Nonseparable exchange–correlation functional for molecules, including homogeneous catalysis involving transition metals
The goal of this work is to develop a gradient approximation to the exchange–correlation functional of Kohn–Sham density functional theory for treating molecular problems with a special emphasis on the prediction of quantities important for homogeneous catalysis and other molecular energetics. Our t...
Saved in:
Published in | Physical chemistry chemical physics : PCCP Vol. 17; no. 18; pp. 12146 - 12160 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
14.05.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The goal of this work is to develop a gradient approximation to the exchange–correlation functional of Kohn–Sham density functional theory for treating molecular problems with a special emphasis on the prediction of quantities important for homogeneous catalysis and other molecular energetics. Our training and validation of exchange–correlation functionals is organized in terms of databases and subdatabases. The key properties required for homogeneous catalysis are main group bond energies (database MGBE137), transition metal bond energies (database TMBE32), reaction barrier heights (database BH76), and molecular structures (database MS10). We also consider 26 other databases, most of which are subdatabases of a newly extended broad database called Database 2015, which is presented in the present article and in its ESI. Based on the mathematical form of a nonseparable gradient approximation (NGA), as first employed in the N12 functional, we design a new functional by using Database 2015 and by adding smoothness constraints to the optimization of the functional. The resulting functional is called the gradient approximation for molecules, or GAM. The GAM functional gives better results for MGBE137, TMBE32, and BH76 than any available generalized gradient approximation (GGA) or than N12. The GAM functional also gives reasonable results for MS10 with an MUE of 0.018 Å. The GAM functional provides good results both within the training sets and outside the training sets. The convergence tests and the smooth curves of exchange–correlation enhancement factor as a function of the reduced density gradient show that the GAM functional is a smooth functional that should not lead to extra expense or instability in optimizations. NGAs, like GGAs, have the advantage over meta-GGAs and hybrid GGAs of respectively smaller grid-size requirements for integrations and lower costs for extended systems. These computational advantages combined with the relatively high accuracy for all the key properties needed for molecular catalysis make the GAM functional very promising for future applications. |
---|---|
AbstractList | The goal of this work is to develop a gradient approximation to the exchange-correlation functional of Kohn-Sham density functional theory for treating molecular problems with a special emphasis on the prediction of quantities important for homogeneous catalysis and other molecular energetics. Our training and validation of exchange-correlation functionals is organized in terms of databases and subdatabases. The key properties required for homogeneous catalysis are main group bond energies (database MGBE137), transition metal bond energies (database TMBE32), reaction barrier heights (database BH76), and molecular structures (database MS10). We also consider 26 other databases, most of which are subdatabases of a newly extended broad database called Database 2015, which is presented in the present article and in its ESI. Based on the mathematical form of a nonseparable gradient approximation (NGA), as first employed in the N12 functional, we design a new functional by using Database 2015 and by adding smoothness constraints to the optimization of the functional. The resulting functional is called the gradient approximation for molecules, or GAM. The GAM functional gives better results for MGBE137, TMBE32, and BH76 than any available generalized gradient approximation (GGA) or than N12. The GAM functional also gives reasonable results for MS10 with an MUE of 0.018 Å. The GAM functional provides good results both within the training sets and outside the training sets. The convergence tests and the smooth curves of exchange-correlation enhancement factor as a function of the reduced density gradient show that the GAM functional is a smooth functional that should not lead to extra expense or instability in optimizations. NGAs, like GGAs, have the advantage over meta-GGAs and hybrid GGAs of respectively smaller grid-size requirements for integrations and lower costs for extended systems. These computational advantages combined with the relatively high accuracy for all the key properties needed for molecular catalysis make the GAM functional very promising for future applications. A gradient approximation, GAM, to the exchange–correlation functional of Kohn–Sham theory with broad performance for metal and nonmetal bond energies and weak interactions is reported. The goal of this work is to develop a gradient approximation to the exchange-correlation functional of Kohn-Sham density functional theory for treating molecular problems with a special emphasis on the prediction of quantities important for homogeneous catalysis and other molecular energetics. Our training and validation of exchange-correlation functionals is organized in terms of databases and subdatabases. The key properties required for homogeneous catalysis are main group bond energies (database MGBE137), transition metal bond energies (database TMBE32), reaction barrier heights (database BH76), and molecular structures (database MS10). We also consider 26 other databases, most of which are subdatabases of a newly extended broad database called Database 2015, which is presented in the present article and in its ESI. Based on the mathematical form of a nonseparable gradient approximation (NGA), as first employed in the N12 functional, we design a new functional by using Database 2015 and by adding smoothness constraints to the optimization of the functional. The resulting functional is called the gradient approximation for molecules, or GAM. The GAM functional gives better results for MGBE137, TMBE32, and BH76 than any available generalized gradient approximation (GGA) or than N12. The GAM functional also gives reasonable results for MS10 with an MUE of 0.018 Aa. The GAM functional provides good results both within the training sets and outside the training sets. The convergence tests and the smooth curves of exchange-correlation enhancement factor as a function of the reduced density gradient show that the GAM functional is a smooth functional that should not lead to extra expense or instability in optimizations. NGAs, like GGAs, have the advantage over meta-GGAs and hybrid GGAs of respectively smaller grid-size requirements for integrations and lower costs for extended systems. These computational advantages combined with the relatively high accuracy for all the key properties needed for molecular catalysis make the GAM functional very promising for future applications. The goal of this work is to develop a gradient approximation to the exchange-correlation functional of Kohn-Sham density functional theory for treating molecular problems with a special emphasis on the prediction of quantities important for homogeneous catalysis and other molecular energetics. Our training and validation of exchange-correlation functionals is organized in terms of databases and subdatabases. The key properties required for homogeneous catalysis are main group bond energies (database MGBE137), transition metal bond energies (database TMBE32), reaction barrier heights (database BH76), and molecular structures (database MS10). We also consider 26 other databases, most of which are subdatabases of a newly extended broad database called Database 2015, which is presented in the present article and in its ESI. Based on the mathematical form of a nonseparable gradient approximation (NGA), as first employed in the N12 functional, we design a new functional by using Database 2015 and by adding smoothness constraints to the optimization of the functional. The resulting functional is called the gradient approximation for molecules, or GAM. The GAM functional gives better results for MGBE137, TMBE32, and BH76 than any available generalized gradient approximation (GGA) or than N12. The GAM functional also gives reasonable results for MS10 with an MUE of 0.018 Å. The GAM functional provides good results both within the training sets and outside the training sets. The convergence tests and the smooth curves of exchange-correlation enhancement factor as a function of the reduced density gradient show that the GAM functional is a smooth functional that should not lead to extra expense or instability in optimizations. NGAs, like GGAs, have the advantage over meta-GGAs and hybrid GGAs of respectively smaller grid-size requirements for integrations and lower costs for extended systems. These computational advantages combined with the relatively high accuracy for all the key properties needed for molecular catalysis make the GAM functional very promising for future applications.The goal of this work is to develop a gradient approximation to the exchange-correlation functional of Kohn-Sham density functional theory for treating molecular problems with a special emphasis on the prediction of quantities important for homogeneous catalysis and other molecular energetics. Our training and validation of exchange-correlation functionals is organized in terms of databases and subdatabases. The key properties required for homogeneous catalysis are main group bond energies (database MGBE137), transition metal bond energies (database TMBE32), reaction barrier heights (database BH76), and molecular structures (database MS10). We also consider 26 other databases, most of which are subdatabases of a newly extended broad database called Database 2015, which is presented in the present article and in its ESI. Based on the mathematical form of a nonseparable gradient approximation (NGA), as first employed in the N12 functional, we design a new functional by using Database 2015 and by adding smoothness constraints to the optimization of the functional. The resulting functional is called the gradient approximation for molecules, or GAM. The GAM functional gives better results for MGBE137, TMBE32, and BH76 than any available generalized gradient approximation (GGA) or than N12. The GAM functional also gives reasonable results for MS10 with an MUE of 0.018 Å. The GAM functional provides good results both within the training sets and outside the training sets. The convergence tests and the smooth curves of exchange-correlation enhancement factor as a function of the reduced density gradient show that the GAM functional is a smooth functional that should not lead to extra expense or instability in optimizations. NGAs, like GGAs, have the advantage over meta-GGAs and hybrid GGAs of respectively smaller grid-size requirements for integrations and lower costs for extended systems. These computational advantages combined with the relatively high accuracy for all the key properties needed for molecular catalysis make the GAM functional very promising for future applications. |
Author | Truhlar, Donald G. Verma, Pragya He, Xiao Zhang, Wenjing Yu, Haoyu S. |
Author_xml | – sequence: 1 givenname: Haoyu S. orcidid: 0000-0003-2181-1032 surname: Yu fullname: Yu, Haoyu S. organization: Department of Chemistry, Chemical Theory Center, Inorganometallic Catalyst Design Center, and Supercomputing Institute, University of Minnesota – sequence: 2 givenname: Wenjing surname: Zhang fullname: Zhang, Wenjing organization: Department of Chemistry, Chemical Theory Center, Inorganometallic Catalyst Design Center, and Supercomputing Institute, University of Minnesota – sequence: 3 givenname: Pragya surname: Verma fullname: Verma, Pragya organization: Department of Chemistry, Chemical Theory Center, Inorganometallic Catalyst Design Center, and Supercomputing Institute, University of Minnesota – sequence: 4 givenname: Xiao surname: He fullname: He, Xiao organization: Department of Chemistry, Chemical Theory Center, Inorganometallic Catalyst Design Center, and Supercomputing Institute, University of Minnesota – sequence: 5 givenname: Donald G. surname: Truhlar fullname: Truhlar, Donald G. organization: Department of Chemistry, Chemical Theory Center, Inorganometallic Catalyst Design Center, and Supercomputing Institute, University of Minnesota |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25877230$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1386923$$D View this record in Osti.gov |
BookMark | eNqNkctuFDEQRS2UiDxgwwegFiuEGPCr2-1lNAoPKUpYwLrlri7PGLntwe6OmB3_wB_yJXhmkiAhFqxuSffUlaruGTkKMSAhzxh9w6jQb5f18hNlkteXj8gpk41YaNrKo4dZNSfkLOevlFJWM_GYnPC6VYoLekq21zFk3Jhkeo8Vfoe1CSv89eMnxJTQm8nFUNk5wG4wvrIxVWP0CLPH_LpyAfw8uLCq1nGMKwwY51yBmYzfZpeLfxv97c6fkgnZ7eNGLHZ-Qo5tEXx6p-fky7vLz8sPi6ub9x-XF1cLkFJPC8t7w7S0SvWUGSkQlGWDrBF4U0sY0LSyHqzR3PSoBq40Msa0li1Y2lsjzsmLQ27Mk-syuAlhDTEEhKljom00FwV6eYA2KX6bMU_d6DKg92Z_UceatpFCct7-B6pUqymVqqDP79C5H3HoNsmNJm27-_cX4NUBgBRzTmgfEEa7Xbfdn24LTP-Cyy37gspvnf_Xym-xnql3 |
CitedBy_id | crossref_primary_10_1103_PhysRevB_99_041119 crossref_primary_10_1002_jcc_70005 crossref_primary_10_1021_acs_jctc_7b00461 crossref_primary_10_1039_C9CP03211H crossref_primary_10_1021_acs_jpca_9b03157 crossref_primary_10_3390_ijms23010038 crossref_primary_10_1021_acs_jctc_4c01729 crossref_primary_10_1021_acs_jctc_7b00865 crossref_primary_10_1039_C7CP01686G crossref_primary_10_1021_acs_jctc_2c01315 crossref_primary_10_1103_PhysRevA_104_052809 crossref_primary_10_1021_acs_jpca_0c10543 crossref_primary_10_1021_acsaem_4c01330 crossref_primary_10_1021_acs_jpcc_6b03080 crossref_primary_10_1021_acs_jctc_9b00411 crossref_primary_10_1021_acs_jpcc_6b08371 crossref_primary_10_1021_acs_jpca_9b10932 crossref_primary_10_1039_C7CP01576C crossref_primary_10_1021_acs_jpcc_6b03240 crossref_primary_10_1038_s41598_020_76749_0 crossref_primary_10_1021_acs_jpca_7b12652 crossref_primary_10_1002_eem2_12204 crossref_primary_10_1021_acs_jpca_9b01546 crossref_primary_10_1002_jcc_25714 crossref_primary_10_1021_acs_jctc_0c00292 crossref_primary_10_1002_chem_201700928 crossref_primary_10_1021_acs_jpclett_9b00946 crossref_primary_10_1038_s41929_024_01281_7 crossref_primary_10_1002_qua_25831 crossref_primary_10_1103_PhysRevB_102_035129 crossref_primary_10_1002_qua_26886 crossref_primary_10_3390_molecules28083487 crossref_primary_10_1039_D2SC01022D crossref_primary_10_1021_acs_jctc_4c01143 crossref_primary_10_1021_acs_jctc_7b01252 crossref_primary_10_1073_pnas_1810421115 crossref_primary_10_1103_PhysRevResearch_4_023061 crossref_primary_10_1063_1_4952647 crossref_primary_10_3390_computation4020020 crossref_primary_10_1002_jcc_26558 crossref_primary_10_1021_acs_chemrev_6b00440 crossref_primary_10_1007_s00894_023_05696_0 crossref_primary_10_1021_acs_jctc_0c00320 crossref_primary_10_1021_acs_jctc_2c00242 crossref_primary_10_1039_D3CP05687B crossref_primary_10_1002_qua_26379 crossref_primary_10_1021_acs_jpclett_0c03034 crossref_primary_10_1039_D4MA01050G crossref_primary_10_1021_acs_jctc_6b01156 crossref_primary_10_1021_acs_jpcc_7b01066 crossref_primary_10_1016_j_trechm_2020_02_005 crossref_primary_10_1073_pnas_1705670114 crossref_primary_10_1021_acs_jctc_5b00083 crossref_primary_10_1021_acs_jpca_6b00994 crossref_primary_10_1021_acs_jcim_2c00112 crossref_primary_10_1039_C7CP01263B crossref_primary_10_1002_qua_27516 crossref_primary_10_1038_s43588_022_00371_5 crossref_primary_10_1063_1_4971853 crossref_primary_10_1021_acs_inorgchem_6b00467 crossref_primary_10_1021_acs_jpca_1c06504 crossref_primary_10_1021_acs_jpcc_7b09000 crossref_primary_10_1021_acs_jpclett_6b02757 crossref_primary_10_1021_acs_chemrev_8b00193 crossref_primary_10_1002_jcc_25761 crossref_primary_10_1039_D1CP00044F crossref_primary_10_1021_acs_jctc_0c00585 crossref_primary_10_1039_D0CS01074J crossref_primary_10_1021_acs_jpclett_2c00643 crossref_primary_10_1039_C7CP07356A crossref_primary_10_1021_acs_jpca_6b10600 crossref_primary_10_1039_C6SC00705H crossref_primary_10_1021_acs_jctc_6b00569 crossref_primary_10_1016_j_ica_2020_120035 crossref_primary_10_1039_C9CP06792B crossref_primary_10_1021_acs_jpca_0c06519 crossref_primary_10_1080_00268976_2017_1333644 crossref_primary_10_1002_jcc_27377 crossref_primary_10_1063_1_4963168 crossref_primary_10_1039_C6CP08761B crossref_primary_10_1002_jcc_24788 crossref_primary_10_1021_acs_jctc_7b00809 crossref_primary_10_1007_s00214_020_02694_w crossref_primary_10_1039_D4SC06004K crossref_primary_10_1021_acsomega_1c00997 crossref_primary_10_1021_acs_jctc_3c01375 crossref_primary_10_1002_zaac_202000093 crossref_primary_10_1021_acs_jctc_5b01082 crossref_primary_10_1021_acs_jctc_7b00764 crossref_primary_10_1021_acs_jpca_6b02600 crossref_primary_10_1021_acs_jpca_9b03976 crossref_primary_10_1007_s00214_016_1927_4 crossref_primary_10_3390_ma18061213 crossref_primary_10_1021_acs_jctc_1c00694 crossref_primary_10_1021_acs_jpca_1c01041 crossref_primary_10_1103_PhysRevMaterials_4_073802 crossref_primary_10_1021_acs_jpca_4c03137 crossref_primary_10_1039_C7CP04913G crossref_primary_10_1073_pnas_1913699117 crossref_primary_10_1002_qua_26332 crossref_primary_10_1002_qua_26453 crossref_primary_10_1039_C6CP08896A crossref_primary_10_1021_acs_jctc_0c00518 crossref_primary_10_1021_acs_jpca_8b11499 |
Cites_doi | 10.1063/1.456153 10.1103/PhysRevB.33.8822 10.1063/1.3243845 10.1007/BF03159758 10.1063/1.1367373 10.1063/1.448799 10.1103/PhysRevA.38.3098 10.1103/PhysRevB.37.785 10.1021/ct400418u 10.1063/1.3526956 10.1021/ct400712k 10.1007/BF01114537 10.1007/BF00551408 10.1021/ja205976v 10.1021/ct5000814 10.1021/ct300737t 10.1063/1.464303 10.1021/jp980259s 10.1103/PhysRevB.61.16440 10.1063/1.2370993 10.1063/1.448800 10.1021/ct800575z 10.1139/p80-159 10.1063/1.1543944 10.1021/jz201525m 10.1063/1.464913 10.1103/PhysRevLett.103.026403 10.1016/j.cplett.2014.10.069 10.1016/0009-2614(89)85013-4 10.1007/BF03156228 10.1007/PL00020511 10.1103/PhysRevB.45.13244 10.1063/1.475428 10.1021/ci600510j 10.1103/PhysRev.140.A1133 10.1103/PhysRevB.28.1809 10.1021/j100096a001 10.1063/1.464151 10.1021/ct400660j 10.1021/ct500248h 10.1021/jp960669l 10.1103/PhysRevLett.91.146401 10.1080/00268970010018431 10.1021/ct300081y 10.1039/c4cp00772g 10.1103/PhysRevLett.77.3865 10.1002/(SICI)1097-461X(2000)76:2<205::AID-QUA10>3.0.CO;2-C 10.1021/ct1005533 10.1021/ct3002656 10.1063/1.3185673 10.1021/jp3079106 10.1021/acs.jctc.5b00081 10.1063/1.1564060 10.1063/1.448975 10.1039/b508541a 10.1021/jz200616w 10.1063/1.3653230 10.1007/s00214-005-0681-9 10.1021/ct500296a 10.1016/j.molcata.2010.03.016 10.1016/j.chemphys.2004.10.005 10.1103/PhysRevB.33.8800 10.1103/PhysRevB.59.7413 10.1021/ja4102979 10.1103/PhysRevLett.80.890 10.1063/1.2912068 10.1021/jp402884h 10.1021/ct900566x 10.1098/rsta.2012.0476 10.1063/1.3659142 10.1063/1.1347371 10.1103/PhysRevLett.100.136406 |
ContentType | Journal Article |
CorporateAuthor | Energy Frontier Research Centers (EFRC), Washington, D.C. (United States). Energy Frontier Research Center for Inorganometallic Catalyst Design (ICDC) |
CorporateAuthor_xml | – name: Energy Frontier Research Centers (EFRC), Washington, D.C. (United States). Energy Frontier Research Center for Inorganometallic Catalyst Design (ICDC) |
DBID | AAYXX CITATION NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M OIOZB OTOTI |
DOI | 10.1039/C5CP01425E |
DatabaseName | CrossRef PubMed MEDLINE - Academic Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | PubMed CrossRef Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1463-9084 |
EndPage | 12160 |
ExternalDocumentID | 1386923 25877230 10_1039_C5CP01425E |
Genre | Journal Article |
GroupedDBID | --- -DZ -~X 0-7 0R~ 0UZ 123 1TJ 29O 2WC 4.4 53G 6TJ 705 70~ 71~ 7~J 87K 9M8 AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACHDF ACIWK ACLDK ACNCT ACRPL ADMRA ADNMO ADSRN AEFDR AENEX AENGV AESAV AETIL AFFNX AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGKEF AGQPQ AGRSR AHGCF AHGXI AKMSF ALMA_UNASSIGNED_HOLDINGS ALSGL ALUYA ANBJS ANLMG ANUXI APEMP ASKNT ASPBG AUDPV AVWKF AZFZN BBWZM BLAPV BSQNT C6K CAG CITATION COF CS3 D0L DU5 EBS ECGLT EE0 EEHRC EF- EJD F5P FEDTE GGIMP GNO H13 HVGLF HZ~ H~9 H~N IDY IDZ J3G J3H J3I L-8 M4U MVM N9A NDZJH NHB O9- P2P R56 R7B R7C RAOCF RCLXC RCNCU RIG RNS ROL RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UHB VH6 WH7 XJT XOL YNT ZCG -JG AGSTE NPM OK1 UCJ 7X8 7SR 7U5 8BQ 8FD JG9 L7M 70J AAGNR ABGFH OIOZB OTOTI XFK |
ID | FETCH-LOGICAL-c449t-f2ba194f77b01a43ec7f1d45ec2654cdea845dfa92abe7d279e1119948cf0bfa3 |
ISSN | 1463-9076 1463-9084 |
IngestDate | Thu May 18 22:32:42 EDT 2023 Fri Jul 11 11:19:13 EDT 2025 Fri Jul 11 02:59:05 EDT 2025 Wed Feb 19 02:09:42 EST 2025 Tue Jul 01 02:45:57 EDT 2025 Thu Apr 24 23:12:34 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c449t-f2ba194f77b01a43ec7f1d45ec2654cdea845dfa92abe7d279e1119948cf0bfa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 SC0012702 USDOE Advanced Research Projects Agency - Energy (ARPA-E) |
ORCID | 0000-0003-2181-1032 0000000321811032 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1386923 |
PMID | 25877230 |
PQID | 1677890047 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | osti_scitechconnect_1386923 proquest_miscellaneous_1686434228 proquest_miscellaneous_1677890047 pubmed_primary_25877230 crossref_primary_10_1039_C5CP01425E crossref_citationtrail_10_1039_C5CP01425E |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-05-14 |
PublicationDateYYYYMMDD | 2015-05-14 |
PublicationDate_xml | – month: 05 year: 2015 text: 2015-05-14 day: 14 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: United States |
PublicationTitle | Physical chemistry chemical physics : PCCP |
PublicationTitleAlternate | Phys Chem Chem Phys |
PublicationYear | 2015 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Luo (C5CP01425E-(cit69)/*[position()=1]) 2014; 10 Thakkar (C5CP01425E-(cit43)/*[position()=1]) 2009; 131 Perdew (C5CP01425E-(cit33)/*[position()=1]) 1986; 33 Hay (C5CP01425E-(cit21)/*[position()=1]) 1985; 82 Xu (C5CP01425E-(cit68)/*[position()=1]) 2015 Langreth (C5CP01425E-(cit2)/*[position()=1]) 1983; 28 Heyd (C5CP01425E-(cit50)/*[position()=1]) 2003; 118 Yu (C5CP01425E-(cit75)/*[position()=1]) 2014; 10 Becke (C5CP01425E-(cit49)/*[position()=1]) 1993; 98 Tang (C5CP01425E-(cit64)/*[position()=1]) 2003; 118 Schuchardt (C5CP01425E-(cit14)/*[position()=1]) 2007; 47 Vosko (C5CP01425E-(cit29)/*[position()=1]) 1980; 58 Perdew (C5CP01425E-(cit3)/*[position()=1]) 1986; 33 Tang (C5CP01425E-(cit74)/*[position()=1]) 2003; 118 Boese (C5CP01425E-(cit40)/*[position()=1]) 2000; 114 Bloch (C5CP01425E-(cit57)/*[position()=1]) 2011; 133 Stephens (C5CP01425E-(cit48)/*[position()=1]) 1994; 98 Kohn (C5CP01425E-(cit1)/*[position()=1]) 1996; 100 Kohn (C5CP01425E-(cit27)/*[position()=1]) 1965; 140 Verma (C5CP01425E-(cit8)/*[position()=1]) 2013; 117 McMahon (C5CP01425E-(cit72)/*[position()=1]) 2011; 135 Peterson (C5CP01425E-(cit17)/*[position()=1]) 2005; 114 Tozer (C5CP01425E-(cit52)/*[position()=1]) 1988; 102 Dunning Jr. (C5CP01425E-(cit20)/*[position()=1]) 1977 Dunning, Jr. (C5CP01425E-(cit13)/*[position()=1]) 2001; 114 Zhao (C5CP01425E-(cit30)/*[position()=1]) 2008; 128 Yu (C5CP01425E-(cit65)/*[position()=1]) 2015 Zhao (C5CP01425E-(cit46)/*[position()=1]) 2006; 125 Perdew (C5CP01425E-(cit53)/*[position()=1]) 1992; 45 Tao (C5CP01425E-(cit44)/*[position()=1]) 2003; 91 Perdew (C5CP01425E-(cit45)/*[position()=1]) 2009; 103 Posada-Borbón (C5CP01425E-(cit80)/*[position()=1]) 2015; 618 Peverati (C5CP01425E-(cit47)/*[position()=1]) 2011; 3 C5CP01425E-(cit79)/*[position()=1] Gáspár (C5CP01425E-(cit28a)/*[position()=1]) 1954; 3 Adamo (C5CP01425E-(cit37)/*[position()=1]) 1997; 108 Dunning Jr. (C5CP01425E-(cit11)/*[position()=1]) 1989; 90 Figgen (C5CP01425E-(cit18)/*[position()=1]) 2005; 311 Hay (C5CP01425E-(cit22)/*[position()=1]) 1985; 82 Averkiev (C5CP01425E-(cit67)/*[position()=1]) 2010 Mardirossian (C5CP01425E-(cit63)/*[position()=1]) 2013; 9 Peverati (C5CP01425E-(cit41)/*[position()=1]) 2011; 2 Weymuth (C5CP01425E-(cit56)/*[position()=1]) 2014; 10 Schwabe (C5CP01425E-(cit78)/*[position()=1]) 2014; 16 Vydrov (C5CP01425E-(cit70)/*[position()=1]) 2012; 8 Luo (C5CP01425E-(cit76)/*[position()=1]) 2012; 8 Weigend (C5CP01425E-(cit12)/*[position()=1]) 2005; 7 Dunning Jr. (C5CP01425E-(cit24)/*[position()=1]) 1989; 90 Li (C5CP01425E-(cit62)/*[position()=1]) 2012; 117 Beutel (C5CP01425E-(cit61)/*[position()=1]) 1993; 98 Andrae (C5CP01425E-(cit9)/*[position()=1]) 1990; 77 Perdew (C5CP01425E-(cit31)/*[position()=1]) 2008; 100 Becke (C5CP01425E-(cit34)/*[position()=1]) 1988; 38 Lange (C5CP01425E-(cit71)/*[position()=1]) 2011; 134 Stoll (C5CP01425E-(cit55)/*[position()=1]) 1980; 55 Gáspár (C5CP01425E-(cit28b)/*[position()=1]) 1974; 35 Peverati (C5CP01425E-(cit4)/*[position()=1]) 2012; 8 van Mourik (C5CP01425E-(cit25)/*[position()=1]) 2000; 76 Papajak (C5CP01425E-(cit15)/*[position()=1]) 2009; 5 Zhang (C5CP01425E-(cit38)/*[position()=1]) 1997; 80 Hay (C5CP01425E-(cit23)/*[position()=1]) 1985; 82 Handy (C5CP01425E-(cit42)/*[position()=1]) 2001; 99 Peverati (C5CP01425E-(cit26)/*[position()=1]) 2014; 372 Lee (C5CP01425E-(cit36)/*[position()=1]) 1988; 37 Papajak (C5CP01425E-(cit16)/*[position()=1]) 2010; 6 Marshall (C5CP01425E-(cit73)/*[position()=1]) 2011; 135 Zhang (C5CP01425E-(cit60)/*[position()=1]) 2014; 10 Perdew (C5CP01425E-(cit35)/*[position()=1]) 1991 Stoll (C5CP01425E-(cit54)/*[position()=1]) 1978; 149 Lee (C5CP01425E-(cit59)/*[position()=1]) 2014; 136 Woon (C5CP01425E-(cit10)/*[position()=1]) 1993; 98 Hammer (C5CP01425E-(cit39)/*[position()=1]) 1999; 59 Perdew (C5CP01425E-(cit32)/*[position()=1]) 1996; 77 Zhang (C5CP01425E-(cit66)/*[position()=1]) 2013; 9 Kudin (C5CP01425E-(cit7)/*[position()=1]) 2000; 61 Yang (C5CP01425E-(cit77)/*[position()=1]) 2011; 135 Papajak (C5CP01425E-(cit19)/*[position()=1]) 2011; 7 Henderson (C5CP01425E-(cit51)/*[position()=1]) 2009; 131 Handy (C5CP01425E-(cit58)/*[position()=1]) 1989; 164 |
References_xml | – volume: 90 start-page: 1007 year: 1989 ident: C5CP01425E-(cit24)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.456153 – volume: 33 start-page: 8822 year: 1986 ident: C5CP01425E-(cit33)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.33.8822 – volume: 131 start-page: 134109 year: 2009 ident: C5CP01425E-(cit43)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.3243845 – volume: 35 start-page: 213 year: 1974 ident: C5CP01425E-(cit28b)/*[position()=1] publication-title: Acta Phys. Hung. doi: 10.1007/BF03159758 – volume: 114 start-page: 9244 year: 2001 ident: C5CP01425E-(cit13)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1367373 – volume: 82 start-page: 270 year: 1985 ident: C5CP01425E-(cit21)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.448799 – volume: 38 start-page: 3098 year: 1988 ident: C5CP01425E-(cit34)/*[position()=1] publication-title: Phys. Rev. A: At., Mol., Opt. Phys. doi: 10.1103/PhysRevA.38.3098 – volume: 37 start-page: 785 year: 1988 ident: C5CP01425E-(cit36)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.37.785 – volume: 9 start-page: 3965 year: 2013 ident: C5CP01425E-(cit66)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/ct400418u – volume: 134 start-page: 034301 year: 2011 ident: C5CP01425E-(cit71)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.3526956 – volume: 10 start-page: 102 year: 2014 ident: C5CP01425E-(cit69)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/ct400712k – volume: 77 start-page: 123 year: 1990 ident: C5CP01425E-(cit9)/*[position()=1] publication-title: Theor. Chim. Acta doi: 10.1007/BF01114537 – volume: 55 start-page: 29 year: 1980 ident: C5CP01425E-(cit55)/*[position()=1] publication-title: Theor. Chim. Acta doi: 10.1007/BF00551408 – volume: 133 start-page: 14814 year: 2011 ident: C5CP01425E-(cit57)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja205976v – volume: 10 start-page: 2291 year: 2014 ident: C5CP01425E-(cit75)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/ct5000814 – volume: 8 start-page: 4112 year: 2012 ident: C5CP01425E-(cit76)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/ct300737t – volume: 98 start-page: 1358 year: 1993 ident: C5CP01425E-(cit10)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.464303 – volume: 102 start-page: 3162 year: 1988 ident: C5CP01425E-(cit52)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/jp980259s – volume: 61 start-page: 16440 year: 2000 ident: C5CP01425E-(cit7)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.61.16440 – volume: 125 start-page: 194101 year: 2006 ident: C5CP01425E-(cit46)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.2370993 – volume: 82 start-page: 284 year: 1985 ident: C5CP01425E-(cit22)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.448800 – volume: 5 start-page: 1197 year: 2009 ident: C5CP01425E-(cit15)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/ct800575z – volume: 58 start-page: 1200 year: 1980 ident: C5CP01425E-(cit29)/*[position()=1] publication-title: Can. J. Phys. doi: 10.1139/p80-159 – volume: 118 start-page: 4976 year: 2003 ident: C5CP01425E-(cit74)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1543944 – volume: 3 start-page: 117 year: 2011 ident: C5CP01425E-(cit47)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz201525m – volume: 98 start-page: 5648 year: 1993 ident: C5CP01425E-(cit49)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.464913 – volume-title: Electronic Structure of Solids ’91 year: 1991 ident: C5CP01425E-(cit35)/*[position()=1] – volume: 103 start-page: 026403 year: 2009 ident: C5CP01425E-(cit45)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.026403 – volume: 618 start-page: 66 year: 2015 ident: C5CP01425E-(cit80)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2014.10.069 – volume: 164 start-page: 185 year: 1989 ident: C5CP01425E-(cit58)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(89)85013-4 – volume: 3 start-page: 263 year: 1954 ident: C5CP01425E-(cit28a)/*[position()=1] publication-title: Acta Phys. Hung. doi: 10.1007/BF03156228 – volume: 149 start-page: 143 year: 1978 ident: C5CP01425E-(cit54)/*[position()=1] publication-title: Theor. Chim. Acta doi: 10.1007/PL00020511 – volume: 45 start-page: 13244 year: 1992 ident: C5CP01425E-(cit53)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.45.13244 – volume: 108 start-page: 664 year: 1997 ident: C5CP01425E-(cit37)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.475428 – volume: 47 start-page: 1045 year: 2007 ident: C5CP01425E-(cit14)/*[position()=1] publication-title: J. Chem. Inf. Model. doi: 10.1021/ci600510j – volume: 140 start-page: A1133 year: 1965 ident: C5CP01425E-(cit27)/*[position()=1] publication-title: Phys. Rev. doi: 10.1103/PhysRev.140.A1133 – volume: 28 start-page: 1809 year: 1983 ident: C5CP01425E-(cit2)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.28.1809 – volume: 98 start-page: 11623 year: 1994 ident: C5CP01425E-(cit48)/*[position()=1] publication-title: J. Phys. Chem. doi: 10.1021/j100096a001 – volume: 98 start-page: 2699 year: 1993 ident: C5CP01425E-(cit61)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.464151 – volume: 9 start-page: 4453 year: 2013 ident: C5CP01425E-(cit63)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/ct400660j – volume: 10 start-page: 3092 year: 2014 ident: C5CP01425E-(cit56)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/ct500248h – volume: 100 start-page: 12974 year: 1996 ident: C5CP01425E-(cit1)/*[position()=1] publication-title: J. Phys. Chem. doi: 10.1021/jp960669l – volume: 91 start-page: 146401 year: 2003 ident: C5CP01425E-(cit44)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.91.146401 – volume: 99 start-page: 403 year: 2001 ident: C5CP01425E-(cit42)/*[position()=1] publication-title: Mol. Phys. doi: 10.1080/00268970010018431 – volume: 8 start-page: 1929 year: 2012 ident: C5CP01425E-(cit70)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/ct300081y – volume: 16 start-page: 14559 year: 2014 ident: C5CP01425E-(cit78)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c4cp00772g – volume: 77 start-page: 3865 year: 1996 ident: C5CP01425E-(cit32)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 76 start-page: 205 year: 2000 ident: C5CP01425E-(cit25)/*[position()=1] publication-title: Int. J. Quantum Chem. doi: 10.1002/(SICI)1097-461X(2000)76:2<205::AID-QUA10>3.0.CO;2-C – volume: 135 start-page: 044188 year: 2011 ident: C5CP01425E-(cit77)/*[position()=1] publication-title: J. Chem. Phys. – volume: 90 start-page: 1007 year: 1989 ident: C5CP01425E-(cit11)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.456153 – volume: 7 start-page: 10 year: 2011 ident: C5CP01425E-(cit19)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/ct1005533 – volume: 8 start-page: 2310 year: 2012 ident: C5CP01425E-(cit4)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/ct3002656 – volume: 131 start-page: 044108 year: 2009 ident: C5CP01425E-(cit51)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.3185673 – volume: 117 start-page: 169 year: 2012 ident: C5CP01425E-(cit62)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/jp3079106 – year: 2015 ident: C5CP01425E-(cit68)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.5b00081 – volume: 118 start-page: 8027 year: 2003 ident: C5CP01425E-(cit50)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1564060 – volume: 82 start-page: 299 year: 1985 ident: C5CP01425E-(cit23)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.448975 – volume: 7 start-page: 3297 year: 2005 ident: C5CP01425E-(cit12)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b508541a – volume: 2 start-page: 1991 year: 2011 ident: C5CP01425E-(cit41)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz200616w – volume: 135 start-page: 154309 year: 2011 ident: C5CP01425E-(cit72)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.3653230 – volume: 114 start-page: 283 year: 2005 ident: C5CP01425E-(cit17)/*[position()=1] publication-title: Theor. Chem. Acc. doi: 10.1007/s00214-005-0681-9 – volume: 10 start-page: 2399 year: 2014 ident: C5CP01425E-(cit60)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/ct500296a – start-page: 80 year: 2010 ident: C5CP01425E-(cit67)/*[position()=1] publication-title: J. Mol. Catal. A: Chem. doi: 10.1016/j.molcata.2010.03.016 – volume: 311 start-page: 227 year: 2005 ident: C5CP01425E-(cit18)/*[position()=1] publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2004.10.005 – volume: 33 start-page: 8800 year: 1986 ident: C5CP01425E-(cit3)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.33.8800 – volume-title: Modern Theoretical Chemistry year: 1977 ident: C5CP01425E-(cit20)/*[position()=1] – volume: 59 start-page: 7413 year: 1999 ident: C5CP01425E-(cit39)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.59.7413 – volume: 136 start-page: 698 year: 2014 ident: C5CP01425E-(cit59)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4102979 – volume: 80 start-page: 890 year: 1997 ident: C5CP01425E-(cit38)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.80.890 – year: 2015 ident: C5CP01425E-(cit65)/*[position()=1] publication-title: J. Chem. Theory Comput. – volume: 128 start-page: 184109 year: 2008 ident: C5CP01425E-(cit30)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.2912068 – volume: 117 start-page: 12648 year: 2013 ident: C5CP01425E-(cit8)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp402884h – volume: 6 start-page: 597 year: 2010 ident: C5CP01425E-(cit16)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/ct900566x – ident: C5CP01425E-(cit79)/*[position()=1] – volume: 372 start-page: 20120476 year: 2014 ident: C5CP01425E-(cit26)/*[position()=1] publication-title: Philos. Trans. R. Soc., A doi: 10.1098/rsta.2012.0476 – volume: 135 start-page: 194102 year: 2011 ident: C5CP01425E-(cit73)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.3659142 – volume: 114 start-page: 5497 year: 2000 ident: C5CP01425E-(cit40)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1347371 – volume: 100 start-page: 136406 year: 2008 ident: C5CP01425E-(cit31)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.136406 – volume: 118 start-page: 4976 year: 2003 ident: C5CP01425E-(cit64)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1543944 |
SSID | ssj0001513 |
Score | 2.5005774 |
Snippet | The goal of this work is to develop a gradient approximation to the exchange–correlation functional of Kohn–Sham density functional theory for treating... The goal of this work is to develop a gradient approximation to the exchange-correlation functional of Kohn-Sham density functional theory for treating... A gradient approximation, GAM, to the exchange–correlation functional of Kohn–Sham theory with broad performance for metal and nonmetal bond energies and weak... |
SourceID | osti proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 12146 |
SubjectTerms | Approximation Bond energy Borides Catalysis catalysis (heterogeneous) Exchange INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY materials and chemistry by design Mathematical analysis synthesis (novel materials) Training |
Title | Nonseparable exchange–correlation functional for molecules, including homogeneous catalysis involving transition metals |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25877230 https://www.proquest.com/docview/1677890047 https://www.proquest.com/docview/1686434228 https://www.osti.gov/servlets/purl/1386923 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZK9wAXxJuygIzggkSWPOwkPq6iooJg1UNXLKfIcZylqE2q3RZY_gB_mxk7cbOii4BLZCVuk2a-zozHM98Q8iIRsRKiYB4rsIVZVIaeZInyKg22z9eRjhVWI384iifH7N0JPxkMfvayljbr4kD92FlX8j9ShXMgV6yS_QfJui-FEzAG-cIRJAzHv5LxEaZCI3k3lj_p77aI11PYcGPRJhGC2WqjfZhPuLTNcK1qmNdqsTE1LZ-bZQM30ZgOa-I5hqZkXoPq-tr2kahtbhd2nJaL875LO-0krbrecXaEp2zc5NzEHaZZ5mrJPm2MyZPNxWYbe3Wx64-6_tJZVOwFhsbDeLtn8vTCmZGJCcWezGXTj1wEHDfdbcXogbbalsWRJ3zbI86p46QPu7SnXIOwDVf-pvb9CFlTFVcrWPGFXPcnwS9cLQ0AQp7CWqLdBrpMst1dukb2QhwMyd7hePb2vTPq4BhFHbttJF5vb4Vs0u2HL7k2wwZU9NXLFuO-zG6Rm-26gx5aEN0mA13fIdezTmR3ybc-mOguMNEtmCiAiTowvaIOSrQHJeqgRB2U6BZK1ELpHjl-M55lE6_tyuEpxsTaq8JCBoJVSVL4gWSRVkkVlIxrFcacqVLLlPGykiKUhU7KMBEa7KkQLFWVX1Qyuk-GdVPrh4RyDctpUbFSI1GeDGXMpUxgVIWKa-GPyMvuheaqpazHzimL3KRORCLPeDY1chiPyHM3d2WJWnbO2ke55OBeIkeywmQytc6DKI1hpTMizzpx5fD2cetMmheWB8izKJBa9U9zUnDvkVJvRB5YWbsn6SDy6Mor--TG9j_ymAzXZxv9BPzddfG0xeIvhSCzBA |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonseparable+exchange-correlation+functional+for+molecules%2C+including+homogeneous+catalysis+involving+transition+metals&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Yu%2C+Haoyu+S&rft.au=Zhang%2C+Wenjing&rft.au=Verma%2C+Pragya&rft.au=He%2C+Xiao&rft.date=2015-05-14&rft.eissn=1463-9084&rft.volume=17&rft.issue=18&rft.spage=12146&rft_id=info:doi/10.1039%2Fc5cp01425e&rft_id=info%3Apmid%2F25877230&rft.externalDocID=25877230 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon |