Nonseparable exchange–correlation functional for molecules, including homogeneous catalysis involving transition metals

The goal of this work is to develop a gradient approximation to the exchange–correlation functional of Kohn–Sham density functional theory for treating molecular problems with a special emphasis on the prediction of quantities important for homogeneous catalysis and other molecular energetics. Our t...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 17; no. 18; pp. 12146 - 12160
Main Authors Yu, Haoyu S., Zhang, Wenjing, Verma, Pragya, He, Xiao, Truhlar, Donald G.
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 14.05.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The goal of this work is to develop a gradient approximation to the exchange–correlation functional of Kohn–Sham density functional theory for treating molecular problems with a special emphasis on the prediction of quantities important for homogeneous catalysis and other molecular energetics. Our training and validation of exchange–correlation functionals is organized in terms of databases and subdatabases. The key properties required for homogeneous catalysis are main group bond energies (database MGBE137), transition metal bond energies (database TMBE32), reaction barrier heights (database BH76), and molecular structures (database MS10). We also consider 26 other databases, most of which are subdatabases of a newly extended broad database called Database 2015, which is presented in the present article and in its ESI. Based on the mathematical form of a nonseparable gradient approximation (NGA), as first employed in the N12 functional, we design a new functional by using Database 2015 and by adding smoothness constraints to the optimization of the functional. The resulting functional is called the gradient approximation for molecules, or GAM. The GAM functional gives better results for MGBE137, TMBE32, and BH76 than any available generalized gradient approximation (GGA) or than N12. The GAM functional also gives reasonable results for MS10 with an MUE of 0.018 Å. The GAM functional provides good results both within the training sets and outside the training sets. The convergence tests and the smooth curves of exchange–correlation enhancement factor as a function of the reduced density gradient show that the GAM functional is a smooth functional that should not lead to extra expense or instability in optimizations. NGAs, like GGAs, have the advantage over meta-GGAs and hybrid GGAs of respectively smaller grid-size requirements for integrations and lower costs for extended systems. These computational advantages combined with the relatively high accuracy for all the key properties needed for molecular catalysis make the GAM functional very promising for future applications.
AbstractList The goal of this work is to develop a gradient approximation to the exchange-correlation functional of Kohn-Sham density functional theory for treating molecular problems with a special emphasis on the prediction of quantities important for homogeneous catalysis and other molecular energetics. Our training and validation of exchange-correlation functionals is organized in terms of databases and subdatabases. The key properties required for homogeneous catalysis are main group bond energies (database MGBE137), transition metal bond energies (database TMBE32), reaction barrier heights (database BH76), and molecular structures (database MS10). We also consider 26 other databases, most of which are subdatabases of a newly extended broad database called Database 2015, which is presented in the present article and in its ESI. Based on the mathematical form of a nonseparable gradient approximation (NGA), as first employed in the N12 functional, we design a new functional by using Database 2015 and by adding smoothness constraints to the optimization of the functional. The resulting functional is called the gradient approximation for molecules, or GAM. The GAM functional gives better results for MGBE137, TMBE32, and BH76 than any available generalized gradient approximation (GGA) or than N12. The GAM functional also gives reasonable results for MS10 with an MUE of 0.018 Å. The GAM functional provides good results both within the training sets and outside the training sets. The convergence tests and the smooth curves of exchange-correlation enhancement factor as a function of the reduced density gradient show that the GAM functional is a smooth functional that should not lead to extra expense or instability in optimizations. NGAs, like GGAs, have the advantage over meta-GGAs and hybrid GGAs of respectively smaller grid-size requirements for integrations and lower costs for extended systems. These computational advantages combined with the relatively high accuracy for all the key properties needed for molecular catalysis make the GAM functional very promising for future applications.
A gradient approximation, GAM, to the exchange–correlation functional of Kohn–Sham theory with broad performance for metal and nonmetal bond energies and weak interactions is reported.
The goal of this work is to develop a gradient approximation to the exchange-correlation functional of Kohn-Sham density functional theory for treating molecular problems with a special emphasis on the prediction of quantities important for homogeneous catalysis and other molecular energetics. Our training and validation of exchange-correlation functionals is organized in terms of databases and subdatabases. The key properties required for homogeneous catalysis are main group bond energies (database MGBE137), transition metal bond energies (database TMBE32), reaction barrier heights (database BH76), and molecular structures (database MS10). We also consider 26 other databases, most of which are subdatabases of a newly extended broad database called Database 2015, which is presented in the present article and in its ESI. Based on the mathematical form of a nonseparable gradient approximation (NGA), as first employed in the N12 functional, we design a new functional by using Database 2015 and by adding smoothness constraints to the optimization of the functional. The resulting functional is called the gradient approximation for molecules, or GAM. The GAM functional gives better results for MGBE137, TMBE32, and BH76 than any available generalized gradient approximation (GGA) or than N12. The GAM functional also gives reasonable results for MS10 with an MUE of 0.018 Aa. The GAM functional provides good results both within the training sets and outside the training sets. The convergence tests and the smooth curves of exchange-correlation enhancement factor as a function of the reduced density gradient show that the GAM functional is a smooth functional that should not lead to extra expense or instability in optimizations. NGAs, like GGAs, have the advantage over meta-GGAs and hybrid GGAs of respectively smaller grid-size requirements for integrations and lower costs for extended systems. These computational advantages combined with the relatively high accuracy for all the key properties needed for molecular catalysis make the GAM functional very promising for future applications.
The goal of this work is to develop a gradient approximation to the exchange-correlation functional of Kohn-Sham density functional theory for treating molecular problems with a special emphasis on the prediction of quantities important for homogeneous catalysis and other molecular energetics. Our training and validation of exchange-correlation functionals is organized in terms of databases and subdatabases. The key properties required for homogeneous catalysis are main group bond energies (database MGBE137), transition metal bond energies (database TMBE32), reaction barrier heights (database BH76), and molecular structures (database MS10). We also consider 26 other databases, most of which are subdatabases of a newly extended broad database called Database 2015, which is presented in the present article and in its ESI. Based on the mathematical form of a nonseparable gradient approximation (NGA), as first employed in the N12 functional, we design a new functional by using Database 2015 and by adding smoothness constraints to the optimization of the functional. The resulting functional is called the gradient approximation for molecules, or GAM. The GAM functional gives better results for MGBE137, TMBE32, and BH76 than any available generalized gradient approximation (GGA) or than N12. The GAM functional also gives reasonable results for MS10 with an MUE of 0.018 Å. The GAM functional provides good results both within the training sets and outside the training sets. The convergence tests and the smooth curves of exchange-correlation enhancement factor as a function of the reduced density gradient show that the GAM functional is a smooth functional that should not lead to extra expense or instability in optimizations. NGAs, like GGAs, have the advantage over meta-GGAs and hybrid GGAs of respectively smaller grid-size requirements for integrations and lower costs for extended systems. These computational advantages combined with the relatively high accuracy for all the key properties needed for molecular catalysis make the GAM functional very promising for future applications.The goal of this work is to develop a gradient approximation to the exchange-correlation functional of Kohn-Sham density functional theory for treating molecular problems with a special emphasis on the prediction of quantities important for homogeneous catalysis and other molecular energetics. Our training and validation of exchange-correlation functionals is organized in terms of databases and subdatabases. The key properties required for homogeneous catalysis are main group bond energies (database MGBE137), transition metal bond energies (database TMBE32), reaction barrier heights (database BH76), and molecular structures (database MS10). We also consider 26 other databases, most of which are subdatabases of a newly extended broad database called Database 2015, which is presented in the present article and in its ESI. Based on the mathematical form of a nonseparable gradient approximation (NGA), as first employed in the N12 functional, we design a new functional by using Database 2015 and by adding smoothness constraints to the optimization of the functional. The resulting functional is called the gradient approximation for molecules, or GAM. The GAM functional gives better results for MGBE137, TMBE32, and BH76 than any available generalized gradient approximation (GGA) or than N12. The GAM functional also gives reasonable results for MS10 with an MUE of 0.018 Å. The GAM functional provides good results both within the training sets and outside the training sets. The convergence tests and the smooth curves of exchange-correlation enhancement factor as a function of the reduced density gradient show that the GAM functional is a smooth functional that should not lead to extra expense or instability in optimizations. NGAs, like GGAs, have the advantage over meta-GGAs and hybrid GGAs of respectively smaller grid-size requirements for integrations and lower costs for extended systems. These computational advantages combined with the relatively high accuracy for all the key properties needed for molecular catalysis make the GAM functional very promising for future applications.
Author Truhlar, Donald G.
Verma, Pragya
He, Xiao
Zhang, Wenjing
Yu, Haoyu S.
Author_xml – sequence: 1
  givenname: Haoyu S.
  orcidid: 0000-0003-2181-1032
  surname: Yu
  fullname: Yu, Haoyu S.
  organization: Department of Chemistry, Chemical Theory Center, Inorganometallic Catalyst Design Center, and Supercomputing Institute, University of Minnesota
– sequence: 2
  givenname: Wenjing
  surname: Zhang
  fullname: Zhang, Wenjing
  organization: Department of Chemistry, Chemical Theory Center, Inorganometallic Catalyst Design Center, and Supercomputing Institute, University of Minnesota
– sequence: 3
  givenname: Pragya
  surname: Verma
  fullname: Verma, Pragya
  organization: Department of Chemistry, Chemical Theory Center, Inorganometallic Catalyst Design Center, and Supercomputing Institute, University of Minnesota
– sequence: 4
  givenname: Xiao
  surname: He
  fullname: He, Xiao
  organization: Department of Chemistry, Chemical Theory Center, Inorganometallic Catalyst Design Center, and Supercomputing Institute, University of Minnesota
– sequence: 5
  givenname: Donald G.
  surname: Truhlar
  fullname: Truhlar, Donald G.
  organization: Department of Chemistry, Chemical Theory Center, Inorganometallic Catalyst Design Center, and Supercomputing Institute, University of Minnesota
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25877230$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1386923$$D View this record in Osti.gov
BookMark eNqNkctuFDEQRS2UiDxgwwegFiuEGPCr2-1lNAoPKUpYwLrlri7PGLntwe6OmB3_wB_yJXhmkiAhFqxuSffUlaruGTkKMSAhzxh9w6jQb5f18hNlkteXj8gpk41YaNrKo4dZNSfkLOevlFJWM_GYnPC6VYoLekq21zFk3Jhkeo8Vfoe1CSv89eMnxJTQm8nFUNk5wG4wvrIxVWP0CLPH_LpyAfw8uLCq1nGMKwwY51yBmYzfZpeLfxv97c6fkgnZ7eNGLHZ-Qo5tEXx6p-fky7vLz8sPi6ub9x-XF1cLkFJPC8t7w7S0SvWUGSkQlGWDrBF4U0sY0LSyHqzR3PSoBq40Msa0li1Y2lsjzsmLQ27Mk-syuAlhDTEEhKljom00FwV6eYA2KX6bMU_d6DKg92Z_UceatpFCct7-B6pUqymVqqDP79C5H3HoNsmNJm27-_cX4NUBgBRzTmgfEEa7Xbfdn24LTP-Cyy37gspvnf_Xym-xnql3
CitedBy_id crossref_primary_10_1103_PhysRevB_99_041119
crossref_primary_10_1002_jcc_70005
crossref_primary_10_1021_acs_jctc_7b00461
crossref_primary_10_1039_C9CP03211H
crossref_primary_10_1021_acs_jpca_9b03157
crossref_primary_10_3390_ijms23010038
crossref_primary_10_1021_acs_jctc_4c01729
crossref_primary_10_1021_acs_jctc_7b00865
crossref_primary_10_1039_C7CP01686G
crossref_primary_10_1021_acs_jctc_2c01315
crossref_primary_10_1103_PhysRevA_104_052809
crossref_primary_10_1021_acs_jpca_0c10543
crossref_primary_10_1021_acsaem_4c01330
crossref_primary_10_1021_acs_jpcc_6b03080
crossref_primary_10_1021_acs_jctc_9b00411
crossref_primary_10_1021_acs_jpcc_6b08371
crossref_primary_10_1021_acs_jpca_9b10932
crossref_primary_10_1039_C7CP01576C
crossref_primary_10_1021_acs_jpcc_6b03240
crossref_primary_10_1038_s41598_020_76749_0
crossref_primary_10_1021_acs_jpca_7b12652
crossref_primary_10_1002_eem2_12204
crossref_primary_10_1021_acs_jpca_9b01546
crossref_primary_10_1002_jcc_25714
crossref_primary_10_1021_acs_jctc_0c00292
crossref_primary_10_1002_chem_201700928
crossref_primary_10_1021_acs_jpclett_9b00946
crossref_primary_10_1038_s41929_024_01281_7
crossref_primary_10_1002_qua_25831
crossref_primary_10_1103_PhysRevB_102_035129
crossref_primary_10_1002_qua_26886
crossref_primary_10_3390_molecules28083487
crossref_primary_10_1039_D2SC01022D
crossref_primary_10_1021_acs_jctc_4c01143
crossref_primary_10_1021_acs_jctc_7b01252
crossref_primary_10_1073_pnas_1810421115
crossref_primary_10_1103_PhysRevResearch_4_023061
crossref_primary_10_1063_1_4952647
crossref_primary_10_3390_computation4020020
crossref_primary_10_1002_jcc_26558
crossref_primary_10_1021_acs_chemrev_6b00440
crossref_primary_10_1007_s00894_023_05696_0
crossref_primary_10_1021_acs_jctc_0c00320
crossref_primary_10_1021_acs_jctc_2c00242
crossref_primary_10_1039_D3CP05687B
crossref_primary_10_1002_qua_26379
crossref_primary_10_1021_acs_jpclett_0c03034
crossref_primary_10_1039_D4MA01050G
crossref_primary_10_1021_acs_jctc_6b01156
crossref_primary_10_1021_acs_jpcc_7b01066
crossref_primary_10_1016_j_trechm_2020_02_005
crossref_primary_10_1073_pnas_1705670114
crossref_primary_10_1021_acs_jctc_5b00083
crossref_primary_10_1021_acs_jpca_6b00994
crossref_primary_10_1021_acs_jcim_2c00112
crossref_primary_10_1039_C7CP01263B
crossref_primary_10_1002_qua_27516
crossref_primary_10_1038_s43588_022_00371_5
crossref_primary_10_1063_1_4971853
crossref_primary_10_1021_acs_inorgchem_6b00467
crossref_primary_10_1021_acs_jpca_1c06504
crossref_primary_10_1021_acs_jpcc_7b09000
crossref_primary_10_1021_acs_jpclett_6b02757
crossref_primary_10_1021_acs_chemrev_8b00193
crossref_primary_10_1002_jcc_25761
crossref_primary_10_1039_D1CP00044F
crossref_primary_10_1021_acs_jctc_0c00585
crossref_primary_10_1039_D0CS01074J
crossref_primary_10_1021_acs_jpclett_2c00643
crossref_primary_10_1039_C7CP07356A
crossref_primary_10_1021_acs_jpca_6b10600
crossref_primary_10_1039_C6SC00705H
crossref_primary_10_1021_acs_jctc_6b00569
crossref_primary_10_1016_j_ica_2020_120035
crossref_primary_10_1039_C9CP06792B
crossref_primary_10_1021_acs_jpca_0c06519
crossref_primary_10_1080_00268976_2017_1333644
crossref_primary_10_1002_jcc_27377
crossref_primary_10_1063_1_4963168
crossref_primary_10_1039_C6CP08761B
crossref_primary_10_1002_jcc_24788
crossref_primary_10_1021_acs_jctc_7b00809
crossref_primary_10_1007_s00214_020_02694_w
crossref_primary_10_1039_D4SC06004K
crossref_primary_10_1021_acsomega_1c00997
crossref_primary_10_1021_acs_jctc_3c01375
crossref_primary_10_1002_zaac_202000093
crossref_primary_10_1021_acs_jctc_5b01082
crossref_primary_10_1021_acs_jctc_7b00764
crossref_primary_10_1021_acs_jpca_6b02600
crossref_primary_10_1021_acs_jpca_9b03976
crossref_primary_10_1007_s00214_016_1927_4
crossref_primary_10_3390_ma18061213
crossref_primary_10_1021_acs_jctc_1c00694
crossref_primary_10_1021_acs_jpca_1c01041
crossref_primary_10_1103_PhysRevMaterials_4_073802
crossref_primary_10_1021_acs_jpca_4c03137
crossref_primary_10_1039_C7CP04913G
crossref_primary_10_1073_pnas_1913699117
crossref_primary_10_1002_qua_26332
crossref_primary_10_1002_qua_26453
crossref_primary_10_1039_C6CP08896A
crossref_primary_10_1021_acs_jctc_0c00518
crossref_primary_10_1021_acs_jpca_8b11499
Cites_doi 10.1063/1.456153
10.1103/PhysRevB.33.8822
10.1063/1.3243845
10.1007/BF03159758
10.1063/1.1367373
10.1063/1.448799
10.1103/PhysRevA.38.3098
10.1103/PhysRevB.37.785
10.1021/ct400418u
10.1063/1.3526956
10.1021/ct400712k
10.1007/BF01114537
10.1007/BF00551408
10.1021/ja205976v
10.1021/ct5000814
10.1021/ct300737t
10.1063/1.464303
10.1021/jp980259s
10.1103/PhysRevB.61.16440
10.1063/1.2370993
10.1063/1.448800
10.1021/ct800575z
10.1139/p80-159
10.1063/1.1543944
10.1021/jz201525m
10.1063/1.464913
10.1103/PhysRevLett.103.026403
10.1016/j.cplett.2014.10.069
10.1016/0009-2614(89)85013-4
10.1007/BF03156228
10.1007/PL00020511
10.1103/PhysRevB.45.13244
10.1063/1.475428
10.1021/ci600510j
10.1103/PhysRev.140.A1133
10.1103/PhysRevB.28.1809
10.1021/j100096a001
10.1063/1.464151
10.1021/ct400660j
10.1021/ct500248h
10.1021/jp960669l
10.1103/PhysRevLett.91.146401
10.1080/00268970010018431
10.1021/ct300081y
10.1039/c4cp00772g
10.1103/PhysRevLett.77.3865
10.1002/(SICI)1097-461X(2000)76:2<205::AID-QUA10>3.0.CO;2-C
10.1021/ct1005533
10.1021/ct3002656
10.1063/1.3185673
10.1021/jp3079106
10.1021/acs.jctc.5b00081
10.1063/1.1564060
10.1063/1.448975
10.1039/b508541a
10.1021/jz200616w
10.1063/1.3653230
10.1007/s00214-005-0681-9
10.1021/ct500296a
10.1016/j.molcata.2010.03.016
10.1016/j.chemphys.2004.10.005
10.1103/PhysRevB.33.8800
10.1103/PhysRevB.59.7413
10.1021/ja4102979
10.1103/PhysRevLett.80.890
10.1063/1.2912068
10.1021/jp402884h
10.1021/ct900566x
10.1098/rsta.2012.0476
10.1063/1.3659142
10.1063/1.1347371
10.1103/PhysRevLett.100.136406
ContentType Journal Article
CorporateAuthor Energy Frontier Research Centers (EFRC), Washington, D.C. (United States). Energy Frontier Research Center for Inorganometallic Catalyst Design (ICDC)
CorporateAuthor_xml – name: Energy Frontier Research Centers (EFRC), Washington, D.C. (United States). Energy Frontier Research Center for Inorganometallic Catalyst Design (ICDC)
DBID AAYXX
CITATION
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
OIOZB
OTOTI
DOI 10.1039/C5CP01425E
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList PubMed
CrossRef

Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1463-9084
EndPage 12160
ExternalDocumentID 1386923
25877230
10_1039_C5CP01425E
Genre Journal Article
GroupedDBID ---
-DZ
-~X
0-7
0R~
0UZ
123
1TJ
29O
2WC
4.4
53G
6TJ
705
70~
71~
7~J
87K
9M8
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACHDF
ACIWK
ACLDK
ACNCT
ACRPL
ADMRA
ADNMO
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFFNX
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGKEF
AGQPQ
AGRSR
AHGCF
AHGXI
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALSGL
ALUYA
ANBJS
ANLMG
ANUXI
APEMP
ASKNT
ASPBG
AUDPV
AVWKF
AZFZN
BBWZM
BLAPV
BSQNT
C6K
CAG
CITATION
COF
CS3
D0L
DU5
EBS
ECGLT
EE0
EEHRC
EF-
EJD
F5P
FEDTE
GGIMP
GNO
H13
HVGLF
HZ~
H~9
H~N
IDY
IDZ
J3G
J3H
J3I
L-8
M4U
MVM
N9A
NDZJH
NHB
O9-
P2P
R56
R7B
R7C
RAOCF
RCLXC
RCNCU
RIG
RNS
ROL
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UHB
VH6
WH7
XJT
XOL
YNT
ZCG
-JG
AGSTE
NPM
OK1
UCJ
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
70J
AAGNR
ABGFH
OIOZB
OTOTI
XFK
ID FETCH-LOGICAL-c449t-f2ba194f77b01a43ec7f1d45ec2654cdea845dfa92abe7d279e1119948cf0bfa3
ISSN 1463-9076
1463-9084
IngestDate Thu May 18 22:32:42 EDT 2023
Fri Jul 11 11:19:13 EDT 2025
Fri Jul 11 02:59:05 EDT 2025
Wed Feb 19 02:09:42 EST 2025
Tue Jul 01 02:45:57 EDT 2025
Thu Apr 24 23:12:34 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c449t-f2ba194f77b01a43ec7f1d45ec2654cdea845dfa92abe7d279e1119948cf0bfa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
SC0012702
USDOE Advanced Research Projects Agency - Energy (ARPA-E)
ORCID 0000-0003-2181-1032
0000000321811032
OpenAccessLink https://www.osti.gov/servlets/purl/1386923
PMID 25877230
PQID 1677890047
PQPubID 23479
PageCount 15
ParticipantIDs osti_scitechconnect_1386923
proquest_miscellaneous_1686434228
proquest_miscellaneous_1677890047
pubmed_primary_25877230
crossref_primary_10_1039_C5CP01425E
crossref_citationtrail_10_1039_C5CP01425E
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-05-14
PublicationDateYYYYMMDD 2015-05-14
PublicationDate_xml – month: 05
  year: 2015
  text: 2015-05-14
  day: 14
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: United States
PublicationTitle Physical chemistry chemical physics : PCCP
PublicationTitleAlternate Phys Chem Chem Phys
PublicationYear 2015
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Luo (C5CP01425E-(cit69)/*[position()=1]) 2014; 10
Thakkar (C5CP01425E-(cit43)/*[position()=1]) 2009; 131
Perdew (C5CP01425E-(cit33)/*[position()=1]) 1986; 33
Hay (C5CP01425E-(cit21)/*[position()=1]) 1985; 82
Xu (C5CP01425E-(cit68)/*[position()=1]) 2015
Langreth (C5CP01425E-(cit2)/*[position()=1]) 1983; 28
Heyd (C5CP01425E-(cit50)/*[position()=1]) 2003; 118
Yu (C5CP01425E-(cit75)/*[position()=1]) 2014; 10
Becke (C5CP01425E-(cit49)/*[position()=1]) 1993; 98
Tang (C5CP01425E-(cit64)/*[position()=1]) 2003; 118
Schuchardt (C5CP01425E-(cit14)/*[position()=1]) 2007; 47
Vosko (C5CP01425E-(cit29)/*[position()=1]) 1980; 58
Perdew (C5CP01425E-(cit3)/*[position()=1]) 1986; 33
Tang (C5CP01425E-(cit74)/*[position()=1]) 2003; 118
Boese (C5CP01425E-(cit40)/*[position()=1]) 2000; 114
Bloch (C5CP01425E-(cit57)/*[position()=1]) 2011; 133
Stephens (C5CP01425E-(cit48)/*[position()=1]) 1994; 98
Kohn (C5CP01425E-(cit1)/*[position()=1]) 1996; 100
Kohn (C5CP01425E-(cit27)/*[position()=1]) 1965; 140
Verma (C5CP01425E-(cit8)/*[position()=1]) 2013; 117
McMahon (C5CP01425E-(cit72)/*[position()=1]) 2011; 135
Peterson (C5CP01425E-(cit17)/*[position()=1]) 2005; 114
Tozer (C5CP01425E-(cit52)/*[position()=1]) 1988; 102
Dunning Jr. (C5CP01425E-(cit20)/*[position()=1]) 1977
Dunning, Jr. (C5CP01425E-(cit13)/*[position()=1]) 2001; 114
Zhao (C5CP01425E-(cit30)/*[position()=1]) 2008; 128
Yu (C5CP01425E-(cit65)/*[position()=1]) 2015
Zhao (C5CP01425E-(cit46)/*[position()=1]) 2006; 125
Perdew (C5CP01425E-(cit53)/*[position()=1]) 1992; 45
Tao (C5CP01425E-(cit44)/*[position()=1]) 2003; 91
Perdew (C5CP01425E-(cit45)/*[position()=1]) 2009; 103
Posada-Borbón (C5CP01425E-(cit80)/*[position()=1]) 2015; 618
Peverati (C5CP01425E-(cit47)/*[position()=1]) 2011; 3
C5CP01425E-(cit79)/*[position()=1]
Gáspár (C5CP01425E-(cit28a)/*[position()=1]) 1954; 3
Adamo (C5CP01425E-(cit37)/*[position()=1]) 1997; 108
Dunning Jr. (C5CP01425E-(cit11)/*[position()=1]) 1989; 90
Figgen (C5CP01425E-(cit18)/*[position()=1]) 2005; 311
Hay (C5CP01425E-(cit22)/*[position()=1]) 1985; 82
Averkiev (C5CP01425E-(cit67)/*[position()=1]) 2010
Mardirossian (C5CP01425E-(cit63)/*[position()=1]) 2013; 9
Peverati (C5CP01425E-(cit41)/*[position()=1]) 2011; 2
Weymuth (C5CP01425E-(cit56)/*[position()=1]) 2014; 10
Schwabe (C5CP01425E-(cit78)/*[position()=1]) 2014; 16
Vydrov (C5CP01425E-(cit70)/*[position()=1]) 2012; 8
Luo (C5CP01425E-(cit76)/*[position()=1]) 2012; 8
Weigend (C5CP01425E-(cit12)/*[position()=1]) 2005; 7
Dunning Jr. (C5CP01425E-(cit24)/*[position()=1]) 1989; 90
Li (C5CP01425E-(cit62)/*[position()=1]) 2012; 117
Beutel (C5CP01425E-(cit61)/*[position()=1]) 1993; 98
Andrae (C5CP01425E-(cit9)/*[position()=1]) 1990; 77
Perdew (C5CP01425E-(cit31)/*[position()=1]) 2008; 100
Becke (C5CP01425E-(cit34)/*[position()=1]) 1988; 38
Lange (C5CP01425E-(cit71)/*[position()=1]) 2011; 134
Stoll (C5CP01425E-(cit55)/*[position()=1]) 1980; 55
Gáspár (C5CP01425E-(cit28b)/*[position()=1]) 1974; 35
Peverati (C5CP01425E-(cit4)/*[position()=1]) 2012; 8
van Mourik (C5CP01425E-(cit25)/*[position()=1]) 2000; 76
Papajak (C5CP01425E-(cit15)/*[position()=1]) 2009; 5
Zhang (C5CP01425E-(cit38)/*[position()=1]) 1997; 80
Hay (C5CP01425E-(cit23)/*[position()=1]) 1985; 82
Handy (C5CP01425E-(cit42)/*[position()=1]) 2001; 99
Peverati (C5CP01425E-(cit26)/*[position()=1]) 2014; 372
Lee (C5CP01425E-(cit36)/*[position()=1]) 1988; 37
Papajak (C5CP01425E-(cit16)/*[position()=1]) 2010; 6
Marshall (C5CP01425E-(cit73)/*[position()=1]) 2011; 135
Zhang (C5CP01425E-(cit60)/*[position()=1]) 2014; 10
Perdew (C5CP01425E-(cit35)/*[position()=1]) 1991
Stoll (C5CP01425E-(cit54)/*[position()=1]) 1978; 149
Lee (C5CP01425E-(cit59)/*[position()=1]) 2014; 136
Woon (C5CP01425E-(cit10)/*[position()=1]) 1993; 98
Hammer (C5CP01425E-(cit39)/*[position()=1]) 1999; 59
Perdew (C5CP01425E-(cit32)/*[position()=1]) 1996; 77
Zhang (C5CP01425E-(cit66)/*[position()=1]) 2013; 9
Kudin (C5CP01425E-(cit7)/*[position()=1]) 2000; 61
Yang (C5CP01425E-(cit77)/*[position()=1]) 2011; 135
Papajak (C5CP01425E-(cit19)/*[position()=1]) 2011; 7
Henderson (C5CP01425E-(cit51)/*[position()=1]) 2009; 131
Handy (C5CP01425E-(cit58)/*[position()=1]) 1989; 164
References_xml – volume: 90
  start-page: 1007
  year: 1989
  ident: C5CP01425E-(cit24)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.456153
– volume: 33
  start-page: 8822
  year: 1986
  ident: C5CP01425E-(cit33)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.33.8822
– volume: 131
  start-page: 134109
  year: 2009
  ident: C5CP01425E-(cit43)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3243845
– volume: 35
  start-page: 213
  year: 1974
  ident: C5CP01425E-(cit28b)/*[position()=1]
  publication-title: Acta Phys. Hung.
  doi: 10.1007/BF03159758
– volume: 114
  start-page: 9244
  year: 2001
  ident: C5CP01425E-(cit13)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1367373
– volume: 82
  start-page: 270
  year: 1985
  ident: C5CP01425E-(cit21)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.448799
– volume: 38
  start-page: 3098
  year: 1988
  ident: C5CP01425E-(cit34)/*[position()=1]
  publication-title: Phys. Rev. A: At., Mol., Opt. Phys.
  doi: 10.1103/PhysRevA.38.3098
– volume: 37
  start-page: 785
  year: 1988
  ident: C5CP01425E-(cit36)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.37.785
– volume: 9
  start-page: 3965
  year: 2013
  ident: C5CP01425E-(cit66)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct400418u
– volume: 134
  start-page: 034301
  year: 2011
  ident: C5CP01425E-(cit71)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3526956
– volume: 10
  start-page: 102
  year: 2014
  ident: C5CP01425E-(cit69)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct400712k
– volume: 77
  start-page: 123
  year: 1990
  ident: C5CP01425E-(cit9)/*[position()=1]
  publication-title: Theor. Chim. Acta
  doi: 10.1007/BF01114537
– volume: 55
  start-page: 29
  year: 1980
  ident: C5CP01425E-(cit55)/*[position()=1]
  publication-title: Theor. Chim. Acta
  doi: 10.1007/BF00551408
– volume: 133
  start-page: 14814
  year: 2011
  ident: C5CP01425E-(cit57)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja205976v
– volume: 10
  start-page: 2291
  year: 2014
  ident: C5CP01425E-(cit75)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct5000814
– volume: 8
  start-page: 4112
  year: 2012
  ident: C5CP01425E-(cit76)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct300737t
– volume: 98
  start-page: 1358
  year: 1993
  ident: C5CP01425E-(cit10)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.464303
– volume: 102
  start-page: 3162
  year: 1988
  ident: C5CP01425E-(cit52)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp980259s
– volume: 61
  start-page: 16440
  year: 2000
  ident: C5CP01425E-(cit7)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.61.16440
– volume: 125
  start-page: 194101
  year: 2006
  ident: C5CP01425E-(cit46)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2370993
– volume: 82
  start-page: 284
  year: 1985
  ident: C5CP01425E-(cit22)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.448800
– volume: 5
  start-page: 1197
  year: 2009
  ident: C5CP01425E-(cit15)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct800575z
– volume: 58
  start-page: 1200
  year: 1980
  ident: C5CP01425E-(cit29)/*[position()=1]
  publication-title: Can. J. Phys.
  doi: 10.1139/p80-159
– volume: 118
  start-page: 4976
  year: 2003
  ident: C5CP01425E-(cit74)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1543944
– volume: 3
  start-page: 117
  year: 2011
  ident: C5CP01425E-(cit47)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz201525m
– volume: 98
  start-page: 5648
  year: 1993
  ident: C5CP01425E-(cit49)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.464913
– volume-title: Electronic Structure of Solids ’91
  year: 1991
  ident: C5CP01425E-(cit35)/*[position()=1]
– volume: 103
  start-page: 026403
  year: 2009
  ident: C5CP01425E-(cit45)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.026403
– volume: 618
  start-page: 66
  year: 2015
  ident: C5CP01425E-(cit80)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2014.10.069
– volume: 164
  start-page: 185
  year: 1989
  ident: C5CP01425E-(cit58)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(89)85013-4
– volume: 3
  start-page: 263
  year: 1954
  ident: C5CP01425E-(cit28a)/*[position()=1]
  publication-title: Acta Phys. Hung.
  doi: 10.1007/BF03156228
– volume: 149
  start-page: 143
  year: 1978
  ident: C5CP01425E-(cit54)/*[position()=1]
  publication-title: Theor. Chim. Acta
  doi: 10.1007/PL00020511
– volume: 45
  start-page: 13244
  year: 1992
  ident: C5CP01425E-(cit53)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.45.13244
– volume: 108
  start-page: 664
  year: 1997
  ident: C5CP01425E-(cit37)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.475428
– volume: 47
  start-page: 1045
  year: 2007
  ident: C5CP01425E-(cit14)/*[position()=1]
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/ci600510j
– volume: 140
  start-page: A1133
  year: 1965
  ident: C5CP01425E-(cit27)/*[position()=1]
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.140.A1133
– volume: 28
  start-page: 1809
  year: 1983
  ident: C5CP01425E-(cit2)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.28.1809
– volume: 98
  start-page: 11623
  year: 1994
  ident: C5CP01425E-(cit48)/*[position()=1]
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100096a001
– volume: 98
  start-page: 2699
  year: 1993
  ident: C5CP01425E-(cit61)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.464151
– volume: 9
  start-page: 4453
  year: 2013
  ident: C5CP01425E-(cit63)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct400660j
– volume: 10
  start-page: 3092
  year: 2014
  ident: C5CP01425E-(cit56)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct500248h
– volume: 100
  start-page: 12974
  year: 1996
  ident: C5CP01425E-(cit1)/*[position()=1]
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp960669l
– volume: 91
  start-page: 146401
  year: 2003
  ident: C5CP01425E-(cit44)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.91.146401
– volume: 99
  start-page: 403
  year: 2001
  ident: C5CP01425E-(cit42)/*[position()=1]
  publication-title: Mol. Phys.
  doi: 10.1080/00268970010018431
– volume: 8
  start-page: 1929
  year: 2012
  ident: C5CP01425E-(cit70)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct300081y
– volume: 16
  start-page: 14559
  year: 2014
  ident: C5CP01425E-(cit78)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c4cp00772g
– volume: 77
  start-page: 3865
  year: 1996
  ident: C5CP01425E-(cit32)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 76
  start-page: 205
  year: 2000
  ident: C5CP01425E-(cit25)/*[position()=1]
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/(SICI)1097-461X(2000)76:2<205::AID-QUA10>3.0.CO;2-C
– volume: 135
  start-page: 044188
  year: 2011
  ident: C5CP01425E-(cit77)/*[position()=1]
  publication-title: J. Chem. Phys.
– volume: 90
  start-page: 1007
  year: 1989
  ident: C5CP01425E-(cit11)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.456153
– volume: 7
  start-page: 10
  year: 2011
  ident: C5CP01425E-(cit19)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct1005533
– volume: 8
  start-page: 2310
  year: 2012
  ident: C5CP01425E-(cit4)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct3002656
– volume: 131
  start-page: 044108
  year: 2009
  ident: C5CP01425E-(cit51)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3185673
– volume: 117
  start-page: 169
  year: 2012
  ident: C5CP01425E-(cit62)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp3079106
– year: 2015
  ident: C5CP01425E-(cit68)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.5b00081
– volume: 118
  start-page: 8027
  year: 2003
  ident: C5CP01425E-(cit50)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1564060
– volume: 82
  start-page: 299
  year: 1985
  ident: C5CP01425E-(cit23)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.448975
– volume: 7
  start-page: 3297
  year: 2005
  ident: C5CP01425E-(cit12)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b508541a
– volume: 2
  start-page: 1991
  year: 2011
  ident: C5CP01425E-(cit41)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz200616w
– volume: 135
  start-page: 154309
  year: 2011
  ident: C5CP01425E-(cit72)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3653230
– volume: 114
  start-page: 283
  year: 2005
  ident: C5CP01425E-(cit17)/*[position()=1]
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s00214-005-0681-9
– volume: 10
  start-page: 2399
  year: 2014
  ident: C5CP01425E-(cit60)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct500296a
– start-page: 80
  year: 2010
  ident: C5CP01425E-(cit67)/*[position()=1]
  publication-title: J. Mol. Catal. A: Chem.
  doi: 10.1016/j.molcata.2010.03.016
– volume: 311
  start-page: 227
  year: 2005
  ident: C5CP01425E-(cit18)/*[position()=1]
  publication-title: Chem. Phys.
  doi: 10.1016/j.chemphys.2004.10.005
– volume: 33
  start-page: 8800
  year: 1986
  ident: C5CP01425E-(cit3)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.33.8800
– volume-title: Modern Theoretical Chemistry
  year: 1977
  ident: C5CP01425E-(cit20)/*[position()=1]
– volume: 59
  start-page: 7413
  year: 1999
  ident: C5CP01425E-(cit39)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.59.7413
– volume: 136
  start-page: 698
  year: 2014
  ident: C5CP01425E-(cit59)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4102979
– volume: 80
  start-page: 890
  year: 1997
  ident: C5CP01425E-(cit38)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.80.890
– year: 2015
  ident: C5CP01425E-(cit65)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
– volume: 128
  start-page: 184109
  year: 2008
  ident: C5CP01425E-(cit30)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2912068
– volume: 117
  start-page: 12648
  year: 2013
  ident: C5CP01425E-(cit8)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp402884h
– volume: 6
  start-page: 597
  year: 2010
  ident: C5CP01425E-(cit16)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct900566x
– ident: C5CP01425E-(cit79)/*[position()=1]
– volume: 372
  start-page: 20120476
  year: 2014
  ident: C5CP01425E-(cit26)/*[position()=1]
  publication-title: Philos. Trans. R. Soc., A
  doi: 10.1098/rsta.2012.0476
– volume: 135
  start-page: 194102
  year: 2011
  ident: C5CP01425E-(cit73)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3659142
– volume: 114
  start-page: 5497
  year: 2000
  ident: C5CP01425E-(cit40)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1347371
– volume: 100
  start-page: 136406
  year: 2008
  ident: C5CP01425E-(cit31)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.136406
– volume: 118
  start-page: 4976
  year: 2003
  ident: C5CP01425E-(cit64)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1543944
SSID ssj0001513
Score 2.5005774
Snippet The goal of this work is to develop a gradient approximation to the exchange–correlation functional of Kohn–Sham density functional theory for treating...
The goal of this work is to develop a gradient approximation to the exchange-correlation functional of Kohn-Sham density functional theory for treating...
A gradient approximation, GAM, to the exchange–correlation functional of Kohn–Sham theory with broad performance for metal and nonmetal bond energies and weak...
SourceID osti
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 12146
SubjectTerms Approximation
Bond energy
Borides
Catalysis
catalysis (heterogeneous)
Exchange
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
materials and chemistry by design
Mathematical analysis
synthesis (novel materials)
Training
Title Nonseparable exchange–correlation functional for molecules, including homogeneous catalysis involving transition metals
URI https://www.ncbi.nlm.nih.gov/pubmed/25877230
https://www.proquest.com/docview/1677890047
https://www.proquest.com/docview/1686434228
https://www.osti.gov/servlets/purl/1386923
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZK9wAXxJuygIzggkSWPOwkPq6iooJg1UNXLKfIcZylqE2q3RZY_gB_mxk7cbOii4BLZCVuk2a-zozHM98Q8iIRsRKiYB4rsIVZVIaeZInyKg22z9eRjhVWI384iifH7N0JPxkMfvayljbr4kD92FlX8j9ShXMgV6yS_QfJui-FEzAG-cIRJAzHv5LxEaZCI3k3lj_p77aI11PYcGPRJhGC2WqjfZhPuLTNcK1qmNdqsTE1LZ-bZQM30ZgOa-I5hqZkXoPq-tr2kahtbhd2nJaL875LO-0krbrecXaEp2zc5NzEHaZZ5mrJPm2MyZPNxWYbe3Wx64-6_tJZVOwFhsbDeLtn8vTCmZGJCcWezGXTj1wEHDfdbcXogbbalsWRJ3zbI86p46QPu7SnXIOwDVf-pvb9CFlTFVcrWPGFXPcnwS9cLQ0AQp7CWqLdBrpMst1dukb2QhwMyd7hePb2vTPq4BhFHbttJF5vb4Vs0u2HL7k2wwZU9NXLFuO-zG6Rm-26gx5aEN0mA13fIdezTmR3ybc-mOguMNEtmCiAiTowvaIOSrQHJeqgRB2U6BZK1ELpHjl-M55lE6_tyuEpxsTaq8JCBoJVSVL4gWSRVkkVlIxrFcacqVLLlPGykiKUhU7KMBEa7KkQLFWVX1Qyuk-GdVPrh4RyDctpUbFSI1GeDGXMpUxgVIWKa-GPyMvuheaqpazHzimL3KRORCLPeDY1chiPyHM3d2WJWnbO2ke55OBeIkeywmQytc6DKI1hpTMizzpx5fD2cetMmheWB8izKJBa9U9zUnDvkVJvRB5YWbsn6SDy6Mor--TG9j_ymAzXZxv9BPzddfG0xeIvhSCzBA
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonseparable+exchange-correlation+functional+for+molecules%2C+including+homogeneous+catalysis+involving+transition+metals&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Yu%2C+Haoyu+S&rft.au=Zhang%2C+Wenjing&rft.au=Verma%2C+Pragya&rft.au=He%2C+Xiao&rft.date=2015-05-14&rft.eissn=1463-9084&rft.volume=17&rft.issue=18&rft.spage=12146&rft_id=info:doi/10.1039%2Fc5cp01425e&rft_id=info%3Apmid%2F25877230&rft.externalDocID=25877230
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon