Magnetically Addressable Shape‐Memory and Stiffening in a Composite Elastomer

With a specific stimulus, shape‐memory materials can assume a temporary shape and subsequently recover their original shape, a functionality that renders them relevant for applications in fields such as biomedicine, aerospace, and wearable electronics. Shape‐memory in polymers and composites is usua...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 31; no. 29; pp. e1900561 - n/a
Main Authors Testa, Paolo, Style, Robert W., Cui, Jizhai, Donnelly, Claire, Borisova, Elena, Derlet, Peter M., Dufresne, Eric R., Heyderman, Laura J.
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.07.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With a specific stimulus, shape‐memory materials can assume a temporary shape and subsequently recover their original shape, a functionality that renders them relevant for applications in fields such as biomedicine, aerospace, and wearable electronics. Shape‐memory in polymers and composites is usually achieved by exploiting a thermal transition to program a temporary shape and subsequently recover the original shape. This may be problematic for heat‐sensitive environments, and when rapid and uniform heating is required. In this work, a soft magnetic shape‐memory composite is produced by encasing liquid droplets of magneto‐rheological fluid into a poly(dimethylsiloxane) matrix. Under the influence of a magnetic field, this material undergoes an exceptional stiffening transition, with an almost 30‐fold increase in shear modulus. Exploiting this transition, fast and fully reversible magnetic shape‐memory is demonstrated in three ways, by embossing, by simple shear, and by unconstrained 3D deformation. Using advanced synchrotron X‐ray tomography techniques, the internal structure of the material is revealed, which can be correlated with the composite stiffening and shape‐memory mechanism. This material concept, based on a simple emulsion process, can be extended to different fluids and elastomers, and can be manufactured with a wide range of methods. A soft magnetic shape‐memory composite is created by embedding droplets of magneto‐rheological fluid into a soft elastomeric matrix. When subjected to a magnetic field, the composite exhibits up to 30‐fold stiffening and displays an athermal, reversible magnetic shape‐memory, which is demonstrated with embossing, shear, and 3D deformation. Employing synchrotron X‐ray tomography, the internal structure of the material is revealed.
AbstractList With a specific stimulus, shape-memory materials can assume a temporary shape and subsequently recover their original shape, a functionality that renders them relevant for applications in fields such as biomedicine, aerospace, and wearable electronics. Shape-memory in polymers and composites is usually achieved by exploiting a thermal transition to program a temporary shape and subsequently recover the original shape. This may be problematic for heat-sensitive environments, and when rapid and uniform heating is required. In this work, a soft magnetic shape-memory composite is produced by encasing liquid droplets of magneto-rheological fluid into a poly(dimethylsiloxane) matrix. Under the influence of a magnetic field, this material undergoes an exceptional stiffening transition, with an almost 30-fold increase in shear modulus. Exploiting this transition, fast and fully reversible magnetic shape-memory is demonstrated in three ways, by embossing, by simple shear, and by unconstrained 3D deformation. Using advanced synchrotron X-ray tomography techniques, the internal structure of the material is revealed, which can be correlated with the composite stiffening and shape-memory mechanism. This material concept, based on a simple emulsion process, can be extended to different fluids and elastomers, and can be manufactured with a wide range of methods.
With a specific stimulus, shape‐memory materials can assume a temporary shape and subsequently recover their original shape, a functionality that renders them relevant for applications in fields such as biomedicine, aerospace, and wearable electronics. Shape‐memory in polymers and composites is usually achieved by exploiting a thermal transition to program a temporary shape and subsequently recover the original shape. This may be problematic for heat‐sensitive environments, and when rapid and uniform heating is required. In this work, a soft magnetic shape‐memory composite is produced by encasing liquid droplets of magneto‐rheological fluid into a poly(dimethylsiloxane) matrix. Under the influence of a magnetic field, this material undergoes an exceptional stiffening transition, with an almost 30‐fold increase in shear modulus. Exploiting this transition, fast and fully reversible magnetic shape‐memory is demonstrated in three ways, by embossing, by simple shear, and by unconstrained 3D deformation. Using advanced synchrotron X‐ray tomography techniques, the internal structure of the material is revealed, which can be correlated with the composite stiffening and shape‐memory mechanism. This material concept, based on a simple emulsion process, can be extended to different fluids and elastomers, and can be manufactured with a wide range of methods. A soft magnetic shape‐memory composite is created by embedding droplets of magneto‐rheological fluid into a soft elastomeric matrix. When subjected to a magnetic field, the composite exhibits up to 30‐fold stiffening and displays an athermal, reversible magnetic shape‐memory, which is demonstrated with embossing, shear, and 3D deformation. Employing synchrotron X‐ray tomography, the internal structure of the material is revealed.
Abstract With a specific stimulus, shape‐memory materials can assume a temporary shape and subsequently recover their original shape, a functionality that renders them relevant for applications in fields such as biomedicine, aerospace, and wearable electronics. Shape‐memory in polymers and composites is usually achieved by exploiting a thermal transition to program a temporary shape and subsequently recover the original shape. This may be problematic for heat‐sensitive environments, and when rapid and uniform heating is required. In this work, a soft magnetic shape‐memory composite is produced by encasing liquid droplets of magneto‐rheological fluid into a poly(dimethylsiloxane) matrix. Under the influence of a magnetic field, this material undergoes an exceptional stiffening transition, with an almost 30‐fold increase in shear modulus. Exploiting this transition, fast and fully reversible magnetic shape‐memory is demonstrated in three ways, by embossing, by simple shear, and by unconstrained 3D deformation. Using advanced synchrotron X‐ray tomography techniques, the internal structure of the material is revealed, which can be correlated with the composite stiffening and shape‐memory mechanism. This material concept, based on a simple emulsion process, can be extended to different fluids and elastomers, and can be manufactured with a wide range of methods.
Author Heyderman, Laura J.
Dufresne, Eric R.
Testa, Paolo
Donnelly, Claire
Style, Robert W.
Derlet, Peter M.
Borisova, Elena
Cui, Jizhai
Author_xml – sequence: 1
  givenname: Paolo
  orcidid: 0000-0002-3807-5396
  surname: Testa
  fullname: Testa, Paolo
  email: paolo.testa@mat.ethz.ch
  organization: Paul Scherrer Institute
– sequence: 2
  givenname: Robert W.
  surname: Style
  fullname: Style, Robert W.
  organization: ETH Zurich
– sequence: 3
  givenname: Jizhai
  surname: Cui
  fullname: Cui, Jizhai
  organization: Paul Scherrer Institute
– sequence: 4
  givenname: Claire
  surname: Donnelly
  fullname: Donnelly, Claire
  organization: Paul Scherrer Institute
– sequence: 5
  givenname: Elena
  orcidid: 0000-0002-1794-3596
  surname: Borisova
  fullname: Borisova, Elena
  organization: Paul Scherrer Institute
– sequence: 6
  givenname: Peter M.
  surname: Derlet
  fullname: Derlet, Peter M.
  organization: Paul Scherrer Institute
– sequence: 7
  givenname: Eric R.
  surname: Dufresne
  fullname: Dufresne, Eric R.
  email: eric.dufresne@mat.ethz.ch
  organization: ETH Zurich
– sequence: 8
  givenname: Laura J.
  orcidid: 0000-0003-3843-6611
  surname: Heyderman
  fullname: Heyderman, Laura J.
  email: laura.heyderman@psi.ch
  organization: Paul Scherrer Institute
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31161627$$D View this record in MEDLINE/PubMed
BookMark eNqFkLtOwzAUQC0EglJYGVEkFpaUazt24rEqT4mqA-yRE99AUGIXOxXqxifwjXwJRuUhsTBZujr3XOvsk23rLBJyRGFCAdiZNr2eMKAKQEi6RUZUMJpmoMQ2GYHiIlUyK_bIfghPAKAkyF2yxymVVLJ8RBZz_WBxaGvddetkaozHEHTVYXL3qJf4_vo2x975daKtSe6GtmnQtvYhaW2ik5nrly60AyYXnQ6D69EfkJ1GdwEPv94xub-8uJ9dp7eLq5vZ9DatMwE0lQZyw2rIoakKU2Wcc6OqPGMGlchZHBZQa52j0FwJpBxkpTg1TICqi4KPyelGu_TueYVhKPs21Nh12qJbhZIxLkDGFDKiJ3_QJ7fyNn4uUlJIpuLZSE02VO1dCB6bcunbXvt1SaH8LF1-li5_SseF4y_tqurR_ODfaSOgNsBL2-H6H105PZ9Pf-Ufax2LbA
CitedBy_id crossref_primary_10_1021_acsapm_2c01926
crossref_primary_10_1021_acs_chemrev_1c00481
crossref_primary_10_1016_j_cej_2024_151229
crossref_primary_10_1109_TMAG_2021_3082302
crossref_primary_10_1016_j_compositesb_2020_108348
crossref_primary_10_1016_j_matt_2022_12_003
crossref_primary_10_1016_j_eurpolymj_2022_111778
crossref_primary_10_3390_polym14183708
crossref_primary_10_3390_polym14061230
crossref_primary_10_1088_1361_665X_abe845
crossref_primary_10_1142_S1758825123500321
crossref_primary_10_1021_acsami_2c03589
crossref_primary_10_1002_adfm_202308954
crossref_primary_10_3389_fmats_2021_660325
crossref_primary_10_1007_s00161_022_01097_5
crossref_primary_10_1021_acs_chemmater_0c03860
crossref_primary_10_1039_D0SM00626B
crossref_primary_10_1088_1361_665X_acb187
crossref_primary_10_3390_polym13244422
crossref_primary_10_1088_1361_665X_ac13b4
crossref_primary_10_1038_s41467_023_44156_4
crossref_primary_10_1073_pnas_2026414118
crossref_primary_10_1007_s12274_023_5801_0
crossref_primary_10_1002_adfm_202100274
crossref_primary_10_1021_acs_iecr_2c02299
crossref_primary_10_3390_su142315816
crossref_primary_10_1002_adma_202109198
crossref_primary_10_1021_acsapm_3c00858
crossref_primary_10_1039_D3LP00109A
crossref_primary_10_1016_j_matdes_2020_109281
crossref_primary_10_1002_admt_202000147
crossref_primary_10_1016_j_compositesb_2020_108292
crossref_primary_10_1039_D0SM90113J
crossref_primary_10_1177_1045389X20916795
crossref_primary_10_1002_aisy_202000139
crossref_primary_10_3390_polym15092117
crossref_primary_10_1007_s12274_020_3079_z
crossref_primary_10_1016_j_molliq_2022_120015
crossref_primary_10_1039_D0MH02069A
crossref_primary_10_1021_acsami_3c03880
crossref_primary_10_1002_adem_202200650
crossref_primary_10_1021_acsami_0c01453
crossref_primary_10_1038_s41467_024_45964_y
crossref_primary_10_1002_smsc_202000003
crossref_primary_10_1088_1361_665X_ab9f47
crossref_primary_10_1002_adfm_202109850
crossref_primary_10_1007_s42114_023_00803_4
crossref_primary_10_1039_D3TC01563G
crossref_primary_10_1016_j_matdes_2021_110172
crossref_primary_10_1021_acsami_2c05471
crossref_primary_10_1016_j_apmt_2021_101306
crossref_primary_10_1021_acsami_0c03996
crossref_primary_10_1002_mame_202200336
crossref_primary_10_3390_magnetochemistry7090123
crossref_primary_10_1002_adma_202007952
crossref_primary_10_1109_TAP_2022_3161560
crossref_primary_10_1007_s11706_021_0538_8
crossref_primary_10_1039_D0MH00657B
crossref_primary_10_1080_19475411_2020_1727061
crossref_primary_10_1007_s10483_023_2952_6
crossref_primary_10_1002_adfm_202102621
crossref_primary_10_1002_aisy_202000108
crossref_primary_10_1088_1361_665X_ad3bf9
crossref_primary_10_1088_1361_665X_abbc77
crossref_primary_10_1002_adma_202104851
crossref_primary_10_1002_adfm_201903368
crossref_primary_10_1039_D0NR02023K
crossref_primary_10_1557_adv_2019_439
crossref_primary_10_1002_adfm_202005804
crossref_primary_10_1002_advs_202301033
crossref_primary_10_1002_adma_202107327
crossref_primary_10_1088_1361_665X_ace66b
crossref_primary_10_1007_s10965_023_03577_x
crossref_primary_10_1002_adma_202201914
crossref_primary_10_3390_nano10102060
crossref_primary_10_1002_adma_202000713
crossref_primary_10_1115_1_4046895
crossref_primary_10_1016_j_colsurfa_2023_132134
crossref_primary_10_1002_adma_202200182
crossref_primary_10_1088_1361_665X_abd58c
crossref_primary_10_1002_adma_202000827
crossref_primary_10_1002_adma_202001718
crossref_primary_10_1002_advs_202304096
crossref_primary_10_1021_acsami_0c15909
crossref_primary_10_1002_pc_27301
crossref_primary_10_1039_C9SM02452B
crossref_primary_10_1109_TMAG_2022_3152031
crossref_primary_10_3390_biom14010069
Cites_doi 10.1016/S1369-7021(10)70128-0
10.1016/j.progpolymsci.2015.04.002
10.1039/b615954k
10.1126/scirobotics.aal2845
10.1038/s41586-018-0185-0
10.1088/1748-6041/2/1/S04
10.1002/adma.201670148
10.1002/adma.201602580
10.1039/C5TA08513F
10.1016/B978-0-85709-698-2.00001-5
10.1088/0964-1726/22/5/055035
10.1021/ma0711792
10.5923/j.ajps.20120204.01
10.1007/12_2006_104
10.1088/0964-1726/23/12/123001
10.1007/s10439-007-9358-y
10.1038/nphys3181
10.1007/s00397-006-0155-6
10.1126/sciadv.aau6419
10.1002/1521-3773(20020617)41:12<2034::AID-ANIE2034>3.0.CO;2-M
10.1088/0964-1726/18/7/075003
10.1002/adma.201506243
10.1088/0305-4470/30/16/005
10.1002/adma.201706594
10.1038/nature08863
10.1002/adma.201803159
10.1002/mame.201300458
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201900561
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed

Materials Research Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 10_1002_adma_201900561
31161627
ADMA201900561
Genre article
Journal Article
GrantInformation_xml – fundername: ETH
  funderid: ETH‐48 17‐1
– fundername: Horizon 2020 Framework Programme
  funderid: 701647
– fundername: ETH
  grantid: ETH-48 17-1
– fundername: Horizon 2020 Framework Programme
  grantid: 701647
– fundername: European Union's Horizon 2020 research and innovation
  grantid: 701647
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAYOK
ABEML
ABTAH
ACBWZ
ACSCC
AFFNX
ASPBG
AVWKF
AZFZN
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
NPM
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c4501-6d07d2c070fb8db4333d9b742de9572fb880caa7e5a395e1306b931d2509c883
IEDL.DBID DR2
ISSN 0935-9648
IngestDate Sat Aug 17 02:57:22 EDT 2024
Thu Oct 10 17:55:53 EDT 2024
Thu Sep 26 15:57:10 EDT 2024
Wed Oct 16 00:48:47 EDT 2024
Sat Aug 24 01:11:35 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 29
Keywords magneto-rheology
soft matter, X-ray tomography
liquid inclusions
magneto-mechanical materials
Language English
License 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4501-6d07d2c070fb8db4333d9b742de9572fb880caa7e5a395e1306b931d2509c883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3807-5396
0000-0003-3843-6611
0000-0002-1794-3596
OpenAccessLink https://www.dora.lib4ri.ch/psi/islandora/object/psi%3A24123/datastream/PDF3/Testa-2019-Magnetically_addressable_shape%E2%80%90memory_and_stiffening-%28accepted_version%29.pdf
PMID 31161627
PQID 2265629742
PQPubID 2045203
PageCount 6
ParticipantIDs proquest_miscellaneous_2235065216
proquest_journals_2265629742
crossref_primary_10_1002_adma_201900561
pubmed_primary_31161627
wiley_primary_10_1002_adma_201900561_ADMA201900561
PublicationCentury 2000
PublicationDate 2019-07-01
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2007; 17
2015; 49–50
2007; 206
2017; 2
2010; 13
2015; 3
2013; 22
2010; 464
2015; 11
1953
2005
2007; 35
2014; 23
2014; 299
1999
2012; 2
2018; 4
2002; 41
1997; 30
2018; 558
2018; 30
2015
2007; 2
2007; 40
2016; 28
2007; 46
2009; 18
e_1_2_5_27_1
e_1_2_5_28_1
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_21_1
e_1_2_5_22_1
Kallio M. (e_1_2_5_24_1) 2005
e_1_2_5_29_1
e_1_2_5_20_1
Sokolowski W. M. (e_1_2_5_4_1) 1999
e_1_2_5_15_1
e_1_2_5_14_1
e_1_2_5_17_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_1_1
e_1_2_5_19_1
e_1_2_5_18_1
(e_1_2_5_30_1) 1953
References_xml – volume: 2
  start-page: 50
  year: 2012
  publication-title: Am. J. Polym. Sci.
– start-page: 179
  year: 1999
  end-page: 185
  publication-title: Proc. SPIE 3669, Smart Struct. Mater.
– volume: 206
  start-page: 137
  year: 2007
  publication-title: Adv. Polym. Sci.
– year: 2005
– volume: 28
  start-page: 10142
  year: 2016
  publication-title: Adv. Mater.
– volume: 2
  start-page: S23
  year: 2007
  publication-title: Biomed. Mater.
– volume: 11
  start-page: 82
  year: 2015
  publication-title: Nat. Phys.
– volume: 558
  start-page: 274
  year: 2018
  publication-title: Nature
– volume: 18
  start-page: 075003
  year: 2009
  publication-title: Smart Mater. Struct.
– volume: 49–50
  start-page: 3
  year: 2015
  publication-title: Prog. Polym. Sci.
– volume: 4
  start-page: eaau6419
  year: 2018
  publication-title: Sci. Adv.
– volume: 40
  start-page: 7400
  year: 2007
  publication-title: Macromolecules
– volume: 30
  start-page: 1706594
  year: 2018
  publication-title: Adv. Mater.
– volume: 41
  start-page: 2034
  year: 2002
  publication-title: Angew. Chem., Int. Ed.
– volume: 28
  start-page: 4166
  year: 2016
  publication-title: Adv. Mater.
– volume: 2
  start-page: eaal2845
  year: 2017
  publication-title: Sci. Rob.
– volume: 22
  start-page: 055035
  year: 2013
  publication-title: Smart Mater. Struct.
– volume: 28
  start-page: 3726
  year: 2016
  publication-title: Adv. Mater.
– volume: 299
  start-page: 1116
  year: 2014
  publication-title: Macromol. Mater. Eng.
– volume: 3
  start-page: 24532
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 464
  start-page: 267
  year: 2010
  publication-title: Nature
– volume: 46
  start-page: 665
  year: 2007
  publication-title: Rheol. Acta
– volume: 17
  start-page: 1543
  year: 2007
  publication-title: J. Mater. Chem.
– volume: 30
  start-page: L585
  year: 1997
  publication-title: J. Phys. A: Math. Gen.
– start-page: 3
  year: 2015
  end-page: 8
– year: 1953
– volume: 13
  start-page: 54
  year: 2010
  publication-title: Mater. Today
– volume: 23
  start-page: 123001
  year: 2014
  publication-title: Smart Mater. Struct.
– volume: 35
  start-page: 1870
  year: 2007
  publication-title: Ann. Biomed. Eng.
– volume: 30
  start-page: 1803159
  year: 2018
  publication-title: Adv. Mater.
– ident: e_1_2_5_2_1
  doi: 10.1016/S1369-7021(10)70128-0
– ident: e_1_2_5_7_1
  doi: 10.1016/j.progpolymsci.2015.04.002
– ident: e_1_2_5_11_1
  doi: 10.1039/b615954k
– ident: e_1_2_5_28_1
  doi: 10.1126/scirobotics.aal2845
– ident: e_1_2_5_29_1
  doi: 10.1038/s41586-018-0185-0
– ident: e_1_2_5_3_1
  doi: 10.1088/1748-6041/2/1/S04
– ident: e_1_2_5_5_1
  doi: 10.1002/adma.201670148
– ident: e_1_2_5_6_1
  doi: 10.1002/adma.201602580
– start-page: 179
  year: 1999
  ident: e_1_2_5_4_1
  publication-title: Proc. SPIE 3669, Smart Struct. Mater.
  contributor:
    fullname: Sokolowski W. M.
– ident: e_1_2_5_9_1
  doi: 10.1039/C5TA08513F
– ident: e_1_2_5_13_1
  doi: 10.1016/B978-0-85709-698-2.00001-5
– ident: e_1_2_5_23_1
  doi: 10.1088/0964-1726/22/5/055035
– ident: e_1_2_5_27_1
  doi: 10.1021/ma0711792
– ident: e_1_2_5_14_1
  doi: 10.5923/j.ajps.20120204.01
– ident: e_1_2_5_20_1
  doi: 10.1007/12_2006_104
– ident: e_1_2_5_21_1
  doi: 10.1088/0964-1726/23/12/123001
– ident: e_1_2_5_12_1
  doi: 10.1007/s10439-007-9358-y
– ident: e_1_2_5_16_1
  doi: 10.1038/nphys3181
– ident: e_1_2_5_15_1
  doi: 10.1007/s00397-006-0155-6
– volume-title: Doctoral Thesis
  year: 2005
  ident: e_1_2_5_24_1
  contributor:
    fullname: Kallio M.
– ident: e_1_2_5_19_1
  doi: 10.1126/sciadv.aau6419
– ident: e_1_2_5_1_1
  doi: 10.1002/1521-3773(20020617)41:12<2034::AID-ANIE2034>3.0.CO;2-M
– ident: e_1_2_5_10_1
  doi: 10.1088/0964-1726/18/7/075003
– ident: e_1_2_5_22_1
  doi: 10.1002/adma.201506243
– ident: e_1_2_5_26_1
  doi: 10.1088/0305-4470/30/16/005
– ident: e_1_2_5_17_1
  doi: 10.1002/adma.201706594
– ident: e_1_2_5_8_1
  doi: 10.1038/nature08863
– volume-title: Physical Properties of Glycerol and Its Solutions
  year: 1953
  ident: e_1_2_5_30_1
– ident: e_1_2_5_18_1
  doi: 10.1002/adma.201803159
– ident: e_1_2_5_25_1
  doi: 10.1002/mame.201300458
SSID ssj0009606
Score 2.6304386
Snippet With a specific stimulus, shape‐memory materials can assume a temporary shape and subsequently recover their original shape, a functionality that renders them...
With a specific stimulus, shape-memory materials can assume a temporary shape and subsequently recover their original shape, a functionality that renders them...
Abstract With a specific stimulus, shape‐memory materials can assume a temporary shape and subsequently recover their original shape, a functionality that...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e1900561
SubjectTerms Avionics
Deformation mechanisms
Elastomers
Embossing
liquid inclusions
magneto‐mechanical materials
magneto‐rheology
Polydimethylsiloxane
Polymer matrix composites
Rheological properties
Shape memory
Shear modulus
soft matter, X‐ray tomography
Stiffening
Title Magnetically Addressable Shape‐Memory and Stiffening in a Composite Elastomer
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201900561
https://www.ncbi.nlm.nih.gov/pubmed/31161627
https://www.proquest.com/docview/2265629742
https://search.proquest.com/docview/2235065216
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB0hTnBgX8ImIyFxSknsOImPFYsQUkFikbhF3gqIklYlPcCJT-Ab-RLGSZtSOCDBLdsojscz8-yM3wDsBdZoRlnsC4xOfmTbCZpUFPss0m3BbKq0Ltk-z-PTm-jslt9-2cVf8UPUC27OMkp_7QxcqueDMWmoNCVvEAY0B4LRCTs2PYeKLsf8UQ6el2R7jPsijtIRa2NADybFJ6PSD6g5iVzL0HMyD3LU6Crj5LExKFRDv37jc_zPVy3A3BCXkmY1kBZhyuZLMPuFrXAZLlryLq_2PHZeSNOYsnyK6lhydS979uPtveXSdl-IzA25KlzlFbfoQh5yIonzOy4_zJJjxOtF98n2V-D65Pj68NQf1mPwdcSD0I9NkBiq0Um0VWpUxBgzQuHc2ljBE4oX00BLmVgumeAWo2OsBAsNoiyh05StwnTeze06EK6s0qqNwkxEYZLKIEGnazR3VAXUpB7sj9SR9SrWjaziV6aZ66Gs7iEPtkbayobW95whpERYhzMl6sFufRvtxv0MkbntDtwzjCP8omHswVql5fpVLEQcHNPEA1rq6pc2ZM2jVrM-2_iL0CbMuOMqD3gLpov-wG4j2inUTjmiPwG_LPV8
link.rule.ids 315,786,790,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB2120PpoR9QSlpajFSJUyCx4yQ-rgpoW1gqla3UW-SvbRGQRTR7WE78hP5GfgkzySZ020MleowTK47Hb-bZGT8DvI-8s4KLNFQYncLEjzOEVJKGIrFjJXxurK3VPo_Swdfk0zfZZhPSXphGH6JbcCNk1P6aAE4L0jt3qqHa1cJBGNGIBT-ER4h5Sdjc_XKnIEUEvZbbEzJUaZK3uo0R31msvxiX_iKbi9y1Dj77z8C0zW5yTk63p5XZtld_KDr-13c9h6dzasr6zVh6AQ98uQxPfhMsXIHPQ_29bLY9ns1Y37n6BBVz5tnxD33hb65_DSlzd8Z06dhxRYev0LoLOymZZuR6KEXMsz2k7NXk3F--hNH-3ujDIJwfyRDaREZxmLooc9yinxib3JlECOGUwem180pmHAvzyGqdeamFkh4DZGqUiB0SLWXzXKxCr5yUfg2YNN5YM8bKQiVxlusoQ7_rrCS1Au7yALZaexQXjfBG0Ugs84J6qOh6KID11lzFHIA_C2SVyOxwssQD2OxuI3Tof4gu_WRKzwiJDIzHaQCvGjN3rxIxUuGUZwHw2lj_aEPR3x32u6vX96m0AY8Ho-Fhcfjx6OANLFF5kxa8Dr3qcurfIvmpzLt6eN8CLy_5nA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkSo48OgzUMCVkDilTfxKfFyxXZXHtlUfUm-RX4GKNrsq2UM58RP4jfwSxslu2m0PleAYJ6M4Hs_MN874M8C7xDvLKJOxwugUc19maFJcxozbUjGfG2sbts89uXvCP52K0xu7-Ft-iG7BLVhG46-DgY9duX1NGqpdwxuEAS2A4IfwiEtGQ_rVP7wmkAr4vGHbYyJWkucz2saEbs_Lz4elO1hzHro2sWfwDPSs123JyfetSW227M9bhI7_81nP4ekUmJJeO5NewANfLcGTG3SFy7A_1F-rdtPj-RXpOdecn2LOPTn6psf-z6_fw1C3e0V05chRHY5eCasu5KwimgTHEwrEPNlBwF6PLvzlChwPdo4_7MbTAxliy0WSxtIlmaMWvURpcmc4Y8wpg8m180pkFBvzxGqdeaGZEh7DozSKpQ5hlrJ5zlZhoRpVfh2IMN5YU6IwUzzNcp1k6HWdFYGrgLo8gvczdRTjlnajaAmWaRFGqOhGKIKNmbaKqfn9KBBTIq7DVIlGsNndRsMJf0N05UeT8AwTiL9oKiNYa7XcvYqlCIQlzSKgja7u6UPR6w973dXLfxF6C4sH_UHx5ePe51fwODS3NcEbsFBfTvxrRD61edNM7r9BGvhL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetically+Addressable+Shape%E2%80%90Memory+and+Stiffening+in+a+Composite+Elastomer&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Testa%2C+Paolo&rft.au=Style%2C+Robert+W.&rft.au=Cui%2C+Jizhai&rft.au=Donnelly%2C+Claire&rft.date=2019-07-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=31&rft.issue=29&rft_id=info:doi/10.1002%2Fadma.201900561&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_201900561
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon