A molecular rheostat: Kv2.1 currents maintain or suppress repetitive firing in motoneurons

Key points Kv2 currents maintain and regulate motoneuron (MN) repetitive firing properties. Kv2.1 channel clustering properties are dynamic and respond to both high and low activity conditions. The enzyme calcineurin regulates Kv2.1 ion channel declustering. In patholophysiological conditions of hig...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of physiology Vol. 597; no. 14; pp. 3769 - 3786
Main Authors Romer, Shannon H., Deardorff, Adam S., Fyffe, Robert E. W.
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.07.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Key points Kv2 currents maintain and regulate motoneuron (MN) repetitive firing properties. Kv2.1 channel clustering properties are dynamic and respond to both high and low activity conditions. The enzyme calcineurin regulates Kv2.1 ion channel declustering. In patholophysiological conditions of high activity, Kv2.1 channels homeostatically reduce MN repetitive firing. Modulation of Kv2.1 channel kinetics and clustering allows these channels to act in a variable way across a spectrum of MN activity states. Kv2.1 channels are widely expressed in the central nervous system, including in spinal motoneurons (MNs) where they aggregate as distinct membrane clusters associated with highly regulated signalling ensembles at specific postsynaptic sites. Multiple roles for Kv2 channels have been proposed but the physiological role of Kv2.1 ion channels in mammalian spinal MNs is unknown. To determine the contribution of Kv2.1 channels to rat α‐motoneuron activity, the Kv2 inhibitor stromatoxin was used to block Kv2 currents in whole‐cell current clamp electrophysiological recordings in rat lumbar MNs. The results indicate that Kv2 currents permit shorter interspike intervals and higher repetitive firing rates, possibly by relieving Na+ channel inactivation, and thus contribute to maintenance of repetitive firing properties. We also demonstrate that Kv2.1 clustering properties in motoneurons are dynamic and respond to both high and low activity conditions. Furthermore, we show that the enzyme calcineurin regulates Kv2.1 ion channel clustering status. Finally, in a high activity state, Kv2.1 channels homeostatically reduce motoneuron repetitive firing. These results suggest that the activity‐dependent regulation of Kv2.1 channel kinetics allows these channels to modulate repetitive firing properties across a spectrum of motoneuron activity states. Key points Kv2 currents maintain and regulate motoneuron (MN) repetitive firing properties. Kv2.1 channel clustering properties are dynamic and respond to both high and low activity conditions. The enzyme calcineurin regulates Kv2.1 ion channel declustering. In patholophysiological conditions of high activity, Kv2.1 channels homeostatically reduce MN repetitive firing. Modulation of Kv2.1 channel kinetics and clustering allows these channels to act in a variable way across a spectrum of MN activity states.
AbstractList Key points Kv2 currents maintain and regulate motoneuron (MN) repetitive firing properties. Kv2.1 channel clustering properties are dynamic and respond to both high and low activity conditions. The enzyme calcineurin regulates Kv2.1 ion channel declustering. In patholophysiological conditions of high activity, Kv2.1 channels homeostatically reduce MN repetitive firing. Modulation of Kv2.1 channel kinetics and clustering allows these channels to act in a variable way across a spectrum of MN activity states. Kv2.1 channels are widely expressed in the central nervous system, including in spinal motoneurons (MNs) where they aggregate as distinct membrane clusters associated with highly regulated signalling ensembles at specific postsynaptic sites. Multiple roles for Kv2 channels have been proposed but the physiological role of Kv2.1 ion channels in mammalian spinal MNs is unknown. To determine the contribution of Kv2.1 channels to rat α‐motoneuron activity, the Kv2 inhibitor stromatoxin was used to block Kv2 currents in whole‐cell current clamp electrophysiological recordings in rat lumbar MNs. The results indicate that Kv2 currents permit shorter interspike intervals and higher repetitive firing rates, possibly by relieving Na+ channel inactivation, and thus contribute to maintenance of repetitive firing properties. We also demonstrate that Kv2.1 clustering properties in motoneurons are dynamic and respond to both high and low activity conditions. Furthermore, we show that the enzyme calcineurin regulates Kv2.1 ion channel clustering status. Finally, in a high activity state, Kv2.1 channels homeostatically reduce motoneuron repetitive firing. These results suggest that the activity‐dependent regulation of Kv2.1 channel kinetics allows these channels to modulate repetitive firing properties across a spectrum of motoneuron activity states. Key points Kv2 currents maintain and regulate motoneuron (MN) repetitive firing properties. Kv2.1 channel clustering properties are dynamic and respond to both high and low activity conditions. The enzyme calcineurin regulates Kv2.1 ion channel declustering. In patholophysiological conditions of high activity, Kv2.1 channels homeostatically reduce MN repetitive firing. Modulation of Kv2.1 channel kinetics and clustering allows these channels to act in a variable way across a spectrum of MN activity states.
KEY POINTSKv2 currents maintain and regulate motoneuron (MN) repetitive firing properties. Kv2.1 channel clustering properties are dynamic and respond to both high and low activity conditions. The enzyme calcineurin regulates Kv2.1 ion channel declustering. In patholophysiological conditions of high activity, Kv2.1 channels homeostatically reduce MN repetitive firing. Modulation of Kv2.1 channel kinetics and clustering allows these channels to act in a variable way across a spectrum of MN activity states. ABSTRACTKv2.1 channels are widely expressed in the central nervous system, including in spinal motoneurons (MNs) where they aggregate as distinct membrane clusters associated with highly regulated signalling ensembles at specific postsynaptic sites. Multiple roles for Kv2 channels have been proposed but the physiological role of Kv2.1 ion channels in mammalian spinal MNs is unknown. To determine the contribution of Kv2.1 channels to rat α-motoneuron activity, the Kv2 inhibitor stromatoxin was used to block Kv2 currents in whole-cell current clamp electrophysiological recordings in rat lumbar MNs. The results indicate that Kv2 currents permit shorter interspike intervals and higher repetitive firing rates, possibly by relieving Na+ channel inactivation, and thus contribute to maintenance of repetitive firing properties. We also demonstrate that Kv2.1 clustering properties in motoneurons are dynamic and respond to both high and low activity conditions. Furthermore, we show that the enzyme calcineurin regulates Kv2.1 ion channel clustering status. Finally, in a high activity state, Kv2.1 channels homeostatically reduce motoneuron repetitive firing. These results suggest that the activity-dependent regulation of Kv2.1 channel kinetics allows these channels to modulate repetitive firing properties across a spectrum of motoneuron activity states.
Kv2 currents maintain and regulate motoneuron (MN) repetitive firing properties. Kv2.1 channel clustering properties are dynamic and respond to both high and low activity conditions. The enzyme calcineurin regulates Kv2.1 ion channel declustering. In patholophysiological conditions of high activity, Kv2.1 channels homeostatically reduce MN repetitive firing. Modulation of Kv2.1 channel kinetics and clustering allows these channels to act in a variable way across a spectrum of MN activity states. Kv2.1 channels are widely expressed in the central nervous system, including in spinal motoneurons (MNs) where they aggregate as distinct membrane clusters associated with highly regulated signalling ensembles at specific postsynaptic sites. Multiple roles for Kv2 channels have been proposed but the physiological role of Kv2.1 ion channels in mammalian spinal MNs is unknown. To determine the contribution of Kv2.1 channels to rat α-motoneuron activity, the Kv2 inhibitor stromatoxin was used to block Kv2 currents in whole-cell current clamp electrophysiological recordings in rat lumbar MNs. The results indicate that Kv2 currents permit shorter interspike intervals and higher repetitive firing rates, possibly by relieving Na channel inactivation, and thus contribute to maintenance of repetitive firing properties. We also demonstrate that Kv2.1 clustering properties in motoneurons are dynamic and respond to both high and low activity conditions. Furthermore, we show that the enzyme calcineurin regulates Kv2.1 ion channel clustering status. Finally, in a high activity state, Kv2.1 channels homeostatically reduce motoneuron repetitive firing. These results suggest that the activity-dependent regulation of Kv2.1 channel kinetics allows these channels to modulate repetitive firing properties across a spectrum of motoneuron activity states.
Kv2.1 channels are widely expressed in the central nervous system, including in spinal motoneurons (MNs) where they aggregate as distinct membrane clusters associated with highly regulated signalling ensembles at specific postsynaptic sites. Multiple roles for Kv2 channels have been proposed but the physiological role of Kv2.1 ion channels in mammalian spinal MNs is unknown. To determine the contribution of Kv2.1 channels to rat α‐motoneuron activity, the Kv2 inhibitor stromatoxin was used to block Kv2 currents in whole‐cell current clamp electrophysiological recordings in rat lumbar MNs. The results indicate that Kv2 currents permit shorter interspike intervals and higher repetitive firing rates, possibly by relieving Na+ channel inactivation, and thus contribute to maintenance of repetitive firing properties. We also demonstrate that Kv2.1 clustering properties in motoneurons are dynamic and respond to both high and low activity conditions. Furthermore, we show that the enzyme calcineurin regulates Kv2.1 ion channel clustering status. Finally, in a high activity state, Kv2.1 channels homeostatically reduce motoneuron repetitive firing. These results suggest that the activity‐dependent regulation of Kv2.1 channel kinetics allows these channels to modulate repetitive firing properties across a spectrum of motoneuron activity states.
Key points Kv2 currents maintain and regulate motoneuron (MN) repetitive firing properties. Kv2.1 channel clustering properties are dynamic and respond to both high and low activity conditions. The enzyme calcineurin regulates Kv2.1 ion channel declustering. In patholophysiological conditions of high activity, Kv2.1 channels homeostatically reduce MN repetitive firing. Modulation of Kv2.1 channel kinetics and clustering allows these channels to act in a variable way across a spectrum of MN activity states. Abstract Kv2.1 channels are widely expressed in the central nervous system, including in spinal motoneurons (MNs) where they aggregate as distinct membrane clusters associated with highly regulated signalling ensembles at specific postsynaptic sites. Multiple roles for Kv2 channels have been proposed but the physiological role of Kv2.1 ion channels in mammalian spinal MNs is unknown. To determine the contribution of Kv2.1 channels to rat α‐motoneuron activity, the Kv2 inhibitor stromatoxin was used to block Kv2 currents in whole‐cell current clamp electrophysiological recordings in rat lumbar MNs. The results indicate that Kv2 currents permit shorter interspike intervals and higher repetitive firing rates, possibly by relieving Na + channel inactivation, and thus contribute to maintenance of repetitive firing properties. We also demonstrate that Kv2.1 clustering properties in motoneurons are dynamic and respond to both high and low activity conditions. Furthermore, we show that the enzyme calcineurin regulates Kv2.1 ion channel clustering status. Finally, in a high activity state, Kv2.1 channels homeostatically reduce motoneuron repetitive firing. These results suggest that the activity‐dependent regulation of Kv2.1 channel kinetics allows these channels to modulate repetitive firing properties across a spectrum of motoneuron activity states. Key points Kv2 currents maintain and regulate motoneuron (MN) repetitive firing properties. Kv2.1 channel clustering properties are dynamic and respond to both high and low activity conditions. The enzyme calcineurin regulates Kv2.1 ion channel declustering. In patholophysiological conditions of high activity, Kv2.1 channels homeostatically reduce MN repetitive firing. Modulation of Kv2.1 channel kinetics and clustering allows these channels to act in a variable way across a spectrum of MN activity states.
Author Romer, Shannon H.
Deardorff, Adam S.
Fyffe, Robert E. W.
Author_xml – sequence: 1
  givenname: Shannon H.
  orcidid: 0000-0002-0211-6926
  surname: Romer
  fullname: Romer, Shannon H.
  email: shannon.romer.ctr@us.af.mil
  organization: Wright‐Patterson Air Force Base
– sequence: 2
  givenname: Adam S.
  surname: Deardorff
  fullname: Deardorff, Adam S.
  organization: Wright State University
– sequence: 3
  givenname: Robert E. W.
  surname: Fyffe
  fullname: Fyffe, Robert E. W.
  organization: Wright State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31145471$$D View this record in MEDLINE/PubMed
BookMark eNp1kEtLxDAURoMoOj7AXyABN2465iadPNzJ4HvAWejGTcmkt1ppm5q0iv_eiI-F4OJyN4fDx9km653vkJB9YFMAEMfXS66UFmKNTCCXJlPKiHUyYYzzTKgZbJHtGJ8ZA8GM2SRbAiCf5Qom5OGUtr5BNzY20PCEPg52OKE3r3wK1I0hYDdE2tq6G9JRH2gc-z5gjDRgj0M91K9IqzrU3SNNQOuHNG0Mvou7ZKOyTcS9779D7s_P7uaX2eL24mp-ushcPmOQgeGG5aaUKB2grUpkvFQl5k5pWTqppJG5QkRdaYdOr4wV0q6qyiphLFNihxx9efvgX0aMQ9HW0WHT2A79GAvOBc8141om9PAP-uzH0KV1iZqlUFqnnL9CF3yMAauiD3Vrw3sBrPjsXfz0TujBt3BctVj-gj-BEzD9At7qBt__FRV310sQUoL4AL_2ii0
CitedBy_id crossref_primary_10_3389_fnins_2019_01051
crossref_primary_10_1113_JP278675
crossref_primary_10_1016_j_ceca_2022_102650
crossref_primary_10_1016_j_neuron_2022_04_020
crossref_primary_10_1111_joa_13439
crossref_primary_10_3390_ijms24032908
crossref_primary_10_1016_j_nbd_2021_105382
crossref_primary_10_7554_eLife_49953
crossref_primary_10_1038_s41598_021_87646_5
crossref_primary_10_7554_eLife_54170
crossref_primary_10_1016_j_neuroscience_2022_01_015
crossref_primary_10_1085_jgp_202112981
crossref_primary_10_1093_braincomms_fcae202
crossref_primary_10_1016_j_bpj_2022_03_020
crossref_primary_10_1016_j_mcn_2023_103840
crossref_primary_10_1007_s00424_021_02559_6
crossref_primary_10_1016_j_neuroscience_2020_07_047
Cites_doi 10.1523/JNEUROSCI.15-01-00458.1995
10.1152/jn.1999.81.1.140
10.1523/JNEUROSCI.3370-05.2005
10.1152/jn.00358.2014
10.1038/nn0704-691
10.1186/1471-2202-9-112
10.1111/epi.13250
10.1113/jphysiol.2001.013371
10.1111/j.1749-6632.1999.tb11293.x
10.1016/S0306-4522(01)00476-6
10.1113/jphysiol.2007.128454
10.1111/j.1469-7793.2000.t01-2-00445.x
10.1085/jgp.201511444
10.1152/physiol.00013.2011
10.1152/jn.1993.69.6.2150
10.1073/pnas.88.23.10764
10.3389/fnmol.2018.00001
10.1523/JNEUROSCI.22-23-10094.2002
10.1002/ana.24251
10.1016/j.neuron.2011.05.037
10.1113/jphysiol.2013.257253
10.1002/cne.10648
10.1002/cne.23551
10.1038/nn1260
10.1113/jphysiol.2010.196618
10.1038/nn.4561
10.1001/jamaneurol.2017.1714
10.1523/JNEUROSCI.4620-05.2006
10.1523/JNEUROSCI.1825-06.2006
10.1152/jn.1999.81.1.72
10.1073/pnas.0611134104
10.1523/JNEUROSCI.16-04-01412.1996
10.1124/mol.62.1.48
10.1113/jphysiol.1990.sp018009
10.1523/JNEUROSCI.0893-18.2018
10.1152/jn.90422.2008
10.1126/science.1124254
10.1038/jhg.2016.154
10.1113/jphysiol.2003.056192
10.1038/380258a0
10.1073/pnas.96.19.10899
10.3389/fncir.2014.00106
10.1523/JNEUROSCI.15-05-04077.1995
10.1083/jcb.135.6.1619
10.1523/JNEUROSCI.21-05-01473.2001
10.1113/jphysiol.2008.153734
10.1523/JNEUROSCI.3008-12.2013
10.1016/S0306-4522(01)00167-1
10.1113/jphysiol.2012.240879
10.1152/jn.1977.40.6.1432
10.1124/mol.52.5.821
10.1002/ana.24263
10.1113/jphysiol.2010.191973
10.1016/S0070-2137(01)80011-X
10.1523/JNEUROSCI.3970-06.2006
10.1146/annurev.physiol.66.032102.113328
10.1016/S0306-4522(97)00519-8
10.1002/cne.20089
10.1113/jphysiol.1993.sp019715
10.1016/j.brainres.2013.12.012
10.14814/phy2.13039
10.1523/JNEUROSCI.1925-13.2014
10.1016/0301-0082(95)00032-1
10.1152/physrev.2000.80.4.1483
10.1111/j.1469-7793.2000.t01-2-00019.xm
10.1038/srep15199
10.1085/jgp.201110604
10.1073/pnas.0610159104
10.1073/pnas.1003028107
10.1016/0166-2236(94)90157-0
10.1074/jbc.273.22.13367
10.1177/1073858409341085
10.4161/chan.3.1.7655
10.1152/jn.1991.65.6.1509
ContentType Journal Article
Copyright 2019 The Authors. The Journal of Physiology © 2019 The Physiological Society
2019 The Authors. The Journal of Physiology © 2019 The Physiological Society.
Journal compilation © 2019 The Physiological Society
Copyright_xml – notice: 2019 The Authors. The Journal of Physiology © 2019 The Physiological Society
– notice: 2019 The Authors. The Journal of Physiology © 2019 The Physiological Society.
– notice: Journal compilation © 2019 The Physiological Society
DBID NPM
AAYXX
CITATION
7QP
7QR
7TK
7TS
8FD
FR3
P64
7X8
DOI 10.1113/JP277833
DatabaseName PubMed
CrossRef
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Physical Education Index
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Technology Research Database
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Physical Education Index
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Technology Research Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1469-7793
EndPage 3786
ExternalDocumentID 10_1113_JP277833
31145471
TJP13661
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institute of Neurological Disorders and Stroke
  funderid: P01‐NS‐057228
– fundername: NINDS NIH HHS
  grantid: P01 NS057228
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
123
18M
1OC
24P
29L
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAFWJ
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABITZ
ABIVO
ABJNI
ABOCM
ABPPZ
ABPVW
ABQWH
ABXGK
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AI.
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
ATUGU
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
E3Z
EBS
EJD
EMOBN
EX3
F00
F01
F04
F5P
FIJ
FUBAC
G-S
G.N
GODZA
GX1
H.X
HGLYW
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RPM
RX1
SUPJJ
TEORI
TLM
TN5
TR2
UB1
UPT
V8K
VH1
W8F
W8V
W99
WBKPD
WH7
WIH
WIJ
WIK
WIN
WNSPC
WOHZO
WOQ
WOW
WQJ
WRC
WXI
WXSBR
WYISQ
XG1
YBU
YHG
YKV
YQT
YSK
YZZ
ZZTAW
~IA
~WT
.55
.GJ
.Y3
0YM
1OB
31~
3EH
3O-
AAYJJ
AFFNX
C1A
CAG
CHEAL
COF
FA8
H13
HF~
H~9
IPNFZ
LW6
MVM
NEJ
NPM
OHT
SAMSI
UKR
WHG
X7M
XOL
YXB
YYP
ZGI
ZXP
AAYXX
CITATION
7QP
7QR
7TK
7TS
8FD
FR3
P64
7X8
ID FETCH-LOGICAL-c4501-1929049d6e6c1eafde02d7de4c786dc6769647eee8f8cec8b9a36abffa739a073
IEDL.DBID DR2
ISSN 0022-3751
IngestDate Fri Aug 16 10:51:13 EDT 2024
Fri Sep 13 01:30:16 EDT 2024
Fri Aug 23 03:28:45 EDT 2024
Sat Sep 28 08:28:42 EDT 2024
Sat Aug 24 01:11:33 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords motoneurons
homeostatic
repetitive firing
Kv2.1
C-boutons
Language English
License 2019 The Authors. The Journal of Physiology © 2019 The Physiological Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4501-1929049d6e6c1eafde02d7de4c786dc6769647eee8f8cec8b9a36abffa739a073
Notes Edited by: Ian Forsythe & Ruth Murrell‐Lagnado
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0211-6926
OpenAccessLink https://physoc.onlinelibrary.wiley.com/doi/pdfdirect/10.1113/JP277833
PMID 31145471
PQID 2257518811
PQPubID 1086388
PageCount 18
ParticipantIDs proquest_miscellaneous_2232480286
proquest_journals_2257518811
crossref_primary_10_1113_JP277833
pubmed_primary_31145471
wiley_primary_10_1113_JP277833_TJP13661
PublicationCentury 2000
PublicationDate 2019-07-01
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle The Journal of physiology
PublicationTitleAlternate J Physiol
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2007; 104
2004; 66
1993; 69
2010; 16
1990; 423
2010; 107
2015; 146
2010; 588
2004; 7
2007; 581
2008; 9
1996; 380
2008; 586
2001; 108
2008; 100
1998; 84
1999; 81
2001; 105
1998; 273
2005; 25
2014; 1547
2017; 74
2001
2000; 522
1997; 52
1991; 88
2011; 71
2000; 526
2002; 541
2006; 26
2013; 591
1999; 96
2011; 26
2014; 8
1996; 135
2018; 38
2014; 522
2017; 62
2011; 137
2017; 20
2015; 5
1995; 15
1977; 40
1993; 466
2006; 313
1996; 16
2016; 57
2014; 112
2001; 21
1999; 868
2016; 4
2004; 474
2004; 554
2000; 36
2013; 33
1991; 65
2002; 62
1995; 47
2002; 22
2000; 80
1994; 17
2009; 3
2018; 11
2014; 34
2014; 76
2003; 460
e_1_2_5_27_1
e_1_2_5_25_1
e_1_2_5_48_1
e_1_2_5_23_1
e_1_2_5_46_1
e_1_2_5_21_1
e_1_2_5_44_1
e_1_2_5_65_1
e_1_2_5_67_1
e_1_2_5_69_1
e_1_2_5_29_1
e_1_2_5_61_1
e_1_2_5_63_1
e_1_2_5_42_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_59_1
e_1_2_5_9_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_57_1
e_1_2_5_7_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_55_1
e_1_2_5_5_1
e_1_2_5_76_1
e_1_2_5_3_1
e_1_2_5_19_1
e_1_2_5_70_1
e_1_2_5_72_1
e_1_2_5_74_1
e_1_2_5_30_1
e_1_2_5_53_1
e_1_2_5_51_1
e_1_2_5_28_1
e_1_2_5_49_1
e_1_2_5_26_1
e_1_2_5_47_1
e_1_2_5_24_1
e_1_2_5_45_1
e_1_2_5_22_1
e_1_2_5_43_1
e_1_2_5_66_1
e_1_2_5_68_1
e_1_2_5_60_1
e_1_2_5_62_1
e_1_2_5_64_1
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_58_1
e_1_2_5_8_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_56_1
e_1_2_5_6_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_54_1
e_1_2_5_4_1
e_1_2_5_2_1
e_1_2_5_18_1
e_1_2_5_71_1
e_1_2_5_73_1
e_1_2_5_75_1
e_1_2_5_31_1
e_1_2_5_52_1
e_1_2_5_50_1
References_xml – volume: 137
  start-page: 441
  year: 2011
  end-page: 454
  article-title: SUMO modification of cell surface Kv2.1 potassium channels regulates the activity if rat hippocampal neurons
  publication-title: J Gen Physiol
– volume: 26
  start-page: 393
  year: 2011
  end-page: 411
  article-title: Neuromodulation of vertebrate locomotor control networks
  publication-title: Physiology (Bethesda)
– volume: 96
  start-page: 10899
  year: 1999
  end-page: 10904
  article-title: Assignment of muscarinic receptor subtypes mediating G‐protein modulation of Ca channels by using knockout mice
  publication-title: Proc Natl Acad Sci U S A
– volume: 33
  start-page: 1259
  year: 2013
  end-page: 1270
  article-title: Regulation of Kv2.1 K conductance by cell surface channel density
  publication-title: J Neurosci
– volume: 66
  start-page: 477
  year: 2004
  end-page: 519
  article-title: Localization of voltage‐gated ion channels in mammalian brain
  publication-title: Ann Rev Physiol
– volume: 460
  start-page: 476
  year: 2003
  end-page: 486
  article-title: Large cholinergic nerve terminals on subsets of motoneurons and their relation to muscarinic receptor type 2
  publication-title: J Comp Neurol
– volume: 105
  start-page: 121
  year: 2001
  end-page: 130
  article-title: Action potential threshold of hippocampal pyramidal cells in vivo is increased by recent spiking activity
  publication-title: Neuroscience
– volume: 40
  start-page: 1432
  year: 1977
  end-page: 1443
  article-title: Isometric force production by motor units of extensor digitorum communis muscle in man
  publication-title: J Neurophysiol
– year: 2001
– volume: 16
  start-page: 1412
  year: 1996
  end-page: 1421
  article-title: Xenopus spinal neurons express Kv2 potassium channel transcripts during embryonic development
  publication-title: J Neurosci
– volume: 62
  start-page: 48
  year: 2002
  end-page: 57
  article-title: Novel tarantula toxins for subtypes of voltage‐dependent potassium channels in the Kv2 and Kv4 subfamilies
  publication-title: Mol Pharmacol
– volume: 81
  start-page: 72
  year: 1999
  end-page: 84
  article-title: Muscarine modulates Ca channel currents in rat sensorimotor pyramidal cells via two distinct pathways
  publication-title: J Neurophysiol
– volume: 526
  start-page: 445
  year: 2000
  end-page: 456
  article-title: Comparison of contractile properties of single motor units in human intrinsic and extrinsic finger muscles
  publication-title: J Physiol
– volume: 581
  start-page: 941
  year: 2007
  end-page: 960
  article-title: Kv2 subunits underlie slowly inactivating potas‐ sium current in rat neocortical pyramidal neurons
  publication-title: J Physiol
– volume: 146
  start-page: 399
  year: 2015
  end-page: 410
  article-title: A novel epileptic encephalopathy mutation in KCNB1 disrupts Kv2.1 ion selectivity, expression, and localization
  publication-title: J Gen Physiol
– volume: 47
  start-page: 513
  year: 1995
  end-page: 531
  article-title: Potassium currents in motoneurones
  publication-title: Prog Neurobiol
– volume: 36
  start-page: 237
  year: 2000
  end-page: 295
  article-title: Calcineurin: from structure to function
  publication-title: Curr Top Cell Regul
– volume: 25
  start-page: 11184
  year: 2005
  end-page: 11193
  article-title: Calcium‐ and metabolic state‐dependent modulation of the voltage‐dependent Kv2.1 channel regulates neuronal excitability in response to ischemia
  publication-title: J Neurosci
– volume: 7
  start-page: 711
  year: 2004
  end-page: 718
  article-title: Regulation of ion channel localization and phosphorylation by neuronal activity
  publication-title: Nat Neurosci
– volume: 588
  start-page: 3187
  year: 2010
  end-page: 3200
  article-title: Going native: voltage‐gated potassium channels controlling neuronal excitability
  publication-title: J Physiol
– volume: 81
  start-page: 140
  year: 1999
  end-page: 148
  article-title: Voltage‐activated K currents of hypoglossal motoneurons in a brain stem slice preparation from the neonatal rat
  publication-title: J Neurophysiol
– volume: 17
  start-page: 531
  year: 1994
  end-page: 536
  article-title: Modulation of ion‐channel function by G‐protein‐coupled receptors
  publication-title: Trends Neurosci
– volume: 466
  start-page: 173
  year: 1993
  end-page: 189
  article-title: M2 muscarinic receptor‐mediated inhibition of the Ca current in rat magnocellular cholinergic basal forebrain neurones
  publication-title: J Physiol
– volume: 15
  start-page: 4077
  year: 1995
  end-page: 4092
  article-title: Expression of m1‐m4 muscarinic acetylcholine receptor proteins in rat hippocampus and regulation by cholinergic innervation
  publication-title: J Neurosci
– volume: 26
  start-page: 9609
  year: 2006
  end-page: 9618
  article-title: Kv2.1 potassium channels are retained within dynamic cell surface microdomains that are defined by a perimeter fence
  publication-title: J Neurosci
– volume: 62
  start-page: 569
  year: 2017
  end-page: 573
  article-title: Novel KCNB1 mutation associated with non‐syndromic intellectual disability
  publication-title: J Hum Genet
– volume: 69
  start-page: 2150
  year: 1993
  end-page: 2163
  article-title: Multiple potassium conductances and their role in action potential repolarization and repetitive firing behavior of neonatal rat hypoglossal motoneurons
  publication-title: J Neurophysiology
– volume: 84
  start-page: 37
  year: 1998
  end-page: 48
  article-title: The K channel, Kv2.1, is apposed to astrocytic processes and is associated with inhibitory postsynaptic membranes in hippocampal and cortical principal neurons and inhibitory interneurons
  publication-title: Neuroscience
– volume: 3
  start-page: 46
  year: 2009
  end-page: 56
  article-title: Regulation of intrinsic excitability in hippocampal neurons by activity‐dependent modulation of the KV2.1 potassium channel
  publication-title: Channels (Austin)
– volume: 4
  start-page: e13039
  year: 2016
  article-title: Activity‐dependent redistribution of Kv2.1 ion channels on rat spinal motoneurons
  publication-title: Physiological Reports
– volume: 26
  start-page: 685
  year: 2006
  end-page: 695
  article-title: The Kv2.1 C terminus can autonomously transfer Kv2.1‐like phosphorylation‐dependent localization, voltage‐dependent gating, and muscarinic modulation to diverse Kv channels
  publication-title: J Neurosci
– volume: 15
  start-page: 458
  year: 1995
  end-page: 469
  article-title: Muscarinic receptors modulate N‐, P‐, and L‐type Ca currents in rat striatal neurons through parallel pathways
  publication-title: J Neurosci
– volume: 868
  start-page: 233
  year: 1999
  end-page: 285
  article-title: Molecular diversity of K channels
  publication-title: Ann N Y Acad Sci
– volume: 26
  start-page: 13505
  year: 2006
  end-page: 13514
  article-title: Bidirectional activity‐dependent regulation of neuronal ion channel phosphorylation
  publication-title: J Neurosci
– volume: 7
  start-page: 691
  year: 2004
  end-page: 692
  article-title: A mechanism for homeostatic plasticity
  publication-title: Nat Neurosci
– volume: 8
  start-page: 106
  year: 2014
  article-title: Swimming against the tide: investigations of the C‐bouton synapse
  publication-title: Front Neural Circuits
– volume: 38
  start-page: 7562
  year: 2018
  end-page: 7584
  article-title: Identification of VAPA and VAPB as Kv2 channel‐interacting proteins defining endoplasmic reticulum‐plasma membrane junctions in mammalian brain neurons
  publication-title: J Neurosci
– volume: 20
  start-page: 905
  year: 2017
  end-page: 916
  article-title: Reduced sensory synaptic excitation impairs motor neuron function via Kv2.1 in spinal muscular atrophy
  publication-title: Nat Neurosci
– volume: 522
  start-page: 2594
  year: 2014
  end-page: 2608
  article-title: A unique ion channel clustering domain on the axon initial segment of mammalian neurons
  publication-title: J Comp Neurol
– volume: 1547
  start-page: 1
  year: 2014
  end-page: 15
  article-title: Redistribution of Kv2.1 ion channels on spinal motoneurons following peripheral nerve injury
  publication-title: Brain Res
– volume: 71
  start-page: 291
  year: 2011
  end-page: 305
  article-title: Nitric oxide is an activity‐dependent regulator of target neuron intrinsic excitability
  publication-title: Neuron
– volume: 74
  start-page: 1228
  year: 2017
  end-page: 1236
  article-title: Neurodevelopmental disorders caused by de novo variants in KCNB1 genotypes and phenotypes
  publication-title: JAMA Neurol
– volume: 522
  start-page: 19
  year: 2000
  end-page: 31
  article-title: Frequency‐dependent regulation of rat hippocampal somato‐dendritic excitability by the K channel subunit Kv2.1
  publication-title: J Physiol
– volume: 541
  start-page: 25
  year: 2002
  end-page: 39
  article-title: Molecular determinants of emerging excitability in rat embryonic motoneurons
  publication-title: J Physiol
– volume: 52
  start-page: 821
  year: 1997
  end-page: 828
  article-title: Phosphorylation of the Kv2.1 K channel alters voltage‐dependent activation
  publication-title: Mol Pharmacol
– volume: 423
  start-page: 27
  year: 1990
  end-page: 46
  article-title: Membrane currents in visually identified motoneurones of neonatal rat spinal cord
  publication-title: J Physiol
– volume: 586
  start-page: 3493
  year: 2008
  end-page: 3509
  article-title: Initial segment Kv2.2 channels mediate a slow delayed rectifier and maintain high frequency action potential firing in medial nucleus of the trapezoid body neurons
  publication-title: J Physiol
– volume: 112
  start-page: 2302
  year: 2014
  end-page: 2315
  article-title: Modulation of motoneuron firing by recurrent inhibition in the adult rat in vivo
  publication-title: J Neurophysiol
– volume: 80
  start-page: 1483
  year: 2000
  end-page: 1521
  article-title: Calcineurin: form and function
  publication-title: Physiol Rev
– volume: 76
  start-page: 529
  year: 2014
  end-page: 540
  article-title: De novo KCNB1 mutations in epileptic encephalopathy
  publication-title: Ann Neurol
– volume: 22
  start-page: 10094
  year: 2002
  end-page: 10105
  article-title: Delayed rectifier K currents, IK, are encoded by Kv2 alpha‐subunits and regulate tonic firing in mammalian sympathetic neurons
  publication-title: J Neurosci
– volume: 554
  start-page: 673
  year: 2004
  end-page: 685
  article-title: Focal aggregation of voltage‐gated, Kv2.1 subunit‐containing, potassium channels at synaptic sites in rat spinal motoneurones
  publication-title: J Physiol
– volume: 313
  start-page: 976
  year: 2006
  end-page: 979
  article-title: Graded regulation of the Kv2.1 potassium channel by variable phosphorylation
  publication-title: Science
– volume: 34
  start-page: 4991
  year: 2014
  end-page: 5002
  article-title: Kv2 channel regulation of action potential repolarization and firing patterns in superior cervical ganglion neurons and hippocampal CA1 pyramidal neurons
  publication-title: J Neurosci
– volume: 88
  start-page: 10764
  year: 1991
  end-page: 10768
  article-title: Immunological identification and characterization of a delayed rectifier K channel polypeptide in rat brain
  publication-title: Proc Natl Acad Sci U S A
– volume: 11
  start-page: 1
  year: 2018
  article-title: Kv2 ion channels determine the expression and localization of the associated AMIGO‐1 cell adhesion molecule in adult brain neurons
  publication-title: Fron Mol Neurosci
– volume: 591
  start-page: 4807
  year: 2013
  end-page: 4825
  article-title: Kv2 channels regulate firing rate in pyramidal neurons from rat sensorimotor cortex
  publication-title: J Physiol
– volume: 104
  start-page: 2448
  year: 2007
  end-page: 2453
  article-title: Spinal cholinergic interneurons regulate the excitability of motoneurons during locomotion
  publication-title: Proc Natl Acad Sci U S A
– volume: 380
  start-page: 258
  year: 1996
  end-page: 262
  article-title: Modulation of Ca channels by G‐protein beta gamma subunits
  publication-title: Nature
– volume: 21
  start-page: 1473
  year: 2001
  end-page: 1480
  article-title: Kv2 channels form delayed‐rectifier potassium channels in situ
  publication-title: J Neurosci
– volume: 100
  start-page: 474
  year: 2008
  end-page: 481
  article-title: An protocol for recording from spinal motoneurons of adult rats
  publication-title: J Neurophysiol
– volume: 76
  start-page: 473
  year: 2014
  end-page: 483
  article-title: Clinical whole exome sequencing in child neurology practice
  publication-title: Ann Neurol
– volume: 273
  start-page: 13367
  year: 1998
  end-page: 13370
  article-title: Regulation of the calmodulin‐stimulated protein phosphatase, calcineurin
  publication-title: J Biol Chem
– volume: 474
  start-page: 13
  year: 2004
  end-page: 23
  article-title: Postnatal development of cholinergic synapses on mouse spinal motoneurons
  publication-title: J Comp Neurol
– volume: 65
  start-page: 1509
  year: 1991
  end-page: 1516
  article-title: Force‐frequency relationships of human thenar motor units
  publication-title: J Neurophysiol
– volume: 588
  start-page: 4519
  year: 2010
  end-page: 4537
  article-title: Stromatoxin‐sensitive, heteromultimeric Kv2.1/Kv9.3 channels contribute to myogenic control of cerebral arterial diameter
  publication-title: J Physiol
– volume: 16
  start-page: 51
  year: 2010
  end-page: 64
  article-title: Homeostatic regulation of neuronal excitability by K channels in normal and diseased brains
  publication-title: Neuroscientist
– volume: 107
  start-page: 12351
  year: 2010
  end-page: 12356
  article-title: Localization‐dependent activity of the Kv2.1 delayed‐rectifier K channel
  publication-title: Proc Natl Acad Sci U S A
– volume: 9
  start-page: 112
  year: 2008
  article-title: The Kv2.1 K channel targets to the axon initial segment of hippocam‐ pal and cortical neurons in culture and in situ
  publication-title: BMC Neurosci
– volume: 135
  start-page: 1619
  year: 1996
  end-page: 1632
  article-title: Identification of a cytoplasmic domain important in the polarized expression and clustering of the Kv2.1 K channel
  publication-title: J Cell Biol
– volume: 591
  start-page: 875
  year: 2013
  end-page: 897
  article-title: Expression of postsynaptic Ca ‐activated K (SK) channels at C‐bouton synapses in mammalian lumbar ‐motoneurons
  publication-title: J Physiol
– volume: 104
  start-page: 3568
  year: 2007
  end-page: 3573
  article-title: Apoptotic surge of potassium currents is mediated by p38 phosphorylation of Kv2.1
  publication-title: Proc Natl Acad Sci U S A
– volume: 108
  start-page: 69
  year: 2001
  end-page: 81
  article-title: Dynamic localization and clustering of dendritic Kv2.1 voltage‐dependent potassium channels in developing hippocampal neurons
  publication-title: Neuroscience
– volume: 57
  start-page: e12
  year: 2016
  end-page: e17
  article-title: Unexplained early onset epileptic encephalopathy: Exome screening and phenotype expansion
  publication-title: Epilepsia
– volume: 5
  start-page: 15199
  year: 2015
  article-title: De novo KCNB1 mutations in infantile epilepsy inhibit repetitive neuronal firing
  publication-title: Sci Rep
– ident: e_1_2_5_27_1
  doi: 10.1523/JNEUROSCI.15-01-00458.1995
– ident: e_1_2_5_33_1
  doi: 10.1152/jn.1999.81.1.140
– ident: e_1_2_5_44_1
  doi: 10.1523/JNEUROSCI.3370-05.2005
– ident: e_1_2_5_53_1
  doi: 10.1152/jn.00358.2014
– ident: e_1_2_5_67_1
  doi: 10.1038/nn0704-691
– ident: e_1_2_5_61_1
  doi: 10.1186/1471-2202-9-112
– ident: e_1_2_5_26_1
– ident: e_1_2_5_3_1
  doi: 10.1111/epi.13250
– ident: e_1_2_5_2_1
  doi: 10.1113/jphysiol.2001.013371
– ident: e_1_2_5_11_1
  doi: 10.1111/j.1749-6632.1999.tb11293.x
– ident: e_1_2_5_5_1
  doi: 10.1016/S0306-4522(01)00476-6
– ident: e_1_2_5_21_1
  doi: 10.1113/jphysiol.2007.128454
– ident: e_1_2_5_38_1
  doi: 10.1111/j.1469-7793.2000.t01-2-00445.x
– ident: e_1_2_5_69_1
  doi: 10.1085/jgp.201511444
– ident: e_1_2_5_41_1
  doi: 10.1152/physiol.00013.2011
– ident: e_1_2_5_74_1
  doi: 10.1152/jn.1993.69.6.2150
– ident: e_1_2_5_72_1
  doi: 10.1073/pnas.88.23.10764
– ident: e_1_2_5_8_1
  doi: 10.3389/fnmol.2018.00001
– ident: e_1_2_5_39_1
  doi: 10.1523/JNEUROSCI.22-23-10094.2002
– ident: e_1_2_5_64_1
  doi: 10.1002/ana.24251
– ident: e_1_2_5_66_1
  doi: 10.1016/j.neuron.2011.05.037
– ident: e_1_2_5_20_1
  doi: 10.1113/jphysiol.2013.257253
– ident: e_1_2_5_22_1
  doi: 10.1002/cne.10648
– ident: e_1_2_5_30_1
  doi: 10.1002/cne.23551
– ident: e_1_2_5_45_1
  doi: 10.1038/nn1260
– ident: e_1_2_5_76_1
  doi: 10.1113/jphysiol.2010.196618
– ident: e_1_2_5_18_1
  doi: 10.1038/nn.4561
– ident: e_1_2_5_14_1
  doi: 10.1001/jamaneurol.2017.1714
– ident: e_1_2_5_47_1
  doi: 10.1523/JNEUROSCI.4620-05.2006
– ident: e_1_2_5_52_1
  doi: 10.1523/JNEUROSCI.1825-06.2006
– ident: e_1_2_5_65_1
  doi: 10.1152/jn.1999.81.1.72
– ident: e_1_2_5_40_1
  doi: 10.1073/pnas.0611134104
– ident: e_1_2_5_9_1
  doi: 10.1523/JNEUROSCI.16-04-01412.1996
– ident: e_1_2_5_17_1
  doi: 10.1124/mol.62.1.48
– ident: e_1_2_5_68_1
  doi: 10.1113/jphysiol.1990.sp018009
– ident: e_1_2_5_31_1
  doi: 10.1523/JNEUROSCI.0893-18.2018
– ident: e_1_2_5_10_1
  doi: 10.1152/jn.90422.2008
– ident: e_1_2_5_54_1
  doi: 10.1126/science.1124254
– ident: e_1_2_5_34_1
  doi: 10.1038/jhg.2016.154
– ident: e_1_2_5_49_1
  doi: 10.1113/jphysiol.2003.056192
– ident: e_1_2_5_24_1
  doi: 10.1038/380258a0
– ident: e_1_2_5_63_1
  doi: 10.1073/pnas.96.19.10899
– ident: e_1_2_5_13_1
  doi: 10.3389/fncir.2014.00106
– ident: e_1_2_5_35_1
  doi: 10.1523/JNEUROSCI.15-05-04077.1995
– ident: e_1_2_5_62_1
  doi: 10.1083/jcb.135.6.1619
– ident: e_1_2_5_7_1
  doi: 10.1523/JNEUROSCI.21-05-01473.2001
– ident: e_1_2_5_29_1
  doi: 10.1113/jphysiol.2008.153734
– ident: e_1_2_5_19_1
  doi: 10.1523/JNEUROSCI.3008-12.2013
– ident: e_1_2_5_23_1
  doi: 10.1016/S0306-4522(01)00167-1
– ident: e_1_2_5_12_1
  doi: 10.1113/jphysiol.2012.240879
– ident: e_1_2_5_48_1
  doi: 10.1152/jn.1977.40.6.1432
– ident: e_1_2_5_50_1
  doi: 10.1124/mol.52.5.821
– ident: e_1_2_5_71_1
  doi: 10.1002/ana.24263
– ident: e_1_2_5_28_1
  doi: 10.1113/jphysiol.2010.191973
– ident: e_1_2_5_6_1
  doi: 10.1016/S0070-2137(01)80011-X
– ident: e_1_2_5_43_1
  doi: 10.1523/JNEUROSCI.3970-06.2006
– ident: e_1_2_5_73_1
  doi: 10.1146/annurev.physiol.66.032102.113328
– ident: e_1_2_5_16_1
  doi: 10.1016/S0306-4522(97)00519-8
– ident: e_1_2_5_75_1
  doi: 10.1002/cne.20089
– ident: e_1_2_5_4_1
  doi: 10.1113/jphysiol.1993.sp019715
– ident: e_1_2_5_58_1
  doi: 10.1016/j.brainres.2013.12.012
– ident: e_1_2_5_57_1
  doi: 10.14814/phy2.13039
– ident: e_1_2_5_36_1
  doi: 10.1523/JNEUROSCI.1925-13.2014
– ident: e_1_2_5_37_1
  doi: 10.1016/0301-0082(95)00032-1
– ident: e_1_2_5_59_1
  doi: 10.1152/physrev.2000.80.4.1483
– ident: e_1_2_5_15_1
  doi: 10.1111/j.1469-7793.2000.t01-2-00019.xm
– ident: e_1_2_5_60_1
  doi: 10.1038/srep15199
– ident: e_1_2_5_55_1
  doi: 10.1085/jgp.201110604
– ident: e_1_2_5_56_1
  doi: 10.1073/pnas.0610159104
– ident: e_1_2_5_51_1
  doi: 10.1073/pnas.1003028107
– ident: e_1_2_5_25_1
  doi: 10.1016/0166-2236(94)90157-0
– ident: e_1_2_5_32_1
  doi: 10.1074/jbc.273.22.13367
– ident: e_1_2_5_42_1
  doi: 10.1177/1073858409341085
– ident: e_1_2_5_46_1
  doi: 10.4161/chan.3.1.7655
– ident: e_1_2_5_70_1
  doi: 10.1152/jn.1991.65.6.1509
SSID ssj0013099
Score 2.451484
Snippet Key points Kv2 currents maintain and regulate motoneuron (MN) repetitive firing properties. Kv2.1 channel clustering properties are dynamic and respond to both...
Kv2 currents maintain and regulate motoneuron (MN) repetitive firing properties. Kv2.1 channel clustering properties are dynamic and respond to both high and...
Kv2.1 channels are widely expressed in the central nervous system, including in spinal motoneurons (MNs) where they aggregate as distinct membrane clusters...
KEY POINTSKv2 currents maintain and regulate motoneuron (MN) repetitive firing properties. Kv2.1 channel clustering properties are dynamic and respond to both...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 3769
SubjectTerms Calcineurin
Central nervous system
C‐boutons
homeostatic
Ion channels
Kinetics
Kv2.1
motoneurons
Motor neurons
Potassium channels (voltage-gated)
repetitive firing
Title A molecular rheostat: Kv2.1 currents maintain or suppress repetitive firing in motoneurons
URI https://onlinelibrary.wiley.com/doi/abs/10.1113%2FJP277833
https://www.ncbi.nlm.nih.gov/pubmed/31145471
https://www.proquest.com/docview/2257518811/abstract/
https://search.proquest.com/docview/2232480286
Volume 597
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQJy5tgdIuj5UroXLKdm0nfnBbIVZoKxCqQELtIXJsR0Vos6t9IMGvZ8ZJFkGFVHGOk0kyD3-eGX8m5JALr5y0WFYvVZIWniXaAJCTYF3BG64dx73D5xfy7Dod3WQ3TVcl7oWp-SFWCTf0jBiv0cFt0ZxCwpBsYHTJldICiT6RRw_x0C_-XEDoG7MiClcZa3hn4dYf7Y0vZ6J_4OVLtBqnm-FH8qd90brL5K63XBQ99_iKw_F9X_KJfGhQKB3UZrNJ1kK1RbYHFazAxw_0O419oTHhvk1-D-i4PUOXzv6GCe5BOqY_73mPUVfTO83p2N5WmGWgkxmdL6exvZbOwhQ3sUFApeUtJhApDADbmEQWzWr-mVwPT69OzpLmRIbEpVmfJQAHDSwpvAzSsWBLH_rcKx9Sp7T0DttlZapCCLrULjhdGCukLcrSKmEsRJMdsl6BjK-ESl5myjslXaFT4a1hMIYXNhOmb7SUHfKt1U4-rYk38nrBIvL2h3XIfqu2vHG9eQ4BCktJmjF4xOoyOA1WQmwVJkscAzhSA7QCMV9qda-ECFghZjBld8hRVNqb0vOr0SUTgG92_3vkHtkAwGXqdt99sr6YLcMBgJpF0Y3m243Zpic0i_FY
link.rule.ids 315,786,790,1382,27957,27958,46329,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ra9RAEB9q-0G_aB9aT1vdQtFPud7uJvtoPx1iOa8PilyhiBA2uxta5HLHPQT9653dJFeqCOLnTDJJ5rG_mZ2ZBThk3EkrTNhWL2WSFo4mSiOQE6hd3mmmLAu9wxeXYnCdDm-ymzU4aXth6vkQq4RbsIzor4OBh4R0Y-Vh2sDwikmpOH8EG2jtWYynPrP7LYSe1qtR4TKjzeRZvPeovfPhWvQHwHyIV-OCc_oMvravWteZfOsuF0XX_vxtiuN_fssmPG2AKOnXmrMFa77ahp1-hUH4-Ad5R2JpaMy578CXPhm3x-iS2a2fhDakY3L2nXUpsfWEpzkZm7sqJBrIZEbmy2mssCUzPw19bOhTSXkXcogECVA9JnGQZjV_DtenH0cfBklzKENi06xHE0SEGqMKJ7yw1JvS-R5z0vnUSiWcDRWzIpXee1Uq660qtOHCFGVpJNcGHcoLWK-Qx0sggpWZdFYKW6iUO6Mp0rDCZFz3tBKiAwetePJpPXsjr2MWnrc_rAN7rdzyxvrmOfqosJukKMVHrC6j3YTNEFP5yTLQIJRUiK6QzW4t7xUTjkFihqt2B95Hqf2Vez4aXlGOEOfVP1O-hceD0cV5fv7p8uw1PEH8pevq3z1YX8yWfh8xzqJ4E3X5F6pD9Go
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS9xAFD60FqQvarWta22dguhT1p2ZZC6-LbWLrlYWUZD2IUxmJnSRzS57EfTX90wuW7QUSp9zkpPkXOY7cy4DsM-4k1aYkFbPZRRnjkZKI5ATqF3eaaYsC73D3y7F6U3cv01u66rK0AtTzYdYbrgFyyj9dTDwictrIw_DBvoDJqXi_CW8igVnQaNPrtjvDEJH6-WkcJnQevAs3nvU3Pl0KfoDXz6Fq-V601uHH82bVmUmd-3FPGvbx2dDHP_vUzZgrYahpFvpzRt44YtN2OoWGIKPHsgBKQtDyx33LfjeJaPmEF0y_enHoQnpmJzfszYltprvNCMjMyzCNgMZT8lsMSnra8nUT0IXG3pUkg_DDiJBAlSOcTlGs5i9hZve1-svp1F9JENk46RDI8SDGmMKJ7yw1Jvc-Q5z0vnYSiWcDfWyIpbee5Ur663KtOHCZHluJNcG3ck7WCmQxzYQwfJEOiuFzVTMndEUaVhmEq47WgnRgs-NdNJJNXkjrSIWnjY_rAW7jdjS2vZmKXqokEtSlOIjlpfRakIqxBR-vAg0CCQVYitk874S95IJxxAxwTW7BYel0P7KPb3uDyhHgLPzz5R7sDo46aUXZ5fnH-A1gi9dlf7uwsp8uvAfEeDMs0-lJv8C13DzGQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+molecular+rheostat%3A+Kv2.1+currents+maintain+or+suppress+repetitive+firing+in+motoneurons&rft.jtitle=The+Journal+of+physiology&rft.au=Romer%2C+Shannon+H.&rft.au=Deardorff%2C+Adam+S.&rft.au=Fyffe%2C+Robert+E.+W.&rft.date=2019-07-01&rft.issn=0022-3751&rft.eissn=1469-7793&rft.volume=597&rft.issue=14&rft.spage=3769&rft.epage=3786&rft_id=info:doi/10.1113%2FJP277833&rft.externalDBID=10.1113%252FJP277833&rft.externalDocID=TJP13661
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3751&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3751&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3751&client=summon