Observational constraints on the new generalized Chaplygin gas model

We use the latest data to investigate observational constraints on the new generalized Chaplygin gas (NGCG) model. Using the Markov Chain Monte Carlo method, we constrain the NGCG model with type Ia supernovae from the Union2 set (557 data), the usual baryonic acoustic oscillation (BAO) observation...

Full description

Saved in:
Bibliographic Details
Published inResearch in astronomy and astrophysics Vol. 13; no. 2; pp. 159 - 169
Main Authors Liao, Kai, Pan, Yu, Zhu, Zong-Hong
Format Journal Article
LanguageEnglish
Published 01.02.2013
Subjects
Online AccessGet full text
ISSN1674-4527
2397-6209
DOI10.1088/1674-4527/13/2/003

Cover

Abstract We use the latest data to investigate observational constraints on the new generalized Chaplygin gas (NGCG) model. Using the Markov Chain Monte Carlo method, we constrain the NGCG model with type Ia supernovae from the Union2 set (557 data), the usual baryonic acoustic oscillation (BAO) observation from the spectroscopic Sloan Digital Sky Survey data release 7 galaxy sample, the cosmic mi- crowave background observation from the 7-year Wilkinson Microwave Anisotropy Probe results, newly revised data on H(z), as well as a value of θBAO (Z = 0.55) = (3.90° ±0.38°) for the angular BAO scale. The constraint results for the NGCG model are ωX=-1.0510+0.1563-0.1685(1σ)+0.2226-0.2398(2σ),η=1.0117+0.0469-0.0502(1σ)+0.0693-0.0716(2σ)and ΩX=0.7297+0.0229-0.0276(1σ)+0.0329-0.0402(2σ), which give a rather stringent constraint. From the results, we can see that a phantom model is slightly favored and the proba- bility that energy transfers from dark matter to dark energy is a little larger than the inverse.
AbstractList We use the latest data to investigate observational constraints on the new generalized Chaplygin gas (NGCG) model. Using the Markov Chain Monte Carlo method, we constrain the NGCG model with type Ia supernovae from the Union2 set (557 data), the usual baryonic acoustic oscillation (BAO) observation from the spectroscopic Sloan Digital Sky Survey data release 7 galaxy sample, the cosmic mi- crowave background observation from the 7-year Wilkinson Microwave Anisotropy Probe results, newly revised data on H(z), as well as a value of θBAO (Z = 0.55) = (3.90° ±0.38°) for the angular BAO scale. The constraint results for the NGCG model are ωX=-1.0510+0.1563-0.1685(1σ)+0.2226-0.2398(2σ),η=1.0117+0.0469-0.0502(1σ)+0.0693-0.0716(2σ)and ΩX=0.7297+0.0229-0.0276(1σ)+0.0329-0.0402(2σ), which give a rather stringent constraint. From the results, we can see that a phantom model is slightly favored and the proba- bility that energy transfers from dark matter to dark energy is a little larger than the inverse.
We use the latest data to investigate observational constraints on the new generalized Chaplygin gas (NGCG) model. Using the Markov Chain Monte Carlo method, we constrain the NGCG model with type Ia supernovae from the Union2 set (557 data), the usual baryonic acoustic oscillation (BAO) observation from the spectroscopic Sloan Digital Sky Survey data release 7 galaxy sample, the cosmic microwave background observation from the 7-year Wilkinson Microwave Anisotropy Probe results, newly revised data on H(z), as well as a value of [theta] sub(BAO) (z = 0.55) = (3.90[degress] + or - 0.38[degrees]) for the angular BAO scale. The constraint results for the NGCG model are omega sub(X)=-1.0510 super(+0.1563) sub(-0.1685)(1[sigma]) super(+0.2 226) sub(-0.2398)(2[sigma]), [eta]=1.0117 super(0.0469) sub(-0.0502)(1[sigma]) super(+0. 0693) sub(-0.0716)(2[sigma]) and [Omega]X=0.7297 super(+0.0229) sub(-0.0276)(1[sigma]) super(+0.03 29) sub(-0.0402), which give a rather stringent constraint. From the results, we can see that a phantom model is slightly favored and the probability that energy transfers from dark matter to dark energy is a little larger than the inverse.
Author Kai Liao Yu Pan Zong-Hong Zhu
AuthorAffiliation Department of Astronomy, Beijing Normal University, Beijing 100875, China
Author_xml – sequence: 1
  givenname: Kai
  surname: Liao
  fullname: Liao, Kai
– sequence: 2
  givenname: Yu
  surname: Pan
  fullname: Pan, Yu
– sequence: 3
  givenname: Zong-Hong
  surname: Zhu
  fullname: Zhu, Zong-Hong
BookMark eNqNkDtPwzAURi1UJErhDzCFjSXEr9jxiMpTqtQFZstxbtIg127jFFR-PQ2tOjAgpruc813pnKORDx4QuiL4luCiyIiQPOU5lRlhGc0wZidoTJmSqaBYjdD4CJyh8xjfMRZ5LugY3c_LCN2H6dvgjUts8LHvTOv7mASf9AtIPHwmDXjojGu_oEqmC7Ny26b1SWNisgwVuAt0WhsX4fJwJ-jt8eF1-pzO5k8v07tZajlXfVoTVmJZK8IEYCVywlQlhKhxWQEnhkEtbVWZGqS1JS1pYU1JVUFB1ZRLsGyCbva7qy6sNxB7vWyjBeeMh7CJmogil4pTyv-DYp7LnMgdSveo7UKMHdR61bVL0201wXqoq4d4eoinCdNU7-rupOKXZNv-p-KQz_2tXh_URfDNuvXN8SHnUuRMKfYNE1GMTA
CitedBy_id crossref_primary_10_1088_0253_6102_62_6_23
crossref_primary_10_1007_s10509_014_2069_6
crossref_primary_10_1088_1475_7516_2013_02_033
crossref_primary_10_1140_epjc_s10052_024_13196_5
crossref_primary_10_1007_s10773_024_05794_6
crossref_primary_10_1016_j_physletb_2014_03_059
crossref_primary_10_1140_epjc_s10052_016_4016_x
crossref_primary_10_1103_PhysRevD_92_103511
crossref_primary_10_1016_j_physletb_2013_08_078
crossref_primary_10_1088_1674_4527_16_4_066
crossref_primary_10_3390_universe7100362
crossref_primary_10_1016_j_dark_2020_100764
crossref_primary_10_1088_1475_7516_2019_05_016
crossref_primary_10_1007_s10714_014_1732_0
crossref_primary_10_1016_j_dark_2019_100397
crossref_primary_10_1088_0256_307X_30_11_119801
crossref_primary_10_1140_epjc_s10052_014_3148_0
crossref_primary_10_1140_epjp_i2016_16256_6
crossref_primary_10_1140_epjc_s10052_022_10185_4
crossref_primary_10_1140_epjc_s10052_022_10517_4
Cites_doi 10.1007/978-3-642-55739-2_30
10.1103/PhysRevLett.82.4971
10.1103/PhysRevD.81.063532
10.1088/1475-7516/2010/02/008
10.1103/PhysRevD.76.023508
10.1103/PhysRevLett.103.091302
10.1088/1475-7516/2010/06/002
10.1088/0264-9381/23/9/027
10.1088/1475-7516/2007/03/015
10.1103/PhysRevD.72.123519
10.1140/epjc/s10052-007-0405-5
10.1016/j.physletb.2004.10.014
10.1103/PhysRevD.73.043518
10.1086/383533
10.1086/427061
10.1088/0004-637X/711/1/439
10.1016/j.physletb.2004.12.071
10.1111/j.1365-2966.2011.19832.x
10.1007/s10773-009-0178-8
10.1016/j.physletb.2008.05.066
10.1111/j.1365-2966.2010.17679.x
10.1111/j.1365-2966.2009.15405.x
10.1016/j.physletb.2007.08.038
10.1111/j.1365-2966.2009.15812.x
10.1016/S0370-2693(01)00571-8
10.1023/B:GERG.0000006967.34989.a4
10.1088/0004-637X/716/1/712
10.1016/j.physletb.2012.02.079
10.1086/305424
10.1016/j.physletb.2006.12.063
10.1088/1475-7516/2010/03/025
10.1016/S0370-2693(02)02589-3
10.1103/PhysRevD.70.083519
10.1111/j.1365-2966.2011.19105.x
10.1016/j.physletb.2012.06.062
10.1088/0004-637X/699/1/539
10.1016/j.physletb.2005.01.017
10.1103/PhysRevD.37.3406
10.1016/S0370-2693(00)00669-9
10.1016/j.physletb.2011.06.091
10.1111/j.1365-2966.2007.12268.x
10.1103/PhysRevD.66.043507
10.1088/0067-0049/192/2/18
10.1086/300499
10.1088/0004-637X/730/2/74
10.1140/epjc/s10052-009-1118-8
10.1103/PhysRevD.66.103511
10.1111/j.1365-2966.2011.19425.x
10.1086/307221
10.1134/S0202289308040099
10.1086/177989
10.1086/466512
10.1103/PhysRevD.69.123517
10.1088/1475-7516/2006/01/003
10.1086/185100
10.1103/PhysRevD.82.043503
10.1051/0004-6361:20040236
10.1088/1475-7516/2003/07/005
ContentType Journal Article
DBID 2RA
92L
CQIGP
W94
~WA
AAYXX
CITATION
7TG
KL.
8FD
H8D
L7M
DOI 10.1088/1674-4527/13/2/003
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-自然科学
中文科技期刊数据库- 镜像站点
CrossRef
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Meteorological & Geoastrophysical Abstracts - Academic
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Technology Research Database
Meteorological & Geoastrophysical Abstracts - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
DocumentTitleAlternate Observational constraints on the new generalized Chaplygin gas model
EISSN 2397-6209
EndPage 169
ExternalDocumentID 10_1088_1674_4527_13_2_003
44765399
GroupedDBID 02O
188
1WK
2B.
2C.
2RA
4.4
5B3
5VR
5VS
7.M
8RM
92E
92I
92L
AAGCD
AAJIO
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFUIB
AFYNE
AHSEE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ATQHT
BBWZM
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CQIGP
CRLBU
CW9
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
FA0
HAK
IJHAN
IOP
IZVLO
JCGBZ
KNG
KOT
KWQ
M45
N5L
NT-
NT.
PJBAE
Q02
RIN
RNS
ROL
RPA
RW3
SY9
TCJ
TGP
UZ4
W28
W94
~02
~WA
-SA
-S~
5XA
5XB
AAYXX
ACARI
ADEQX
AERVB
AGQPQ
AOAED
ARNYC
CAJEA
CITATION
Q--
U1G
U5K
7TG
AEINN
KL.
8FD
H8D
L7M
ID FETCH-LOGICAL-c449t-f13b07f9136e0965139d666f0bde41a3ef7cddafe7ccb2b28cab2982e9f247ec3
ISSN 1674-4527
IngestDate Thu Sep 04 20:03:50 EDT 2025
Thu Sep 04 19:53:15 EDT 2025
Thu Apr 24 22:58:40 EDT 2025
Tue Jul 01 04:00:08 EDT 2025
Wed Feb 14 10:43:31 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://iopscience.iop.org/info/page/text-and-data-mining
http://iopscience.iop.org/page/copyright
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c449t-f13b07f9136e0965139d666f0bde41a3ef7cddafe7ccb2b28cab2982e9f247ec3
Notes We use the latest data to investigate observational constraints on the new generalized Chaplygin gas (NGCG) model. Using the Markov Chain Monte Carlo method, we constrain the NGCG model with type Ia supernovae from the Union2 set (557 data), the usual baryonic acoustic oscillation (BAO) observation from the spectroscopic Sloan Digital Sky Survey data release 7 galaxy sample, the cosmic mi- crowave background observation from the 7-year Wilkinson Microwave Anisotropy Probe results, newly revised data on H(z), as well as a value of θBAO (Z = 0.55) = (3.90° ±0.38°) for the angular BAO scale. The constraint results for the NGCG model are ωX=-1.0510+0.1563-0.1685(1σ)+0.2226-0.2398(2σ),η=1.0117+0.0469-0.0502(1σ)+0.0693-0.0716(2σ)and ΩX=0.7297+0.0229-0.0276(1σ)+0.0329-0.0402(2σ), which give a rather stringent constraint. From the results, we can see that a phantom model is slightly favored and the proba- bility that energy transfers from dark matter to dark energy is a little larger than the inverse.
11-5721/P
new generalized Chaplygin gas -- angular BAO scale -- cosmologicalobservations
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://iopscience.iop.org/article/10.1088/1674-4527/13/2/003/pdf
PQID 1680457517
PQPubID 23462
PageCount 11
ParticipantIDs proquest_miscellaneous_1685794224
proquest_miscellaneous_1680457517
crossref_primary_10_1088_1674_4527_13_2_003
crossref_citationtrail_10_1088_1674_4527_13_2_003
chongqing_primary_44765399
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-02-01
PublicationDateYYYYMMDD 2013-02-01
PublicationDate_xml – month: 02
  year: 2013
  text: 2013-02-01
  day: 01
PublicationDecade 2010
PublicationTitle Research in astronomy and astrophysics
PublicationTitleAlternate Chinese Journal of Astronomy and Astrophysics
PublicationYear 2013
References 46
Eisenstein (18) 1998; 496
49
Amendola (2) 2003; 7
Xu (56) 2010; 6
Meng (38) 2005
Bond (6) 1997; 291
Cao (9) 2011
50
51
Amanullah (1) 2010; 716
10
11
55
13
57
Xu (54) 2010; 3
58
15
16
17
Komatsu (31) 2011; 192
3
4
5
Perlmutter (44) 1999; 517
7
8
60
20
21
Riess (47) 1998; 116
Stern (52) 2010; 2
22
23
24
25
26
27
29
Hu (28) 1996; 471
Wu (53) 2007; 3
Chen (12) 2010; 711
Pope (45) 2004; 607
Eisenstein (19) 2005; 633
30
32
33
34
35
Ma (37) 2011; 730
36
39
Chimento (14) 2006; 23
Riess (48) 2009; 699
Zhu (61) 2005; 620
Zhang (59) 2006; 1
40
41
42
43
References_xml – ident: 5
  doi: 10.1007/978-3-642-55739-2_30
– ident: 15
  doi: 10.1103/PhysRevLett.82.4971
– ident: 40
  doi: 10.1103/PhysRevD.81.063532
– volume: 2
  start-page: 8
  issn: 1475-7516
  year: 2010
  ident: 52
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2010/02/008
– ident: 26
  doi: 10.1103/PhysRevD.76.023508
– year: 2011
  ident: 9
– ident: 24
  doi: 10.1103/PhysRevLett.103.091302
– volume: 6
  start-page: 2
  issn: 1475-7516
  year: 2010
  ident: 56
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2010/06/002
– volume: 23
  start-page: 3195
  issn: 0264-9381
  year: 2006
  ident: 14
  publication-title: Classical Quantum Gravity
  doi: 10.1088/0264-9381/23/9/027
– volume: 3
  start-page: 15
  issn: 1475-7516
  year: 2007
  ident: 53
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2007/03/015
– ident: 39
  doi: 10.1103/PhysRevD.72.123519
– ident: 51
  doi: 10.1140/epjc/s10052-007-0405-5
– ident: 33
  doi: 10.1016/j.physletb.2004.10.014
– ident: 58
  doi: 10.1103/PhysRevD.73.043518
– volume: 607
  start-page: 655
  issn: 0004-637X
  year: 2004
  ident: 45
  publication-title: Astrophys. J.
  doi: 10.1086/383533
– volume: 620
  start-page: 7
  issn: 0004-637X
  year: 2005
  ident: 61
  publication-title: Astrophys. J.
  doi: 10.1086/427061
– volume: 711
  start-page: 439
  issn: 0004-637X
  year: 2010
  ident: 12
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/711/1/439
– ident: 21
  doi: 10.1016/j.physletb.2004.12.071
– ident: 10
  doi: 10.1111/j.1365-2966.2011.19832.x
– ident: 29
  doi: 10.1007/s10773-009-0178-8
– ident: 22
  doi: 10.1016/j.physletb.2008.05.066
– ident: 49
  doi: 10.1111/j.1365-2966.2010.17679.x
– ident: 23
  doi: 10.1111/j.1365-2966.2009.15405.x
– ident: 50
  doi: 10.1016/j.physletb.2007.08.038
– ident: 43
  doi: 10.1111/j.1365-2966.2009.15812.x
– ident: 30
  doi: 10.1016/S0370-2693(01)00571-8
– ident: 20
  doi: 10.1023/B:GERG.0000006967.34989.a4
– volume: 716
  start-page: 712
  issn: 0004-637X
  year: 2010
  ident: 1
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/716/1/712
– ident: 34
  doi: 10.1016/j.physletb.2012.02.079
– volume: 496
  start-page: 605
  issn: 0004-637X
  year: 1998
  ident: 18
  publication-title: Astrophys. J.
  doi: 10.1086/305424
– ident: 27
  doi: 10.1016/j.physletb.2006.12.063
– volume: 3
  start-page: 25
  issn: 1475-7516
  year: 2010
  ident: 54
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2010/03/025
– ident: 7
  doi: 10.1016/S0370-2693(02)02589-3
– ident: 4
  doi: 10.1103/PhysRevD.70.083519
– volume: 291
  start-page: L33
  issn: 0035-8711
  year: 1997
  ident: 6
  publication-title: Mon. Not. R. Astron. Soc.
– ident: 8
  doi: 10.1111/j.1365-2966.2011.19105.x
– ident: 35
  doi: 10.1016/j.physletb.2012.06.062
– volume: 699
  start-page: 539
  issn: 0004-637X
  year: 2009
  ident: 48
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/699/1/539
– ident: 25
  doi: 10.1016/j.physletb.2005.01.017
– ident: 46
  doi: 10.1103/PhysRevD.37.3406
– ident: 17
  doi: 10.1016/S0370-2693(00)00669-9
– ident: 57
  doi: 10.1016/j.physletb.2011.06.091
– ident: 42
  doi: 10.1111/j.1365-2966.2007.12268.x
– ident: 3
  doi: 10.1103/PhysRevD.66.043507
– volume: 192
  start-page: 18
  issn: 0067-0049
  year: 2011
  ident: 31
  publication-title: Astrophys. J. Suppl.
  doi: 10.1088/0067-0049/192/2/18
– volume: 116
  start-page: 1009
  issn: 1538-3881
  year: 1998
  ident: 47
  publication-title: Astron. J.
  doi: 10.1086/300499
– volume: 730
  start-page: 74
  issn: 0004-637X
  year: 2011
  ident: 37
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/730/2/74
– ident: 36
  doi: 10.1140/epjc/s10052-009-1118-8
– ident: 32
  doi: 10.1103/PhysRevD.66.103511
– ident: 16
  doi: 10.1111/j.1365-2966.2011.19425.x
– volume: 517
  start-page: 565
  issn: 0004-637X
  year: 1999
  ident: 44
  publication-title: Astrophys. J.
  doi: 10.1086/307221
– ident: 11
  doi: 10.1134/S0202289308040099
– volume: 471
  start-page: 542
  issn: 0004-637X
  year: 1996
  ident: 28
  publication-title: Astrophys. J.
  doi: 10.1086/177989
– volume: 633
  start-page: 560
  issn: 0004-637X
  year: 2005
  ident: 19
  publication-title: Astrophys. J.
  doi: 10.1086/466512
– ident: 13
  doi: 10.1103/PhysRevD.69.123517
– volume: 1
  start-page: 3
  issn: 1475-7516
  year: 2006
  ident: 59
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2006/01/003
– ident: 41
  doi: 10.1086/185100
– ident: 55
  doi: 10.1103/PhysRevD.82.043503
– year: 2005
  ident: 38
– ident: 60
  doi: 10.1051/0004-6361:20040236
– volume: 7
  start-page: 5
  issn: 1475-7516
  year: 2003
  ident: 2
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2003/07/005
SSID ssj0065562
Score 2.0349748
Snippet We use the latest data to investigate observational constraints on the new generalized Chaplygin gas (NGCG) model. Using the Markov Chain Monte Carlo method,...
We use the latest data to investigate observational constraints on the new generalized Chaplygin gas (NGCG) model. Using the Markov Chain Monte Carlo method,...
SourceID proquest
crossref
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 159
SubjectTerms Anisotropy
Chaplygin gas
Computer simulation
Cosmic microwave background
Dark matter
Ia型超新星
Monte Carlo methods
Oscillations
Supernovae
威尔金森微波各向异性探测器
广义
数字巡天
数据模型
数据观测
气体模型
马尔可夫链蒙特卡罗方法
Title Observational constraints on the new generalized Chaplygin gas model
URI http://lib.cqvip.com/qk/94947C/201302/44765399.html
https://www.proquest.com/docview/1680457517
https://www.proquest.com/docview/1685794224
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBaG7rLLsCea7gENGHYpvFQPW84x2APZMKw7tEB3EiRZSgO0drcmh_XXj5Rt2dmjWHcxHEWhEZEmKZL6SMjLSoTKl0qC9uMuk075zCinMjBljFseQcWw2uJzsTiWH0_yk-HsSTxdsrav3dUfz5X8D1dhDPiKp2RvwNlEFAbgHvgLV-AwXP-Jx4c2xVQjzAeiwcJOP6UAsF849kjGuNPqCmO5p-bi7MdyVe8vTdcFZ-yd9mV4GAQxlxgkb85bfKb4qY2CJCf808o0bUHGakhERSX2dTPEozcx_dHUy2zRdFayCzJgw4dUsNHqxQLYKfP2GH9SnGIkIHykBVkH8t0aVNb2YvlNV4N-w7BBTxnvEUSCx4pHMdinPif_i9lKxYQxjV6WGilppKSZ0FxHDNjbXKmYvf9w-KU30EWexz6z6cndWSqgMU1jUyamHDvdIebGKazPN_Aktn2XbdMd_ZGje-Rut5Gg81Yq7pNbvn5Aduc91-grOh_x7CF5uyUsdCQstKkpCAsFYaEjYaFJWCgIC43C8ogcv3939GaRdS00MiflbJ0FJuyBCjMmCo84P-DvV7BhDQe28pIZ4YNyVWWCV85ZeDdLZyyfldzPApfKO_GY7NRN7XcJNfg1D9ZxZ2XBpQ1FxRyrVPClYb6akL20UPqihUrRUqqIfTwhrF857TrwefyTZ_rv3JuQ_fSbnt51s1_0DNGgITHtZWrfbC5hbgn7FpUzde2cHCwT-LN7N3rqE3JneF2ekp31941_Bl7q2j6PMvcT1vOOMw
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Observational+constraints+on+the+new+generalized+Chaplygin+gas+model&rft.jtitle=Research+in+astronomy+and+astrophysics&rft.au=Liao%2C+Kai&rft.au=Pan%2C+Yu&rft.au=Zhu%2C+Zong-Hong&rft.date=2013-02-01&rft.issn=1674-4527&rft.volume=13&rft.issue=2&rft.spage=159&rft.epage=169&rft_id=info:doi/10.1088%2F1674-4527%2F13%2F2%2F003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1674_4527_13_2_003
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F94947C%2F94947C.jpg