional flow control. The valve consists of the orifice plate, that has some orifices, and steel particles to seal the orifices and piezoelectric transducer. It controls air flow by the voltage applied to the transducer. For proportional flow control, it is important to adjust the orifice position adequately. In this report, we optimized the orifice position, considering resonance condition of the valve. We designed the experimental prototype using a bolt-clamped Langevin type transducer and decided orifice position. And we evaluated its vibration properties and flow-rate characteristics. The experimental results showed that our designed prototype can proportionally control airflow.
ArticleNumber 25
Author Hirooka, Daisuke
Suzumori, Koichi
Yamaguchi, Tomomi
Kanda, Takefumi
Furushiro, Naomichi
Author_xml – sequence: 1
  givenname: Daisuke
  surname: Hirooka
  fullname: Hirooka, Daisuke
  email: hirooka@kansai-u.ac.jp
  organization: Department of Mechanical Engineering, Kansai University
– sequence: 2
  givenname: Tomomi
  surname: Yamaguchi
  fullname: Yamaguchi, Tomomi
  organization: Department of Mechanical Engineering, Kansai University
– sequence: 3
  givenname: Naomichi
  surname: Furushiro
  fullname: Furushiro, Naomichi
  organization: Department of Mechanical Engineering, Kansai University
– sequence: 4
  givenname: Koichi
  surname: Suzumori
  fullname: Suzumori, Koichi
  organization: Graduate School of Engineering, Tokyo Institute of Technology
– sequence: 5
  givenname: Takefumi
  surname: Kanda
  fullname: Kanda, Takefumi
  organization: Graduate School of National Science and Technology, Okayama University
BookMark eNp9UctKxTAUDKLg636Au4Lrap5NshTxBcLd6MpFOE0TyaU2NanPrzfXKoigq3MYZoYzZ3bR5hAHh9ABwUeEqOY4c9xwVWMia4w1q9kG2qFEy5pTKjZ_7NtokfMK48JsGCd6B90txyk8hHeYQhyq6KuYgg_WVWPM4RMLQzVCmoLtXe1ebZhm6jP0z67yMVVjimNMaxD6yvfxpbJxmFLs99GWhz67xdfcQ7fnZzenl_X18uLq9OS6tlxgVguNhXTKa2eZEEqJTnUdlhyAtC00UkpQDQfGACinnLdUYy9BO9ly4rRme-hq9u0irMyYwgOkNxMhmE8gpnvzFcB0XCrl265zreeMOEW9KD5SWtFYDb54Hc5eJdXjk8uTWcWnVJJlQ7RoVKOJpoUlZ5ZNMefkvPn-y5Qg9IZgsy7GzMWY8m6zLsawoiS_lN_3_qehsyYX7nDv0o-b_hR9AADLowI
CitedBy_id crossref_primary_10_2493_jjspe_85_640
crossref_primary_10_5739_jfps_50_1
crossref_primary_10_20965_jrm_2022_p0422
Cites_doi 10.1109/EMBC.2015.7319469
10.1016/j.sna.2009.07.005
10.1016/S0957-4158(99)00028-8
10.1016/j.mechatronics.2014.06.002
10.20965/ijat.2011.p0502
10.1109/IROS.2015.7354282
10.1007/s10832-007-9172-9
10.1115/1.482439
10.1109/ICIT.2016.7474994
10.20965/ijat.2013.p0228
10.1016/j.sna.2009.11.014
10.1299/jamdsm.6.1154
10.1186/s40648-016-0061-3
10.20965/ijat.2009.p0716
10.1109/ASC-ICSC.2008.4675447
10.1109/AIM.2016.7576748
10.1109/AIM.2015.7222641
10.1016/j.sna.2011.07.009
10.1016/j.enconman.2012.11.004
10.20965/jrm.2010.p0091
10.20965/ijat.2016.p0494
10.1109/FPM.2011.6045755
10.1541/ieejsmas.137.32
10.1016/j.proeng.2012.01.1154
10.20965/ijat.2016.p0540
ContentType Journal Article
Copyright The Author(s) 2017
ROBOMECH Journal is a copyright of Springer, 2017.
Copyright_xml – notice: The Author(s) 2017
– notice: ROBOMECH Journal is a copyright of Springer, 2017.
DBID C6C
AAYXX
CITATION
3V.
7XB
8AL
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.1186/s40648-017-0093-3
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2197-4225
EndPage 11
ExternalDocumentID oai_doaj_org_article_d4788fbddebf431e82f5e7b77c56c9af
10_1186_s40648_017_0093_3
GrantInformation_xml – fundername: Japan Society for the Promotion of Science
  grantid: 15K21519
  funderid: http://dx.doi.org/10.13039/501100001691
GroupedDBID 0R~
3V.
5VS
8FE
8FG
AAFWJ
AAJSJ
AAKKN
ABEEZ
ABFTD
ABJCF
ABUWG
ACACY
ACGFS
ACULB
ADBBV
ADINQ
ADMLS
AFGXO
AFKRA
AFPKN
AHBYD
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARAPS
ASPBG
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
C24
C6C
CCPQU
DWQXO
EBLON
EBS
EJD
GNUQQ
GROUPED_DOAJ
HCIFZ
K6V
K7-
KQ8
L6V
M0N
M7S
M~E
OK1
P62
PIMPY
PQQKQ
PROAC
PTHSS
RSV
SOJ
AASML
AAYXX
CITATION
PHGZM
PHGZT
7XB
8AL
8FK
JQ2
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c4503-59057e8f9ec355885d8dd074aa1bba6777a864a33aa24244b290f7a9e7b41e993
IEDL.DBID BENPR
ISSN 2197-4225
IngestDate Wed Aug 27 01:22:17 EDT 2025
Fri Jul 25 11:13:28 EDT 2025
Tue Jul 01 01:15:06 EDT 2025
Thu Apr 24 23:07:22 EDT 2025
Fri Feb 21 02:34:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords PZT
Flow control valve
Pneumatic actuator
Proportional flow control valve
Pneumatic valve
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4503-59057e8f9ec355885d8dd074aa1bba6777a864a33aa24244b290f7a9e7b41e993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/1956869192?pq-origsite=%requestingapplication%&accountid=15518
PQID 1956869192
PQPubID 2034667
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_d4788fbddebf431e82f5e7b77c56c9af
proquest_journals_1956869192
crossref_citationtrail_10_1186_s40648_017_0093_3
crossref_primary_10_1186_s40648_017_0093_3
springer_journals_10_1186_s40648_017_0093_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20171011
PublicationDateYYYYMMDD 2017-10-11
PublicationDate_xml – month: 10
  year: 2017
  text: 20171011
  day: 11
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle ROBOMECH journal
PublicationTitleAbbrev Robomech J
PublicationYear 2017
Publisher Springer International Publishing
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: SpringerOpen
References ZengHYuanRBSunCZhangZStudy on performance of laminated piezoelectric pneumatic servo valveProc Eng2012311140114810.1016/j.proeng.2012.01.1154
KarunanidhiSSingaperumalMDesign, analysis and simulation of magnetostrictive actuator and its application to high dynamic servo valveSens Actuators A201015718519710.1016/j.sna.2009.11.014
TimoshenkoSKriegerSWTheory of plates and shells19592New YorkMcGraw-Hill0114.40801
Fritz KP, Mayer V, Steffens T, Kück H (2010) Switching valve with isolated impact actuator. In: 12th International conference on new actuators, pp 242–245
HirookaDSuzumoriKKandaTDesign and evaluation of orifice arrangement for particle-excitation flow control valveSens Actuators A2011171228329110.1016/j.sna.2011.07.009
RibuanMNWakimotoSSuzumoriKKandaTOmnidirectional soft robot platform with flexible actuators for medical assistive deviceIJAT201610449750110.20965/ijat.2016.p0494
Lindler JE, Anderson EH (2002) Piezoelectric direct drive servovalve. In: Industrial and commercial applications of smart structures technologies 2002, 4698-53, pp 1–9
Lingcong N, Xiaoxian Y, Qing L (2008) Modeling and simulation of ultrasonic motor driving jet-pipe servo valve system. In: 2008 Asia simulation conference-7th international conference on system simulation and scientific computing, pp 689–692
KawashimaKKagawaTFujitaTInstantaneous flow rate measurement of ideal gasesJ Dyn Syst Meas Control200012217417810.1115/1.482439
YunSNHamYBParkJHSoHJLeeIYPneumatic valve with a pressure regulator for bimorph type PZT actuatorJ Electroceramics20082021522010.1007/s10832-007-9172-9
Yun SN, Jeong HH, Kim DG, Jeong EA, Kim HH (2011) New strategy for design and fabricating of a grain sorting system using high-speed piezoelectric valves. In: Proceedings of the 8th JFPS international symposium on fluid power, OKINAWA 2011, 1D-1, pp 270–275
Bang YB, Joo CS, Lee KL, Hur JW, Lim WK (2003) Development of a two-stage high, speed electrohydraulic servo valve system using stack-type piezoelectric-elements. In: Proceedings of the 2003 IEEE/ASME international conference on advanced intelligent mechatronics, pp 131–136
HirookaDYamaguchiTFurushiroNSuzumoriKKandaTParticle-excitation flow control valve using piezo vibration-improvement for high flow rate and research on controllabilityIEEJ Trans Sens Micromach20171371323710.1541/ieejsmas.137.32
LiBGaoLYangGEvaluation and compensation of steady gas flow force on the high-pressure electro-pneumatic servo valve direct-driven by voice coil motorEnergy Convers Manag2013679210210.1016/j.enconman.2012.11.004
ParkJHYoshidaKYokotaSResonantly driven piezoelectric micropump fabrication of a micropump having high power densityMechatronics1999968770210.1016/S0957-4158(99)00028-8
JeonJNguyenQHHanYMChoiSBDesign and evaluation of a direct drive valve actuated by piezostack actuatorAdv Mech Eng2013986812112
KurumayaSSuzumoriKNabaeHWakimotoSMusculoskeletal lower-limb robot driven by multifilament musclesRobomech J201631810.1186/s40648-016-0061-3
ZhouMGaoWYangZTianYHigh precise fuzzy control for piezoelectric direct drive electro-hydraulic servo valveJ Adv Mech Des Syst Manuf2012671154116710.1299/jamdsm.6.1154
Hong YP, Koo D, Park J, Kim S, Kim KS (2015) The Softgait: a simple and powerful weight-support device for walking and squatting. In: 2015 IEEE/RSJ international conference on intelligent robots and systems, pp 6338–6341
Ueda H, Akagi T, Dohta S (2010) Development of 2-position 3-port control valve with self-holding function. In: Proceedings of SICE annual conference 2010, pp 1239–1243
Hashimoto Y, Nagase J, Saga N, Satoh T (2016) Development and control of support function for upper limb support device. In: 2016 IEEE international conference on industrial technology, pp 1566–1571
LiXNoritsuguTTakaiwaVSasakiDDesign of wearable power assist wear for low back support using pneumatic actuatorsInt J Autom Technol20137222823610.20965/ijat.2013.p0228
SanadaKAkiyamaYPower-assist chair using pneumatic actuatorInt J Autom Technol20115450250710.20965/ijat.2011.p0502
HirookaDYamaguchiTFurushiroNSuzumoriKKandaTDevelopment of novel particle excitation flow control valve for stable flow characteristicsInt J Autom Technol201610454054810.20965/ijat.2016.p0540
Akagi T, Dohta S, Matsui Y, Tamaki H, Kato N (2016) Low-cost wearable rehabilitation devices using flexible pneumatic cylinder with built-in pneumatic driving system. In: 2016 IEEE international conference on advanced intelligent mechatronics (AIM), pp 89–93
Sente P, Vloebergh C, Labrique F, Alexandre P (2008) Control of a direct-drive servo-valve actuated by a linear amplified piezoelectric. In: Proceedings of the 2008 international conference on electrical machines, 1051, pp 1–6
YagiEHaradaDKobayashiMUpper-limb power-assist control for agriculture load liftingInt J Autom Technol20093671672210.20965/ijat.2009.p0716
Gang B, Tinghai C, Yao H, Xiangdong G, Han G (2011) A nozzle flapper electro-pneumatic proportional pressure valve driven by piezoelectric motor. In: Proceedings of 2011 international conference on fluid power and mechatronics, pp 191–195
Nomura K, Yonezawa T, Ogitsu T, Mizoguchi H, Takemura H (2015) Development of stewart platform type ankle-foot device for trip prevention support. In: 2015 37th annual international conference of the IEEE engineering in medicine and biology society, pp 4808–4811
ZhangDLvJJiangYChenHFuJA piezoelectric microvalve with a flexure-hinged driving frame and microfabricated silicon sealing pairMechatronics20142451151810.1016/j.mechatronics.2014.06.002
JienSHiraiSHondaKMiniaturization design of piezoelectric vibration-driven pneumatic unconstrained valvesJRM2010221919910.20965/jrm.2010.p0091
Loh CT, Tsukagoshi H (2014) Pneumatic big-hand gripper with slip-in tip aimed for the transfer support of the human body. In: 2014 IEEE international conference on robotics & automation, pp 475–481
Nasir A, Akagi T, Dohta S, Ono A (2015) Analysis of low-cost wearable servo valve using buckled tubes for optimal arrangement of tubes. In: 2015 IEEE international conference on advanced intelligent mechatronics, pp 831–835
HirookaDSuzumoriKKandaTFlow control valve for pneumatic actuators using particle excitation by PZT vibratorSens Actuators A2009155228528910.1016/j.sna.2009.07.005
93_CR3
S Kurumaya (93_CR10) 2016; 3
93_CR2
X Li (93_CR6) 2013; 7
MN Ribuan (93_CR7) 2016; 10
93_CR1
D Hirooka (93_CR31) 2011; 171
M Zhou (93_CR28) 2012; 6
D Zhang (93_CR25) 2014; 24
JH Park (93_CR19) 1999; 9
93_CR22
93_CR24
S Jien (93_CR14) 2010; 22
S Timoshenko (93_CR34) 1959
93_CR20
J Jeon (93_CR26) 2013; 986812
93_CR21
K Sanada (93_CR4) 2011; 5
S Karunanidhi (93_CR23) 2010; 157
SN Yun (93_CR16) 2008; 20
93_CR27
H Zeng (93_CR18) 2012; 31
D Hirooka (93_CR30) 2016; 10
D Hirooka (93_CR29) 2009; 155
93_CR11
D Hirooka (93_CR32) 2017; 137
93_CR12
B Li (93_CR13) 2013; 67
E Yagi (93_CR5) 2009; 3
K Kawashima (93_CR33) 2000; 122
93_CR9
93_CR8
93_CR15
93_CR17
References_xml – reference: Akagi T, Dohta S, Matsui Y, Tamaki H, Kato N (2016) Low-cost wearable rehabilitation devices using flexible pneumatic cylinder with built-in pneumatic driving system. In: 2016 IEEE international conference on advanced intelligent mechatronics (AIM), pp 89–93
– reference: HirookaDYamaguchiTFurushiroNSuzumoriKKandaTParticle-excitation flow control valve using piezo vibration-improvement for high flow rate and research on controllabilityIEEJ Trans Sens Micromach20171371323710.1541/ieejsmas.137.32
– reference: JienSHiraiSHondaKMiniaturization design of piezoelectric vibration-driven pneumatic unconstrained valvesJRM2010221919910.20965/jrm.2010.p0091
– reference: KarunanidhiSSingaperumalMDesign, analysis and simulation of magnetostrictive actuator and its application to high dynamic servo valveSens Actuators A201015718519710.1016/j.sna.2009.11.014
– reference: ParkJHYoshidaKYokotaSResonantly driven piezoelectric micropump fabrication of a micropump having high power densityMechatronics1999968770210.1016/S0957-4158(99)00028-8
– reference: HirookaDYamaguchiTFurushiroNSuzumoriKKandaTDevelopment of novel particle excitation flow control valve for stable flow characteristicsInt J Autom Technol201610454054810.20965/ijat.2016.p0540
– reference: TimoshenkoSKriegerSWTheory of plates and shells19592New YorkMcGraw-Hill0114.40801
– reference: Lingcong N, Xiaoxian Y, Qing L (2008) Modeling and simulation of ultrasonic motor driving jet-pipe servo valve system. In: 2008 Asia simulation conference-7th international conference on system simulation and scientific computing, pp 689–692
– reference: Sente P, Vloebergh C, Labrique F, Alexandre P (2008) Control of a direct-drive servo-valve actuated by a linear amplified piezoelectric. In: Proceedings of the 2008 international conference on electrical machines, 1051, pp 1–6
– reference: SanadaKAkiyamaYPower-assist chair using pneumatic actuatorInt J Autom Technol20115450250710.20965/ijat.2011.p0502
– reference: LiBGaoLYangGEvaluation and compensation of steady gas flow force on the high-pressure electro-pneumatic servo valve direct-driven by voice coil motorEnergy Convers Manag2013679210210.1016/j.enconman.2012.11.004
– reference: ZhangDLvJJiangYChenHFuJA piezoelectric microvalve with a flexure-hinged driving frame and microfabricated silicon sealing pairMechatronics20142451151810.1016/j.mechatronics.2014.06.002
– reference: Bang YB, Joo CS, Lee KL, Hur JW, Lim WK (2003) Development of a two-stage high, speed electrohydraulic servo valve system using stack-type piezoelectric-elements. In: Proceedings of the 2003 IEEE/ASME international conference on advanced intelligent mechatronics, pp 131–136
– reference: Nomura K, Yonezawa T, Ogitsu T, Mizoguchi H, Takemura H (2015) Development of stewart platform type ankle-foot device for trip prevention support. In: 2015 37th annual international conference of the IEEE engineering in medicine and biology society, pp 4808–4811
– reference: Lindler JE, Anderson EH (2002) Piezoelectric direct drive servovalve. In: Industrial and commercial applications of smart structures technologies 2002, 4698-53, pp 1–9
– reference: HirookaDSuzumoriKKandaTDesign and evaluation of orifice arrangement for particle-excitation flow control valveSens Actuators A2011171228329110.1016/j.sna.2011.07.009
– reference: KurumayaSSuzumoriKNabaeHWakimotoSMusculoskeletal lower-limb robot driven by multifilament musclesRobomech J201631810.1186/s40648-016-0061-3
– reference: KawashimaKKagawaTFujitaTInstantaneous flow rate measurement of ideal gasesJ Dyn Syst Meas Control200012217417810.1115/1.482439
– reference: Nasir A, Akagi T, Dohta S, Ono A (2015) Analysis of low-cost wearable servo valve using buckled tubes for optimal arrangement of tubes. In: 2015 IEEE international conference on advanced intelligent mechatronics, pp 831–835
– reference: YagiEHaradaDKobayashiMUpper-limb power-assist control for agriculture load liftingInt J Autom Technol20093671672210.20965/ijat.2009.p0716
– reference: Fritz KP, Mayer V, Steffens T, Kück H (2010) Switching valve with isolated impact actuator. In: 12th International conference on new actuators, pp 242–245
– reference: JeonJNguyenQHHanYMChoiSBDesign and evaluation of a direct drive valve actuated by piezostack actuatorAdv Mech Eng2013986812112
– reference: Ueda H, Akagi T, Dohta S (2010) Development of 2-position 3-port control valve with self-holding function. In: Proceedings of SICE annual conference 2010, pp 1239–1243
– reference: HirookaDSuzumoriKKandaTFlow control valve for pneumatic actuators using particle excitation by PZT vibratorSens Actuators A2009155228528910.1016/j.sna.2009.07.005
– reference: LiXNoritsuguTTakaiwaVSasakiDDesign of wearable power assist wear for low back support using pneumatic actuatorsInt J Autom Technol20137222823610.20965/ijat.2013.p0228
– reference: ZhouMGaoWYangZTianYHigh precise fuzzy control for piezoelectric direct drive electro-hydraulic servo valveJ Adv Mech Des Syst Manuf2012671154116710.1299/jamdsm.6.1154
– reference: ZengHYuanRBSunCZhangZStudy on performance of laminated piezoelectric pneumatic servo valveProc Eng2012311140114810.1016/j.proeng.2012.01.1154
– reference: Hong YP, Koo D, Park J, Kim S, Kim KS (2015) The Softgait: a simple and powerful weight-support device for walking and squatting. In: 2015 IEEE/RSJ international conference on intelligent robots and systems, pp 6338–6341
– reference: RibuanMNWakimotoSSuzumoriKKandaTOmnidirectional soft robot platform with flexible actuators for medical assistive deviceIJAT201610449750110.20965/ijat.2016.p0494
– reference: Loh CT, Tsukagoshi H (2014) Pneumatic big-hand gripper with slip-in tip aimed for the transfer support of the human body. In: 2014 IEEE international conference on robotics & automation, pp 475–481
– reference: Yun SN, Jeong HH, Kim DG, Jeong EA, Kim HH (2011) New strategy for design and fabricating of a grain sorting system using high-speed piezoelectric valves. In: Proceedings of the 8th JFPS international symposium on fluid power, OKINAWA 2011, 1D-1, pp 270–275
– reference: Gang B, Tinghai C, Yao H, Xiangdong G, Han G (2011) A nozzle flapper electro-pneumatic proportional pressure valve driven by piezoelectric motor. In: Proceedings of 2011 international conference on fluid power and mechatronics, pp 191–195
– reference: Hashimoto Y, Nagase J, Saga N, Satoh T (2016) Development and control of support function for upper limb support device. In: 2016 IEEE international conference on industrial technology, pp 1566–1571
– reference: YunSNHamYBParkJHSoHJLeeIYPneumatic valve with a pressure regulator for bimorph type PZT actuatorJ Electroceramics20082021522010.1007/s10832-007-9172-9
– ident: 93_CR3
  doi: 10.1109/EMBC.2015.7319469
– volume: 155
  start-page: 285
  issue: 2
  year: 2009
  ident: 93_CR29
  publication-title: Sens Actuators A
  doi: 10.1016/j.sna.2009.07.005
– ident: 93_CR24
– ident: 93_CR11
– volume: 9
  start-page: 687
  year: 1999
  ident: 93_CR19
  publication-title: Mechatronics
  doi: 10.1016/S0957-4158(99)00028-8
– volume: 24
  start-page: 511
  year: 2014
  ident: 93_CR25
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2014.06.002
– volume: 5
  start-page: 502
  issue: 4
  year: 2011
  ident: 93_CR4
  publication-title: Int J Autom Technol
  doi: 10.20965/ijat.2011.p0502
– ident: 93_CR1
  doi: 10.1109/IROS.2015.7354282
– volume: 20
  start-page: 215
  year: 2008
  ident: 93_CR16
  publication-title: J Electroceramics
  doi: 10.1007/s10832-007-9172-9
– volume: 122
  start-page: 174
  year: 2000
  ident: 93_CR33
  publication-title: J Dyn Syst Meas Control
  doi: 10.1115/1.482439
– volume-title: Theory of plates and shells
  year: 1959
  ident: 93_CR34
– ident: 93_CR2
  doi: 10.1109/ICIT.2016.7474994
– volume: 7
  start-page: 228
  issue: 2
  year: 2013
  ident: 93_CR6
  publication-title: Int J Autom Technol
  doi: 10.20965/ijat.2013.p0228
– volume: 157
  start-page: 185
  year: 2010
  ident: 93_CR23
  publication-title: Sens Actuators A
  doi: 10.1016/j.sna.2009.11.014
– volume: 6
  start-page: 1154
  issue: 7
  year: 2012
  ident: 93_CR28
  publication-title: J Adv Mech Des Syst Manuf
  doi: 10.1299/jamdsm.6.1154
– volume: 3
  start-page: 18
  year: 2016
  ident: 93_CR10
  publication-title: Robomech J
  doi: 10.1186/s40648-016-0061-3
– ident: 93_CR27
– volume: 3
  start-page: 716
  issue: 6
  year: 2009
  ident: 93_CR5
  publication-title: Int J Autom Technol
  doi: 10.20965/ijat.2009.p0716
– ident: 93_CR21
  doi: 10.1109/ASC-ICSC.2008.4675447
– ident: 93_CR8
  doi: 10.1109/AIM.2016.7576748
– ident: 93_CR12
  doi: 10.1109/AIM.2015.7222641
– volume: 171
  start-page: 283
  issue: 2
  year: 2011
  ident: 93_CR31
  publication-title: Sens Actuators A
  doi: 10.1016/j.sna.2011.07.009
– volume: 67
  start-page: 92
  year: 2013
  ident: 93_CR13
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2012.11.004
– volume: 22
  start-page: 91
  issue: 1
  year: 2010
  ident: 93_CR14
  publication-title: JRM
  doi: 10.20965/jrm.2010.p0091
– volume: 10
  start-page: 497
  issue: 4
  year: 2016
  ident: 93_CR7
  publication-title: IJAT
  doi: 10.20965/ijat.2016.p0494
– volume: 986812
  start-page: 1
  year: 2013
  ident: 93_CR26
  publication-title: Adv Mech Eng
– ident: 93_CR20
  doi: 10.1109/FPM.2011.6045755
– volume: 137
  start-page: 32
  issue: 1
  year: 2017
  ident: 93_CR32
  publication-title: IEEJ Trans Sens Micromach
  doi: 10.1541/ieejsmas.137.32
– ident: 93_CR15
– volume: 31
  start-page: 1140
  year: 2012
  ident: 93_CR18
  publication-title: Proc Eng
  doi: 10.1016/j.proeng.2012.01.1154
– ident: 93_CR17
– ident: 93_CR22
– ident: 93_CR9
– volume: 10
  start-page: 540
  issue: 4
  year: 2016
  ident: 93_CR30
  publication-title: Int J Autom Technol
  doi: 10.20965/ijat.2016.p0540
SSID ssj0001763419
Score 2.0205574
Snippet This paper reports an improvement of the particle-excitation flow control valve. The valve that we have designed in previous reports can control air flow,...
Abstract This paper reports an improvement of the particle-excitation flow control valve. The valve that we have designed in previous reports can control air...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Air flow
Artificial Intelligence
Computational Intelligence
Control and Systems Theory
Control valves
Electric potential
Engineering
Excitation
Flow control
Flow control valve
Mechatronics
Orifices
Piezoelectricity
Pneumatic actuator
Pneumatic valve
Proportional flow control valve
PZT
Research Article
Robotics and Automation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE-uLHDwpwaZNk-ao4iKCelEQPIQ8QVi3y-76-PlO2lRWQb14bROYTmY63ySTbxA6ZJUvuPSMaGpzwgDAEm25I6KwkkoXBPcxUby-4Zf37Oqhephr9RVrwjp64E5xJy7yuwcDXmgCBDtfF6HywghhK26lDvHvm8t8Lplqd1fAbRiV6RiT1vxkCpGLxbotQWIWT8ovgajl6_8CMr-di7bhZrCKVhJOxKedfGtowY_W0fIce-AGerwFd39O9yhxE3AziXU_HveFWPhphMfpC4l_t4mOG4NxvXoMaBWPY4-ESbcdiMOwecOpdH0T3Q8u7s4vSeqVQCyr8pJUEoCXr4P0NhKm15WrnQN4oDU1RnMhhK4502WpdbwQwkwh8yC0BFUy6gGkbKHFUTPy2wgLaZgrWZ273DEJCRbVlha6KCvuvTEuQ3mvONVLHvtZDFWbUNRcdbpWoGsVda3KDB19Thl3LBq_DT6Lq_E5MBJgtw_ALFRSmvrLLDK016-lSl45Ve3dSA42WGTouF_fudc_SbTzHxLtoqUiWl-shqF7aHE2efH7AGhm5qC13Q-3sPLQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFA4uFz2IK46OkoMnJdi0WZqjiiKCelEQPISsIOjMMOP2833ppOMoKnhtE0jf0nwv770vCO0xHkqhAiOGuoIwALDEOOGJLJ2iykcpQgoUL6_E-S27uON3mSw69cJM5-9pLQ5HsOGwVG4lSQq-STWL5jmtRJOXFSefxyngJ4yqnLf8ceaXnach6P-CKr8lQpv95WwZLWVgiI_GmlxBM6G3ihan6ALX0P01-PdTbpzE_Yj7w1ToE3BbeYUfeniQbYGEd5f5tzFY02vAAE_xIF2KMByf_-H42H_DuVZ9Hd2end6cnJN8OQJxjBcV4QqQVqijCi4xpNfc194DHjCGWmuElNLUgpmqMiZ1gDBbqiJKo4K0jAZAJRtortfvhU2EpbLMV6wufOGZgoiKGkdLU1ZchGCt76CiFZxuV54usHjUTQRRCz2WtQZZ6yRrXXXQ_mTKYEyb8dfg46SNycDEeN08AEPQWWjaJ57_aOFvbCOAnlCXkcO3SOm4cMrEDuq2utTZDUe6aYYUYHRlBx20-p16_duKtv41ehstlMnMUp0L7aK55-FL2AGo8mx3GyP9AEG24P4
  priority: 102
  providerName: Springer Nature
Title Optimization of orifice position in particle-excitation valve for proportional flow control
URI https://link.springer.com/article/10.1186/s40648-017-0093-3
https://www.proquest.com/docview/1956869192
https://doaj.org/article/d4788fbddebf431e82f5e7b77c56c9af
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LaxsxEB6S-NIeStMHdZMYHXJqEdmHVo9DKY6JGwx1S9tAoAehZyikXsdJHz-_o7U2j0Jy2YNWWlYzo9E3o9EMwD5rQsVVYNSUrqAMASw1jnsqKqdK5aPgIRmKH-f8-ITNTpvTDZj3d2FSWGWvEztF7VuXfOQH3b02juOr98sLmqpGpdPVvoSGyaUV_LsuxdgmDFAlS5T7weHR_POXG68LLidWqny8WUp-cIk7GkvxXIIm657WdzaoLo__HfD533lptw1Nn8KTjB_JeM3wbdgIi2fw-FZWwefw_ROqgZ_5fiVpI8FpRNQHpA_QIj8WZJlFhoa_LqfpJih0vwNBFEuWqXbCau0mJPG8_UNySPsLOJkefZsc01xDgTrWFDVtFAKyIKMKLiVSl42X3iNsMKa01nAhhJGcmbo2Jl0UYbZSRRRGBWFZGRC8vIStRbsIr4AIZZmvmSx84ZlCw6s0rqxMVTc8BGv9EIqecLr_81Tn4lx3hobkek1rjbTWida6HsKb6yHLdXaNhzofJm5cd0yJsbuGdnWmM9G0T-UAokWlbSNioyCr2OBchHANd8rEIez2vNR5tV7qG9kawtuev7de3_dHrx_-2A48qpJcpfiXche2rla_wh5CmCs7gk05_TCCwXg8-zobZSnF1knF0pNPRp1z4B-qbfRD
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxQxDI6qcgAOiKdYKJADXEBRZ5JMMjkgVB7Llj64tFIlDiHPCqnsLLuF0j_V31h7Hn0g0VuvM8koYzu249j-CHkpq8SVSZK5MhRMggPLXFCRaR5MaWLWKuFBcWtbTXbll71qb4mcDLUwmFY56MRWUccmYIx8ta1rUzCfv5v9YogahberA4RGJxYb6fgIjmyLt-sfgb-vOB9_2vkwYT2qAAuyKgSrDLgoqc4mBWwtXlexjhEMqXOl905prV2tpBPCOSydkJ6bImtnkvayTAabL4HKvyGFMAgVUY8_n8d0YLPK0vSXp2WtVhdgLyVmi2mGsQMmLpm_FiXgkmv7z21sa-TGd8md3jula5043SNLaXqf3L7Qs_AB-fYVlMzPvnqTNpkCkTJoGzqkf9EfUzrrBZKlv6FvAk5BpP8kCj4ynSEyw7wLQtJ80BzRPmH-Idm9Flo-IsvTZpoeE6qNl1HIuohFlAaOdaULJXdcVCol7-OIFAPh7LByRNE4sO0xpla2o7UFWluktRUj8vpsyqzr3XHV4PfIjbOB2Ha7fdDM921PNBsRbCB7MAk-g-eVap4r-BetQ6WCcXlEVgZe2l4XLOy55I7Im4G_F17_b0VPrv7YC3JzsrO1aTfXtzeeklscZQwzbcoVsnw4_52egbN06J-3EkrJ9-veEqeVoyQ9
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0KpaCcGhKi-xpYAPcAFZmziOHR8QAsrSUigcqFSJg_ETIZXNdrel8Gt8HTOJ0wcSvfWa2JEzM573g5DHoo5c6iiYLX3BBCiwzHoZmOJelzokJSMaih925daeeLdf7y-RP0MtDKZVDjyxY9Sh9egjH3d1bRL283HKaRGfNicvZocMJ0hhpHUYp9GTyE78fQLm2-L59ibg-gnnkzefX2-xPGGAeVEXFas1qCuxSTp6bDPe1KEJAYSqtaVzViqlbCOFrSprsYxCOK6LpKyOyokyamzEBOx_RVVKo-HXTN6e-Xfg4opS50Bq2cjxAmSnwMwxxdCPwKoLorCbGHBBzf0nMtsJvMkaWc2aKn3Zk9ZNshSnt8iNc_0Lb5MvH4Hh_MiVnLRNFICUgPPQIRWMfp_SWSZOFn_53BCcAnn_jBT0ZTrDKQ3z3iFJ00F7QnPy_B2ydyWwvEuWp-003iNUaSdCJZoiFEFoMPFK60tueVXLGJ0LI1IMgDPDyXGixoHpTJpGmh7WBmBtENamGpGnp1tmfR-Pyxa_QmycLsQW3N2Ddv7NZKCZgIMHkgPx4BJoYbHhqYZ_UcrX0mubRmRjwKXJfGFhzqh4RJ4N-D33-n8nWr_8Y4_INbgM5v327s59cp0jiWHSTblBlo_mx_EB6E1H7mFHoJR8veob8RdHLCh8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+orifice+position+in+particle-excitation+valve+for+proportional+flow+control&rft.jtitle=ROBOMECH+journal&rft.au=Hirooka%2C+Daisuke&rft.au=Yamaguchi%2C+Tomomi&rft.au=Furushiro%2C+Naomichi&rft.au=Suzumori%2C+Koichi&rft.date=2017-10-11&rft.issn=2197-4225&rft.eissn=2197-4225&rft.volume=4&rft.issue=1&rft_id=info:doi/10.1186%2Fs40648-017-0093-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s40648_017_0093_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2197-4225&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2197-4225&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2197-4225&client=summon