Nanosized LiVPO4F/graphene composite: A promising anode material for lithium ion batteries

This study first reports the synthesis of the nanosized LiVPO4F/graphene composite (LVPF/G). The LVPF/G composite is prepared by a facile mechanochemical approach. XRD results reveal that the prepared composite are well crystallized with triclinic LiVPO4F. SEM and TEM images demonstrate that the LiV...

Full description

Saved in:
Bibliographic Details
Published inJournal of power sources Vol. 251; pp. 325 - 330
Main Authors Wang, Jiexi, Li, Xinhai, Wang, Zhixing, Huang, Bin, Wang, Zhiguo, Guo, Huajun
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.04.2014
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study first reports the synthesis of the nanosized LiVPO4F/graphene composite (LVPF/G). The LVPF/G composite is prepared by a facile mechanochemical approach. XRD results reveal that the prepared composite are well crystallized with triclinic LiVPO4F. SEM and TEM images demonstrate that the LiVPO4F nanoparticles in the composite are well enwrapped by graphene. Used as anode material for lithium ion batteries, the prepared LVPF/G composite exhibits greatly improved electrochemical performance. Furthermore, the electrochemical properties the LVPF/G composite depend heavily on the discharge cut-off potential. When the cut-off potential is altered to 0.01 V vs. Li/Li+, it possesses the best electrochemical performance. Under such optimal charge–discharge condition (3–0.01 V vs. Li/Li+), it shows an initial charge capacity of 287 mAh g−1 at 0.1C rate (1C = 310 mA g−1) and shows no capacity fading after 100 cycles. It also exhibits good rate capability, delivering about 168 mAh g−1 at 10C rate. [Display omitted] •First synthesis of nanosized LiVPO4F/graphene (LVPF/G) composite.•First introduction of LVPF/G as anode material.•Altering the discharge cut-off potential to improve the performance of LVPF/G.•Superior cycle ability and rate capability delivered by LVPF/G at 3.0–0.01 V.
AbstractList This study first reports the synthesis of the nanosized LiVPO4F/graphene composite (LVPF/G). The LVPF/G composite is prepared by a facile mechanochemical approach. XRD results reveal that the prepared composite are well crystallized with triclinic LiVPO4F. SEM and TEM images demonstrate that the LiVPO4F nanoparticles in the composite are well enwrapped by graphene. Used as anode material for lithium ion batteries, the prepared LVPF/G composite exhibits greatly improved electrochemical performance. Furthermore, the electrochemical properties the LVPF/G composite depend heavily on the discharge cut-off potential. When the cut-off potential is altered to 0.01 V vs. Li/Li+, it possesses the best electrochemical performance. Under such optimal charge–discharge condition (3–0.01 V vs. Li/Li+), it shows an initial charge capacity of 287 mAh g−1 at 0.1C rate (1C = 310 mA g−1) and shows no capacity fading after 100 cycles. It also exhibits good rate capability, delivering about 168 mAh g−1 at 10C rate. [Display omitted] •First synthesis of nanosized LiVPO4F/graphene (LVPF/G) composite.•First introduction of LVPF/G as anode material.•Altering the discharge cut-off potential to improve the performance of LVPF/G.•Superior cycle ability and rate capability delivered by LVPF/G at 3.0–0.01 V.
This study first reports the synthesis of the nanosized LiVPO4F/graphene composite (LVPF/G). The LVPF/G composite is prepared by a facile mechanochemical approach. XRD results reveal that the prepared composite are well crystallized with triclinic LiVPO4F. SEM and TEM images demonstrate that the LiVPO4F nanoparticles in the composite are well enwrapped by graphene. Used as anode material for lithium ion batteries, the prepared LVPF/G composite exhibits greatly improved electrochemical performance. Furthermore, the electrochemical properties the LVPF/G composite depend heavily on the discharge cut-off potential. When the cut-off potential is altered to 0.01 V vs. Li/Li+, it possesses the best electrochemical performance. Under such optimal charge-discharge condition (3-0.01 V vs. Li/Li+), it shows an initial charge capacity of 287 mAh g-1 at 0.1C rate (1C = 310 mA g-1) and shows no capacity fading after 100 cycles. It also exhibits good rate capability, delivering about 168 mAh g-1 at 10C rate.
Author Huang, Bin
Li, Xinhai
Guo, Huajun
Wang, Zhiguo
Wang, Jiexi
Wang, Zhixing
Author_xml – sequence: 1
  givenname: Jiexi
  surname: Wang
  fullname: Wang, Jiexi
– sequence: 2
  givenname: Xinhai
  surname: Li
  fullname: Li, Xinhai
  email: xinhaili_csu@126.com
– sequence: 3
  givenname: Zhixing
  surname: Wang
  fullname: Wang, Zhixing
– sequence: 4
  givenname: Bin
  surname: Huang
  fullname: Huang, Bin
– sequence: 5
  givenname: Zhiguo
  surname: Wang
  fullname: Wang, Zhiguo
– sequence: 6
  givenname: Huajun
  surname: Guo
  fullname: Guo, Huajun
  email: hjguo_csu@163.com
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28250740$$DView record in Pascal Francis
BookMark eNqFkT1vFDEQhl0EiSTwF5AbJJrb-HO9iyiIooQgnQgFUNBYc97ZxKdde7F9IPj18emShuYqF_M845l5z8hJiAEJecNZwxlvL7bNdol_ctylRjAuG84b1usTcsqk6VbGaPmSnOW8ZYxxbtgp-fkFQsz-Hw507X98vVM3F_cJlgcMSF2cl1or-J5e0iXF2Wcf7mkVBqQzFEweJjrGRCdfHvxupj4GuoGyr2B-RV6MMGV8_fSek-8319-ublfru0-fry7XK6dUX1YjjJseNkZJKTe97pgeGHZMtqMaJAiDwpiOOey17NRojHQDSqyWcMhh6OQ5eXfoW0f8tcNcbB3U4TRBwLjLltetNVOm1cdRLZTirRGiom-fUMgOpjFBcD7bJfkZ0l8rOqGZUaxyHw6cSzHnhKN1vkCplygJ_GQ5s_tk7NY-J2P3yVjObU2m6u1_-vMPR8WPBxHraX97TDY7j8Hh4BO6Yofoj7V4BL_RsfE
CODEN JPSODZ
CitedBy_id crossref_primary_10_1016_j_ssi_2019_04_005
crossref_primary_10_1016_j_jallcom_2016_07_315
crossref_primary_10_1016_j_jelechem_2019_04_072
crossref_primary_10_1039_C6RA25997A
crossref_primary_10_1016_j_apsusc_2020_145854
crossref_primary_10_1016_j_powtec_2016_03_054
crossref_primary_10_1007_s10800_016_1007_4
crossref_primary_10_1016_j_powtec_2017_09_005
crossref_primary_10_1002_aenm_201402225
crossref_primary_10_1002_celc_202000029
crossref_primary_10_1002_smll_202002701
crossref_primary_10_1016_j_jpowsour_2022_231024
crossref_primary_10_1016_j_electacta_2016_03_070
crossref_primary_10_1016_j_jpowsour_2016_06_058
crossref_primary_10_1115_1_4048938
crossref_primary_10_1002_celc_201700986
crossref_primary_10_1016_j_jallcom_2015_03_207
crossref_primary_10_1016_j_jallcom_2015_02_200
crossref_primary_10_1016_j_jpowsour_2016_02_083
crossref_primary_10_1007_s11581_017_2189_4
crossref_primary_10_1007_s10854_019_00916_x
crossref_primary_10_1016_j_jallcom_2016_05_333
crossref_primary_10_1016_j_jallcom_2016_11_004
crossref_primary_10_1039_C9CC05190B
crossref_primary_10_1016_j_jpowsour_2016_12_095
crossref_primary_10_1039_D0NR06614A
crossref_primary_10_1016_j_jpowsour_2016_08_131
crossref_primary_10_1016_j_ceramint_2016_12_011
crossref_primary_10_1016_j_matchemphys_2016_07_023
crossref_primary_10_1016_j_scib_2017_03_026
crossref_primary_10_1016_j_ceramint_2015_03_090
crossref_primary_10_1039_C6RA13850K
crossref_primary_10_1016_j_apsusc_2018_06_114
crossref_primary_10_1007_s11581_017_2387_0
crossref_primary_10_1016_j_jpowsour_2018_06_020
crossref_primary_10_1039_C7TA02956J
crossref_primary_10_1016_j_jallcom_2014_10_059
crossref_primary_10_1039_C7RA04842D
crossref_primary_10_1016_j_electacta_2019_06_028
crossref_primary_10_1002_adma_201603421
crossref_primary_10_1007_s11581_017_2073_2
crossref_primary_10_1016_j_ceramint_2016_11_016
crossref_primary_10_1016_S1003_6326_17_60132_8
crossref_primary_10_1016_j_matlet_2017_02_127
crossref_primary_10_1016_j_apsusc_2017_01_089
crossref_primary_10_1016_j_apsusc_2017_12_259
crossref_primary_10_1016_j_ceramint_2014_11_097
crossref_primary_10_1016_j_ceramint_2016_06_071
crossref_primary_10_1016_j_jpowsour_2016_08_088
crossref_primary_10_1016_j_jallcom_2016_12_038
crossref_primary_10_1016_j_ceramint_2016_06_030
crossref_primary_10_1016_j_jallcom_2016_01_101
crossref_primary_10_1016_j_ssi_2018_02_020
crossref_primary_10_1039_C6RA26790D
crossref_primary_10_1007_s11581_017_1992_2
crossref_primary_10_1016_j_ceramint_2015_05_012
crossref_primary_10_1021_acsami_6b11670
crossref_primary_10_1016_j_cej_2017_03_146
crossref_primary_10_1002_aenm_202001449
crossref_primary_10_1016_j_electacta_2016_05_112
crossref_primary_10_1016_j_nanoen_2017_11_079
crossref_primary_10_1016_j_jallcom_2017_11_365
crossref_primary_10_1016_j_resconrec_2021_105802
crossref_primary_10_1016_j_ceramint_2016_06_086
crossref_primary_10_1002_cssc_201600370
crossref_primary_10_1016_S1452_3981_23_16143_8
crossref_primary_10_3389_fchem_2018_00283
crossref_primary_10_1002_aenm_201500400
crossref_primary_10_1016_j_ceramint_2015_07_136
crossref_primary_10_1016_j_jallcom_2016_04_240
Cites_doi 10.1021/cm3003996
10.1021/nl904286r
10.1021/jp301508k
10.1016/j.jpowsour.2012.09.020
10.1007/s10008-012-1846-9
10.1016/j.jpowsour.2012.10.060
10.1039/c2nr11966h
10.1016/j.jpowsour.2007.09.119
10.1016/j.jpowsour.2011.10.144
10.1038/ncomms2705
10.1016/j.jallcom.2013.07.147
10.1149/1.1609998
10.1007/s10008-011-1512-7
10.1149/2.022208jes
10.1039/c2ta01338j
10.1016/j.jpowsour.2005.05.062
10.1021/cr3001884
10.1016/j.jpowsour.2009.11.006
10.1016/j.electacta.2012.12.095
10.1016/j.jpowsour.2009.01.007
10.1016/j.jpowsour.2005.03.126
10.1098/rsta.2010.0112
10.1149/1.1897352
10.1016/j.jpowsour.2012.02.013
10.1016/j.nanoen.2011.11.001
10.1016/j.jpowsour.2010.03.032
10.1016/S0378-7753(97)02575-5
10.1016/j.jpowsour.2006.01.067
10.1021/am402132u
10.1002/adma.201104634
10.1039/c2jm32183a
10.1016/j.jpowsour.2006.08.020
10.1039/c3ta12116j
10.1016/S1003-6326(10)60055-6
10.1016/j.electacta.2012.09.014
10.1021/ja01539a017
10.1021/cm201773n
10.1016/j.jpowsour.2006.12.013
ContentType Journal Article
Copyright 2013 Elsevier B.V.
2015 INIST-CNRS
Copyright_xml – notice: 2013 Elsevier B.V.
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7ST
C1K
SOI
7SP
7SR
7SU
7TB
7U5
8FD
FR3
JG9
KR7
L7M
DOI 10.1016/j.jpowsour.2013.11.095
DatabaseName CrossRef
Pascal-Francis
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environmental Engineering Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Environmental Engineering Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Materials Research Database
Environment Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EndPage 330
ExternalDocumentID 28250740
10_1016_j_jpowsour_2013_11_095
S0378775313019381
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABJNI
ABMAC
ABXDB
ABXRA
ACDAQ
ACGFS
ACRLP
ACVFH
ADBBV
ADCNI
ADECG
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEZYN
AFPUW
AFRZQ
AFTJW
AFXIZ
AFZHZ
AGCQF
AGHFR
AGRNS
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIIUN
AIKHN
AITUG
AJSZI
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LX7
LY6
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSH
SSK
SSM
SSR
SSZ
T5K
XPP
ZMT
~G-
29L
AAQXK
AAYXX
ABWVN
ACNNM
ACRPL
ADMUD
ADNMO
AFJKZ
AGQPQ
AI.
AIGII
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLY
HVGLF
HZ~
NDZJH
R2-
SAC
SCB
SCE
SEW
T9H
VH1
VOH
WUQ
AACTN
IQODW
7ST
C1K
SOI
7SP
7SR
7SU
7TB
7U5
8FD
FR3
JG9
KR7
L7M
ID FETCH-LOGICAL-c449t-fafb9ab74333b95805d0e8036f4d3a27e27780ce95384f773cde3efaf2ce1ad83
IEDL.DBID .~1
ISSN 0378-7753
IngestDate Tue Aug 05 10:53:29 EDT 2025
Fri Jul 11 07:12:01 EDT 2025
Wed Apr 02 07:25:25 EDT 2025
Tue Jul 01 04:23:02 EDT 2025
Thu Apr 24 23:05:50 EDT 2025
Thu Jul 17 01:59:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Anode material
Lithium ion battery
Cut-off potential
Composite
Graphene
Lithium vanadium fluorophosphate
Lithium ion batteries
Lithium Fluophosphates
Vanadium Fluophosphates
Anode
Secondary cell
Nanostructure
Electrode material
Potential
Composite material
Composite electrode
Modified material
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c449t-fafb9ab74333b95805d0e8036f4d3a27e27780ce95384f773cde3efaf2ce1ad83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1524416722
PQPubID 23462
PageCount 6
ParticipantIDs proquest_miscellaneous_1753504765
proquest_miscellaneous_1524416722
pascalfrancis_primary_28250740
crossref_citationtrail_10_1016_j_jpowsour_2013_11_095
crossref_primary_10_1016_j_jpowsour_2013_11_095
elsevier_sciencedirect_doi_10_1016_j_jpowsour_2013_11_095
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-04-01
PublicationDateYYYYMMDD 2014-04-01
PublicationDate_xml – month: 04
  year: 2014
  text: 2014-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Journal of power sources
PublicationYear 2014
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Barker, Saidi, Swoyer (bib12) 2003; 150
Tarascon (bib2) 2010; 368
Ma, Shao, Wu, Shui, Wang, Pan, Long, Ren, Shu (bib6) 2013; 5
Reddy, Madhavi, Subba Rao, Chowdari (bib40) 2006; 162
Jung, Lim, Kim (bib34) 2013; 1
Barker, Gover, Burns, Bryan, Saidi, Swoyer (bib31) 2005; 146
Li, Zhou, Gao, Yan (bib13) 2006; 160
Wang, Wang, Li, Guo, Wu, Zhang, Xiao (bib30) 2013; 87
Chen, Zhang, Wei (bib25) 2013; 2013
Wang, Li, Wang, Guo, Zhang, Xiong, He (bib18) 2013; 91
Aurbach, Zaban, Ein-Eli, Weissman, Chusid, Markovsky, Levi, Levi, Schechter, Granot (bib5) 1997; 68
Lu, Han, Li, Hua, Ouyang (bib1) 2013; 226
Zhong, Chen, Li, Zou, Liu (bib26) 2010; 20
Lung-Hao Hu, Wu, Lin, Khlobystov, Li (bib35) 2013; 4
Reddy, Subba Rao, Chowdari (bib14) 2010; 195
H, Offeman (bib28) 1958; 80
Chan, Ruffo, Hong, Cui (bib38) 2009; 189
Reddy, Subba Rao, Chowdari (bib10) 2013; 113
Wang, Wang, Li, Guo, Xiao, Huang, He (bib32) 2013; 17
Kosova, Devyatkina, Slobodyuk, Gutakovskii (bib21) 2013
Ellis, Ramesh, Davis, Goward, Nazar (bib23) 2011; 23
Wu, Zhou, Yin, Ren, Li, Cheng (bib24) 2012; 1
Sun, Xu, Jia, Ding, Liu, Chen (bib17) 2013; 1
Wu, Chen, Hng, Lou (bib11) 2012; 4
Edström, Herstedt, Abraham (bib39) 2006; 153
Datta, Kumta (bib8) 2007; 165
Han, Kim, Jo, Hwang (bib36) 2012; 116
de las Casas, Li (bib4) 2012; 208
Zheng, Zhang, Yang (bib16) 2012; 202
Mba, Masquelier, Suard, Croguennec (bib22) 2012; 24
Chen, Zhang, Sun (bib37) 2012; 22
Dresselhaus, Jorio, Hofmann, Dresselhaus, Saito (bib33) 2010; 10
Barker, Gover, Burns, Bryan (bib19) 2005; 8
Qie, Chen, Wang, Shao, Li, Yuan, Hu, Zhang, Huang (bib3) 2012; 24
Yi, Xie, Zhu, Zhu, Shen (bib7) 2013; 222
Mba, Croguennec, Basir, Barker, Masquelier (bib20) 2012; 159
Zheng, Li, Wang, Niu, Liu, Wu, Li, Li, Guo (bib27) 2010; 195
Qiao, Yang, Wang, Chen, Zhang, Liu, Wang (bib15) 2012; 16
Wang, Li, Wang, Guo, Li, He, Huang (bib29) 2013; 581
Lee, Kim, Kim, Lim, Lee (bib9) 2008; 176
Reddy (10.1016/j.jpowsour.2013.11.095_bib14) 2010; 195
Zhong (10.1016/j.jpowsour.2013.11.095_bib26) 2010; 20
Qiao (10.1016/j.jpowsour.2013.11.095_bib15) 2012; 16
Datta (10.1016/j.jpowsour.2013.11.095_bib8) 2007; 165
Ma (10.1016/j.jpowsour.2013.11.095_bib6) 2013; 5
Mba (10.1016/j.jpowsour.2013.11.095_bib22) 2012; 24
Jung (10.1016/j.jpowsour.2013.11.095_bib34) 2013; 1
Chen (10.1016/j.jpowsour.2013.11.095_bib37) 2012; 22
Chan (10.1016/j.jpowsour.2013.11.095_bib38) 2009; 189
Wang (10.1016/j.jpowsour.2013.11.095_bib29) 2013; 581
Tarascon (10.1016/j.jpowsour.2013.11.095_bib2) 2010; 368
Wu (10.1016/j.jpowsour.2013.11.095_bib11) 2012; 4
Edström (10.1016/j.jpowsour.2013.11.095_bib39) 2006; 153
Chen (10.1016/j.jpowsour.2013.11.095_bib25) 2013; 2013
Yi (10.1016/j.jpowsour.2013.11.095_bib7) 2013; 222
Wang (10.1016/j.jpowsour.2013.11.095_bib18) 2013; 91
Aurbach (10.1016/j.jpowsour.2013.11.095_bib5) 1997; 68
Lee (10.1016/j.jpowsour.2013.11.095_bib9) 2008; 176
Zheng (10.1016/j.jpowsour.2013.11.095_bib27) 2010; 195
Sun (10.1016/j.jpowsour.2013.11.095_bib17) 2013; 1
Lung-Hao Hu (10.1016/j.jpowsour.2013.11.095_bib35) 2013; 4
H (10.1016/j.jpowsour.2013.11.095_bib28) 1958; 80
Qie (10.1016/j.jpowsour.2013.11.095_bib3) 2012; 24
Li (10.1016/j.jpowsour.2013.11.095_bib13) 2006; 160
Wang (10.1016/j.jpowsour.2013.11.095_bib32) 2013; 17
Zheng (10.1016/j.jpowsour.2013.11.095_bib16) 2012; 202
Wu (10.1016/j.jpowsour.2013.11.095_bib24) 2012; 1
Reddy (10.1016/j.jpowsour.2013.11.095_bib10) 2013; 113
Dresselhaus (10.1016/j.jpowsour.2013.11.095_bib33) 2010; 10
Lu (10.1016/j.jpowsour.2013.11.095_bib1) 2013; 226
Barker (10.1016/j.jpowsour.2013.11.095_bib19) 2005; 8
Barker (10.1016/j.jpowsour.2013.11.095_bib31) 2005; 146
Kosova (10.1016/j.jpowsour.2013.11.095_bib21) 2013
Reddy (10.1016/j.jpowsour.2013.11.095_bib40) 2006; 162
Ellis (10.1016/j.jpowsour.2013.11.095_bib23) 2011; 23
Han (10.1016/j.jpowsour.2013.11.095_bib36) 2012; 116
Mba (10.1016/j.jpowsour.2013.11.095_bib20) 2012; 159
de las Casas (10.1016/j.jpowsour.2013.11.095_bib4) 2012; 208
Wang (10.1016/j.jpowsour.2013.11.095_bib30) 2013; 87
Barker (10.1016/j.jpowsour.2013.11.095_bib12) 2003; 150
References_xml – volume: 23
  start-page: 5138
  year: 2011
  end-page: 5148
  ident: bib23
  publication-title: Chem. Mater
– volume: 189
  start-page: 1132
  year: 2009
  end-page: 1140
  ident: bib38
  publication-title: J. Power Sources
– volume: 159
  start-page: A1171
  year: 2012
  end-page: A1175
  ident: bib20
  publication-title: J. Electrochem. Soc.
– volume: 22
  start-page: 15080
  year: 2012
  end-page: 15084
  ident: bib37
  publication-title: J. Mater. Chem.
– volume: 20
  start-page: s275
  year: 2010
  end-page: s278
  ident: bib26
  publication-title: T. Nonferr. Metal. Soc
– volume: 195
  start-page: 2935
  year: 2010
  end-page: 2938
  ident: bib27
  publication-title: J.Power Sources
– volume: 581
  start-page: 836
  year: 2013
  end-page: 842
  ident: bib29
  publication-title: J. Alloy. Compd
– volume: 208
  start-page: 74
  year: 2012
  end-page: 85
  ident: bib4
  publication-title: J. Power Sources
– volume: 368
  start-page: 3227
  year: 2010
  end-page: 3241
  ident: bib2
  publication-title: Philos. T. Roy. Soc. A
– volume: 87
  start-page: 224
  year: 2013
  end-page: 229
  ident: bib30
  publication-title: Electrochim. Acta
– volume: 160
  start-page: 633
  year: 2006
  end-page: 637
  ident: bib13
  publication-title: J. Power Sources
– volume: 91
  start-page: 75
  year: 2013
  end-page: 81
  ident: bib18
  publication-title: Electrochim. Acta
– volume: 16
  start-page: 1211
  year: 2012
  end-page: 1217
  ident: bib15
  publication-title: J. Solid State Electr
– volume: 24
  start-page: 1223
  year: 2012
  end-page: 1234
  ident: bib22
  publication-title: Chem. Mater
– volume: 5
  start-page: 8615
  year: 2013
  end-page: 8627
  ident: bib6
  publication-title: ACS Appl. Mater. Interfaces
– volume: 116
  start-page: 7269
  year: 2012
  end-page: 7279
  ident: bib36
  publication-title: J. Phys. Chem. C
– volume: 150
  start-page: A1394
  year: 2003
  end-page: A1398
  ident: bib12
  publication-title: J. Electrochem. Soc.
– volume: 226
  start-page: 272
  year: 2013
  end-page: 288
  ident: bib1
  publication-title: J. Power Sources
– volume: 146
  start-page: 516
  year: 2005
  end-page: 520
  ident: bib31
  publication-title: J. Power Sources
– volume: 17
  start-page: 1
  year: 2013
  end-page: 8
  ident: bib32
  publication-title: J. Solid State Electr
– volume: 202
  start-page: 380
  year: 2012
  end-page: 383
  ident: bib16
  publication-title: J. Power Sources
– volume: 68
  start-page: 91
  year: 1997
  end-page: 98
  ident: bib5
  publication-title: J. Power Sources
– year: 2013
  ident: bib21
  publication-title: J. Solid State Electr
– volume: 4
  start-page: 1687
  year: 2013
  ident: bib35
  publication-title: Nat. Commun
– volume: 8
  start-page: A285
  year: 2005
  end-page: A287
  ident: bib19
  publication-title: Electrochem. ST. Lett.
– volume: 153
  start-page: 380
  year: 2006
  end-page: 384
  ident: bib39
  publication-title: J. Power Sources
– volume: 176
  start-page: 353
  year: 2008
  end-page: 358
  ident: bib9
  publication-title: J. Power Sources
– volume: 222
  start-page: 448
  year: 2013
  end-page: 454
  ident: bib7
  publication-title: J. Power Sources
– volume: 4
  start-page: 2526
  year: 2012
  end-page: 2542
  ident: bib11
  publication-title: Nanoscale
– volume: 2013
  start-page: 1
  year: 2013
  end-page: 8
  ident: bib25
  publication-title: J. Nanomater
– volume: 1
  start-page: 107
  year: 2012
  end-page: 131
  ident: bib24
  publication-title: Nano Energy
– volume: 1
  start-page: 2501
  year: 2013
  end-page: 2507
  ident: bib17
  publication-title: J. Mater. Chem. A
– volume: 162
  start-page: 1312
  year: 2006
  end-page: 1321
  ident: bib40
  publication-title: J. Power Sources
– volume: 113
  start-page: 5364
  year: 2013
  end-page: 5457
  ident: bib10
  publication-title: Chem. Rev.
– volume: 24
  start-page: 2047
  year: 2012
  end-page: 2050
  ident: bib3
  publication-title: Adv. Mater
– volume: 195
  start-page: 5768
  year: 2010
  end-page: 5774
  ident: bib14
  publication-title: J. Power Sources
– volume: 1
  start-page: 11350
  year: 2013
  end-page: 11354
  ident: bib34
  publication-title: J. Mater. Chem. A
– volume: 10
  start-page: 751
  year: 2010
  end-page: 758
  ident: bib33
  publication-title: Nano Lett.
– volume: 165
  start-page: 368
  year: 2007
  end-page: 378
  ident: bib8
  publication-title: J. Power Sources
– volume: 80
  start-page: 1339
  year: 1958
  ident: bib28
  publication-title: J. Am. Chem. Soc
– year: 2013
  ident: 10.1016/j.jpowsour.2013.11.095_bib21
  publication-title: J. Solid State Electr
– volume: 24
  start-page: 1223
  year: 2012
  ident: 10.1016/j.jpowsour.2013.11.095_bib22
  publication-title: Chem. Mater
  doi: 10.1021/cm3003996
– volume: 10
  start-page: 751
  year: 2010
  ident: 10.1016/j.jpowsour.2013.11.095_bib33
  publication-title: Nano Lett.
  doi: 10.1021/nl904286r
– volume: 116
  start-page: 7269
  year: 2012
  ident: 10.1016/j.jpowsour.2013.11.095_bib36
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp301508k
– volume: 222
  start-page: 448
  year: 2013
  ident: 10.1016/j.jpowsour.2013.11.095_bib7
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.09.020
– volume: 17
  start-page: 1
  year: 2013
  ident: 10.1016/j.jpowsour.2013.11.095_bib32
  publication-title: J. Solid State Electr
  doi: 10.1007/s10008-012-1846-9
– volume: 226
  start-page: 272
  year: 2013
  ident: 10.1016/j.jpowsour.2013.11.095_bib1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.10.060
– volume: 4
  start-page: 2526
  year: 2012
  ident: 10.1016/j.jpowsour.2013.11.095_bib11
  publication-title: Nanoscale
  doi: 10.1039/c2nr11966h
– volume: 176
  start-page: 353
  year: 2008
  ident: 10.1016/j.jpowsour.2013.11.095_bib9
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2007.09.119
– volume: 202
  start-page: 380
  year: 2012
  ident: 10.1016/j.jpowsour.2013.11.095_bib16
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2011.10.144
– volume: 4
  start-page: 1687
  year: 2013
  ident: 10.1016/j.jpowsour.2013.11.095_bib35
  publication-title: Nat. Commun
  doi: 10.1038/ncomms2705
– volume: 581
  start-page: 836
  year: 2013
  ident: 10.1016/j.jpowsour.2013.11.095_bib29
  publication-title: J. Alloy. Compd
  doi: 10.1016/j.jallcom.2013.07.147
– volume: 150
  start-page: A1394
  year: 2003
  ident: 10.1016/j.jpowsour.2013.11.095_bib12
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1609998
– volume: 16
  start-page: 1211
  year: 2012
  ident: 10.1016/j.jpowsour.2013.11.095_bib15
  publication-title: J. Solid State Electr
  doi: 10.1007/s10008-011-1512-7
– volume: 159
  start-page: A1171
  year: 2012
  ident: 10.1016/j.jpowsour.2013.11.095_bib20
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.022208jes
– volume: 1
  start-page: 2501
  year: 2013
  ident: 10.1016/j.jpowsour.2013.11.095_bib17
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c2ta01338j
– volume: 2013
  start-page: 1
  year: 2013
  ident: 10.1016/j.jpowsour.2013.11.095_bib25
  publication-title: J. Nanomater
– volume: 153
  start-page: 380
  year: 2006
  ident: 10.1016/j.jpowsour.2013.11.095_bib39
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2005.05.062
– volume: 113
  start-page: 5364
  year: 2013
  ident: 10.1016/j.jpowsour.2013.11.095_bib10
  publication-title: Chem. Rev.
  doi: 10.1021/cr3001884
– volume: 195
  start-page: 2935
  year: 2010
  ident: 10.1016/j.jpowsour.2013.11.095_bib27
  publication-title: J.Power Sources
  doi: 10.1016/j.jpowsour.2009.11.006
– volume: 91
  start-page: 75
  year: 2013
  ident: 10.1016/j.jpowsour.2013.11.095_bib18
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2012.12.095
– volume: 189
  start-page: 1132
  year: 2009
  ident: 10.1016/j.jpowsour.2013.11.095_bib38
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2009.01.007
– volume: 146
  start-page: 516
  year: 2005
  ident: 10.1016/j.jpowsour.2013.11.095_bib31
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2005.03.126
– volume: 368
  start-page: 3227
  year: 2010
  ident: 10.1016/j.jpowsour.2013.11.095_bib2
  publication-title: Philos. T. Roy. Soc. A
  doi: 10.1098/rsta.2010.0112
– volume: 8
  start-page: A285
  year: 2005
  ident: 10.1016/j.jpowsour.2013.11.095_bib19
  publication-title: Electrochem. ST. Lett.
  doi: 10.1149/1.1897352
– volume: 208
  start-page: 74
  year: 2012
  ident: 10.1016/j.jpowsour.2013.11.095_bib4
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.02.013
– volume: 1
  start-page: 107
  year: 2012
  ident: 10.1016/j.jpowsour.2013.11.095_bib24
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2011.11.001
– volume: 195
  start-page: 5768
  year: 2010
  ident: 10.1016/j.jpowsour.2013.11.095_bib14
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.03.032
– volume: 68
  start-page: 91
  year: 1997
  ident: 10.1016/j.jpowsour.2013.11.095_bib5
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(97)02575-5
– volume: 160
  start-page: 633
  year: 2006
  ident: 10.1016/j.jpowsour.2013.11.095_bib13
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2006.01.067
– volume: 5
  start-page: 8615
  year: 2013
  ident: 10.1016/j.jpowsour.2013.11.095_bib6
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am402132u
– volume: 24
  start-page: 2047
  year: 2012
  ident: 10.1016/j.jpowsour.2013.11.095_bib3
  publication-title: Adv. Mater
  doi: 10.1002/adma.201104634
– volume: 22
  start-page: 15080
  year: 2012
  ident: 10.1016/j.jpowsour.2013.11.095_bib37
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm32183a
– volume: 162
  start-page: 1312
  year: 2006
  ident: 10.1016/j.jpowsour.2013.11.095_bib40
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2006.08.020
– volume: 1
  start-page: 11350
  year: 2013
  ident: 10.1016/j.jpowsour.2013.11.095_bib34
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta12116j
– volume: 20
  start-page: s275
  year: 2010
  ident: 10.1016/j.jpowsour.2013.11.095_bib26
  publication-title: T. Nonferr. Metal. Soc
  doi: 10.1016/S1003-6326(10)60055-6
– volume: 87
  start-page: 224
  year: 2013
  ident: 10.1016/j.jpowsour.2013.11.095_bib30
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2012.09.014
– volume: 80
  start-page: 1339
  year: 1958
  ident: 10.1016/j.jpowsour.2013.11.095_bib28
  publication-title: J. Am. Chem. Soc
  doi: 10.1021/ja01539a017
– volume: 23
  start-page: 5138
  year: 2011
  ident: 10.1016/j.jpowsour.2013.11.095_bib23
  publication-title: Chem. Mater
  doi: 10.1021/cm201773n
– volume: 165
  start-page: 368
  year: 2007
  ident: 10.1016/j.jpowsour.2013.11.095_bib8
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2006.12.013
SSID ssj0001170
Score 2.3990843
Snippet This study first reports the synthesis of the nanosized LiVPO4F/graphene composite (LVPF/G). The LVPF/G composite is prepared by a facile mechanochemical...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 325
SubjectTerms Anode material
Anodes
Applied sciences
Composite
Composite materials
Cut-off
Cut-off potential
Direct energy conversion and energy accumulation
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical analysis
Electrochemical conversion: primary and secondary batteries, fuel cells
Exact sciences and technology
Graphene
Lithium ion battery
Lithium vanadium fluorophosphate
Lithium-ion batteries
Materials
Nanoparticles
Nanostructure
Optimization
Title Nanosized LiVPO4F/graphene composite: A promising anode material for lithium ion batteries
URI https://dx.doi.org/10.1016/j.jpowsour.2013.11.095
https://www.proquest.com/docview/1524416722
https://www.proquest.com/docview/1753504765
Volume 251
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBele9kYY58saxs02Ktj1ZJteW-hNGQfdIOto-xFSPKZOmxJaBIGe9jf3p8Uu2vZWB_2aKND4u589zvrPhh7RYXXBCSSQDvyRBXK4ZMKua5WK8RuBJccu32eFNNT9fYsP9thR30tTEir7Gz_1qZHa929STtupsu2TT8JCWUD2oYVBgqJ5ddKlUHLR79-p3mEySrxJgHRUlh9rUp4NpotFz_CT_KQ4iVHoZtnmDPxdwd1f2lXYFuznXfxh-mO_mjykD3ogCQfb8_6iO3Q_DG7d6294BP2FaZzsWp_Us3ft18-flCTNPanhnnjIZU85GvRaz7m2APiBg0HQU0cKDYqJgei5cDp5-3mO4cAuYvdOBFcP2Wnk-PPR9Okm6WQeKWqddLYxlXWAS9I6apci7wWpOG-GlVLm5WUlaUWnioYQNWUpfQ1SQJV5unQ1lo-Y7vzxZyeM25r4SirCk9OKO-EbgABtNP2UPqiVjRgec9A47tG42HexTfTZ5TNTM94ExiPKMSA8QOWXtEtt602bqWoevmYG0pj4A9upR3eEOjVlqGYF7hKDNjLXsIGMgj3KHZOi83KAPIARBZllv1jDVQtF1DH_MV_HHKP3cVTlym0z3bXFxs6AAhau2HU8iG7M37zbnpyCfyJCYM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9swFBYlfdjGGLuy7NJpsFfXqiXbct9CWUjXLBusHWUvQpKPqcOWhCVhsF_fT44dWjrah73aPsicc_ydT9a5MPaBMq8JTCSCd6SRypTDJxVyXa1W2LsRQnLT7XOSjc7Up_P0fIcddbUwIa2yxf4Npjdo3V6JW23Gi7qOvwkJZwPbBgqDhYTy693QnSrtsd3B8closgXkMFylOUzAhikIXCkUnu5PF_M_4T95yPKS-6GhZxg18e8Y9XBhl9BctRl5cQO9m5A0fMwetVySDzav-4Tt0Owpe3Clw-Az9gPoOV_Wf6nk4_r71y9qGDctqoFwPGSTh5QtOuQDjjVgcchwCJTEQWQb3-QgtRxU_aJe_-KwIXdNQ07sr5-zs-HH06NR1I5TiLxSxSqqbOUK60AZpHRFqkVaCtKIYJUqpU1ySvJcC08FMFBVeS59SZIglXg6sKWWL1hvNp_RS8ZtKRwlRebJCeWd0BVYgHbaHkiflYr6LO0UaHzbazyMvPhpuqSyqekUb4LisRExUHyfxVu5xabbxp0SRWcfc81vDELCnbJ71wy6XTLU84JaiT5731nYwAbhKMXOaL5eGrAe8MgsT5JbnoGrpULlWfrqP17yHbs3Ov08NuPjyclrdh932sShN6y3-r2mt-BEK7fX-vwlAwUMNA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanosized+LiVPO4F%2Fgraphene+composite%3A+A+promising+anode+material+for+lithium+ion+batteries&rft.jtitle=Journal+of+power+sources&rft.au=JIEXI+WANG&rft.au=XINHAI+LI&rft.au=ZHIXING+WANG&rft.au=BIN+HUANG&rft.date=2014-04-01&rft.pub=Elsevier&rft.issn=0378-7753&rft.volume=251&rft.spage=325&rft.epage=330&rft_id=info:doi/10.1016%2Fj.jpowsour.2013.11.095&rft.externalDBID=n%2Fa&rft.externalDocID=28250740
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7753&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7753&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7753&client=summon