Observational constraints on the new generalized Chaplygin gas model
We use the latest data to investigate observational constraints on the new generalized Chaplygin gas (NGCG) model. Using the Markov Chain Monte Carlo method, we constrain the NGCG model with type Ia supernovae from the Union2 set (557 data), the usual baryonic acoustic oscillation (BAO) observation...
Saved in:
Published in | Research in astronomy and astrophysics Vol. 13; no. 2; pp. 159 - 169 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
01.02.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-4527 2397-6209 |
DOI | 10.1088/1674-4527/13/2/003 |
Cover
Abstract | We use the latest data to investigate observational constraints on the new generalized Chaplygin gas (NGCG) model. Using the Markov Chain Monte Carlo method, we constrain the NGCG model with type Ia supernovae from the Union2 set (557 data), the usual baryonic acoustic oscillation (BAO) observation from the spectroscopic Sloan Digital Sky Survey data release 7 galaxy sample, the cosmic mi- crowave background observation from the 7-year Wilkinson Microwave Anisotropy Probe results, newly revised data on H(z), as well as a value of θBAO (Z = 0.55) = (3.90° ±0.38°) for the angular BAO scale. The constraint results for the NGCG model are ωX=-1.0510+0.1563-0.1685(1σ)+0.2226-0.2398(2σ),η=1.0117+0.0469-0.0502(1σ)+0.0693-0.0716(2σ)and ΩX=0.7297+0.0229-0.0276(1σ)+0.0329-0.0402(2σ), which give a rather stringent constraint. From the results, we can see that a phantom model is slightly favored and the proba- bility that energy transfers from dark matter to dark energy is a little larger than the inverse. |
---|---|
AbstractList | We use the latest data to investigate observational constraints on the new generalized Chaplygin gas (NGCG) model. Using the Markov Chain Monte Carlo method, we constrain the NGCG model with type Ia supernovae from the Union2 set (557 data), the usual baryonic acoustic oscillation (BAO) observation from the spectroscopic Sloan Digital Sky Survey data release 7 galaxy sample, the cosmic mi- crowave background observation from the 7-year Wilkinson Microwave Anisotropy Probe results, newly revised data on H(z), as well as a value of θBAO (Z = 0.55) = (3.90° ±0.38°) for the angular BAO scale. The constraint results for the NGCG model are ωX=-1.0510+0.1563-0.1685(1σ)+0.2226-0.2398(2σ),η=1.0117+0.0469-0.0502(1σ)+0.0693-0.0716(2σ)and ΩX=0.7297+0.0229-0.0276(1σ)+0.0329-0.0402(2σ), which give a rather stringent constraint. From the results, we can see that a phantom model is slightly favored and the proba- bility that energy transfers from dark matter to dark energy is a little larger than the inverse. We use the latest data to investigate observational constraints on the new generalized Chaplygin gas (NGCG) model. Using the Markov Chain Monte Carlo method, we constrain the NGCG model with type Ia supernovae from the Union2 set (557 data), the usual baryonic acoustic oscillation (BAO) observation from the spectroscopic Sloan Digital Sky Survey data release 7 galaxy sample, the cosmic microwave background observation from the 7-year Wilkinson Microwave Anisotropy Probe results, newly revised data on H(z), as well as a value of [theta] sub(BAO) (z = 0.55) = (3.90[degress] + or - 0.38[degrees]) for the angular BAO scale. The constraint results for the NGCG model are omega sub(X)=-1.0510 super(+0.1563) sub(-0.1685)(1[sigma]) super(+0.2 226) sub(-0.2398)(2[sigma]), [eta]=1.0117 super(0.0469) sub(-0.0502)(1[sigma]) super(+0. 0693) sub(-0.0716)(2[sigma]) and [Omega]X=0.7297 super(+0.0229) sub(-0.0276)(1[sigma]) super(+0.03 29) sub(-0.0402), which give a rather stringent constraint. From the results, we can see that a phantom model is slightly favored and the probability that energy transfers from dark matter to dark energy is a little larger than the inverse. |
Author | Kai Liao Yu Pan Zong-Hong Zhu |
AuthorAffiliation | Department of Astronomy, Beijing Normal University, Beijing 100875, China |
Author_xml | – sequence: 1 givenname: Kai surname: Liao fullname: Liao, Kai – sequence: 2 givenname: Yu surname: Pan fullname: Pan, Yu – sequence: 3 givenname: Zong-Hong surname: Zhu fullname: Zhu, Zong-Hong |
BookMark | eNqNkDtPwzAURi1UJErhDzCFjSXEr9jxiMpTqtQFZstxbtIg127jFFR-PQ2tOjAgpruc813pnKORDx4QuiL4luCiyIiQPOU5lRlhGc0wZidoTJmSqaBYjdD4CJyh8xjfMRZ5LugY3c_LCN2H6dvgjUts8LHvTOv7mASf9AtIPHwmDXjojGu_oEqmC7Ny26b1SWNisgwVuAt0WhsX4fJwJ-jt8eF1-pzO5k8v07tZajlXfVoTVmJZK8IEYCVywlQlhKhxWQEnhkEtbVWZGqS1JS1pYU1JVUFB1ZRLsGyCbva7qy6sNxB7vWyjBeeMh7CJmogil4pTyv-DYp7LnMgdSveo7UKMHdR61bVL0201wXqoq4d4eoinCdNU7-rupOKXZNv-p-KQz_2tXh_URfDNuvXN8SHnUuRMKfYNE1GMTA |
CitedBy_id | crossref_primary_10_1088_0253_6102_62_6_23 crossref_primary_10_1007_s10509_014_2069_6 crossref_primary_10_1088_1475_7516_2013_02_033 crossref_primary_10_1140_epjc_s10052_024_13196_5 crossref_primary_10_1007_s10773_024_05794_6 crossref_primary_10_1016_j_physletb_2014_03_059 crossref_primary_10_1140_epjc_s10052_016_4016_x crossref_primary_10_1103_PhysRevD_92_103511 crossref_primary_10_1016_j_physletb_2013_08_078 crossref_primary_10_1088_1674_4527_16_4_066 crossref_primary_10_3390_universe7100362 crossref_primary_10_1016_j_dark_2020_100764 crossref_primary_10_1088_1475_7516_2019_05_016 crossref_primary_10_1007_s10714_014_1732_0 crossref_primary_10_1016_j_dark_2019_100397 crossref_primary_10_1088_0256_307X_30_11_119801 crossref_primary_10_1140_epjc_s10052_014_3148_0 crossref_primary_10_1140_epjp_i2016_16256_6 crossref_primary_10_1140_epjc_s10052_022_10185_4 crossref_primary_10_1140_epjc_s10052_022_10517_4 |
Cites_doi | 10.1007/978-3-642-55739-2_30 10.1103/PhysRevLett.82.4971 10.1103/PhysRevD.81.063532 10.1088/1475-7516/2010/02/008 10.1103/PhysRevD.76.023508 10.1103/PhysRevLett.103.091302 10.1088/1475-7516/2010/06/002 10.1088/0264-9381/23/9/027 10.1088/1475-7516/2007/03/015 10.1103/PhysRevD.72.123519 10.1140/epjc/s10052-007-0405-5 10.1016/j.physletb.2004.10.014 10.1103/PhysRevD.73.043518 10.1086/383533 10.1086/427061 10.1088/0004-637X/711/1/439 10.1016/j.physletb.2004.12.071 10.1111/j.1365-2966.2011.19832.x 10.1007/s10773-009-0178-8 10.1016/j.physletb.2008.05.066 10.1111/j.1365-2966.2010.17679.x 10.1111/j.1365-2966.2009.15405.x 10.1016/j.physletb.2007.08.038 10.1111/j.1365-2966.2009.15812.x 10.1016/S0370-2693(01)00571-8 10.1023/B:GERG.0000006967.34989.a4 10.1088/0004-637X/716/1/712 10.1016/j.physletb.2012.02.079 10.1086/305424 10.1016/j.physletb.2006.12.063 10.1088/1475-7516/2010/03/025 10.1016/S0370-2693(02)02589-3 10.1103/PhysRevD.70.083519 10.1111/j.1365-2966.2011.19105.x 10.1016/j.physletb.2012.06.062 10.1088/0004-637X/699/1/539 10.1016/j.physletb.2005.01.017 10.1103/PhysRevD.37.3406 10.1016/S0370-2693(00)00669-9 10.1016/j.physletb.2011.06.091 10.1111/j.1365-2966.2007.12268.x 10.1103/PhysRevD.66.043507 10.1088/0067-0049/192/2/18 10.1086/300499 10.1088/0004-637X/730/2/74 10.1140/epjc/s10052-009-1118-8 10.1103/PhysRevD.66.103511 10.1111/j.1365-2966.2011.19425.x 10.1086/307221 10.1134/S0202289308040099 10.1086/177989 10.1086/466512 10.1103/PhysRevD.69.123517 10.1088/1475-7516/2006/01/003 10.1086/185100 10.1103/PhysRevD.82.043503 10.1051/0004-6361:20040236 10.1088/1475-7516/2003/07/005 |
ContentType | Journal Article |
DBID | 2RA 92L CQIGP W94 ~WA AAYXX CITATION 7TG KL. 8FD H8D L7M |
DOI | 10.1088/1674-4527/13/2/003 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库-自然科学 中文科技期刊数据库- 镜像站点 CrossRef Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Meteorological & Geoastrophysical Abstracts - Academic Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database Meteorological & Geoastrophysical Abstracts - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics |
DocumentTitleAlternate | Observational constraints on the new generalized Chaplygin gas model |
EISSN | 2397-6209 |
EndPage | 169 |
ExternalDocumentID | 10_1088_1674_4527_13_2_003 44765399 |
GroupedDBID | 02O 188 1WK 2B. 2C. 2RA 4.4 5B3 5VR 5VS 7.M 8RM 92E 92I 92L AAGCD AAJIO AALHV AATNI ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFUIB AFYNE AHSEE AKPSB ALMA_UNASSIGNED_HOLDINGS ATQHT BBWZM CCEZO CCVFK CEBXE CHBEP CJUJL CQIGP CRLBU CW9 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN FA0 HAK IJHAN IOP IZVLO JCGBZ KNG KOT KWQ M45 N5L NT- NT. PJBAE Q02 RIN RNS ROL RPA RW3 SY9 TCJ TGP UZ4 W28 W94 ~02 ~WA -SA -S~ 5XA 5XB AAYXX ACARI ADEQX AERVB AGQPQ AOAED ARNYC CAJEA CITATION Q-- U1G U5K 7TG AEINN KL. 8FD H8D L7M |
ID | FETCH-LOGICAL-c449t-f13b07f9136e0965139d666f0bde41a3ef7cddafe7ccb2b28cab2982e9f247ec3 |
ISSN | 1674-4527 |
IngestDate | Thu Sep 04 20:03:50 EDT 2025 Thu Sep 04 19:53:15 EDT 2025 Thu Apr 24 22:58:40 EDT 2025 Tue Jul 01 04:00:08 EDT 2025 Wed Feb 14 10:43:31 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | http://iopscience.iop.org/info/page/text-and-data-mining http://iopscience.iop.org/page/copyright |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c449t-f13b07f9136e0965139d666f0bde41a3ef7cddafe7ccb2b28cab2982e9f247ec3 |
Notes | We use the latest data to investigate observational constraints on the new generalized Chaplygin gas (NGCG) model. Using the Markov Chain Monte Carlo method, we constrain the NGCG model with type Ia supernovae from the Union2 set (557 data), the usual baryonic acoustic oscillation (BAO) observation from the spectroscopic Sloan Digital Sky Survey data release 7 galaxy sample, the cosmic mi- crowave background observation from the 7-year Wilkinson Microwave Anisotropy Probe results, newly revised data on H(z), as well as a value of θBAO (Z = 0.55) = (3.90° ±0.38°) for the angular BAO scale. The constraint results for the NGCG model are ωX=-1.0510+0.1563-0.1685(1σ)+0.2226-0.2398(2σ),η=1.0117+0.0469-0.0502(1σ)+0.0693-0.0716(2σ)and ΩX=0.7297+0.0229-0.0276(1σ)+0.0329-0.0402(2σ), which give a rather stringent constraint. From the results, we can see that a phantom model is slightly favored and the proba- bility that energy transfers from dark matter to dark energy is a little larger than the inverse. 11-5721/P new generalized Chaplygin gas -- angular BAO scale -- cosmologicalobservations ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://iopscience.iop.org/article/10.1088/1674-4527/13/2/003/pdf |
PQID | 1680457517 |
PQPubID | 23462 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1685794224 proquest_miscellaneous_1680457517 crossref_primary_10_1088_1674_4527_13_2_003 crossref_citationtrail_10_1088_1674_4527_13_2_003 chongqing_primary_44765399 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-02-01 |
PublicationDateYYYYMMDD | 2013-02-01 |
PublicationDate_xml | – month: 02 year: 2013 text: 2013-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Research in astronomy and astrophysics |
PublicationTitleAlternate | Chinese Journal of Astronomy and Astrophysics |
PublicationYear | 2013 |
References | 46 Eisenstein (18) 1998; 496 49 Amendola (2) 2003; 7 Xu (56) 2010; 6 Meng (38) 2005 Bond (6) 1997; 291 Cao (9) 2011 50 51 Amanullah (1) 2010; 716 10 11 55 13 57 Xu (54) 2010; 3 58 15 16 17 Komatsu (31) 2011; 192 3 4 5 Perlmutter (44) 1999; 517 7 8 60 20 21 Riess (47) 1998; 116 Stern (52) 2010; 2 22 23 24 25 26 27 29 Hu (28) 1996; 471 Wu (53) 2007; 3 Chen (12) 2010; 711 Pope (45) 2004; 607 Eisenstein (19) 2005; 633 30 32 33 34 35 Ma (37) 2011; 730 36 39 Chimento (14) 2006; 23 Riess (48) 2009; 699 Zhu (61) 2005; 620 Zhang (59) 2006; 1 40 41 42 43 |
References_xml | – ident: 5 doi: 10.1007/978-3-642-55739-2_30 – ident: 15 doi: 10.1103/PhysRevLett.82.4971 – ident: 40 doi: 10.1103/PhysRevD.81.063532 – volume: 2 start-page: 8 issn: 1475-7516 year: 2010 ident: 52 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2010/02/008 – ident: 26 doi: 10.1103/PhysRevD.76.023508 – year: 2011 ident: 9 – ident: 24 doi: 10.1103/PhysRevLett.103.091302 – volume: 6 start-page: 2 issn: 1475-7516 year: 2010 ident: 56 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2010/06/002 – volume: 23 start-page: 3195 issn: 0264-9381 year: 2006 ident: 14 publication-title: Classical Quantum Gravity doi: 10.1088/0264-9381/23/9/027 – volume: 3 start-page: 15 issn: 1475-7516 year: 2007 ident: 53 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2007/03/015 – ident: 39 doi: 10.1103/PhysRevD.72.123519 – ident: 51 doi: 10.1140/epjc/s10052-007-0405-5 – ident: 33 doi: 10.1016/j.physletb.2004.10.014 – ident: 58 doi: 10.1103/PhysRevD.73.043518 – volume: 607 start-page: 655 issn: 0004-637X year: 2004 ident: 45 publication-title: Astrophys. J. doi: 10.1086/383533 – volume: 620 start-page: 7 issn: 0004-637X year: 2005 ident: 61 publication-title: Astrophys. J. doi: 10.1086/427061 – volume: 711 start-page: 439 issn: 0004-637X year: 2010 ident: 12 publication-title: Astrophys. J. doi: 10.1088/0004-637X/711/1/439 – ident: 21 doi: 10.1016/j.physletb.2004.12.071 – ident: 10 doi: 10.1111/j.1365-2966.2011.19832.x – ident: 29 doi: 10.1007/s10773-009-0178-8 – ident: 22 doi: 10.1016/j.physletb.2008.05.066 – ident: 49 doi: 10.1111/j.1365-2966.2010.17679.x – ident: 23 doi: 10.1111/j.1365-2966.2009.15405.x – ident: 50 doi: 10.1016/j.physletb.2007.08.038 – ident: 43 doi: 10.1111/j.1365-2966.2009.15812.x – ident: 30 doi: 10.1016/S0370-2693(01)00571-8 – ident: 20 doi: 10.1023/B:GERG.0000006967.34989.a4 – volume: 716 start-page: 712 issn: 0004-637X year: 2010 ident: 1 publication-title: Astrophys. J. doi: 10.1088/0004-637X/716/1/712 – ident: 34 doi: 10.1016/j.physletb.2012.02.079 – volume: 496 start-page: 605 issn: 0004-637X year: 1998 ident: 18 publication-title: Astrophys. J. doi: 10.1086/305424 – ident: 27 doi: 10.1016/j.physletb.2006.12.063 – volume: 3 start-page: 25 issn: 1475-7516 year: 2010 ident: 54 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2010/03/025 – ident: 7 doi: 10.1016/S0370-2693(02)02589-3 – ident: 4 doi: 10.1103/PhysRevD.70.083519 – volume: 291 start-page: L33 issn: 0035-8711 year: 1997 ident: 6 publication-title: Mon. Not. R. Astron. Soc. – ident: 8 doi: 10.1111/j.1365-2966.2011.19105.x – ident: 35 doi: 10.1016/j.physletb.2012.06.062 – volume: 699 start-page: 539 issn: 0004-637X year: 2009 ident: 48 publication-title: Astrophys. J. doi: 10.1088/0004-637X/699/1/539 – ident: 25 doi: 10.1016/j.physletb.2005.01.017 – ident: 46 doi: 10.1103/PhysRevD.37.3406 – ident: 17 doi: 10.1016/S0370-2693(00)00669-9 – ident: 57 doi: 10.1016/j.physletb.2011.06.091 – ident: 42 doi: 10.1111/j.1365-2966.2007.12268.x – ident: 3 doi: 10.1103/PhysRevD.66.043507 – volume: 192 start-page: 18 issn: 0067-0049 year: 2011 ident: 31 publication-title: Astrophys. J. Suppl. doi: 10.1088/0067-0049/192/2/18 – volume: 116 start-page: 1009 issn: 1538-3881 year: 1998 ident: 47 publication-title: Astron. J. doi: 10.1086/300499 – volume: 730 start-page: 74 issn: 0004-637X year: 2011 ident: 37 publication-title: Astrophys. J. doi: 10.1088/0004-637X/730/2/74 – ident: 36 doi: 10.1140/epjc/s10052-009-1118-8 – ident: 32 doi: 10.1103/PhysRevD.66.103511 – ident: 16 doi: 10.1111/j.1365-2966.2011.19425.x – volume: 517 start-page: 565 issn: 0004-637X year: 1999 ident: 44 publication-title: Astrophys. J. doi: 10.1086/307221 – ident: 11 doi: 10.1134/S0202289308040099 – volume: 471 start-page: 542 issn: 0004-637X year: 1996 ident: 28 publication-title: Astrophys. J. doi: 10.1086/177989 – volume: 633 start-page: 560 issn: 0004-637X year: 2005 ident: 19 publication-title: Astrophys. J. doi: 10.1086/466512 – ident: 13 doi: 10.1103/PhysRevD.69.123517 – volume: 1 start-page: 3 issn: 1475-7516 year: 2006 ident: 59 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2006/01/003 – ident: 41 doi: 10.1086/185100 – ident: 55 doi: 10.1103/PhysRevD.82.043503 – year: 2005 ident: 38 – ident: 60 doi: 10.1051/0004-6361:20040236 – volume: 7 start-page: 5 issn: 1475-7516 year: 2003 ident: 2 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2003/07/005 |
SSID | ssj0065562 |
Score | 2.0349748 |
Snippet | We use the latest data to investigate observational constraints on the new generalized Chaplygin gas (NGCG) model. Using the Markov Chain Monte Carlo method,... We use the latest data to investigate observational constraints on the new generalized Chaplygin gas (NGCG) model. Using the Markov Chain Monte Carlo method,... |
SourceID | proquest crossref chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 159 |
SubjectTerms | Anisotropy Chaplygin gas Computer simulation Cosmic microwave background Dark matter Ia型超新星 Monte Carlo methods Oscillations Supernovae 威尔金森微波各向异性探测器 广义 数字巡天 数据模型 数据观测 气体模型 马尔可夫链蒙特卡罗方法 |
Title | Observational constraints on the new generalized Chaplygin gas model |
URI | http://lib.cqvip.com/qk/94947C/201302/44765399.html https://www.proquest.com/docview/1680457517 https://www.proquest.com/docview/1685794224 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBaG7rLLsCea7gENGHYpvFQPW84x2APZMKw7tEB3EiRZSgO0drcmh_XXj5Rt2dmjWHcxHEWhEZEmKZL6SMjLSoTKl0qC9uMuk075zCinMjBljFseQcWw2uJzsTiWH0_yk-HsSTxdsrav3dUfz5X8D1dhDPiKp2RvwNlEFAbgHvgLV-AwXP-Jx4c2xVQjzAeiwcJOP6UAsF849kjGuNPqCmO5p-bi7MdyVe8vTdcFZ-yd9mV4GAQxlxgkb85bfKb4qY2CJCf808o0bUHGakhERSX2dTPEozcx_dHUy2zRdFayCzJgw4dUsNHqxQLYKfP2GH9SnGIkIHykBVkH8t0aVNb2YvlNV4N-w7BBTxnvEUSCx4pHMdinPif_i9lKxYQxjV6WGilppKSZ0FxHDNjbXKmYvf9w-KU30EWexz6z6cndWSqgMU1jUyamHDvdIebGKazPN_Aktn2XbdMd_ZGje-Rut5Gg81Yq7pNbvn5Aduc91-grOh_x7CF5uyUsdCQstKkpCAsFYaEjYaFJWCgIC43C8ogcv3939GaRdS00MiflbJ0FJuyBCjMmCo84P-DvV7BhDQe28pIZ4YNyVWWCV85ZeDdLZyyfldzPApfKO_GY7NRN7XcJNfg1D9ZxZ2XBpQ1FxRyrVPClYb6akL20UPqihUrRUqqIfTwhrF857TrwefyTZ_rv3JuQ_fSbnt51s1_0DNGgITHtZWrfbC5hbgn7FpUzde2cHCwT-LN7N3rqE3JneF2ekp31941_Bl7q2j6PMvcT1vOOMw |
linkProvider | IOP Publishing |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Observational+constraints+on+the+new+generalized+Chaplygin+gas+model&rft.jtitle=Research+in+astronomy+and+astrophysics&rft.au=Liao%2C+Kai&rft.au=Pan%2C+Yu&rft.au=Zhu%2C+Zong-Hong&rft.date=2013-02-01&rft.issn=1674-4527&rft.volume=13&rft.issue=2&rft.spage=159&rft.epage=169&rft_id=info:doi/10.1088%2F1674-4527%2F13%2F2%2F003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1674_4527_13_2_003 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F94947C%2F94947C.jpg |