Differential Anthocyanin Concentrations and Expression of Anthocyanin Biosynthesis Genes in Strawberry ‘Sachinoka’ during Fruit Ripening under High-temperature Stress
We investigated anthocyanin concentration and the expression of anthocyanin biosynthesis related genes in strawberry ‘Sachinoka’ (Fragaria×ananassa Duch.) grown at control regime (20/15°C, 14/10 h, day/night) or high temperature regime (30/15°C, 14/10 h). In Experiment 1, fruits were harvested at di...
Saved in:
Published in | Environment control in biology Vol. 56; no. 1; pp. 1 - 6 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Fukuoka
Japanese Society of Agricultural, Biological and Environmental Engineers and Scientists
2018
Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
ISSN | 1880-554X 1883-0986 |
DOI | 10.2525/ecb.56.1 |
Cover
Abstract | We investigated anthocyanin concentration and the expression of anthocyanin biosynthesis related genes in strawberry ‘Sachinoka’ (Fragaria×ananassa Duch.) grown at control regime (20/15°C, 14/10 h, day/night) or high temperature regime (30/15°C, 14/10 h). In Experiment 1, fruits were harvested at different color stages. In the control treatment, the anthocyanin concentration increased as fruit ripened, and was highest at the fully ripe stage. In the high-temperature treatment, however, it was significantly lower at the fully ripe stage. These results were relevant with the peak value of expression of anthocyanin biosynthesis genes which was inhibited in fruits grow at high temperature regime. In Experiment 2, we applied high temperature at different fruit color stages to test the effect of the timing of high temperature stress on coloring. When exposed fruit to high temperature after half ripe stage, the anthocyanin concentration and gene expression in fully ripe fruit were not significantly different from the control. But in fruit exposed before half ripe stage, the anthocyanin concentration and gene expression significantly reduced. These results indicate that the level of gene expression of anthocyanin biosynthesis is affected by the timing of exposure fruit to high temperature stress. |
---|---|
AbstractList | We investigated anthocyanin concentration and the expression of anthocyanin biosynthesis related genes in strawberry ‘Sachinoka’ (Fragaria×ananassa Duch.) grown at control regime (20/15°C, 14/10 h, day/night) or high temperature regime (30/15°C, 14/10 h). In Experiment 1, fruits were harvested at different color stages. In the control treatment, the anthocyanin concentration increased as fruit ripened, and was highest at the fully ripe stage. In the high-temperature treatment, however, it was significantly lower at the fully ripe stage. These results were relevant with the peak value of expression of anthocyanin biosynthesis genes which was inhibited in fruits grow at high temperature regime. In Experiment 2, we applied high temperature at different fruit color stages to test the effect of the timing of high temperature stress on coloring. When exposed fruit to high temperature after half ripe stage, the anthocyanin concentration and gene expression in fully ripe fruit were not significantly different from the control. But in fruit exposed before half ripe stage, the anthocyanin concentration and gene expression significantly reduced. These results indicate that the level of gene expression of anthocyanin biosynthesis is affected by the timing of exposure fruit to high temperature stress. |
Author | OKUTSU, Keisuke IKEDA, Takashi MATSUSHITA, Kohei |
Author_xml | – sequence: 1 fullname: OKUTSU, Keisuke organization: School of Agriculture, Meiji University – sequence: 1 fullname: IKEDA, Takashi organization: School of Agriculture, Meiji University – sequence: 1 fullname: MATSUSHITA, Kohei organization: School of Agriculture, Meiji University |
BookMark | eNptkd1qVDEUhYNUsNaCjxDwxpszJmfycw5e1emfUBCsgnchk9mZSZ3uHJMcdO76GPYV-lh9EjMdLSjeJHsvvrU2yX5O9jAiEPKSs0krW_kG3Hwi1YQ_Ifu866YN6zu191CzRkrx5Rk5zDnMGRNKSM36fXJ3HLyHBFiCXdMjLKvoNhYD0llEV-VkS4iYqcUFPfkxJKgBEWn0f8HvQsyb2kMOmZ4BQqZVvazu73NIaUPvb35eWrcKGL_a-5tbuhhTwCU9TWMo9GMYALftiAtI9DwsV02B6wHq8DHBNqeOfUGeervOcPj7PiCfT08-zc6biw9n72dHF40TkvHG-lYqoVnHmdNCcDnVoHSvtOutrUXXM8-0A9G10ndatY55UF73tpWg52x6QF7tcocUv42Qi7mKY8I60rSMCyk6KVSlJjvKpZhzAm9cKA9_VR8d1oYzs12JqSsxUhleDa__MQwpXNu0-R_6dode5WKX8AjaVIJbwyO4O_6obmWTAZz-ApFKqZE |
CitedBy_id | crossref_primary_10_3390_molecules25173809 crossref_primary_10_21273_JASHS04727_19 crossref_primary_10_1016_j_jfca_2020_103733 crossref_primary_10_1016_j_pestbp_2023_105753 crossref_primary_10_1016_j_plgene_2021_100329 crossref_primary_10_2478_fhort_2023_0030 |
Cites_doi | 10.1016/j.abb.2007.04.040 10.1007/s10535-015-0548-4 10.1016/S0168-9452(02)00417-X 10.1111/j.1365-3040.2011.02316.x 10.1186/1471-2229-6-27 10.1111/nph.12017 10.1016/j.plantsci.2011.04.012 10.1046/j.1365-313X.2001.01154.x 10.1038/nprot.2008.73 10.1016/j.plantsci.2004.03.021 10.1007/s00425-012-1650-x 10.2525/ecb.49.209 10.2525/ecb.54.101 10.1093/jxb/erm055 10.5344/ajev.2006.57.1.54 10.1007/BF00019111 10.1007/s00425-007-0598-8 10.2525/ecb1963.42.21 10.1093/jxb/ert377 10.1016/0304-4238(90)90082-P 10.2503/jjshs1.78.387 10.1007/s00425-014-2228-6 10.1016/j.tplants.2013.06.003 |
ContentType | Journal Article |
Copyright | 2018 Japanese Society of Agricultural, Biological and Environmental Engineers and Scientists Copyright Japan Science and Technology Agency 2018 |
Copyright_xml | – notice: 2018 Japanese Society of Agricultural, Biological and Environmental Engineers and Scientists – notice: Copyright Japan Science and Technology Agency 2018 |
DBID | AAYXX CITATION 7QH 7QO 7ST 7UA 8FD C1K F1W FR3 H97 L.G P64 SOI |
DOI | 10.2525/ecb.56.1 |
DatabaseName | CrossRef Aqualine Biotechnology Research Abstracts Environment Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Biotechnology and BioEngineering Abstracts Environment Abstracts |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Biotechnology Research Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aqualine Environment Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Ecology Botany |
EISSN | 1883-0986 |
EndPage | 6 |
ExternalDocumentID | 10_2525_ecb_56_1 article_ecb_56_1_56_1_article_char_en |
GroupedDBID | 2WC 53G 5GY ACIWK ACPRK AFRAH ALMA_UNASSIGNED_HOLDINGS JSF JSH KQ8 OK1 RJT RZJ AAYXX CITATION 7QH 7QO 7ST 7UA 8FD C1K F1W FR3 H97 L.G P64 SOI |
ID | FETCH-LOGICAL-c4501-af256470810c7441537e67967c9aa679890f07ce4825f8762c0fe6f79a25e7b03 |
ISSN | 1880-554X |
IngestDate | Mon Jun 30 12:04:07 EDT 2025 Tue Jul 01 04:08:14 EDT 2025 Thu Apr 24 22:57:30 EDT 2025 Wed Sep 03 06:29:35 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4501-af256470810c7441537e67967c9aa679890f07ce4825f8762c0fe6f79a25e7b03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/ecb/56/1/56_1/_article/-char/en |
PQID | 2014548546 |
PQPubID | 2048454 |
PageCount | 6 |
ParticipantIDs | proquest_journals_2014548546 crossref_citationtrail_10_2525_ecb_56_1 crossref_primary_10_2525_ecb_56_1 jstage_primary_article_ecb_56_1_56_1_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018 2018-00-00 20180101 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – year: 2018 text: 2018 |
PublicationDecade | 2010 |
PublicationPlace | Fukuoka |
PublicationPlace_xml | – name: Fukuoka |
PublicationTitle | Environment control in biology |
PublicationTitleAlternate | Environ. Control Biol. |
PublicationYear | 2018 |
Publisher | Japanese Society of Agricultural, Biological and Environmental Engineers and Scientists Japan Science and Technology Agency |
Publisher_xml | – name: Japanese Society of Agricultural, Biological and Environmental Engineers and Scientists – name: Japan Science and Technology Agency |
References | Aharoni, A., De Vos, R. C. H., Wein, M., Sun, Z., Greco, R., Kroon, A., Mol, J. N. M., O’Connell, A. P. 2001. The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco. Plant J. 28: 319–332. Kadomura-Ishikawa, Y., Miyawaki, K., Takahashi, A., Masuda, T., Noji, S. 2015b. RNAi-mediated silencing and overexpression of the FaMYB1 gene and its effect on anthocyanin accumulation in strawberry fruit. Biol. Plantarum 59: 677–685. Dela, G., Or, E., Ovadia, R., Nissim-Levi, A., Weiss, D., Oren-Shamir, M. 2003. Changes in anthocyanin concentration and composition in ‘Jaguar’ rose flowers due to transient high air temperature conditions. Plant Sci. 164: 333–340. Matsushita, K., Sakayori, T., Ikeda, T. 2016. The effect of high air temperature on anthocyanin concentration and the expressions of its biosynthetic genes in strawberry ‘Sachinoka’. Environ. Control Biol. 54: 101–107. Jaakola, L. 2013. New insights into the regulation of anthocyanin biosynthesis in fruits. Trends. Plant Sci. 18: 477–483. Mori, K., Sugaya, S., Gemma, H. 2004. Regulatory mechanism of anthocyanin biosynthesis in ‘Kyoho’ grape berries grown under different temperature conditions. Environ. Control Biol. 42: 21–30. Medina-Puche, L., Cumplido-Laso, G., Amil-Ruiz, F., Hoffmann, T., Ring, L., Rodríguez-Franco, A., Caballero, J. L., Schwab, W., Muñoz-Blanco, J., Blanco-Portales, R. 2014. MYB10 plays a major role in the regulation of flavonoid/ phenylpropanoid metabolism during ripening of Fragaria× ananassa fruits. J. Exp. Bot. 65: 401–417. Yamane, T., Jeong, S. T., Goto-Yamamoto, N., Koshita, Y., Kobayashi, S. 2006. Effect of temperature on anthocyanin biosynthesis in grape berry skins. Am. J. Enol. Vitic. 57: 54–59. Schaart, J. G., Dubos, C., De La Fuente, I. R., Van Houwelingen, A. M. M. L., de Vos, R. C. H., Jonker, H. H., Xu, W., Routaboul, J. M., Lepiniec, L., Bovy, A. G. 2013. Identification and characterization of MYB-bHLH-WD40 regulatory complexes controlling proanthocyanidin biosynthesis in strawberry (Fragaria×ananassa) fruits. New. Phytol. 197: 454–467. Azuma, A., Yakushiji, H., Koshita, Y., Kobayashi, S. 2012. Flavonoid biosynthesis-related genes in grape skin are differentially regulated by temperature and light conditions. Planta 236: 1067–1080. Jeong, S. T., Goto-Yamamoto, N., Kobayashi, S., Esaka, M. 2004. Effects of plant hormones and shading on the accumulation anthocyanins and the expression of anthocyanin biosynthetic genes in grape berry skins. Plant Sci. 167: 247–252. Saure, M. C. 1990. External control of anthocyanin formation in apple. Sci. Hortic. 42: 181–218. Pombo, M. A., Martínez, G. A., Civello, P. M. 2011. Cloning of FaPAL6 gene from strawberry fruit and characterization of its expression and enzymatic activity in two cultivars with different anthocyanin accumulation. Plant Sci. 181: 111–118. Lin-Wang, K., Micheletti, D., Palmer, J., Volz, R., Lozano, L., Espley, R., Hellens, R. P., Chagne, D., Rowan, D. D., Troggio, M., Iglesias, I., Allan, A. C. 2011. High air temperature reduces apple fruit color via modulation of the anthocyanin regulatory complex. Plant Cell Environ. 34: 1176–1190. Castellarin, S. D., Matthews, M. A., Di Gaspero, G., Gambetta, G. A. 2007. Water deficits accelerate ripening and induce changes in gene expression regulating flavonoid biosynthesis in grape berries. Planta 227: 101–112. Ikeda, T., Matsushita, K., Oyaizu, Y., Okutsu, K. 2016. Different expressions of anthocyanin biosynthetic genes for strawberry ‘Sachinoka’ fruits under water and high temperature stresses. 8th International Strawberry Symposium 2016, Quebec City, Canada. Book of Abstracts: 144. Kobayashi, S. 2009. Regulation of anthocyanin biosynthesis in grapes. J. Jpn. Soc. Hortic. Sci. 78: 387–393. Reid, K. E., Olsson, N., Schlosser, J., Peng, F., Lund, S. T. 2006. An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development. BMC Plant Biol. 6: 27. Kadomura-Ishikawa, Y., Miyawaki, K., Takahashi, A., Masuda, T., Noji, S. 2015a. Light and abscisic acid independently regulated FaMYB10 in Fragaria×ananassa fruit. Planta 241: 953–965. Almeida, J. R. M., D’Amico, E., Preuss, A., Carbone, F., De Vos, R. C. H., Deiml, B., Mourgues, F., Perrotta, G., Fischer, T. C., Bovy, A. G., Martens, S., Rosati, C. 2007. Characterization of major enzymes and genes involved in flavonoid and proanthocyanidin biosynthesis during fruit development in strawberry (Fragaria×ananassa). Arch. Biochem. Biophys. 465: 61–71. Boss, P. K., Davies, C., Robinson, S. P. 1996. Expression of anthocyanin biosynthesis pathway genes in red and white grapes. Plant Mol. Biol. 32: 565–569. Mori, K., Goto-Yamamoto, N., Kitayama, M., Hashizume, K. 2007. Loss of anthocyanins in red-wine grape under high air temperature. J. Exp. Bot. 58: 1935–1945. Schmittgen, T. D., Livak, K. J. 2008. Analyzing real-time PCR data by the comparative CT method. Nature Protocols 3: 1101–1108. Ikeda, T., Suzuki, N., Nakayama, M., Kawakami, Y. 2011. The effects of high air temperature and water stress on fruit growth and anthocyanin concentration of pot-grown strawberry (Fragaria×ananassa Duch. cv. ‘Sachinoka’) plants. Environ. Control Biol. 49: 209–215. 11 22 12 23 13 24 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 10 21 |
References_xml | – reference: Castellarin, S. D., Matthews, M. A., Di Gaspero, G., Gambetta, G. A. 2007. Water deficits accelerate ripening and induce changes in gene expression regulating flavonoid biosynthesis in grape berries. Planta 227: 101–112. – reference: Kadomura-Ishikawa, Y., Miyawaki, K., Takahashi, A., Masuda, T., Noji, S. 2015b. RNAi-mediated silencing and overexpression of the FaMYB1 gene and its effect on anthocyanin accumulation in strawberry fruit. Biol. Plantarum 59: 677–685. – reference: Lin-Wang, K., Micheletti, D., Palmer, J., Volz, R., Lozano, L., Espley, R., Hellens, R. P., Chagne, D., Rowan, D. D., Troggio, M., Iglesias, I., Allan, A. C. 2011. High air temperature reduces apple fruit color via modulation of the anthocyanin regulatory complex. Plant Cell Environ. 34: 1176–1190. – reference: Dela, G., Or, E., Ovadia, R., Nissim-Levi, A., Weiss, D., Oren-Shamir, M. 2003. Changes in anthocyanin concentration and composition in ‘Jaguar’ rose flowers due to transient high air temperature conditions. Plant Sci. 164: 333–340. – reference: Schaart, J. G., Dubos, C., De La Fuente, I. R., Van Houwelingen, A. M. M. L., de Vos, R. C. H., Jonker, H. H., Xu, W., Routaboul, J. M., Lepiniec, L., Bovy, A. G. 2013. Identification and characterization of MYB-bHLH-WD40 regulatory complexes controlling proanthocyanidin biosynthesis in strawberry (Fragaria×ananassa) fruits. New. Phytol. 197: 454–467. – reference: Ikeda, T., Matsushita, K., Oyaizu, Y., Okutsu, K. 2016. Different expressions of anthocyanin biosynthetic genes for strawberry ‘Sachinoka’ fruits under water and high temperature stresses. 8th International Strawberry Symposium 2016, Quebec City, Canada. Book of Abstracts: 144. – reference: Yamane, T., Jeong, S. T., Goto-Yamamoto, N., Koshita, Y., Kobayashi, S. 2006. Effect of temperature on anthocyanin biosynthesis in grape berry skins. Am. J. Enol. Vitic. 57: 54–59. – reference: Medina-Puche, L., Cumplido-Laso, G., Amil-Ruiz, F., Hoffmann, T., Ring, L., Rodríguez-Franco, A., Caballero, J. L., Schwab, W., Muñoz-Blanco, J., Blanco-Portales, R. 2014. MYB10 plays a major role in the regulation of flavonoid/ phenylpropanoid metabolism during ripening of Fragaria× ananassa fruits. J. Exp. Bot. 65: 401–417. – reference: Kadomura-Ishikawa, Y., Miyawaki, K., Takahashi, A., Masuda, T., Noji, S. 2015a. Light and abscisic acid independently regulated FaMYB10 in Fragaria×ananassa fruit. Planta 241: 953–965. – reference: Reid, K. E., Olsson, N., Schlosser, J., Peng, F., Lund, S. T. 2006. An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development. BMC Plant Biol. 6: 27. – reference: Mori, K., Goto-Yamamoto, N., Kitayama, M., Hashizume, K. 2007. Loss of anthocyanins in red-wine grape under high air temperature. J. Exp. Bot. 58: 1935–1945. – reference: Pombo, M. A., Martínez, G. A., Civello, P. M. 2011. Cloning of FaPAL6 gene from strawberry fruit and characterization of its expression and enzymatic activity in two cultivars with different anthocyanin accumulation. Plant Sci. 181: 111–118. – reference: Almeida, J. R. M., D’Amico, E., Preuss, A., Carbone, F., De Vos, R. C. H., Deiml, B., Mourgues, F., Perrotta, G., Fischer, T. C., Bovy, A. G., Martens, S., Rosati, C. 2007. Characterization of major enzymes and genes involved in flavonoid and proanthocyanidin biosynthesis during fruit development in strawberry (Fragaria×ananassa). Arch. Biochem. Biophys. 465: 61–71. – reference: Jeong, S. T., Goto-Yamamoto, N., Kobayashi, S., Esaka, M. 2004. Effects of plant hormones and shading on the accumulation anthocyanins and the expression of anthocyanin biosynthetic genes in grape berry skins. Plant Sci. 167: 247–252. – reference: Saure, M. C. 1990. External control of anthocyanin formation in apple. Sci. Hortic. 42: 181–218. – reference: Boss, P. K., Davies, C., Robinson, S. P. 1996. Expression of anthocyanin biosynthesis pathway genes in red and white grapes. Plant Mol. Biol. 32: 565–569. – reference: Ikeda, T., Suzuki, N., Nakayama, M., Kawakami, Y. 2011. The effects of high air temperature and water stress on fruit growth and anthocyanin concentration of pot-grown strawberry (Fragaria×ananassa Duch. cv. ‘Sachinoka’) plants. Environ. Control Biol. 49: 209–215. – reference: Azuma, A., Yakushiji, H., Koshita, Y., Kobayashi, S. 2012. Flavonoid biosynthesis-related genes in grape skin are differentially regulated by temperature and light conditions. Planta 236: 1067–1080. – reference: Aharoni, A., De Vos, R. C. H., Wein, M., Sun, Z., Greco, R., Kroon, A., Mol, J. N. M., O’Connell, A. P. 2001. The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco. Plant J. 28: 319–332. – reference: Jaakola, L. 2013. New insights into the regulation of anthocyanin biosynthesis in fruits. Trends. Plant Sci. 18: 477–483. – reference: Matsushita, K., Sakayori, T., Ikeda, T. 2016. The effect of high air temperature on anthocyanin concentration and the expressions of its biosynthetic genes in strawberry ‘Sachinoka’. Environ. Control Biol. 54: 101–107. – reference: Schmittgen, T. D., Livak, K. J. 2008. Analyzing real-time PCR data by the comparative CT method. Nature Protocols 3: 1101–1108. – reference: Kobayashi, S. 2009. Regulation of anthocyanin biosynthesis in grapes. J. Jpn. Soc. Hortic. Sci. 78: 387–393. – reference: Mori, K., Sugaya, S., Gemma, H. 2004. Regulatory mechanism of anthocyanin biosynthesis in ‘Kyoho’ grape berries grown under different temperature conditions. Environ. Control Biol. 42: 21–30. – ident: 2 doi: 10.1016/j.abb.2007.04.040 – ident: 12 doi: 10.1007/s10535-015-0548-4 – ident: 6 doi: 10.1016/S0168-9452(02)00417-X – ident: 14 doi: 10.1111/j.1365-3040.2011.02316.x – ident: 20 doi: 10.1186/1471-2229-6-27 – ident: 22 doi: 10.1111/nph.12017 – ident: 19 doi: 10.1016/j.plantsci.2011.04.012 – ident: 1 doi: 10.1046/j.1365-313X.2001.01154.x – ident: 23 doi: 10.1038/nprot.2008.73 – ident: 10 doi: 10.1016/j.plantsci.2004.03.021 – ident: 3 doi: 10.1007/s00425-012-1650-x – ident: 7 doi: 10.2525/ecb.49.209 – ident: 15 doi: 10.2525/ecb.54.101 – ident: 18 doi: 10.1093/jxb/erm055 – ident: 24 doi: 10.5344/ajev.2006.57.1.54 – ident: 4 doi: 10.1007/BF00019111 – ident: 5 doi: 10.1007/s00425-007-0598-8 – ident: 17 doi: 10.2525/ecb1963.42.21 – ident: 16 doi: 10.1093/jxb/ert377 – ident: 21 doi: 10.1016/0304-4238(90)90082-P – ident: 8 – ident: 13 doi: 10.2503/jjshs1.78.387 – ident: 11 doi: 10.1007/s00425-014-2228-6 – ident: 9 doi: 10.1016/j.tplants.2013.06.003 |
SSID | ssib004645709 ssj0064869 ssib002484660 |
Score | 2.0888445 |
Snippet | We investigated anthocyanin concentration and the expression of anthocyanin biosynthesis related genes in strawberry ‘Sachinoka’ (Fragaria×ananassa Duch.)... |
SourceID | proquest crossref jstage |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Biosynthesis Color Coloring Colour Control Exposure Fragaria ananassa fruit coloring stage Fruits Gene expression Genes High temperature Ripening Stress concentration Temperature Temperature effects timing of stress |
Title | Differential Anthocyanin Concentrations and Expression of Anthocyanin Biosynthesis Genes in Strawberry ‘Sachinoka’ during Fruit Ripening under High-temperature Stress |
URI | https://www.jstage.jst.go.jp/article/ecb/56/1/56_1/_article/-char/en https://www.proquest.com/docview/2014548546 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Environmental Control in Biology, 2018, Vol.56(1), pp.1-6 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELaqZZG4IFhAFBZkJCQOq5QkdeLk2GW7KlQgQVuptyhxHShFzao_gnDax4BX4CV4l30SZvyTpqWHhYvVTp2k1Xwdz4y_GRPyPHLzNM7jwBGRhwEK6CKLw4nDfJ6F6SQUWYapgbfvwt6IvRkH40bjd421tF5lLfF9b13J_2gVZKBXrJL9B81WNwUBvAb9wggahvFaOj4zp5usMO2t2gCIMp3rOj7NutQ8N0yOd78ZyqvyD-uTT6fFsoT3EnuTYBtqRZHFtrVfM7lYlCeWEBENFPOymKVWEtsyx_PFero6-TC9kCrPgpVpC8UhcbD3lWncrLbADeHDbgZs6uwq1jw83LSGqjLA_dFwMNJlRNPlerbh63ZAPui9HnbUh8UnOa2w3u-eKekwneGBUfX0xpYtBtPigLcz1kuVlbUdNzbds40B153Jt4CqrbFXW9bDfeuFrw9_kiJrBWHL26yJlgews1RWBEYInfDaBK5MgjCB8PuGz7mHnNL--3o8B-5dLf7EbWTVL0-7CiGL1JmL1S_V3ZHxzi_td9rylw4_Q8jw8W-_QTlDwzvktoliaEdD8i5pyPkROTwtINIoj8jNrmqFXt4jv-oIpTXQ0W2EUkAo3SCUFvnW5DpCqUIoBekGofTq8keFzavLn1SjkipUUotKqlBJd1FJNSrvk9F5d_iq55jTQRzBAtdz0hy8dcbBpXUFx6xAm0tMinIRpynuLcZu7nIhWeQHOa75ws1lmPM49QPJM7f9gBzMi7l8SGg7ArXknLs56kuA-yIZk2Dc4tj30mDSJC-sDhJhWufjCS5fkl0cNMmzauaFbhezZw7TaqxmGANSzdCDlWL5JVi7Jjm2Sk-MDVomPrICWBSw8NE1nvyY3MK_mM4gHpOD1WItn4BPvcqeKtz-AbH01eY |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differential+Anthocyanin+Concentrations+and+Expression+of+Anthocyanin+Biosynthesis+Genes+in+Strawberry+%E2%80%98Sachinoka%E2%80%99+during+Fruit+Ripening+under+High-temperature+Stress&rft.jtitle=Environment+control+in+biology&rft.au=OKUTSU%2C+Keisuke&rft.au=MATSUSHITA%2C+Kohei&rft.au=IKEDA%2C+Takashi&rft.date=2018&rft.issn=1880-554X&rft.eissn=1883-0986&rft.volume=56&rft.issue=1&rft.spage=1&rft.epage=6&rft_id=info:doi/10.2525%2Fecb.56.1&rft.externalDBID=n%2Fa&rft.externalDocID=10_2525_ecb_56_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1880-554X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1880-554X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1880-554X&client=summon |