Effect of Sn on the microstructure and properties of biodegradable Mg-1.0Zn-0.3Zr magnesium alloy
In order to prepare a new biodegradable magnesium alloy with high biosafety, better mechanical properties, and lower degradation rate, in this paper, the effect of the non-toxic element Sn (0%∼2%, mass%) on the microstructure, mechanical properties, and corrosion resistance of the Mg-1.0Zn-0.3Zr all...
Saved in:
Published in | Materials research express Vol. 11; no. 11; pp. 116522 - 116532 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Bristol
IOP Publishing
01.11.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In order to prepare a new biodegradable magnesium alloy with high biosafety, better mechanical properties, and lower degradation rate, in this paper, the effect of the non-toxic element Sn (0%∼2%, mass%) on the microstructure, mechanical properties, and corrosion resistance of the Mg-1.0Zn-0.3Zr alloy was investigated using optical microscopy, scanning electron microscopy, x-ray diffraction, tensile testing, and corrosion experiments. The results indicated that the addition of Sn to the alloy resulted in the formation of the Mg
2
Sn phase, which improved the mechanical properties of the alloy. However, a higher concentration of this phase and its continuous distribution along the grain boundaries decreased the alloy’s corrosion resistance. The mechanical properties and corrosion resistance of the alloy exhibited an increasing trend with the increase of Sn content, followed by a decreasing trend. At an Sn content of 1%, the alloy demonstrated better mechanical properties and corrosion resistance simultaneously. The yield strength, tensile strength, and elongation of the alloy were 114 ± 2 MPa, 164 ± 5 MPa, and 13.3 ± 0.1%, respectively. Additionally, the corrosion rate of the alloy was only 0.61 mm y
−1
after being immersed in simulated body fluids for 120 h. These properties represent a significant improvement over those of the Mg-1.0Zn-0.3Zr alloy. Our results indicate that the addition of an appropriate amount of Sn element can improve both the mechanical properties and corrosion resistance of the alloy, supporting the development of new biodegradable magnesium alloys. |
---|---|
AbstractList | In order to prepare a new biodegradable magnesium alloy with high biosafety, better mechanical properties, and lower degradation rate, in this paper, the effect of the non-toxic element Sn (0%∼2%, mass%) on the microstructure, mechanical properties, and corrosion resistance of the Mg-1.0Zn-0.3Zr alloy was investigated using optical microscopy, scanning electron microscopy, x-ray diffraction, tensile testing, and corrosion experiments. The results indicated that the addition of Sn to the alloy resulted in the formation of the Mg _2 Sn phase, which improved the mechanical properties of the alloy. However, a higher concentration of this phase and its continuous distribution along the grain boundaries decreased the alloy’s corrosion resistance. The mechanical properties and corrosion resistance of the alloy exhibited an increasing trend with the increase of Sn content, followed by a decreasing trend. At an Sn content of 1%, the alloy demonstrated better mechanical properties and corrosion resistance simultaneously. The yield strength, tensile strength, and elongation of the alloy were 114 ± 2 MPa, 164 ± 5 MPa, and 13.3 ± 0.1%, respectively. Additionally, the corrosion rate of the alloy was only 0.61 mm y ^−1 after being immersed in simulated body fluids for 120 h. These properties represent a significant improvement over those of the Mg-1.0Zn-0.3Zr alloy. Our results indicate that the addition of an appropriate amount of Sn element can improve both the mechanical properties and corrosion resistance of the alloy, supporting the development of new biodegradable magnesium alloys. In order to prepare a new biodegradable magnesium alloy with high biosafety, better mechanical properties, and lower degradation rate, in this paper, the effect of the non-toxic element Sn (0%∼2%, mass%) on the microstructure, mechanical properties, and corrosion resistance of the Mg-1.0Zn-0.3Zr alloy was investigated using optical microscopy, scanning electron microscopy, x-ray diffraction, tensile testing, and corrosion experiments. The results indicated that the addition of Sn to the alloy resulted in the formation of the Mg 2 Sn phase, which improved the mechanical properties of the alloy. However, a higher concentration of this phase and its continuous distribution along the grain boundaries decreased the alloy’s corrosion resistance. The mechanical properties and corrosion resistance of the alloy exhibited an increasing trend with the increase of Sn content, followed by a decreasing trend. At an Sn content of 1%, the alloy demonstrated better mechanical properties and corrosion resistance simultaneously. The yield strength, tensile strength, and elongation of the alloy were 114 ± 2 MPa, 164 ± 5 MPa, and 13.3 ± 0.1%, respectively. Additionally, the corrosion rate of the alloy was only 0.61 mm y −1 after being immersed in simulated body fluids for 120 h. These properties represent a significant improvement over those of the Mg-1.0Zn-0.3Zr alloy. Our results indicate that the addition of an appropriate amount of Sn element can improve both the mechanical properties and corrosion resistance of the alloy, supporting the development of new biodegradable magnesium alloys. In order to prepare a new biodegradable magnesium alloy with high biosafety, better mechanical properties, and lower degradation rate, in this paper, the effect of the non-toxic element Sn (0%∼2%, mass%) on the microstructure, mechanical properties, and corrosion resistance of the Mg-1.0Zn-0.3Zr alloy was investigated using optical microscopy, scanning electron microscopy, x-ray diffraction, tensile testing, and corrosion experiments. The results indicated that the addition of Sn to the alloy resulted in the formation of the Mg2Sn phase, which improved the mechanical properties of the alloy. However, a higher concentration of this phase and its continuous distribution along the grain boundaries decreased the alloy’s corrosion resistance. The mechanical properties and corrosion resistance of the alloy exhibited an increasing trend with the increase of Sn content, followed by a decreasing trend. At an Sn content of 1%, the alloy demonstrated better mechanical properties and corrosion resistance simultaneously. The yield strength, tensile strength, and elongation of the alloy were 114 ± 2 MPa, 164 ± 5 MPa, and 13.3 ± 0.1%, respectively. Additionally, the corrosion rate of the alloy was only 0.61 mm y−1 after being immersed in simulated body fluids for 120 h. These properties represent a significant improvement over those of the Mg-1.0Zn-0.3Zr alloy. Our results indicate that the addition of an appropriate amount of Sn element can improve both the mechanical properties and corrosion resistance of the alloy, supporting the development of new biodegradable magnesium alloys. |
Author | Zhao, Fei Li, Huan Yan, Chengqi Song, Beibei Mao, Xiangshan |
Author_xml | – sequence: 1 givenname: Fei orcidid: 0009-0005-1306-0533 surname: Zhao fullname: Zhao, Fei organization: Anyang Institute of Technology School of Mechanical Engineering, Anyang, People’s Republic of China – sequence: 2 givenname: Huan surname: Li fullname: Li, Huan organization: Anyang Institute of Technology School of Mechanical Engineering, Anyang, People’s Republic of China – sequence: 3 givenname: Chengqi orcidid: 0000-0003-0487-9297 surname: Yan fullname: Yan, Chengqi organization: Anyang Institute of Technology School of Mechanical Engineering, Anyang, People’s Republic of China – sequence: 4 givenname: Beibei surname: Song fullname: Song, Beibei organization: Anyang Product Quality Inspection and Test Center , Anyang, People’s Republic of China – sequence: 5 givenname: Xiangshan surname: Mao fullname: Mao, Xiangshan organization: Anyang Institute of Technology School of Mechanical Engineering, Anyang, People’s Republic of China |
BookMark | eNp9Uc9r1kAQXaSCtfbuccGLB_N1fyc5Sqm2UOlBe-ll2R-zn_uRZONmA_a_N2msimhhYIbhvcebNy_R0ZAGQOg1JTtKmuaMEckrKlt6ZnwrPH2Gjn-tjv6YX6DTaToQQljdcsnUMTIXIYArOAX8ecBpwOUr4D66nKaSZ1fmDNgMHo85jZBLhGmF2pg87LPxxnaAP-0ruiN3Q0V2_C7j3uwHmOLcY9N16f4Veh5MN8Hpz36Cbj9cfDm_rK5vPl6dv7-unBBtqULDFefUhiYQsISCk0YJ6SyrLUAQ3kNtBWdKqNBQ6iinsgZhlGktcYrxE3S16fpkDnrMsTf5XicT9cMi5b02ywGuA81Yu6Zkpa-lCF4ZKVTja-v8ot62zaL1ZtNazv42w1T0Ic15WOxrTrkgSlIqF5TaUGtaU4agXSymxDSUbGKnKdHrd_Qav17j19t3FiL5i_ho9wnK240S0_jbTJ-_a0q3UpIxPfqwQN_9A_pf5R-Cna1r |
CitedBy_id | crossref_primary_10_1007_s42247_025_01073_0 |
Cites_doi | 10.1016/j.jcms.2017.09.016 10.1088/2053-1591/ab4b9d 10.1016/j.jmbbm.2011.05.026 10.1002/jbm.a.34795 10.1016/j.msec.2020.111093 10.1016/j.matdes.2014.12.041 10.1016/j.surfcoat.2021.127381 10.1016/j.scriptamat.2006.04.005 10.1016/j.msec.2012.07.042 10.1002/adem.201901360 10.1088/2053-1591/ad1354 10.1016/j.bioactmat.2016.12.002 10.3390/ma12071049 10.1016/j.jallcom.2018.08.141 10.1016/j.corsci.2011.05.035 10.1115/1.4062793 10.1016/j.bbmt.2017.07.014 10.1016/j.jallcom.2024.174615 10.1093/rb/rbw003 10.1016/j.jmbbm.2014.05.024 10.1016/j.mseb.2011.09.042 10.1016/j.electacta.2018.11.118 10.1016/j.corsci.2009.05.031 10.1016/j.jallcom.2021.161964 10.1088/2053-1591/ad14bf 10.1016/j.actbio.2019.12.001 10.1016/j.actbio.2014.07.005 10.1177/0885328219834656 10.1016/j.jmst.2019.04.048 10.3390/jfb13040179 10.5006/2282 10.1149/1945-7111/abab27 10.3390/ijms19010024 10.1016/j.matdes.2019.108259 10.1016/j.corsci.2012.03.030 10.1002/adem.202201715 10.1016/j.jma.2020.08.016 10.1016/j.mser.2014.01.001 10.1016/j.calphad.2022.102524 |
ContentType | Journal Article |
Copyright | 2024 The Author(s). Published by IOP Publishing Ltd 2024 The Author(s). Published by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Author(s). Published by IOP Publishing Ltd – notice: 2024 The Author(s). Published by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | O3W TSCCA AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.1088/2053-1591/ad94d1 |
DatabaseName | Institute of Physics Open Access Journals (Activated by CARLI) IOPscience (Open Access) CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Materials Science Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: O3W name: Institute of Physics Open Access Journals (Activated by CARLI) url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2053-1591 |
ExternalDocumentID | oai_doaj_org_article_22994d1b5d754fd6a5468d7bcd646998 10_1088_2053_1591_ad94d1 mrxad94d1 |
GrantInformation_xml | – fundername: Doctoral Research Initiation Fund of Anyang Institute of Technology sequence: 0 grantid: BSJ2023009 – fundername: Science and Technology Project of Anyang City sequence: 0 grantid: 2021C01SF044 |
GroupedDBID | AAGCD AAJIO ABHWH ABJCF ACGFS ACHIP AFKRA AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT BENPR BGLVJ CCPQU CEBXE CJUJL CRLBU EBS GROUPED_DOAJ HCIFZ IIPPG IJHAN IOP IZVLO KB. KOT M~E N5L O3W OK1 PDBOC PIMPY PJBAE RIN ROL RPA TSCCA AAYXX ADEQX AOAED CITATION PHGZM PHGZT 8FE 8FG ABUWG AZQEC D1I DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c449t-f836331bf8f0eb01ec5a645cb27beef4dde7b432646f811c13157e4a6a9b0c623 |
IEDL.DBID | O3W |
ISSN | 2053-1591 |
IngestDate | Wed Aug 27 01:30:05 EDT 2025 Fri Jul 25 11:46:22 EDT 2025 Thu Apr 24 22:59:41 EDT 2025 Tue Jul 01 04:26:27 EDT 2025 Thu Dec 05 13:05:55 EST 2024 Thu Dec 05 13:05:52 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c449t-f836331bf8f0eb01ec5a645cb27beef4dde7b432646f811c13157e4a6a9b0c623 |
Notes | MRX-130033.R1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0487-9297 0009-0005-1306-0533 |
OpenAccessLink | https://iopscience.iop.org/article/10.1088/2053-1591/ad94d1 |
PQID | 3134065115 |
PQPubID | 4916459 |
PageCount | 11 |
ParticipantIDs | proquest_journals_3134065115 doaj_primary_oai_doaj_org_article_22994d1b5d754fd6a5468d7bcd646998 crossref_primary_10_1088_2053_1591_ad94d1 iop_journals_10_1088_2053_1591_ad94d1 crossref_citationtrail_10_1088_2053_1591_ad94d1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-11-01 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Bristol |
PublicationPlace_xml | – name: Bristol |
PublicationTitle | Materials research express |
PublicationTitleAbbrev | MRX |
PublicationTitleAlternate | Mater. Res. Express |
PublicationYear | 2024 |
Publisher | IOP Publishing |
Publisher_xml | – sequence: 0 name: IOP Publishing – name: IOP Publishing |
References | Torroni (mrxad94d1bib17) 2017; 45 Yang (mrxad94d1bib19) 2018; 19 Gong (mrxad94d1bib31) 2023; 52 Yang (mrxad94d1bib44) 2020; 167 Chen (mrxad94d1bib10) 2014; 10 Zhou (mrxad94d1bib42) 2021; 421 Xie (mrxad94d1bib8) 2021; 9 Qi (mrxad94d1bib12) 2014; 102 Liu (mrxad94d1bib33) 2022; 891 Liu (mrxad94d1bib41) 2019; 770 Ding (mrxad94d1bib5) 2016; 3 Imus (mrxad94d1bib13) 2017; 23 Chen (mrxad94d1bib14) 2017; 2 Xu (mrxad94d1bib35) 2019; 6 Gong (mrxad94d1bib3) 2023; 52 Sasaki (mrxad94d1bib37) 2006; 55 Gong (mrxad94d1bib4) 2023; 25 Munir (mrxad94d1bib6) 2020; 102 Yang (mrxad94d1bib39) 2023; 80 Huang (mrxad94d1bib7) 2023; 10 Song (mrxad94d1bib26) 2009; 51 Cai (mrxad94d1bib20) 2012; 32 Chen (mrxad94d1bib24) 2019; 33 Zheng (mrxad94d1bib9) 2014; 77 Jiang (mrxad94d1bib11) 2024; 16 Li (mrxad94d1bib34) 2020; 22 Yang (mrxad94d1bib16) 2020; 185 Wang (mrxad94d1bib28) 2020; 49 Zhao (mrxad94d1bib25) 2015; 70 Zheng (mrxad94d1bib32) 2019; 40 Zhang (mrxad94d1bib43) 2011; 53 Asawan (mrxad94d1bib1) 2024; 11 Yu (mrxad94d1bib18) 2020; 115 Lou (mrxad94d1bib40) 2019; 12 Liu (mrxad94d1bib30) 2017; 73 Avraham (mrxad94d1bib38) 2008; 2008 Mostaed (mrxad94d1bib15) 2014; 37 Xiong (mrxad94d1bib27) 2024; 997 Zhang (mrxad94d1bib36) 2012; 7 Xu (mrxad94d1bib22) 2019; 6 Song (mrxad94d1bib21); 60 Zong (mrxad94d1bib23) 2012; 177 Guo (mrxad94d1bib2) 2022; 13 Cain (mrxad94d1bib29) 2019; 297 |
References_xml | – volume: 45 start-page: 2075 year: 2017 ident: mrxad94d1bib17 article-title: Biocompatibility and degradation properties of WE43 Mg alloys with and without heat treatment: in vivo evaluation and comparison in a cranial bone sheep model publication-title: J. Cranio. Maxill. Surg. doi: 10.1016/j.jcms.2017.09.016 – volume: 6 year: 2019 ident: mrxad94d1bib35 article-title: Effects of solution treatment on microstructure, mechanical properties and corrosion behavior of Mg-2Zn-1Y-0.5Zr alloy publication-title: Mater. Res. Express doi: 10.1088/2053-1591/ab4b9d – volume: 40 start-page: 38 year: 2019 ident: mrxad94d1bib32 article-title: Effect of aging time on microstructure and properties of Mg-1Zn-0.3Zr-2Gd-0.3Sr alloy publication-title: Transactions of Materials and Heat Treatment – volume: 7 start-page: 77 year: 2012 ident: mrxad94d1bib36 article-title: Effects of extrusion and heat treatment on the mechanical properties and biocorrosion behaviors of a Mg-Nd-Zn-Zr alloy publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2011.05.026 – volume: 102 start-page: 1255 year: 2014 ident: mrxad94d1bib12 article-title: Comparison of degradation behavior and the associated bone response of ZK60 and PLLA in vivo publication-title: J. Biomed. Mater. Res A doi: 10.1002/jbm.a.34795 – volume: 115 year: 2020 ident: mrxad94d1bib18 article-title: In vitro and in vivo studies on the degradation and biosafety of Mg-Zn-Ca-Y alloy hemostatic clip with the carotid artery of SD rat model publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2020.111093 – volume: 70 start-page: 60 year: 2015 ident: mrxad94d1bib25 article-title: Preparation and characterization of as-extruded Mg-Sn alloys for orthopedic applications publication-title: Mater. Des. doi: 10.1016/j.matdes.2014.12.041 – volume: 421 year: 2021 ident: mrxad94d1bib42 article-title: Effect of surface nano-crystallization induced by supersonic fine particles bombarding on microstructure and mechanical properties of 300M steel publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2021.127381 – volume: 55 start-page: 251 year: 2006 ident: mrxad94d1bib37 article-title: Enhanced age hardening response by the addition of Zn in Mg-Sn alloys publication-title: Scripta Mater. doi: 10.1016/j.scriptamat.2006.04.005 – volume: 32 start-page: 2570 year: 2012 ident: mrxad94d1bib20 article-title: Effects of Zn on microstructure, mechanical properties and corrosion behavior of Mg-Zn alloys publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2012.07.042 – volume: 22 year: 2020 ident: mrxad94d1bib34 article-title: Effects of Dy addition on the mechanical and degradation properties of Mg-2Zn-0.5Zr alloy publication-title: Adv. Eng. Mater. doi: 10.1002/adem.201901360 – volume: 10 year: 2023 ident: mrxad94d1bib7 article-title: Microstructure, mechanical properties and biomedical application of medical implantable extruded Mg-Zn-Zr-Ca alloy publication-title: Mater. Res. Express doi: 10.1088/2053-1591/ad1354 – volume: 2 start-page: 19 year: 2017 ident: mrxad94d1bib14 article-title: Effect of heat treatment on mechanical and biodegradable properties of an extruded ZK60 alloy publication-title: Bioact. Mater. doi: 10.1016/j.bioactmat.2016.12.002 – volume: 12 start-page: 1049 year: 2019 ident: mrxad94d1bib40 article-title: Effects of extrusion on mechanical and corrosion resistance properties of biomedical Mg-Zn-Nd-xCa alloys publication-title: Materials doi: 10.3390/ma12071049 – volume: 770 start-page: 500 year: 2019 ident: mrxad94d1bib41 article-title: Effect of severe shot peening on corrosion behavior of AZ31 and AZ91 magnesium alloys publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.08.141 – volume: 53 start-page: 2934 year: 2011 ident: mrxad94d1bib43 article-title: Corrosion of hot extrusion AZ91 magnesium alloy. Part II: Effect of rare earth element neodymium (Nd) on the corrosion behavior of extruded alloy publication-title: Corros. Sci. doi: 10.1016/j.corsci.2011.05.035 – volume: 16 year: 2024 ident: mrxad94d1bib11 article-title: Design and validation of a nonparasitic 2R1T parallel hand-held prostate biopsy robot with remote center of motion publication-title: J. Mech. Robot. doi: 10.1115/1.4062793 – volume: 23 start-page: 1887 year: 2017 ident: mrxad94d1bib13 article-title: Major histocompatibility mismatch and donor choice for second allogeneic bone marrow transplantation publication-title: Biol. Blood Marrow Transplant doi: 10.1016/j.bbmt.2017.07.014 – volume: 997 year: 2024 ident: mrxad94d1bib27 article-title: The quantitative regulation of basal and prismatic Mg2Sn to strengthen Mg-Sn alloys publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2024.174615 – volume: 3 start-page: 79 year: 2016 ident: mrxad94d1bib5 article-title: Opportunities and challenges for the biodegradable magnesium alloys as next-generation biomaterials publication-title: Regener. Biomater. doi: 10.1093/rb/rbw003 – volume: 37 start-page: 307 year: 2014 ident: mrxad94d1bib15 article-title: Microstructure, texture evolution, mechanical properties and corrosion behavior of ECAP processed ZK60 magnesium alloy for biodegradable applications publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2014.05.024 – volume: 6 year: 2019 ident: mrxad94d1bib22 article-title: Effect of immersion time on corrosion behavior of Mg-2Nd-0.5Zn-0.4Zr-1Y alloy in simulated body fluid publication-title: Mater. Res. Express doi: 10.1088/2053-1591/ab4b9d – volume: 177 start-page: 395 year: 2012 ident: mrxad94d1bib23 article-title: Comparison of biodegradable behaviors of AZ31 and Mg–Nd–Zn–Zr alloys in Hank’s physiological solution publication-title: Mater. Sci. Eng. B doi: 10.1016/j.mseb.2011.09.042 – volume: 297 start-page: 564 year: 2019 ident: mrxad94d1bib29 article-title: The corrosion of solid solution Mg-Sn binary alloys in NaCl solutions publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.11.118 – volume: 52 start-page: 508 year: 2023 ident: mrxad94d1bib3 article-title: Effect of hot extrusion on microstructure and properties of As-cast Mg-1Zn-0.3Zr-1Y-2Sn magnesium alloy publication-title: Rare Met. Mater. Eng. – volume: 51 start-page: 2063 year: 2009 ident: mrxad94d1bib26 article-title: Effect of tin modification on corrosion of AM70 magnesium alloy publication-title: Corros. Sci. doi: 10.1016/j.corsci.2009.05.031 – volume: 891 start-page: 1873 year: 2022 ident: mrxad94d1bib33 article-title: Effects of extrusion parameters on the microstructure, corrosion resistance, and mechanical properties of biodegradable Mg-Zn-Gd-Y-Zr alloy publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2021.161964 – volume: 11 year: 2024 ident: mrxad94d1bib1 article-title: Review of the corrosion behaviour in tannic-acid coated magnesiumimplants publication-title: Mater. Res. Express doi: 10.1088/2053-1591/ad14bf – volume: 102 start-page: 493 year: 2020 ident: mrxad94d1bib6 article-title: Mechanical, corrosion, and biocompatibility properties of Mg-Zr-Sr-Sc alloys for biodegradable implant applications publication-title: Acta Biomater. doi: 10.1016/j.actbio.2019.12.001 – volume: 52 start-page: 508 year: 2023 ident: mrxad94d1bib31 article-title: Effect of hot extrusion on microstructure and properties of As-cast Mg-1Zn-0.3Zr-1Y-2Sn magnesium alloy publication-title: Rare Metal. Mat. Eng. – volume: 10 start-page: 4561 year: 2014 ident: mrxad94d1bib10 article-title: Recent advances on the development of magnesium alloys for biodegradable implants publication-title: Acta Biomater. doi: 10.1016/j.actbio.2014.07.005 – volume: 33 start-page: 1348 year: 2019 ident: mrxad94d1bib24 article-title: Degradable magnesium-based alloys for biomedical applications: the role of critical alloying elements publication-title: J. Biomater. Appl. doi: 10.1177/0885328219834656 – volume: 49 start-page: 117 year: 2020 ident: mrxad94d1bib28 article-title: A simultaneous improvement of both strength and ductility by Sn addition in as-extruded Mg-6Al-4Zn alloy publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2019.04.048 – volume: 13 start-page: 179 year: 2022 ident: mrxad94d1bib2 article-title: Characteristics and surface serviceability for cryogenic milling Mg-1.6Ca-2.0Zn medical magnesium alloy publication-title: J. Funct. Biomater. doi: 10.3390/jfb13040179 – volume: 73 start-page: 494 year: 2017 ident: mrxad94d1bib30 article-title: An experimental survey of the cathodic activation of metals including Mg, Sc, Gd, La, Al, Sn, Pb, and Ge in dilute chloride solutions of varying pH publication-title: Corrosion doi: 10.5006/2282 – volume: 167 year: 2020 ident: mrxad94d1bib44 article-title: Effect of microstructure on the corrosion behavior of as-cast and extruded Mg-Sn-Y alloys publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/abab27 – volume: 19 start-page: 24 year: 2018 ident: mrxad94d1bib19 article-title: Bio-functional design, application and trends in metallic biomaterials publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms19010024 – volume: 185 year: 2020 ident: mrxad94d1bib16 article-title: Mg bone implant: features, developments and perspectives publication-title: Mater. Des. doi: 10.1016/j.matdes.2019.108259 – volume: 60 start-page: 238 ident: mrxad94d1bib21 article-title: The role of second phases in the corrosion behavior of Mg-5Zn alloy publication-title: Corros. Sci. doi: 10.1016/j.corsci.2012.03.030 – volume: 25 year: 2023 ident: mrxad94d1bib4 article-title: Microstructure and properties of As-Cast Mg-2.0Sn-1.0Zn-1.0Y-0.3Zr alloys at different extrusion ratios publication-title: Adv. Eng. Mater. doi: 10.1002/adem.202201715 – volume: 9 start-page: 41 year: 2021 ident: mrxad94d1bib8 article-title: Towards developing Mg alloys with simultaneously improved strength and corrosion resistance via RE alloying publication-title: J. Magnesium Alloys doi: 10.1016/j.jma.2020.08.016 – volume: 77 start-page: 1 year: 2014 ident: mrxad94d1bib9 article-title: Biodegradable metals publication-title: Mater. Sci. Eng:R doi: 10.1016/j.mser.2014.01.001 – volume: 80 year: 2023 ident: mrxad94d1bib39 article-title: Interdiffusion and atomic mobility of the Mg-Sn-Zn system publication-title: Calphad doi: 10.1016/j.calphad.2022.102524 – volume: 2008 start-page: 127 year: 2008 ident: mrxad94d1bib38 article-title: The influence of Zn on the precipitation path in Mg-Sn alloys publication-title: Magnesium Technology |
SSID | ssj0002793526 |
Score | 2.3116262 |
Snippet | In order to prepare a new biodegradable magnesium alloy with high biosafety, better mechanical properties, and lower degradation rate, in this paper, the... |
SourceID | doaj proquest crossref iop |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 116522 |
SubjectTerms | Alloying elements Biomedical materials Body fluids Corrosion effects Corrosion rate Corrosion resistance Corrosion resistant alloys Corrosion tests Grain boundaries magnesium alloy Magnesium alloys Magnesium base alloys Mechanical properties Microscopy Microstructure Optical microscopy Optical properties Tensile strength Tensile tests Tin |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1RSxwxEA7FJ19KpUqvaolgH_qQ3mYzyWYfW1FEqC9VOO4lJJtETnq7x6mg_97JZk9PBPsi7FOY3Q2zk5lvdpJvCDl0UdY2OmBaaMegAsu0CopJbrUTwfI69LstztXpJZxN5GSt1VfaE5bpgbPixiX6S_DcSV9JiF5ZCUr7yjVeYWZX98d8MeatJVPXfTmtTsTvQ10SVxIm-VIwjN18bH164Is41NP1Y3SZdYtXPrkPNCefyMcBIdJfeWZb5ENoPxObWYZpF-nflnYtRdxG52kzXSaAvVsGaltPF-nf-jKRpCZRN-t8IoPw6XwU_XPF-M9i2jJMoadLOrdX6OZmd3Oaau8P2-Ty5Pji6JQN3RFYA1DfsqiFEoK7qGMRXMFDI60C2biyciFEQL9VOUB0BipqzhsuuKwCWGVrVzSIenbIRtu14QuhYAFwCHPS2kOAygppZVPqaH0BPqoRGa90ZZqBOjx1sPhn-hK21iZp1yTtmqzdEfnxdMci02a8Ifs7qf9JLhFe9wNoBmYwA_M_MxiR7_jxzLAAb9542cELufnyHpOgfKECSrPwcUT2VibwLCi4QOyD8FR-fY_57pLNEuFRPtW4RzbQVsI-wptb96235EdzaPL9 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NaxQxFA_aXrxIi4qrtUTQg4e4k8lLJnMSKy1FsIhaKL2EZJIsC-7MdNpC-9_7MpPdUoSFOWVeGObl5X0mv0fIBxdlbaMDpoV2DCqwTKugmORWOxEsr8N42uJMnZ7D9wt5kRNu1_lY5Vonjorad03Kkc8FF2h70D2QX_orlrpGpepqbqHxlOyiCtYYfO0eHZ_9_LXJspQofrJc1ydxR2GwLwVDG87n1tfg-SN7NML2o5VZdv1_unk0OCd75Hn2FOnXaWn3yZPQviB2QhumXaS_W9q1FP03ukqH6iYg2NshUNt62qcc-5DAUhOpW3Y-gUL4dE-K_lgw_rm4bBmG0pcDXdkFqrvl7YqmGvz9S3J-cvzn2ynLXRJYA1DfsKiFEoK7qGMRXMFDI60C2biyciFEQP1VOUAvDVTUnDdccFkFsMrWrmjQ-3lFdtquDa8JBQuAQxib1h4CVFZIK5tSR-sL8FHNyHzNK9NkCPHUyeKvGUvZWpvEXZO4aybuzsinzYx-gs_YQnuU2L-hS8DX40A3LEzeR6ZE84m0TvpKQvTKSlDaV67x-H8YOs7IR1w8kzfi9ZaPvX9EtxruMBiaHmRAaXofZ-RgLQIPhA9y-Gb767fkWYkO0HRv8YDsoBSEd-jA3LjDLKX_ABWI7DQ priority: 102 providerName: ProQuest |
Title | Effect of Sn on the microstructure and properties of biodegradable Mg-1.0Zn-0.3Zr magnesium alloy |
URI | https://iopscience.iop.org/article/10.1088/2053-1591/ad94d1 https://www.proquest.com/docview/3134065115 https://doaj.org/article/22994d1b5d754fd6a5468d7bcd646998 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEBZpcumltCSl2yaLCs2hByWWNZJlempKNg_Ig7ahIRchWVIIdO1lm0D67zuyvFtCSwgYY8QI2aPxzDd6fCLkg4uyttEB00I7BhVYplVQTHKrnQiW16FfbXGqDi_g-FJerpBPy70w3Wxw_Tv4mImCswqHBXEa03UpGEZhvmt9DR5TnzWhlU6Z15n4sRxgKdHyZLmYmvxfxQehqGfsxwCDrf7jlvtYM3lJXgwgkX7Or_SKrIR2ndhMNEy7SL-1tGspQjc6TevpMgfs3TxQ23o6S8Pr88STmkTdTecTH4RPW6ToyTXjO8VVyzCLvprTqb1GT3dzN6Vp-v33BrmY7H__csiGAxJYA1DfsqiFEoK7qGMRXMFDI60C2biyciFEQNdVOUCABipqzhsuuKwCWGVrVzQIfF6T1bZrwxtCwQJgEaaltYcAlRXSyqbU0foCfFQjsrvQlWkG9vB0iMVP089ia22Sdk3SrsnaHZGPyxqzzJzxiOxeUv9SLnFe9wXY_2bof1Ni5ERZJ30lIXplJSjtK9d4_D7MGkdkGzvPDP_gr0cae_9Abjq_xzwoX6iA0sx8HJHNhQn8FRRcIPxBhCrfPrGpd-R5iSAo713cJKtoDmELQcytG5NnenIwJmt7-6fnX8f9UADej87Ox70Z_wHHj-2Z |
linkProvider | IOP Publishing |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcoALAgFiaSlGogcOZtfx2HEOFeK1bOnjQitVvQQ7tlcrsUlIW0H_FL-RcR5bVUh7q5RTMlGU8TeeGY_9DSFvbJCZCRaYFtoySMEwrbxikhtthTc88-1ui2M1O4VvZ_Jsg_wdzsLEbZXDnNhO1K4q4hr5WHCBvgfDA_m-_sVi16hYXR1aaHSwOPDXvzFlu9jb_4zju5sk0y8nn2as7yrACoDskgUtlBDcBh0m3k64L6RRIAubpNb7AGjvqQWMakAFzXnBBZepB6NMZieFikQHOOXfAyGyaFF6-nW1ppMg2GUyVEPRfscJYpxhxMDHxmXg-C3v1zYJQJ-2qOr_PEHr3qaPyMM-LqUfOiA9Jhu-fEJMx21Mq0C_l7QqKUaLdBm38HW0s1eNp6Z0tI4r-k2kZo2idlG5SEHh4qksejRn_N3kvGSYuJ83dGnmOLkurpY0Vvyvn5LTO9HeM7JZVqV_TigYALyFmXDmwENqhDSySHQwbgIuqBEZD7rKi56wPPbN-Jm3hXOt86jdPGo377Q7Im9Xb9QdWcca2Y9R_Su5SLPd3qiaed5bbZ6gs0ZZK10qIThlJCjtUls4_D9MVEdkFwcv783-Ys3HXt-SWzZ_MPXqLlRAktcujMj2AIEbwRvUv1j_-BW5Pzs5OswP948PtsiDBEOv7sTkNtlERPiXGDpd2p0Wr5T8uGsD-QdU4Sg3 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3faxQxEA61BfGlVKx4tdYI9sGH9DabSTb72KpHbW0raLH0JSSbpBS83ePagv73TjZ7J0Upwj4sYUJ2Z2dnvsmPbwh566KsbXTAtNCOQQWWaRUUk9xqJ4Lldeh3W5yqw3M4upAXQ53T_ixMNxtc_x7eZqLgrMJhQ5zGdF0KhlGYj62vwfPxzMdHZE0KpVLthjPxfTnJUqL1yXKxPPmvzvfCUc_aj0EGR_7LNffxZrJB1gegSPfzYz0lK6F9RmwmG6ZdpF9b2rUU4Rudpj11mQf2bh6obT2dpSn2eeJKTaLuuvOJE8KnY1L05IrxveKyZZhJX87p1F6ht7u-m9K0BP9rk5xPPn57f8iGIgmsAahvWdRCCcFd1LEIruChkVaBbFxZuRAioPuqHCBIAxU15w0XXFYBrLK1KxoEP8_Jatu14QWhYAGwCVPT2kOAygppZVPqaH0BPqoRGS90ZZqBQTwVsvhh-pVsrU3SrknaNVm7I_Ju2WOW2TMekD1I6l_KJd7rvgFtwAw2YEqMnijrpK8kRK-sBKV95RqP74eZ44js4sczw39488Bgb-7JTec_MRfKFyqgNGhTI7K9MIE_goILhECIUuXWfw71mjz-8mFiPn86PX5JnpSIifJRxm2yipYRXiGmuXU7vd3-BlMa7Qo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Sn+on+the+microstructure+and+properties+of+biodegradable+Mg-1.0Zn-0.3Zr+magnesium+alloy&rft.jtitle=Materials+research+express&rft.au=Zhao%2C+Fei&rft.au=Li%2C+Huan&rft.au=Yan%2C+Chengqi&rft.au=Song%2C+Beibei&rft.date=2024-11-01&rft.issn=2053-1591&rft.eissn=2053-1591&rft.volume=11&rft.issue=11&rft.spage=116522&rft_id=info:doi/10.1088%2F2053-1591%2Fad94d1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_2053_1591_ad94d1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2053-1591&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2053-1591&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2053-1591&client=summon |