Nanosized LiVPO4F/graphene composite: A promising anode material for lithium ion batteries
This study first reports the synthesis of the nanosized LiVPO4F/graphene composite (LVPF/G). The LVPF/G composite is prepared by a facile mechanochemical approach. XRD results reveal that the prepared composite are well crystallized with triclinic LiVPO4F. SEM and TEM images demonstrate that the LiV...
Saved in:
Published in | Journal of power sources Vol. 251; pp. 325 - 330 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.04.2014
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study first reports the synthesis of the nanosized LiVPO4F/graphene composite (LVPF/G). The LVPF/G composite is prepared by a facile mechanochemical approach. XRD results reveal that the prepared composite are well crystallized with triclinic LiVPO4F. SEM and TEM images demonstrate that the LiVPO4F nanoparticles in the composite are well enwrapped by graphene. Used as anode material for lithium ion batteries, the prepared LVPF/G composite exhibits greatly improved electrochemical performance. Furthermore, the electrochemical properties the LVPF/G composite depend heavily on the discharge cut-off potential. When the cut-off potential is altered to 0.01 V vs. Li/Li+, it possesses the best electrochemical performance. Under such optimal charge–discharge condition (3–0.01 V vs. Li/Li+), it shows an initial charge capacity of 287 mAh g−1 at 0.1C rate (1C = 310 mA g−1) and shows no capacity fading after 100 cycles. It also exhibits good rate capability, delivering about 168 mAh g−1 at 10C rate.
[Display omitted]
•First synthesis of nanosized LiVPO4F/graphene (LVPF/G) composite.•First introduction of LVPF/G as anode material.•Altering the discharge cut-off potential to improve the performance of LVPF/G.•Superior cycle ability and rate capability delivered by LVPF/G at 3.0–0.01 V. |
---|---|
AbstractList | This study first reports the synthesis of the nanosized LiVPO4F/graphene composite (LVPF/G). The LVPF/G composite is prepared by a facile mechanochemical approach. XRD results reveal that the prepared composite are well crystallized with triclinic LiVPO4F. SEM and TEM images demonstrate that the LiVPO4F nanoparticles in the composite are well enwrapped by graphene. Used as anode material for lithium ion batteries, the prepared LVPF/G composite exhibits greatly improved electrochemical performance. Furthermore, the electrochemical properties the LVPF/G composite depend heavily on the discharge cut-off potential. When the cut-off potential is altered to 0.01 V vs. Li/Li+, it possesses the best electrochemical performance. Under such optimal charge–discharge condition (3–0.01 V vs. Li/Li+), it shows an initial charge capacity of 287 mAh g−1 at 0.1C rate (1C = 310 mA g−1) and shows no capacity fading after 100 cycles. It also exhibits good rate capability, delivering about 168 mAh g−1 at 10C rate.
[Display omitted]
•First synthesis of nanosized LiVPO4F/graphene (LVPF/G) composite.•First introduction of LVPF/G as anode material.•Altering the discharge cut-off potential to improve the performance of LVPF/G.•Superior cycle ability and rate capability delivered by LVPF/G at 3.0–0.01 V. This study first reports the synthesis of the nanosized LiVPO4F/graphene composite (LVPF/G). The LVPF/G composite is prepared by a facile mechanochemical approach. XRD results reveal that the prepared composite are well crystallized with triclinic LiVPO4F. SEM and TEM images demonstrate that the LiVPO4F nanoparticles in the composite are well enwrapped by graphene. Used as anode material for lithium ion batteries, the prepared LVPF/G composite exhibits greatly improved electrochemical performance. Furthermore, the electrochemical properties the LVPF/G composite depend heavily on the discharge cut-off potential. When the cut-off potential is altered to 0.01 V vs. Li/Li+, it possesses the best electrochemical performance. Under such optimal charge-discharge condition (3-0.01 V vs. Li/Li+), it shows an initial charge capacity of 287 mAh g-1 at 0.1C rate (1C = 310 mA g-1) and shows no capacity fading after 100 cycles. It also exhibits good rate capability, delivering about 168 mAh g-1 at 10C rate. |
Author | Huang, Bin Li, Xinhai Guo, Huajun Wang, Zhiguo Wang, Jiexi Wang, Zhixing |
Author_xml | – sequence: 1 givenname: Jiexi surname: Wang fullname: Wang, Jiexi – sequence: 2 givenname: Xinhai surname: Li fullname: Li, Xinhai email: xinhaili_csu@126.com – sequence: 3 givenname: Zhixing surname: Wang fullname: Wang, Zhixing – sequence: 4 givenname: Bin surname: Huang fullname: Huang, Bin – sequence: 5 givenname: Zhiguo surname: Wang fullname: Wang, Zhiguo – sequence: 6 givenname: Huajun surname: Guo fullname: Guo, Huajun email: hjguo_csu@163.com |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28250740$$DView record in Pascal Francis |
BookMark | eNqFkT1vFDEQhl0EiSTwF5AbJJrb-HO9iyiIooQgnQgFUNBYc97ZxKdde7F9IPj18emShuYqF_M845l5z8hJiAEJecNZwxlvL7bNdol_ctylRjAuG84b1usTcsqk6VbGaPmSnOW8ZYxxbtgp-fkFQsz-Hw507X98vVM3F_cJlgcMSF2cl1or-J5e0iXF2Wcf7mkVBqQzFEweJjrGRCdfHvxupj4GuoGyr2B-RV6MMGV8_fSek-8319-ublfru0-fry7XK6dUX1YjjJseNkZJKTe97pgeGHZMtqMaJAiDwpiOOey17NRojHQDSqyWcMhh6OQ5eXfoW0f8tcNcbB3U4TRBwLjLltetNVOm1cdRLZTirRGiom-fUMgOpjFBcD7bJfkZ0l8rOqGZUaxyHw6cSzHnhKN1vkCplygJ_GQ5s_tk7NY-J2P3yVjObU2m6u1_-vMPR8WPBxHraX97TDY7j8Hh4BO6Yofoj7V4BL_RsfE |
CODEN | JPSODZ |
CitedBy_id | crossref_primary_10_1016_j_ssi_2019_04_005 crossref_primary_10_1016_j_jallcom_2016_07_315 crossref_primary_10_1016_j_jelechem_2019_04_072 crossref_primary_10_1039_C6RA25997A crossref_primary_10_1016_j_apsusc_2020_145854 crossref_primary_10_1016_j_powtec_2016_03_054 crossref_primary_10_1007_s10800_016_1007_4 crossref_primary_10_1016_j_powtec_2017_09_005 crossref_primary_10_1002_aenm_201402225 crossref_primary_10_1002_celc_202000029 crossref_primary_10_1002_smll_202002701 crossref_primary_10_1016_j_jpowsour_2022_231024 crossref_primary_10_1016_j_electacta_2016_03_070 crossref_primary_10_1016_j_jpowsour_2016_06_058 crossref_primary_10_1115_1_4048938 crossref_primary_10_1002_celc_201700986 crossref_primary_10_1016_j_jallcom_2015_03_207 crossref_primary_10_1016_j_jallcom_2015_02_200 crossref_primary_10_1016_j_jpowsour_2016_02_083 crossref_primary_10_1007_s11581_017_2189_4 crossref_primary_10_1007_s10854_019_00916_x crossref_primary_10_1016_j_jallcom_2016_05_333 crossref_primary_10_1016_j_jallcom_2016_11_004 crossref_primary_10_1039_C9CC05190B crossref_primary_10_1016_j_jpowsour_2016_12_095 crossref_primary_10_1039_D0NR06614A crossref_primary_10_1016_j_jpowsour_2016_08_131 crossref_primary_10_1016_j_ceramint_2016_12_011 crossref_primary_10_1016_j_matchemphys_2016_07_023 crossref_primary_10_1016_j_scib_2017_03_026 crossref_primary_10_1016_j_ceramint_2015_03_090 crossref_primary_10_1039_C6RA13850K crossref_primary_10_1016_j_apsusc_2018_06_114 crossref_primary_10_1007_s11581_017_2387_0 crossref_primary_10_1016_j_jpowsour_2018_06_020 crossref_primary_10_1039_C7TA02956J crossref_primary_10_1016_j_jallcom_2014_10_059 crossref_primary_10_1039_C7RA04842D crossref_primary_10_1016_j_electacta_2019_06_028 crossref_primary_10_1002_adma_201603421 crossref_primary_10_1007_s11581_017_2073_2 crossref_primary_10_1016_j_ceramint_2016_11_016 crossref_primary_10_1016_S1003_6326_17_60132_8 crossref_primary_10_1016_j_matlet_2017_02_127 crossref_primary_10_1016_j_apsusc_2017_01_089 crossref_primary_10_1016_j_apsusc_2017_12_259 crossref_primary_10_1016_j_ceramint_2014_11_097 crossref_primary_10_1016_j_ceramint_2016_06_071 crossref_primary_10_1016_j_jpowsour_2016_08_088 crossref_primary_10_1016_j_jallcom_2016_12_038 crossref_primary_10_1016_j_ceramint_2016_06_030 crossref_primary_10_1016_j_jallcom_2016_01_101 crossref_primary_10_1016_j_ssi_2018_02_020 crossref_primary_10_1039_C6RA26790D crossref_primary_10_1007_s11581_017_1992_2 crossref_primary_10_1016_j_ceramint_2015_05_012 crossref_primary_10_1021_acsami_6b11670 crossref_primary_10_1016_j_cej_2017_03_146 crossref_primary_10_1002_aenm_202001449 crossref_primary_10_1016_j_electacta_2016_05_112 crossref_primary_10_1016_j_nanoen_2017_11_079 crossref_primary_10_1016_j_jallcom_2017_11_365 crossref_primary_10_1016_j_resconrec_2021_105802 crossref_primary_10_1016_j_ceramint_2016_06_086 crossref_primary_10_1002_cssc_201600370 crossref_primary_10_1016_S1452_3981_23_16143_8 crossref_primary_10_3389_fchem_2018_00283 crossref_primary_10_1002_aenm_201500400 crossref_primary_10_1016_j_ceramint_2015_07_136 crossref_primary_10_1016_j_jallcom_2016_04_240 |
Cites_doi | 10.1021/cm3003996 10.1021/nl904286r 10.1021/jp301508k 10.1016/j.jpowsour.2012.09.020 10.1007/s10008-012-1846-9 10.1016/j.jpowsour.2012.10.060 10.1039/c2nr11966h 10.1016/j.jpowsour.2007.09.119 10.1016/j.jpowsour.2011.10.144 10.1038/ncomms2705 10.1016/j.jallcom.2013.07.147 10.1149/1.1609998 10.1007/s10008-011-1512-7 10.1149/2.022208jes 10.1039/c2ta01338j 10.1016/j.jpowsour.2005.05.062 10.1021/cr3001884 10.1016/j.jpowsour.2009.11.006 10.1016/j.electacta.2012.12.095 10.1016/j.jpowsour.2009.01.007 10.1016/j.jpowsour.2005.03.126 10.1098/rsta.2010.0112 10.1149/1.1897352 10.1016/j.jpowsour.2012.02.013 10.1016/j.nanoen.2011.11.001 10.1016/j.jpowsour.2010.03.032 10.1016/S0378-7753(97)02575-5 10.1016/j.jpowsour.2006.01.067 10.1021/am402132u 10.1002/adma.201104634 10.1039/c2jm32183a 10.1016/j.jpowsour.2006.08.020 10.1039/c3ta12116j 10.1016/S1003-6326(10)60055-6 10.1016/j.electacta.2012.09.014 10.1021/ja01539a017 10.1021/cm201773n 10.1016/j.jpowsour.2006.12.013 |
ContentType | Journal Article |
Copyright | 2013 Elsevier B.V. 2015 INIST-CNRS |
Copyright_xml | – notice: 2013 Elsevier B.V. – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7ST C1K SOI 7SP 7SR 7SU 7TB 7U5 8FD FR3 JG9 KR7 L7M |
DOI | 10.1016/j.jpowsour.2013.11.095 |
DatabaseName | CrossRef Pascal-Francis Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Environmental Engineering Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Environment Abstracts Environmental Sciences and Pollution Management Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Environmental Engineering Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Materials Research Database Environment Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EndPage | 330 |
ExternalDocumentID | 28250740 10_1016_j_jpowsour_2013_11_095 S0378775313019381 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AATTM AAXKI AAXUO AAYWO ABFNM ABJNI ABMAC ABXDB ABXRA ACDAQ ACGFS ACRLP ACVFH ADBBV ADCNI ADECG ADEZE AEBSH AEIPS AEKER AENEX AEUPX AEZYN AFPUW AFRZQ AFTJW AFXIZ AFZHZ AGCQF AGHFR AGRNS AGUBO AGYEJ AHHHB AHIDL AIEXJ AIIUN AIKHN AITUG AJSZI AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LX7 LY6 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSH SSK SSM SSR SSZ T5K XPP ZMT ~G- 29L AAQXK AAYXX ABWVN ACNNM ACRPL ADMUD ADNMO AFJKZ AGQPQ AI. AIGII APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB G-2 HLY HVGLF HZ~ NDZJH R2- SAC SCB SCE SEW T9H VH1 VOH WUQ AACTN IQODW 7ST C1K SOI 7SP 7SR 7SU 7TB 7U5 8FD FR3 JG9 KR7 L7M |
ID | FETCH-LOGICAL-c449t-fafb9ab74333b95805d0e8036f4d3a27e27780ce95384f773cde3efaf2ce1ad83 |
IEDL.DBID | .~1 |
ISSN | 0378-7753 |
IngestDate | Tue Aug 05 10:53:29 EDT 2025 Fri Jul 11 07:12:01 EDT 2025 Wed Apr 02 07:25:25 EDT 2025 Tue Jul 01 04:23:02 EDT 2025 Thu Apr 24 23:05:50 EDT 2025 Thu Jul 17 01:59:50 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Anode material Lithium ion battery Cut-off potential Composite Graphene Lithium vanadium fluorophosphate Lithium ion batteries Lithium Fluophosphates Vanadium Fluophosphates Anode Secondary cell Nanostructure Electrode material Potential Composite material Composite electrode Modified material |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c449t-fafb9ab74333b95805d0e8036f4d3a27e27780ce95384f773cde3efaf2ce1ad83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1524416722 |
PQPubID | 23462 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1753504765 proquest_miscellaneous_1524416722 pascalfrancis_primary_28250740 crossref_citationtrail_10_1016_j_jpowsour_2013_11_095 crossref_primary_10_1016_j_jpowsour_2013_11_095 elsevier_sciencedirect_doi_10_1016_j_jpowsour_2013_11_095 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-04-01 |
PublicationDateYYYYMMDD | 2014-04-01 |
PublicationDate_xml | – month: 04 year: 2014 text: 2014-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Journal of power sources |
PublicationYear | 2014 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Barker, Saidi, Swoyer (bib12) 2003; 150 Tarascon (bib2) 2010; 368 Ma, Shao, Wu, Shui, Wang, Pan, Long, Ren, Shu (bib6) 2013; 5 Reddy, Madhavi, Subba Rao, Chowdari (bib40) 2006; 162 Jung, Lim, Kim (bib34) 2013; 1 Barker, Gover, Burns, Bryan, Saidi, Swoyer (bib31) 2005; 146 Li, Zhou, Gao, Yan (bib13) 2006; 160 Wang, Wang, Li, Guo, Wu, Zhang, Xiao (bib30) 2013; 87 Chen, Zhang, Wei (bib25) 2013; 2013 Wang, Li, Wang, Guo, Zhang, Xiong, He (bib18) 2013; 91 Aurbach, Zaban, Ein-Eli, Weissman, Chusid, Markovsky, Levi, Levi, Schechter, Granot (bib5) 1997; 68 Lu, Han, Li, Hua, Ouyang (bib1) 2013; 226 Zhong, Chen, Li, Zou, Liu (bib26) 2010; 20 Lung-Hao Hu, Wu, Lin, Khlobystov, Li (bib35) 2013; 4 Reddy, Subba Rao, Chowdari (bib14) 2010; 195 H, Offeman (bib28) 1958; 80 Chan, Ruffo, Hong, Cui (bib38) 2009; 189 Reddy, Subba Rao, Chowdari (bib10) 2013; 113 Wang, Wang, Li, Guo, Xiao, Huang, He (bib32) 2013; 17 Kosova, Devyatkina, Slobodyuk, Gutakovskii (bib21) 2013 Ellis, Ramesh, Davis, Goward, Nazar (bib23) 2011; 23 Wu, Zhou, Yin, Ren, Li, Cheng (bib24) 2012; 1 Sun, Xu, Jia, Ding, Liu, Chen (bib17) 2013; 1 Wu, Chen, Hng, Lou (bib11) 2012; 4 Edström, Herstedt, Abraham (bib39) 2006; 153 Datta, Kumta (bib8) 2007; 165 Han, Kim, Jo, Hwang (bib36) 2012; 116 de las Casas, Li (bib4) 2012; 208 Zheng, Zhang, Yang (bib16) 2012; 202 Mba, Masquelier, Suard, Croguennec (bib22) 2012; 24 Chen, Zhang, Sun (bib37) 2012; 22 Dresselhaus, Jorio, Hofmann, Dresselhaus, Saito (bib33) 2010; 10 Barker, Gover, Burns, Bryan (bib19) 2005; 8 Qie, Chen, Wang, Shao, Li, Yuan, Hu, Zhang, Huang (bib3) 2012; 24 Yi, Xie, Zhu, Zhu, Shen (bib7) 2013; 222 Mba, Croguennec, Basir, Barker, Masquelier (bib20) 2012; 159 Zheng, Li, Wang, Niu, Liu, Wu, Li, Li, Guo (bib27) 2010; 195 Qiao, Yang, Wang, Chen, Zhang, Liu, Wang (bib15) 2012; 16 Wang, Li, Wang, Guo, Li, He, Huang (bib29) 2013; 581 Lee, Kim, Kim, Lim, Lee (bib9) 2008; 176 Reddy (10.1016/j.jpowsour.2013.11.095_bib14) 2010; 195 Zhong (10.1016/j.jpowsour.2013.11.095_bib26) 2010; 20 Qiao (10.1016/j.jpowsour.2013.11.095_bib15) 2012; 16 Datta (10.1016/j.jpowsour.2013.11.095_bib8) 2007; 165 Ma (10.1016/j.jpowsour.2013.11.095_bib6) 2013; 5 Mba (10.1016/j.jpowsour.2013.11.095_bib22) 2012; 24 Jung (10.1016/j.jpowsour.2013.11.095_bib34) 2013; 1 Chen (10.1016/j.jpowsour.2013.11.095_bib37) 2012; 22 Chan (10.1016/j.jpowsour.2013.11.095_bib38) 2009; 189 Wang (10.1016/j.jpowsour.2013.11.095_bib29) 2013; 581 Tarascon (10.1016/j.jpowsour.2013.11.095_bib2) 2010; 368 Wu (10.1016/j.jpowsour.2013.11.095_bib11) 2012; 4 Edström (10.1016/j.jpowsour.2013.11.095_bib39) 2006; 153 Chen (10.1016/j.jpowsour.2013.11.095_bib25) 2013; 2013 Yi (10.1016/j.jpowsour.2013.11.095_bib7) 2013; 222 Wang (10.1016/j.jpowsour.2013.11.095_bib18) 2013; 91 Aurbach (10.1016/j.jpowsour.2013.11.095_bib5) 1997; 68 Lee (10.1016/j.jpowsour.2013.11.095_bib9) 2008; 176 Zheng (10.1016/j.jpowsour.2013.11.095_bib27) 2010; 195 Sun (10.1016/j.jpowsour.2013.11.095_bib17) 2013; 1 Lung-Hao Hu (10.1016/j.jpowsour.2013.11.095_bib35) 2013; 4 H (10.1016/j.jpowsour.2013.11.095_bib28) 1958; 80 Qie (10.1016/j.jpowsour.2013.11.095_bib3) 2012; 24 Li (10.1016/j.jpowsour.2013.11.095_bib13) 2006; 160 Wang (10.1016/j.jpowsour.2013.11.095_bib32) 2013; 17 Zheng (10.1016/j.jpowsour.2013.11.095_bib16) 2012; 202 Wu (10.1016/j.jpowsour.2013.11.095_bib24) 2012; 1 Reddy (10.1016/j.jpowsour.2013.11.095_bib10) 2013; 113 Dresselhaus (10.1016/j.jpowsour.2013.11.095_bib33) 2010; 10 Lu (10.1016/j.jpowsour.2013.11.095_bib1) 2013; 226 Barker (10.1016/j.jpowsour.2013.11.095_bib19) 2005; 8 Barker (10.1016/j.jpowsour.2013.11.095_bib31) 2005; 146 Kosova (10.1016/j.jpowsour.2013.11.095_bib21) 2013 Reddy (10.1016/j.jpowsour.2013.11.095_bib40) 2006; 162 Ellis (10.1016/j.jpowsour.2013.11.095_bib23) 2011; 23 Han (10.1016/j.jpowsour.2013.11.095_bib36) 2012; 116 Mba (10.1016/j.jpowsour.2013.11.095_bib20) 2012; 159 de las Casas (10.1016/j.jpowsour.2013.11.095_bib4) 2012; 208 Wang (10.1016/j.jpowsour.2013.11.095_bib30) 2013; 87 Barker (10.1016/j.jpowsour.2013.11.095_bib12) 2003; 150 |
References_xml | – volume: 23 start-page: 5138 year: 2011 end-page: 5148 ident: bib23 publication-title: Chem. Mater – volume: 189 start-page: 1132 year: 2009 end-page: 1140 ident: bib38 publication-title: J. Power Sources – volume: 159 start-page: A1171 year: 2012 end-page: A1175 ident: bib20 publication-title: J. Electrochem. Soc. – volume: 22 start-page: 15080 year: 2012 end-page: 15084 ident: bib37 publication-title: J. Mater. Chem. – volume: 20 start-page: s275 year: 2010 end-page: s278 ident: bib26 publication-title: T. Nonferr. Metal. Soc – volume: 195 start-page: 2935 year: 2010 end-page: 2938 ident: bib27 publication-title: J.Power Sources – volume: 581 start-page: 836 year: 2013 end-page: 842 ident: bib29 publication-title: J. Alloy. Compd – volume: 208 start-page: 74 year: 2012 end-page: 85 ident: bib4 publication-title: J. Power Sources – volume: 368 start-page: 3227 year: 2010 end-page: 3241 ident: bib2 publication-title: Philos. T. Roy. Soc. A – volume: 87 start-page: 224 year: 2013 end-page: 229 ident: bib30 publication-title: Electrochim. Acta – volume: 160 start-page: 633 year: 2006 end-page: 637 ident: bib13 publication-title: J. Power Sources – volume: 91 start-page: 75 year: 2013 end-page: 81 ident: bib18 publication-title: Electrochim. Acta – volume: 16 start-page: 1211 year: 2012 end-page: 1217 ident: bib15 publication-title: J. Solid State Electr – volume: 24 start-page: 1223 year: 2012 end-page: 1234 ident: bib22 publication-title: Chem. Mater – volume: 5 start-page: 8615 year: 2013 end-page: 8627 ident: bib6 publication-title: ACS Appl. Mater. Interfaces – volume: 116 start-page: 7269 year: 2012 end-page: 7279 ident: bib36 publication-title: J. Phys. Chem. C – volume: 150 start-page: A1394 year: 2003 end-page: A1398 ident: bib12 publication-title: J. Electrochem. Soc. – volume: 226 start-page: 272 year: 2013 end-page: 288 ident: bib1 publication-title: J. Power Sources – volume: 146 start-page: 516 year: 2005 end-page: 520 ident: bib31 publication-title: J. Power Sources – volume: 17 start-page: 1 year: 2013 end-page: 8 ident: bib32 publication-title: J. Solid State Electr – volume: 202 start-page: 380 year: 2012 end-page: 383 ident: bib16 publication-title: J. Power Sources – volume: 68 start-page: 91 year: 1997 end-page: 98 ident: bib5 publication-title: J. Power Sources – year: 2013 ident: bib21 publication-title: J. Solid State Electr – volume: 4 start-page: 1687 year: 2013 ident: bib35 publication-title: Nat. Commun – volume: 8 start-page: A285 year: 2005 end-page: A287 ident: bib19 publication-title: Electrochem. ST. Lett. – volume: 153 start-page: 380 year: 2006 end-page: 384 ident: bib39 publication-title: J. Power Sources – volume: 176 start-page: 353 year: 2008 end-page: 358 ident: bib9 publication-title: J. Power Sources – volume: 222 start-page: 448 year: 2013 end-page: 454 ident: bib7 publication-title: J. Power Sources – volume: 4 start-page: 2526 year: 2012 end-page: 2542 ident: bib11 publication-title: Nanoscale – volume: 2013 start-page: 1 year: 2013 end-page: 8 ident: bib25 publication-title: J. Nanomater – volume: 1 start-page: 107 year: 2012 end-page: 131 ident: bib24 publication-title: Nano Energy – volume: 1 start-page: 2501 year: 2013 end-page: 2507 ident: bib17 publication-title: J. Mater. Chem. A – volume: 162 start-page: 1312 year: 2006 end-page: 1321 ident: bib40 publication-title: J. Power Sources – volume: 113 start-page: 5364 year: 2013 end-page: 5457 ident: bib10 publication-title: Chem. Rev. – volume: 24 start-page: 2047 year: 2012 end-page: 2050 ident: bib3 publication-title: Adv. Mater – volume: 195 start-page: 5768 year: 2010 end-page: 5774 ident: bib14 publication-title: J. Power Sources – volume: 1 start-page: 11350 year: 2013 end-page: 11354 ident: bib34 publication-title: J. Mater. Chem. A – volume: 10 start-page: 751 year: 2010 end-page: 758 ident: bib33 publication-title: Nano Lett. – volume: 165 start-page: 368 year: 2007 end-page: 378 ident: bib8 publication-title: J. Power Sources – volume: 80 start-page: 1339 year: 1958 ident: bib28 publication-title: J. Am. Chem. Soc – year: 2013 ident: 10.1016/j.jpowsour.2013.11.095_bib21 publication-title: J. Solid State Electr – volume: 24 start-page: 1223 year: 2012 ident: 10.1016/j.jpowsour.2013.11.095_bib22 publication-title: Chem. Mater doi: 10.1021/cm3003996 – volume: 10 start-page: 751 year: 2010 ident: 10.1016/j.jpowsour.2013.11.095_bib33 publication-title: Nano Lett. doi: 10.1021/nl904286r – volume: 116 start-page: 7269 year: 2012 ident: 10.1016/j.jpowsour.2013.11.095_bib36 publication-title: J. Phys. Chem. C doi: 10.1021/jp301508k – volume: 222 start-page: 448 year: 2013 ident: 10.1016/j.jpowsour.2013.11.095_bib7 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.09.020 – volume: 17 start-page: 1 year: 2013 ident: 10.1016/j.jpowsour.2013.11.095_bib32 publication-title: J. Solid State Electr doi: 10.1007/s10008-012-1846-9 – volume: 226 start-page: 272 year: 2013 ident: 10.1016/j.jpowsour.2013.11.095_bib1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.10.060 – volume: 4 start-page: 2526 year: 2012 ident: 10.1016/j.jpowsour.2013.11.095_bib11 publication-title: Nanoscale doi: 10.1039/c2nr11966h – volume: 176 start-page: 353 year: 2008 ident: 10.1016/j.jpowsour.2013.11.095_bib9 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2007.09.119 – volume: 202 start-page: 380 year: 2012 ident: 10.1016/j.jpowsour.2013.11.095_bib16 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2011.10.144 – volume: 4 start-page: 1687 year: 2013 ident: 10.1016/j.jpowsour.2013.11.095_bib35 publication-title: Nat. Commun doi: 10.1038/ncomms2705 – volume: 581 start-page: 836 year: 2013 ident: 10.1016/j.jpowsour.2013.11.095_bib29 publication-title: J. Alloy. Compd doi: 10.1016/j.jallcom.2013.07.147 – volume: 150 start-page: A1394 year: 2003 ident: 10.1016/j.jpowsour.2013.11.095_bib12 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1609998 – volume: 16 start-page: 1211 year: 2012 ident: 10.1016/j.jpowsour.2013.11.095_bib15 publication-title: J. Solid State Electr doi: 10.1007/s10008-011-1512-7 – volume: 159 start-page: A1171 year: 2012 ident: 10.1016/j.jpowsour.2013.11.095_bib20 publication-title: J. Electrochem. Soc. doi: 10.1149/2.022208jes – volume: 1 start-page: 2501 year: 2013 ident: 10.1016/j.jpowsour.2013.11.095_bib17 publication-title: J. Mater. Chem. A doi: 10.1039/c2ta01338j – volume: 2013 start-page: 1 year: 2013 ident: 10.1016/j.jpowsour.2013.11.095_bib25 publication-title: J. Nanomater – volume: 153 start-page: 380 year: 2006 ident: 10.1016/j.jpowsour.2013.11.095_bib39 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2005.05.062 – volume: 113 start-page: 5364 year: 2013 ident: 10.1016/j.jpowsour.2013.11.095_bib10 publication-title: Chem. Rev. doi: 10.1021/cr3001884 – volume: 195 start-page: 2935 year: 2010 ident: 10.1016/j.jpowsour.2013.11.095_bib27 publication-title: J.Power Sources doi: 10.1016/j.jpowsour.2009.11.006 – volume: 91 start-page: 75 year: 2013 ident: 10.1016/j.jpowsour.2013.11.095_bib18 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2012.12.095 – volume: 189 start-page: 1132 year: 2009 ident: 10.1016/j.jpowsour.2013.11.095_bib38 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2009.01.007 – volume: 146 start-page: 516 year: 2005 ident: 10.1016/j.jpowsour.2013.11.095_bib31 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2005.03.126 – volume: 368 start-page: 3227 year: 2010 ident: 10.1016/j.jpowsour.2013.11.095_bib2 publication-title: Philos. T. Roy. Soc. A doi: 10.1098/rsta.2010.0112 – volume: 8 start-page: A285 year: 2005 ident: 10.1016/j.jpowsour.2013.11.095_bib19 publication-title: Electrochem. ST. Lett. doi: 10.1149/1.1897352 – volume: 208 start-page: 74 year: 2012 ident: 10.1016/j.jpowsour.2013.11.095_bib4 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.02.013 – volume: 1 start-page: 107 year: 2012 ident: 10.1016/j.jpowsour.2013.11.095_bib24 publication-title: Nano Energy doi: 10.1016/j.nanoen.2011.11.001 – volume: 195 start-page: 5768 year: 2010 ident: 10.1016/j.jpowsour.2013.11.095_bib14 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.03.032 – volume: 68 start-page: 91 year: 1997 ident: 10.1016/j.jpowsour.2013.11.095_bib5 publication-title: J. Power Sources doi: 10.1016/S0378-7753(97)02575-5 – volume: 160 start-page: 633 year: 2006 ident: 10.1016/j.jpowsour.2013.11.095_bib13 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2006.01.067 – volume: 5 start-page: 8615 year: 2013 ident: 10.1016/j.jpowsour.2013.11.095_bib6 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am402132u – volume: 24 start-page: 2047 year: 2012 ident: 10.1016/j.jpowsour.2013.11.095_bib3 publication-title: Adv. Mater doi: 10.1002/adma.201104634 – volume: 22 start-page: 15080 year: 2012 ident: 10.1016/j.jpowsour.2013.11.095_bib37 publication-title: J. Mater. Chem. doi: 10.1039/c2jm32183a – volume: 162 start-page: 1312 year: 2006 ident: 10.1016/j.jpowsour.2013.11.095_bib40 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2006.08.020 – volume: 1 start-page: 11350 year: 2013 ident: 10.1016/j.jpowsour.2013.11.095_bib34 publication-title: J. Mater. Chem. A doi: 10.1039/c3ta12116j – volume: 20 start-page: s275 year: 2010 ident: 10.1016/j.jpowsour.2013.11.095_bib26 publication-title: T. Nonferr. Metal. Soc doi: 10.1016/S1003-6326(10)60055-6 – volume: 87 start-page: 224 year: 2013 ident: 10.1016/j.jpowsour.2013.11.095_bib30 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2012.09.014 – volume: 80 start-page: 1339 year: 1958 ident: 10.1016/j.jpowsour.2013.11.095_bib28 publication-title: J. Am. Chem. Soc doi: 10.1021/ja01539a017 – volume: 23 start-page: 5138 year: 2011 ident: 10.1016/j.jpowsour.2013.11.095_bib23 publication-title: Chem. Mater doi: 10.1021/cm201773n – volume: 165 start-page: 368 year: 2007 ident: 10.1016/j.jpowsour.2013.11.095_bib8 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2006.12.013 |
SSID | ssj0001170 |
Score | 2.3990843 |
Snippet | This study first reports the synthesis of the nanosized LiVPO4F/graphene composite (LVPF/G). The LVPF/G composite is prepared by a facile mechanochemical... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 325 |
SubjectTerms | Anode material Anodes Applied sciences Composite Composite materials Cut-off Cut-off potential Direct energy conversion and energy accumulation Electrical engineering. Electrical power engineering Electrical power engineering Electrochemical analysis Electrochemical conversion: primary and secondary batteries, fuel cells Exact sciences and technology Graphene Lithium ion battery Lithium vanadium fluorophosphate Lithium-ion batteries Materials Nanoparticles Nanostructure Optimization |
Title | Nanosized LiVPO4F/graphene composite: A promising anode material for lithium ion batteries |
URI | https://dx.doi.org/10.1016/j.jpowsour.2013.11.095 https://www.proquest.com/docview/1524416722 https://www.proquest.com/docview/1753504765 |
Volume | 251 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBele9kYY58saxs02Ktj1ZJteW-hNGQfdIOto-xFSPKZOmxJaBIGe9jf3p8Uu2vZWB_2aKND4u589zvrPhh7RYXXBCSSQDvyRBXK4ZMKua5WK8RuBJccu32eFNNT9fYsP9thR30tTEir7Gz_1qZHa929STtupsu2TT8JCWUD2oYVBgqJ5ddKlUHLR79-p3mEySrxJgHRUlh9rUp4NpotFz_CT_KQ4iVHoZtnmDPxdwd1f2lXYFuznXfxh-mO_mjykD3ogCQfb8_6iO3Q_DG7d6294BP2FaZzsWp_Us3ft18-flCTNPanhnnjIZU85GvRaz7m2APiBg0HQU0cKDYqJgei5cDp5-3mO4cAuYvdOBFcP2Wnk-PPR9Okm6WQeKWqddLYxlXWAS9I6apci7wWpOG-GlVLm5WUlaUWnioYQNWUpfQ1SQJV5unQ1lo-Y7vzxZyeM25r4SirCk9OKO-EbgABtNP2UPqiVjRgec9A47tG42HexTfTZ5TNTM94ExiPKMSA8QOWXtEtt602bqWoevmYG0pj4A9upR3eEOjVlqGYF7hKDNjLXsIGMgj3KHZOi83KAPIARBZllv1jDVQtF1DH_MV_HHKP3cVTlym0z3bXFxs6AAhau2HU8iG7M37zbnpyCfyJCYM |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9swFBYlfdjGGLuy7NJpsFfXqiXbct9CWUjXLBusHWUvQpKPqcOWhCVhsF_fT44dWjrah73aPsicc_ydT9a5MPaBMq8JTCSCd6SRypTDJxVyXa1W2LsRQnLT7XOSjc7Up_P0fIcddbUwIa2yxf4Npjdo3V6JW23Gi7qOvwkJZwPbBgqDhYTy693QnSrtsd3B8closgXkMFylOUzAhikIXCkUnu5PF_M_4T95yPKS-6GhZxg18e8Y9XBhl9BctRl5cQO9m5A0fMwetVySDzav-4Tt0Owpe3Clw-Az9gPoOV_Wf6nk4_r71y9qGDctqoFwPGSTh5QtOuQDjjVgcchwCJTEQWQb3-QgtRxU_aJe_-KwIXdNQ07sr5-zs-HH06NR1I5TiLxSxSqqbOUK60AZpHRFqkVaCtKIYJUqpU1ySvJcC08FMFBVeS59SZIglXg6sKWWL1hvNp_RS8ZtKRwlRebJCeWd0BVYgHbaHkiflYr6LO0UaHzbazyMvPhpuqSyqekUb4LisRExUHyfxVu5xabbxp0SRWcfc81vDELCnbJ71wy6XTLU84JaiT5731nYwAbhKMXOaL5eGrAe8MgsT5JbnoGrpULlWfrqP17yHbs3Ov08NuPjyclrdh932sShN6y3-r2mt-BEK7fX-vwlAwUMNA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanosized+LiVPO4F%2Fgraphene+composite%3A+A+promising+anode+material+for+lithium+ion+batteries&rft.jtitle=Journal+of+power+sources&rft.au=JIEXI+WANG&rft.au=XINHAI+LI&rft.au=ZHIXING+WANG&rft.au=BIN+HUANG&rft.date=2014-04-01&rft.pub=Elsevier&rft.issn=0378-7753&rft.volume=251&rft.spage=325&rft.epage=330&rft_id=info:doi/10.1016%2Fj.jpowsour.2013.11.095&rft.externalDBID=n%2Fa&rft.externalDocID=28250740 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7753&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7753&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7753&client=summon |