Glutathione transferase Omega 1 is required for the lipopolysaccharide-stimulated induction of NADPH oxidase 1 and the production of reactive oxygen species in macrophages
Bacterial lipopolysaccharide (LPS) stimulation of macrophages and inflammation via the Toll-like receptor 4 (TLR4) signaling pathway through NF-κΒ generates reactive oxygen species (ROS) and proinflammatory cytokines such as IL-1β, IL-6, and TNFα. Because glutathione transferase Omega 1-1 (GSTO1-1)...
Saved in:
Published in | Free radical biology & medicine Vol. 73; pp. 318 - 327 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.08.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Bacterial lipopolysaccharide (LPS) stimulation of macrophages and inflammation via the Toll-like receptor 4 (TLR4) signaling pathway through NF-κΒ generates reactive oxygen species (ROS) and proinflammatory cytokines such as IL-1β, IL-6, and TNFα. Because glutathione transferase Omega 1-1 (GSTO1-1) can catalyze redox reactions such as the deglutathionylation of proteins and has also been implicated in the release of IL-1β we investigated its role in the development of LPS-mediated inflammation. Our data show that shRNA knockdown of GSTO1-1 in macrophage-like J774.1A cells blocks the expression of NADPH oxidase 1 and the generation of ROS after LPS stimulation. Similar results were obtained with a GSTO1-1 inhibitor. To maintain high ROS levels during an inflammatory response, LPS stimulation causes the suppression of enzymes such as catalase and glutathione peroxidase that protect against oxidative stress. The knockdown of GSTO1-1 also attenuates this response. Our data indicate that GSTO1-1 needs to be catalytically active and mediates its effects on the LPS/TLR4 inflammatory pathway upstream of NF-κΒ. These data suggest that GSTO1-1 is a novel target for anti-inflammatory intervention.
[Display omitted]
•GSTO1-1 regulates LPS-stimulated reactive oxygen species generation via TLR4.•GSTO1-1 decreases global protein glutathionylation levels in J774.1A macrophages.•NF-κB nuclear translocation is blocked in GSTO1-1-deficient J774.1A cells. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0891-5849 1873-4596 1873-4596 |
DOI: | 10.1016/j.freeradbiomed.2014.05.020 |