The role of mitochondrial sirtuins in health and disease
Mitochondria play a critical role in energy production, cell signalling and cell survival. Defects in mitochondrial function contribute to the ageing process and ageing-related disorders such as metabolic disease, cancer, and neurodegeneration. The sirtuin family of deacylase enzymes have a variety...
Saved in:
Published in | Free radical biology & medicine Vol. 100; pp. 164 - 174 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.11.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mitochondria play a critical role in energy production, cell signalling and cell survival. Defects in mitochondrial function contribute to the ageing process and ageing-related disorders such as metabolic disease, cancer, and neurodegeneration. The sirtuin family of deacylase enzymes have a variety of subcellular localisations and have been found to remove a growing list of post-translational acyl modifications from target proteins. SIRT3, SIRT4, and SIRT5 are found primarily located in the mitochondria, and are involved in many of the key processes of this organelle. SIRT3 has been the subject of intense research and is primarily a deacetylase thought to function as a mitochondrial fidelity protein, with roles in mitochondrial substrate metabolism, protection against oxidative stress, and cell survival pathways. Less is known about the functional targets of SIRT4, which has deacetylase, ADP-ribosylase, and a newly-described lipoamidase function, although key roles in lipid and glutamine metabolism have been reported. SIRT5 modulates a host of newly-discovered acyl modifications including succinylation, malonylation, and glutarylation in both mitochondrial and extra-mitochondrial compartments, however the functional significance of SIRT5 in the regulation of many of its proposed target proteins remains to be discovered. Because of their influence on a broad range of pathways, SIRT3, SIRT4, and SIRT5 are implicated in a range of disease-states including metabolic disease such as diabetes, neurodegenerative diseases, cancer, and ageing-related disorders such as hearing-loss and cardiac dysfunction. We review the current knowledge on the function of the three mitochondrial sirtuins, their role in disease, and the current outstanding questions in the field.
[Display omitted]
•SIRT3, SIRT4 and SIRT5 modulate acyl modifications such as acetylation and succinylation.•Mitochondrial SIRTs are implicated in metabolism, mitochondrial fidelity, and cell stress.•Alterations in the expression/activity of SIRT3, SIRT4, SIRT5 are linked with disease.•Questions remain about the potential of mitochondrial SIRTs as therapeutic targets. |
---|---|
AbstractList | Mitochondria play a critical role in energy production, cell signalling and cell survival. Defects in mitochondrial function contribute to the ageing process and ageing-related disorders such as metabolic disease, cancer, and neurodegeneration. The sirtuin family of deacylase enzymes have a variety of subcellular localisations and have been found to remove a growing list of post-translational acyl modifications from target proteins. SIRT3, SIRT4, and SIRT5 are found primarily located in the mitochondria, and are involved in many of the key processes of this organelle. SIRT3 has been the subject of intense research and is primarily a deacetylase thought to function as a mitochondrial fidelity protein, with roles in mitochondrial substrate metabolism, protection against oxidative stress, and cell survival pathways. Less is known about the functional targets of SIRT4, which has deacetylase, ADP-ribosylase, and a newly-described lipoamidase function, although key roles in lipid and glutamine metabolism have been reported. SIRT5 modulates a host of newly-discovered acyl modifications including succinylation, malonylation, and glutarylation in both mitochondrial and extra-mitochondrial compartments, however the functional significance of SIRT5 in the regulation of many of its proposed target proteins remains to be discovered. Because of their influence on a broad range of pathways, SIRT3, SIRT4, and SIRT5 are implicated in a range of disease-states including metabolic disease such as diabetes, neurodegenerative diseases, cancer, and ageing-related disorders such as hearing-loss and cardiac dysfunction. We review the current knowledge on the function of the three mitochondrial sirtuins, their role in disease, and the current outstanding questions in the field.
[Display omitted]
•SIRT3, SIRT4 and SIRT5 modulate acyl modifications such as acetylation and succinylation.•Mitochondrial SIRTs are implicated in metabolism, mitochondrial fidelity, and cell stress.•Alterations in the expression/activity of SIRT3, SIRT4, SIRT5 are linked with disease.•Questions remain about the potential of mitochondrial SIRTs as therapeutic targets. Mitochondria play a critical role in energy production, cell signalling and cell survival. Defects in mitochondrial function contribute to the ageing process and ageing-related disorders such as metabolic disease, cancer, and neurodegeneration. The sirtuin family of deacylase enzymes have a variety of subcellular localisations and have been found to remove a growing list of post-translational acyl modifications from target proteins. SIRT3, SIRT4, and SIRT5 are found primarily located in the mitochondria, and are involved in many of the key processes of this organelle. SIRT3 has been the subject of intense research and is primarily a deacetylase thought to function as a mitochondrial fidelity protein, with roles in mitochondrial substrate metabolism, protection against oxidative stress, and cell survival pathways. Less is known about the functional targets of SIRT4, which has deacetylase, ADP-ribosylase, and a newly-described lipoamidase function, although key roles in lipid and glutamine metabolism have been reported. SIRT5 modulates a host of newly-discovered acyl modifications including succinylation, malonylation, and glutarylation in both mitochondrial and extra-mitochondrial compartments, however the functional significance of SIRT5 in the regulation of many of its proposed target proteins remains to be discovered. Because of their influence on a broad range of pathways, SIRT3, SIRT4, and SIRT5 are implicated in a range of disease-states including metabolic disease such as diabetes, neurodegenerative diseases, cancer, and ageing-related disorders such as hearing-loss and cardiac dysfunction. We review the current knowledge on the function of the three mitochondrial sirtuins, their role in disease, and the current outstanding questions in the field. Mitochondria play a critical role in energy production, cell signalling and cell survival. Defects in mitochondrial function contribute to the ageing process and ageing-related disorders such as metabolic disease, cancer, and neurodegeneration. The sirtuin family of deacylase enzymes have a variety of subcellular localisations and have been found to remove a growing list of post-translational acyl modifications from target proteins. SIRT3, SIRT4, and SIRT5 are found primarily located in the mitochondria, and are involved in many of the key processes of this organelle. SIRT3 has been the subject of intense research and is primarily a deacetylase thought to function as a mitochondrial fidelity protein, with roles in mitochondrial substrate metabolism, protection against oxidative stress, and cell survival pathways. Less is known about the functional targets of SIRT4, which has deacetylase, ADP-ribosylase, and a newly-described lipoamidase function, although key roles in lipid and glutamine metabolism have been reported. SIRT5 modulates a host of newly-discovered acyl modifications including succinylation, malonylation, and glutarylation in both mitochondrial and extra-mitochondrial compartments, however the functional significance of SIRT5 in the regulation of many of its proposed target proteins remains to be discovered. Because of their influence on a broad range of pathways, SIRT3, SIRT4, and SIRT5 are implicated in a range of disease-states including metabolic disease such as diabetes, neurodegenerative diseases, cancer, and ageing-related disorders such as hearing-loss and cardiac dysfunction. We review the current knowledge on the function of the three mitochondrial sirtuins, their role in disease, and the current outstanding questions in the field.Mitochondria play a critical role in energy production, cell signalling and cell survival. Defects in mitochondrial function contribute to the ageing process and ageing-related disorders such as metabolic disease, cancer, and neurodegeneration. The sirtuin family of deacylase enzymes have a variety of subcellular localisations and have been found to remove a growing list of post-translational acyl modifications from target proteins. SIRT3, SIRT4, and SIRT5 are found primarily located in the mitochondria, and are involved in many of the key processes of this organelle. SIRT3 has been the subject of intense research and is primarily a deacetylase thought to function as a mitochondrial fidelity protein, with roles in mitochondrial substrate metabolism, protection against oxidative stress, and cell survival pathways. Less is known about the functional targets of SIRT4, which has deacetylase, ADP-ribosylase, and a newly-described lipoamidase function, although key roles in lipid and glutamine metabolism have been reported. SIRT5 modulates a host of newly-discovered acyl modifications including succinylation, malonylation, and glutarylation in both mitochondrial and extra-mitochondrial compartments, however the functional significance of SIRT5 in the regulation of many of its proposed target proteins remains to be discovered. Because of their influence on a broad range of pathways, SIRT3, SIRT4, and SIRT5 are implicated in a range of disease-states including metabolic disease such as diabetes, neurodegenerative diseases, cancer, and ageing-related disorders such as hearing-loss and cardiac dysfunction. We review the current knowledge on the function of the three mitochondrial sirtuins, their role in disease, and the current outstanding questions in the field. |
Author | Turner, Nigel Montgomery, Magdalene K. Bentley, Nicholas L. Osborne, Brenna |
Author_xml | – sequence: 1 givenname: Brenna surname: Osborne fullname: Osborne, Brenna – sequence: 2 givenname: Nicholas L. surname: Bentley fullname: Bentley, Nicholas L. – sequence: 3 givenname: Magdalene K. surname: Montgomery fullname: Montgomery, Magdalene K. – sequence: 4 givenname: Nigel surname: Turner fullname: Turner, Nigel email: n.turner@unsw.edu.au |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27164052$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkE1LAzEQhoNUtH78BVnw4mXXJJtNNniSUj-g4EXPIU1maco20SQV_PdGWgU9eZpheOYd5jlBEx88IHRJcEMw4dfrZogAUdulCxuwDS3DBrOGSHGApqQXbc06ySdointJ6q5n8hidpLTGGLOu7Y_QMRWEM9zRKeqfV1DFMEIVhmrjcjCr4G10eqySi3nrfKqcr1agx7yqtLeVdQl0gjN0OOgxwfm-nqKXu_nz7KFePN0_zm4XtWFM5hqE6Djp8MAZp2AoYChNuT8wTAzhraGYMVNG0AoLS0GWVFgipGwFDH3XnqKrXe5rDG9bSFltXDIwjtpD2CZFesq5kELSgl7s0e2yiFGv0W10_FDf3xbgZgeYGFKKMPwgBKsvt2qtfrlVX24VZqq4Ldu3f7aNyzq74HPUbvxnxnyXAUXZu4OoknHgDVgXwWRlg_tXzicdMJ36 |
CitedBy_id | crossref_primary_10_1016_j_brainresbull_2017_03_009 crossref_primary_10_1016_j_freeradbiomed_2016_11_050 crossref_primary_10_1016_j_ijcard_2018_08_065 crossref_primary_10_1016_j_cotox_2017_10_005 crossref_primary_10_3389_fimmu_2024_1448535 crossref_primary_10_1039_C8TX00169C crossref_primary_10_1111_jpi_12418 crossref_primary_10_2174_2589977512666201207200626 crossref_primary_10_3389_fphys_2022_908689 crossref_primary_10_3389_fimmu_2018_00419 crossref_primary_10_1016_j_lfs_2020_117846 crossref_primary_10_3390_nu15163578 crossref_primary_10_3390_nu17050837 crossref_primary_10_1016_j_celrep_2024_115136 crossref_primary_10_3390_antiox10050794 crossref_primary_10_1073_pnas_1902346116 crossref_primary_10_1080_10715762_2018_1549732 crossref_primary_10_1152_ajpcell_00012_2024 crossref_primary_10_1038_s41598_023_28226_7 crossref_primary_10_1089_ars_2017_7311 crossref_primary_10_3390_antiox10081198 crossref_primary_10_1016_j_lfs_2024_122993 crossref_primary_10_3389_fphys_2019_01006 crossref_primary_10_1039_C9MO00028C crossref_primary_10_1016_j_tibs_2019_08_002 crossref_primary_10_3389_fmicb_2020_632367 crossref_primary_10_1007_s11626_017_0200_z crossref_primary_10_3389_fphar_2022_852858 crossref_primary_10_1155_2022_4722647 crossref_primary_10_1155_2021_5577019 crossref_primary_10_3389_fgene_2022_885929 crossref_primary_10_1080_13813455_2021_1956976 crossref_primary_10_3390_antiox11030480 crossref_primary_10_1186_s12986_018_0265_z crossref_primary_10_1016_j_bbrc_2022_03_088 crossref_primary_10_1016_j_neubiorev_2021_10_047 crossref_primary_10_1016_j_freeradbiomed_2022_01_005 crossref_primary_10_1155_2018_7293861 crossref_primary_10_1155_2022_5567174 crossref_primary_10_1111_jpi_12431 crossref_primary_10_1093_humupd_dmy003 crossref_primary_10_3390_ijms24119363 crossref_primary_10_1002_1873_3468_12692 crossref_primary_10_1038_s41392_021_00646_9 crossref_primary_10_1021_acs_jproteome_0c00314 crossref_primary_10_1080_00207454_2022_2057849 crossref_primary_10_1089_ars_2017_7258 crossref_primary_10_1002_jcp_26398 crossref_primary_10_1016_j_ejphar_2017_11_005 crossref_primary_10_1007_s00018_023_05061_7 crossref_primary_10_1016_j_fsi_2020_01_029 crossref_primary_10_3390_ijms25041956 crossref_primary_10_1002_2211_5463_13715 crossref_primary_10_1111_php_13254 crossref_primary_10_1016_j_gene_2018_07_010 crossref_primary_10_12677_ACM_2023_13122640 crossref_primary_10_3389_fimmu_2025_1531246 crossref_primary_10_3390_life12081213 crossref_primary_10_3390_ijms23062988 crossref_primary_10_1248_yakushi_19_00193_4 crossref_primary_10_3389_fendo_2018_00724 crossref_primary_10_18632_aging_101307 crossref_primary_10_1016_j_jbc_2022_101723 crossref_primary_10_3892_ol_2018_9764 crossref_primary_10_3389_fonc_2020_562950 crossref_primary_10_1007_s12192_017_0841_6 crossref_primary_10_1016_j_biopha_2020_110260 crossref_primary_10_1097_WNR_0000000000001383 crossref_primary_10_1186_s12964_023_01253_7 crossref_primary_10_3389_fonc_2020_00045 crossref_primary_10_3390_biom12081079 crossref_primary_10_2174_2665978601666200213121512 crossref_primary_10_1128_MCB_00269_20 crossref_primary_10_1016_j_diabres_2019_107801 crossref_primary_10_1016_j_cbd_2025_101425 crossref_primary_10_1038_s41598_020_65351_z crossref_primary_10_1002_jcp_25669 crossref_primary_10_1016_j_mgene_2021_100965 crossref_primary_10_1159_000530351 crossref_primary_10_1016_j_freeradbiomed_2016_08_004 crossref_primary_10_3390_ijms22115681 crossref_primary_10_1007_s12038_020_00055_0 crossref_primary_10_3390_nu11010105 crossref_primary_10_1016_j_mce_2016_11_003 crossref_primary_10_3389_fgene_2019_00879 crossref_primary_10_14814_phy2_14331 crossref_primary_10_1515_hsz_2017_0209 crossref_primary_10_1016_j_jbc_2022_102128 crossref_primary_10_1186_s12964_024_02025_7 crossref_primary_10_1016_j_clinre_2024_102394 crossref_primary_10_1016_j_molmet_2017_07_009 crossref_primary_10_1016_j_biocel_2021_105962 crossref_primary_10_3389_fcell_2021_667684 crossref_primary_10_18632_genesandcancer_153 crossref_primary_10_1016_j_bbrc_2018_07_047 crossref_primary_10_3389_fendo_2018_00783 crossref_primary_10_3389_fimmu_2022_943321 crossref_primary_10_1016_j_abb_2019_03_019 crossref_primary_10_3390_biomedicines12091987 crossref_primary_10_1007_s10522_023_10022_5 crossref_primary_10_1039_C8SC03781G crossref_primary_10_3389_fnins_2020_00614 crossref_primary_10_1016_j_biopha_2018_06_042 crossref_primary_10_1186_s12931_022_01986_y crossref_primary_10_1158_2326_6066_CIR_23_0786 crossref_primary_10_1016_j_freeradbiomed_2019_01_030 crossref_primary_10_1016_j_ejphar_2018_12_028 crossref_primary_10_1111_bph_13861 crossref_primary_10_1155_2021_9984330 crossref_primary_10_1080_13813455_2018_1543328 crossref_primary_10_1155_2021_5520794 crossref_primary_10_14336_AD_2022_00725 crossref_primary_10_1111_cpr_13362 crossref_primary_10_1016_j_freeradbiomed_2021_12_264 crossref_primary_10_1186_s12931_023_02613_0 crossref_primary_10_3389_fcvm_2023_1204483 crossref_primary_10_1016_j_molmet_2020_01_005 crossref_primary_10_1016_j_toxicon_2019_11_009 crossref_primary_10_3390_ijms26020774 crossref_primary_10_1002_jcp_27200 crossref_primary_10_1093_stcltm_szae069 crossref_primary_10_3389_fimmu_2019_02341 crossref_primary_10_3390_ph15010080 crossref_primary_10_1016_j_freeradbiomed_2019_09_004 crossref_primary_10_1016_j_bbadis_2023_166935 crossref_primary_10_1111_jne_12508 crossref_primary_10_1089_ars_2017_7290 crossref_primary_10_3390_ijms232112889 crossref_primary_10_1007_s11596_019_1997_3 crossref_primary_10_1186_s12929_020_00660_z crossref_primary_10_3390_antiox12081635 crossref_primary_10_3390_ijms19092592 crossref_primary_10_1074_jbc_RA118_003629 crossref_primary_10_3390_biom13081210 |
Cites_doi | 10.1016/j.jmb.2008.07.048 10.1111/jnc.12942 10.1073/pnas.1302961110 10.1074/jbc.M110.124164 10.1111/j.1474-9726.2009.00503.x 10.1101/gad.1527307 10.1073/pnas.1111308108 10.1038/nrm3841 10.1016/j.celrep.2012.07.006 10.4161/cc.6.21.4866 10.1074/jbc.M113.486753 10.1016/j.molmed.2012.05.004 10.1016/j.molcel.2011.07.019 10.1016/j.molcel.2012.10.024 10.1016/j.freeradbiomed.2010.07.009 10.1007/s11064-015-1630-1 10.1016/j.freeradbiomed.2013.05.002 10.1002/jcb.25374 10.1016/j.bbr.2014.12.035 10.7554/eLife.02999 10.1016/j.neuroscience.2015.10.048 10.1016/j.bbrc.2007.11.122 10.15252/embr.201541643 10.1016/j.celrep.2015.12.030 10.1016/j.cell.2006.06.057 10.1016/j.cell.2010.10.002 10.1016/j.tibs.2010.07.003 10.1016/j.cmet.2013.11.013 10.1002/msb.134766 10.1016/j.molcel.2011.01.002 10.18632/oncotarget.6691 10.1096/fj.13-245241 10.1038/ncomms3327 10.1038/srep02806 10.1042/bse0520023 10.1016/j.molcel.2013.05.012 10.1126/science.1207861 10.1038/onc.2011.37 10.1038/srep00425 10.1128/MCB.01483-13 10.1242/jcs.061846 10.1177/1087057115588512 10.1242/jcs.115188 10.1074/jbc.M705488200 10.1128/MCB.00087-13 10.1074/jbc.M112.384511 10.1016/j.gene.2013.03.021 10.1016/j.cmet.2010.11.015 10.1073/pnas.0603968103 10.1210/jc.2015-3095 10.1016/j.cmet.2011.08.014 10.1016/j.cmet.2014.08.011 10.1016/j.ccr.2011.02.014 10.1073/pnas.222538099 10.1016/j.cell.2014.11.046 10.1021/ja2090417 10.1016/j.gene.2005.09.010 10.1016/j.tips.2013.12.004 10.1126/science.1175371 10.1016/j.cmet.2014.11.003 10.1016/j.bbabio.2012.09.016 10.1083/jcb.201207019 10.1016/j.jid.2015.12.026 10.1016/j.ccr.2013.02.024 10.1016/j.celrep.2013.07.024 10.1073/pnas.1404269111 10.1101/gad.1412706 10.1111/febs.12346 10.1042/BJ20070140 10.1073/pnas.1303628110 10.1002/glia.22442 10.1071/RD13178 10.1006/bbrc.1999.0897 10.18632/oncotarget.4764 10.1016/j.bbrc.2012.05.053 10.1089/ars.2012.5091 10.1007/s12012-014-9287-6 10.1016/j.cell.2013.04.023 10.1016/S1097-2765(03)00038-8 10.1007/s00125-013-2851-y 10.1042/BJ20100791 10.1006/bbrc.2000.3000 10.1038/bjc.2015.226 10.1126/science.1179687 10.1021/bi901627u 10.1074/jbc.M301295200 10.1083/jcb.200205057 10.15252/embj.201591271 10.1016/j.febslet.2012.10.009 10.1158/1535-7163.MCT-15-0017 10.1016/j.molcel.2006.06.026 10.1073/pnas.0803790105 10.1016/j.molcel.2015.05.022 10.1158/0008-5472.CAN-11-3633 10.1007/s13277-013-0726-y 10.3389/fnagi.2013.00048 10.1016/j.ccr.2009.11.023 10.1128/MCB.00822-12 10.1016/j.cmet.2015.10.013 10.1016/S0092-8674(00)80493-6 10.1128/MCB.01636-07 10.1038/cddis.2014.587 10.1016/j.cmet.2014.04.001 10.18632/aging.100616 10.1371/journal.pone.0023295 10.1074/jbc.M114.581843 10.1126/science.1179689 10.1016/j.tem.2013.12.001 10.1016/j.cmet.2010.11.003 10.1016/j.bbrc.2013.10.033 10.1074/jbc.M115.668228 10.1128/MCB.00426-08 10.1074/jbc.M113.525949 10.1371/journal.pone.0075868 10.1089/ars.2014.6213 10.1074/jbc.R112.404863 10.1007/s00395-015-0493-6 10.1038/sj.onc.1210616 10.1074/mcp.M111.012658 10.18632/aging.100252 10.1016/j.molcel.2013.06.001 10.1021/ml3002709 10.1038/nature08778 10.2337/db12-1650 10.1074/jbc.M114.579565 10.4081/ejh.2011.e10 10.1016/j.cmet.2012.04.022 10.1016/j.tem.2012.07.004 10.1146/annurev-pharmtox-010611-134657 10.1074/jbc.M704409200 10.1038/35065638 10.1074/mcp.M112.017251 10.1667/RR3293.1 10.1016/j.cell.2009.02.026 10.1007/s13277-014-2372-4 10.1002/cncr.25676 10.2337/db14-1810 10.1016/j.bbrc.2010.01.081 10.1038/nature12038 10.1016/j.cmet.2012.04.010 10.1101/gad.1399706 10.1016/j.biopha.2015.04.013 10.1093/eurheartj/ehv290 10.1016/j.molcel.2014.03.027 10.1016/j.tibs.2010.09.003 10.1016/j.molcel.2010.12.013 10.18632/aging.100075 10.1073/pnas.0604392103 10.1007/s00395-012-0273-5 10.1038/nprot.2010.117 10.1016/j.neurobiolaging.2014.03.022 10.1016/j.molcel.2015.10.017 10.1016/j.cell.2013.11.037 10.1091/mbc.E05-01-0033 10.1530/EJE-09-0615 10.1016/j.cmet.2014.03.014 10.1038/srep08529 10.1159/000354469 10.1186/2049-3002-2-15 10.1042/BJ20071624 10.1371/journal.pone.0048225 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Inc. Copyright © 2016 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2016 Elsevier Inc. – notice: Copyright © 2016 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.freeradbiomed.2016.04.197 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Biology |
EISSN | 1873-4596 |
EndPage | 174 |
ExternalDocumentID | 27164052 10_1016_j_freeradbiomed_2016_04_197 S0891584916302179 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M -~X .GJ .HR .~1 0R~ 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABBQC ABFNM ABFRF ABGSF ABJNI ABLJU ABLVK ABMAC ABMZM ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV C45 CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEA HLW HMK HMO HVGLF HX~ HZ~ IHE J1W KOM LCYCR LX3 LZ2 M29 M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAE SBG SCC SDF SDG SDP SES SEW SPCBC SSH SSU SSZ T5K TEORI WUQ XPP ZGI ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c449t-e7756150f6462ec2e0e462271f401c163c2044c622e37deb71b27d179937ef853 |
IEDL.DBID | .~1 |
ISSN | 0891-5849 1873-4596 |
IngestDate | Fri Jul 11 03:41:59 EDT 2025 Thu Apr 03 07:07:15 EDT 2025 Tue Jul 01 03:38:13 EDT 2025 Thu Apr 24 23:03:43 EDT 2025 Fri Feb 23 02:21:35 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Sirtuins NF-κβ NAFLD PTM GDH SDHa mPTP Mitochondria OPA1 PDH HMGCS2 PGC1 α WT ANT2/ANT3 BMI HI/HA Acylation NDUFA9 G6PD KO NSCLC TCA cycle Ageing IDH2 T2D STACs SIRT4 SIRT5 SOD2 Metabolism CR MCD MEF SOD1 SIRT3 AceCS2 CPS1 ROS AMPK LCAD FOXO3a ATP GAPDH mtHsp60 CtBP OTC UOX |
Language | English |
License | Copyright © 2016 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c449t-e7756150f6462ec2e0e462271f401c163c2044c622e37deb71b27d179937ef853 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 27164052 |
PQID | 1826679792 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1826679792 pubmed_primary_27164052 crossref_primary_10_1016_j_freeradbiomed_2016_04_197 crossref_citationtrail_10_1016_j_freeradbiomed_2016_04_197 elsevier_sciencedirect_doi_10_1016_j_freeradbiomed_2016_04_197 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2016 2016-11-00 2016-Nov 20161101 |
PublicationDateYYYYMMDD | 2016-11-01 |
PublicationDate_xml | – month: 11 year: 2016 text: November 2016 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Free radical biology & medicine |
PublicationTitleAlternate | Free Radic Biol Med |
PublicationYear | 2016 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Du, Zhou, Su, Yu, Khan, Jiang, Kim, Woo, Kim, Choi, He, Chen, Zhang, Cerione, Auwerx, Hao, Lin (bib27) 2011; 334 Park, Chen, Tishkoff, Daniel, Peng, Tan, Dai, Xie, Zhang, Zwaans Bernadette, Skinner Mary, Lombard David, Zhao (bib130) 2013; 50 Rardin, Newman, Held, Cusack, Sorensen, Li, Schilling, Mooney, Kahn, Verdin, Gibson (bib37) 2013; 110 Muoio, Neufer (bib62) 2012; 15 Kapoor, Flanagan, Fulton, Chakrapani, Chadefaux, Ben-Omran, Banerjee, Shield, Ellard, Hussain (bib120) 2009; 161 He, Newman, Wang, Ho, Verdin (bib2) 2012; 23 Liu, Fan, Candas, Qin, Zhang, Eldridge, Zou, Zhang, Juma, Jin, Li, Perks, Sun, Vaughan, Hai, Gius, Li (bib92) 2015; 14 Bao, Wang, Li, Li, Liu, Yang, Wong, Zhang, Hao, Li (bib30) 2014; 3 Ho, Titus, Banerjee, George, Lin, Deota, Saha, Nakamura, Gut, Verdin, Kolthur-Seetharam (bib108) 2013; 5 Verdin, Hirschey, Finley, Haigis (bib8) 2010; 35 Kumar, Lombard (bib143) 2015; 22 Michishita, Park, Burneskis, Barrett, Horikawa (bib102) 2005; 16 Gertz, Fischer, Nguyen, Lakshminarasimhan, Schutkowski, Weyand, Steegborn (bib160) 2013; 110 Nishida, Rardin, Matthew, Carrico, He, Sahu Alexandria, Gut, Najjar, Fitch, Hellerstein, Gibson Bradford, Verdin (bib133) 2015; 59 Fernandez-Marcos, Jeninga, Canto, Harach, de Boer, Andreux, Moullan, Pirinen, Yamamoto, Houten, Schoonjans, Auwerx (bib64) 2012; 2 Canto, Houtkooper, Pirinen, Youn, Oosterveer, Cen, Fernandez-Marcos, Yamamoto, Andreux, Cettour-Rose, Gademann, Rinsch, Schoonjans, Sauve, Auwerx (bib162) 2012; 15 Haigis, Deng, Finley, Kim, Gius (bib87) 2012; 72 Gomes, Price, Ling, Moslehi, Montgomery, Rajman, White, Teodoro, Wrann, Hubbard, Mercken, Palmeira, de Cabo, Rolo, Turner, Bell, Sinclair (bib167) 2013; 155 Komlos, Mann, Zhuo, Ricupero, Hart, Liu, Firestein (bib101) 2013; 61 Guan, Yu, Lin, Xiong, Zhao (bib41) 2010; 5 He, Du, Lin (bib158) 2012; 134 Zhang, Zhou (bib82) 2012; 423 Guan, Xiong (bib7) 2010; 36 Paulin, Dromparis, Sutendra, Gurtu, Zervopoulos, Bowers, Haromy, Webster, Provencher, Bonnet, Michelakis (bib78) 2014; 20 Laurent, German, Saha, de Boer, Davies, Koves, Dephoure, Fischer, Boanca, Vaitheesvaran, Lovitch, Sharpe, Kurland, Steegborn, Gygi, Muoio, Ruderman, Haigis (bib106) 2013; 50 Wu, Liu, Fu, Liu, Zhou (bib114) 2014; 44 Jacobus, Duda, Coleman, Martin, Mapuskar, Mao, Smith, Aykin-Burns, Guida, Gius, Domann, Knudson, Spitz (bib86) 2013; 180 Maurer, Rumpf, Scharfe, Stolfa, Schmitt, He, Verdin, Sippl, Jung (bib159) 2012; 3 Allison, Milner (bib52) 2007; 6 Scher, Vaquero, Reinberg (bib24) 2007; 21 Ahn, Kim, Song, Lee, Liu, Vassilopoulos, Deng, Finkel (bib55) 2008; 105 Yu, Denu, Kruatkramer, Grindle, Yang, Asimakopoulos, Hematti, Denu (bib84) 2015 Finley, Haas, Desquiret-Dumas, Wallace, Procaccio, Gygi, Haigis (bib59) 2011; 6 Koentges, Pfeil, Schnick, Wiese, Dahlbock, Cimolai, Meyer-Steenbuck, Cenkerova, Hoffmann, Jaeger, Odening, Kammerer, Hein, Bode, Bugger (bib76) 2015; 110 Chang, Guarente (bib9) 2014; 25 Tanno, Kuno, Horio, Miura (bib12) 2012; 107 Schwer, Eckersdorff, Li, Silva, Fermin, Kurtev, Giallourakis, Comb, Alt, Lombard (bib47) 2009; 8 Li, He, Ye, Lin, Yu, Yao, Huang, Zhang, Wang, Xu, Wu, Liu, Yang, Shi, He, Liu, Qu, Guo, Zhao, Xu, Zhao (bib141) 2015; 60 Winnik, Auwerx, Sinclair, Matter (bib77) 2015; 36 Nasrin, Wu, Fortier, Feng, Bare, Chen, Ren, Wu, Streeper, Bordone (bib105) 2010; 285 Tao, Coleman, Pennington, Ozden, Park, Jiang, Kim, Flynn, Hill, Hayes McDonald, Olivier, Spitz, Gius (bib53) 2010; 40 Lundby, Lage, Weinert, Bekker-Jensen, Secher, Skovgaard, Kelstrup, Dmytriyev, Choudhary, Lundby, Olsen (bib39) 2012; 2 Bartosch, Monteiro-Reis, Almeida-Rios, Vieira, Castro, Moutinho, Rodrigues, Graca, Lopes, Jeronimo (bib118) 2016; 7 Sinclair, Guarente (bib10) 1997; 91 Fritz, Green, Petersen, Hirschey (bib32) 2013; 8 Jeong, Lee, Lee, Haigis (bib115) 2014; 289 Bell, Emerling, Ricoult, Guarente (bib81) 2011; 30 Coleman, Olivier, Jacobus, Mapuskar, Mao, Martin, Riley, Gius, Spitz (bib85) 2014; 20 Schwer, North, Frye, Ott, Verdin (bib17) 2002; 158 Zhao, Xu, Jiang, Yu, Lin, Zhang, Yao, Zhou, Zeng, Li, Li, Shi, An, Hancock, He, Qin, Chin, Yang, Chen, Lei, Xiong, Guan (bib35) 2010; 327 Shimazu, Hirschey, Hua, Dittenhafer-Reed, Schwer, Lombard, Li, Bunkenborg, Alt, Denu, Jacobson, Verdin (bib57) 2010; 12 Onyango, Celic, McCaffery, Boeke, Feinberg (bib161) 2002; 99 Alhazzazi, Kamarajan, Joo, Huang, Verdin, D’Silva, Kapila (bib90) 2011; 117 Faletra, Athanasakis, Morgan, Biarnés, Fornasier, Parini, Furlan, Boiani, Maiorana, Dionisi-Vici, Giordano, Burlina, Ventura, Gasparini (bib121) 2013; 521 Weinert, Moustafa, Iesmantavicius, Zechner, Choudhary (bib148) 2015; 34 Cheng, Yang, Zhou, Maharana, Lu, Peng, Liu, Wan, Marosi, Misiak, Bohr, Mattson (bib97) 2016; 23 Song, Xu, Chen, Li, Zeng, Fu (bib112) 2011; 55 Liu, Peritore, Ginsberg, Shih, Arun, Donmez (bib139) 2015; 281 Han, Tang, Yin, Maalouf, Beach, Reiman, Shi (bib96) 2014; 35 Hirschey, Shimazu, Goetzman, Jing, Schwer, Lombard, Grueter, Harris, Biddinger, Ilkayeva, Stevens, Li, Saha, Ruderman, Bain, Newgard, Farese, Alt, Kahn, Verdin (bib56) 2010; 464 Rauh, Fischer, Gertz, Lakshminarasimhan, Bergbrede, Aladini, Kambach, Becker, Zerweck, Schutkowski, Steegborn (bib111) 2013; 4 Hebert, Dittenhafer-Reed, Yu, Bailey, Selen, Boersma, Carson, Tonelli, Balloon, Higbee, Westphall, Pagliarini, Prolla, Assadi-Porter, Roy, Denu, Coon (bib51) 2013; 49 Jukarainen, Heinonen, Ramo, Rinnankoski-Tuikka, Rappou, Tummers, Muniandy, Hakkarainen, Lundbom, Lundbom, Kaprio, Rissanen, Pirinen, Pietilainen (bib136) 2016; 101 Brown, Maqsood, Huang, Pan, Harkcom, Li, Sauve, Verdin, Jaffrey (bib168) 2014; 20 Kim, Sprung, Chen, Xu, Ball, Pei, Cheng, Kho, Xiao, Xiao, Grishin, White, Yang, Zhao (bib36) 2006; 23 Jing, O’Neill, Rardin, Kleinridders, Ilkeyeva, Ussar, Bain, Lee, Verdin, Newgard, Gibson, Kahn (bib48) 2013; 62 Verma, Shulga, Pastorino (bib91) 2013; 126 Ford, Voit, Liszt, Magin, Grummt, Guarente (bib13) 2006; 20 Mathias, Greco, Oberstein, Budayeva, Chakrabarti, Rowland, Kang, Shenk, Cristea (bib28) 2014; 159 Jing, Emanuelli, Hirschey, Boucher, Lee, Lombard, Verdin, Kahn (bib61) 2011; 108 Lombard, Alt, Cheng, Bunkenborg, Streeper, Mostoslavsky, Kim, Yancopoulos, Valenzuela, Murphy, Yang, Chen, Hirschey, Bronson, Haigis, Guarente, Farese, Weissman, Verdin, Schwer (bib43) 2007; 27 Choudhary, Kumar, Gnad, Nielsen, Rehman, Walther, Olsen, Mann (bib4) 2009; 325 Verma, Shulga, Pastorino (bib107) 2013; 1827 Du, Zhang, Han, Burke, Kochanek, Watkins, Graham, Carcillo, Szabo, Clark (bib99) 2003; 278 Wang, Zhou, Wang, Cui, Di (bib119) 2015; 6 Jeong, Xiao, Finley, Lahusen, Souza, Pierce, Li, Wang, Laurent, German, Xu, Li, Wang, Lee, Csibi, Cerione, Blenis, Clish, Kimmelman, Deng, Haigis (bib109) 2013; 23 Shih, Liu, Mason, Higashimori, Donmez (bib122) 2014; 131 Bao, Scott, Lu, Pang, Dimond, Gius, Sack (bib60) 2010; 49 Frye (bib11) 2000; 273 Rangarajan, Karthikeyan, Lu, Ling, Dheen (bib67) 2015; 311 Michan, Sinclair (bib1) 2007; 404 Iwahara, Bonasio, Narendra, Reinberg (bib23) 2012; 32 Pacella-Ince, Zander-Fox, Lane (bib137) 2014; 26 Saunders, Verdin (bib5) 2007; 26 Vaquero, Scher, Lee, Sutton, Cheng, Alt, Serrano, Sternglanz, Reinberg (bib15) 2006; 20 Peng, Lu, Xie, Cheng, Chen, Tan, Luo, Zhang, He, Yang, Zwaans, Tishkoff, Ho, Lombard, He, Dai, Verdin, Ye, Zhao (bib25) 2011; 10 Cooper, Spelbrink (bib18) 2008; 411 Nakamura, Ogura, Ogura, Tanaka, Inagaki (bib128) 2012; 586 Sundaresan, Gupta, Kim, Rajamohan, Isbatan, Gupta (bib75) 2009; 119 Patel, Sherrill, Mrksich, Scholle (bib157) 2015; 20 Liu, Che, Xue, Zheng, Tang, Zhang, Wen, Xu (bib123) 2013; 32 Teng, Jing, Aramsangtienchai, He, Khan, Hu, Lin, Hao (bib29) 2015; 5 Gertz, Steegborn (bib156) 2016 Lin, Xu, Wang, Lin, Ruan, Liu, Jin, Huang, Chen (bib131) 2013; 441 Buler, Aatsinki, Izzi, Uusimaa, Hakkola (bib134) 2014; 28 Sundaresan, Samant, Pillai, Rajamohan, Gupta (bib66) 2008; 28 Laurent, de Boer, Finley, Sweeney, Lu, Schug, Cen, Jeong, Li, Sauve, Haigis (bib113) 2013; 33 Hubbard, Sinclair (bib154) 2014; 35 Wagner, Hirschey (bib145) 2014; 54 Garrity, Gardner, Hawse, Wolberger, Escalante-Semerena (bib33) 2007; 282 Tseng, Shieh, Wang (bib68) 2013; 63 Nakamura, Ogura, Tanaka, Inagaki (bib21) 2008; 366 Miyo, Yamamoto, Konno, Colvin, Nishida, Koseki, Kawamoto, Ogawa, Hamabe, Uemura, Nishimura, Hata, Takemasa, Mizushima, Doki, Mori, Ishii (bib22) 2015; 113 Wang, Zhang, Yang, Xiong, Lin, Yao, Li, Xie, Zhao, Yao, Ning, Zeng, Xiong, Guan, Zhao, Zhao (bib38) 2010; 327 North, Marshall, Borra, Denu, Verdin (bib16) 2003; 11 Haigis, Mostoslavsky, Haigis, Fahie, Christodoulou, Murphy, Valenzuela, Yancopoulos, Karow, Blander, Wolberger, Prolla, Weindruch, Alt, Guarente (bib19) 2006; 126 Zhu, Yan, Principe, Zou, Vassilopoulos, Gius (bib116) 2014; 2 Wagner, Payne (bib144) 2013; 288 Glozak, Sengupta, Zhang, Seto (bib3) 2005; 363 Palacios, Carmona, Michan, Chen, Manabe, Ward, Goodyear, Tong (bib44) 2009; 1 McDonnell, Peterson, Bomze, Hirschey (bib72) 2015; 26 Finley, Haigis (bib6) 2012; 18 Someya, Yu, Hallows, Xu, Vann, Leeuwenburgh, Tanokura, Denu, Prolla (bib65) 2010; 143 Baeza, Dowell, Smallegan, Fan, Amador-Noguez, Khan, Denu (bib149) 2014; 289 Choudhary, Weinert, Nishida, Verdin, Mann (bib150) 2014; 15 Yoshino, Mills, Yoon, Imai (bib165) 2011; 14 Shulga, Wilson-Smith, Pastorino (bib88) 2010; 123 Frye (bib103) 1999; 260 Davies, Kjalarsdottir, Thompson, Dubois, Stevens, Ilkayeva, Brosnan, Rolph, Grimsrud, Muoio (bib147) 2016; 14 Hafner, Dai, Gomes, Xiao, Palmeira, Rosenzweig, Sinclair (bib69) 2010; 2 Samant, Zhang, Hong, Pillai, Sundaresan, Wolfgeher, Archer, Chan, Gupta (bib70) 2014; 34 Yang, Zou, Zhang, Zhao, Tian, Gu, Liu, Shi, Lu, Yu (bib95) 2015; 40 Yu, Sadhukhan, Noriega, Moullan, He, Weiss, Lin, Schoonjans, Auwerx (bib135) 2013; 3 Houtkooper, Auwerx (bib163) 2012; 199 Hallows, Lee, Denu (bib50) 2006; 103 Ogura, Nakamura, Tanaka, Zhuang, Fujita, Obara, Hamasaki, Hosokawa, Inagaki (bib127) 2010; 393 Hallows, Yu, Smith, Devries, Ellinger, Someya, Shortreed, Prolla, Markley, Smith, Zhao, Guan, Denu (bib45) 2011; 41 Weinert, Scholz, Wagner, Iesmantavicius, Su, Daniel, Choudhary (bib153) 2013; 4 Cimen, Han, Yang, Tong, Wu (10.1016/j.freeradbiomed.2016.04.197_bib114) 2014; 44 Someya (10.1016/j.freeradbiomed.2016.04.197_bib65) 2010; 143 Park (10.1016/j.freeradbiomed.2016.04.197_bib130) 2013; 50 Lombard (10.1016/j.freeradbiomed.2016.04.197_bib43) 2007; 27 Lantier (10.1016/j.freeradbiomed.2016.04.197_bib63) 2015 Ramatchandirin (10.1016/j.freeradbiomed.2016.04.197_bib125) 2016; 117 Lu (10.1016/j.freeradbiomed.2016.04.197_bib142) 2014; 35 Finley (10.1016/j.freeradbiomed.2016.04.197_bib6) 2012; 18 Kendrick (10.1016/j.freeradbiomed.2016.04.197_bib73) 2011; 433 Csibi (10.1016/j.freeradbiomed.2016.04.197_bib110) 2013; 153 Wagner (10.1016/j.freeradbiomed.2016.04.197_bib144) 2013; 288 Schwer (10.1016/j.freeradbiomed.2016.04.197_bib49) 2006; 103 Frederick (10.1016/j.freeradbiomed.2016.04.197_bib169) 2015; 290 Zhang (10.1016/j.freeradbiomed.2016.04.197_bib82) 2012; 423 Nasrin (10.1016/j.freeradbiomed.2016.04.197_bib105) 2010; 285 Weir (10.1016/j.freeradbiomed.2016.04.197_bib94) 2012; 7 Shulga (10.1016/j.freeradbiomed.2016.04.197_bib88) 2010; 123 Schlicker (10.1016/j.freeradbiomed.2016.04.197_bib20) 2008; 382 Qiu (10.1016/j.freeradbiomed.2016.04.197_bib54) 2010; 12 Liu (10.1016/j.freeradbiomed.2016.04.197_bib92) 2015; 14 Teng (10.1016/j.freeradbiomed.2016.04.197_bib29) 2015; 5 Rangarajan (10.1016/j.freeradbiomed.2016.04.197_bib67) 2015; 311 Peng (10.1016/j.freeradbiomed.2016.04.197_bib25) 2011; 10 Du (10.1016/j.freeradbiomed.2016.04.197_bib99) 2003; 278 Sundaresan (10.1016/j.freeradbiomed.2016.04.197_bib75) 2009; 119 Patel (10.1016/j.freeradbiomed.2016.04.197_bib157) 2015; 20 Cooper (10.1016/j.freeradbiomed.2016.04.197_bib18) 2008; 411 Yang (10.1016/j.freeradbiomed.2016.04.197_bib95) 2015; 40 Laurent (10.1016/j.freeradbiomed.2016.04.197_bib113) 2013; 33 Li (10.1016/j.freeradbiomed.2016.04.197_bib141) 2015; 60 Rardin Matthew (10.1016/j.freeradbiomed.2016.04.197_bib42) 2013; 18 Mathias (10.1016/j.freeradbiomed.2016.04.197_bib28) 2014; 159 Tao (10.1016/j.freeradbiomed.2016.04.197_bib53) 2010; 40 Wang (10.1016/j.freeradbiomed.2016.04.197_bib38) 2010; 327 Verma (10.1016/j.freeradbiomed.2016.04.197_bib91) 2013; 126 Nishida (10.1016/j.freeradbiomed.2016.04.197_bib133) 2015; 59 Shimazu (10.1016/j.freeradbiomed.2016.04.197_bib57) 2010; 12 Yu (10.1016/j.freeradbiomed.2016.04.197_bib84) 2015 Kapoor (10.1016/j.freeradbiomed.2016.04.197_bib120) 2009; 161 Newman (10.1016/j.freeradbiomed.2016.04.197_bib151) 2012; 287 Jacobus (10.1016/j.freeradbiomed.2016.04.197_bib86) 2013; 180 Maurer (10.1016/j.freeradbiomed.2016.04.197_bib159) 2012; 3 Jeong (10.1016/j.freeradbiomed.2016.04.197_bib115) 2014; 289 Hubbard (10.1016/j.freeradbiomed.2016.04.197_bib154) 2014; 35 Frye (10.1016/j.freeradbiomed.2016.04.197_bib11) 2000; 273 Laurent (10.1016/j.freeradbiomed.2016.04.197_bib106) 2013; 50 Tanno (10.1016/j.freeradbiomed.2016.04.197_bib12) 2012; 107 Bell (10.1016/j.freeradbiomed.2016.04.197_bib81) 2011; 30 Samant (10.1016/j.freeradbiomed.2016.04.197_bib70) 2014; 34 Buler (10.1016/j.freeradbiomed.2016.04.197_bib134) 2014; 28 Haigis (10.1016/j.freeradbiomed.2016.04.197_bib19) 2006; 126 Garrity (10.1016/j.freeradbiomed.2016.04.197_bib33) 2007; 282 Zhou (10.1016/j.freeradbiomed.2016.04.197_bib132) 2016 Miyo (10.1016/j.freeradbiomed.2016.04.197_bib22) 2015; 113 Kim (10.1016/j.freeradbiomed.2016.04.197_bib80) 2010; 17 Ahn (10.1016/j.freeradbiomed.2016.04.197_bib55) 2008; 105 Anderson (10.1016/j.freeradbiomed.2016.04.197_bib34) 2012; 52 Caton (10.1016/j.freeradbiomed.2016.04.197_bib74) 2013; 56 Finley (10.1016/j.freeradbiomed.2016.04.197_bib59) 2011; 6 Finley (10.1016/j.freeradbiomed.2016.04.197_bib79) 2011; 19 Hallows (10.1016/j.freeradbiomed.2016.04.197_bib50) 2006; 103 Paulin (10.1016/j.freeradbiomed.2016.04.197_bib78) 2014; 20 Choudhary (10.1016/j.freeradbiomed.2016.04.197_bib150) 2014; 15 Harkcom (10.1016/j.freeradbiomed.2016.04.197_bib166) 2014; 111 Coleman (10.1016/j.freeradbiomed.2016.04.197_bib85) 2014; 20 Weinert (10.1016/j.freeradbiomed.2016.04.197_bib146) 2014; 10 Iwahara (10.1016/j.freeradbiomed.2016.04.197_bib23) 2012; 32 Henriksen (10.1016/j.freeradbiomed.2016.04.197_bib40) 2012; 11 Bao (10.1016/j.freeradbiomed.2016.04.197_bib30) 2014; 3 George (10.1016/j.freeradbiomed.2016.04.197_bib89) 2016; 136 Nakamura (10.1016/j.freeradbiomed.2016.04.197_bib21) 2008; 366 Gomes (10.1016/j.freeradbiomed.2016.04.197_bib167) 2013; 155 Tseng (10.1016/j.freeradbiomed.2016.04.197_bib68) 2013; 63 Yoshino (10.1016/j.freeradbiomed.2016.04.197_bib165) 2011; 14 Liu (10.1016/j.freeradbiomed.2016.04.197_bib139) 2015; 281 Palacios (10.1016/j.freeradbiomed.2016.04.197_bib44) 2009; 1 Houtkooper (10.1016/j.freeradbiomed.2016.04.197_bib163) 2012; 199 Kiran (10.1016/j.freeradbiomed.2016.04.197_bib14) 2013; 280 Weinert (10.1016/j.freeradbiomed.2016.04.197_bib148) 2015; 34 Jukarainen (10.1016/j.freeradbiomed.2016.04.197_bib136) 2016; 101 Song (10.1016/j.freeradbiomed.2016.04.197_bib112) 2011; 55 Schwer (10.1016/j.freeradbiomed.2016.04.197_bib47) 2009; 8 Cimen (10.1016/j.freeradbiomed.2016.04.197_bib58) 2010; 49 Gertz (10.1016/j.freeradbiomed.2016.04.197_bib160) 2013; 110 Guan (10.1016/j.freeradbiomed.2016.04.197_bib41) 2010; 5 Jing (10.1016/j.freeradbiomed.2016.04.197_bib61) 2011; 108 Parihar (10.1016/j.freeradbiomed.2016.04.197_bib138) 2014 Jiang (10.1016/j.freeradbiomed.2016.04.197_bib31) 2013; 496 Liu (10.1016/j.freeradbiomed.2016.04.197_bib123) 2013; 32 Lin (10.1016/j.freeradbiomed.2016.04.197_bib131) 2013; 441 Hirschey (10.1016/j.freeradbiomed.2016.04.197_bib56) 2010; 464 Zhao (10.1016/j.freeradbiomed.2016.04.197_bib35) 2010; 327 Tao (10.1016/j.freeradbiomed.2016.04.197_bib124) 2015; 15 Gertz (10.1016/j.freeradbiomed.2016.04.197_bib156) 2016 Muoio (10.1016/j.freeradbiomed.2016.04.197_bib62) 2012; 15 Sundaresan (10.1016/j.freeradbiomed.2016.04.197_bib66) 2008; 28 Michishita (10.1016/j.freeradbiomed.2016.04.197_bib102) 2005; 16 Ford (10.1016/j.freeradbiomed.2016.04.197_bib13) 2006; 20 Sinclair (10.1016/j.freeradbiomed.2016.04.197_bib155) 2014; 54 Kim (10.1016/j.freeradbiomed.2016.04.197_bib36) 2006; 23 Alhazzazi (10.1016/j.freeradbiomed.2016.04.197_bib93) 2016; 36 Pacella-Ince (10.1016/j.freeradbiomed.2016.04.197_bib137) 2014; 26 Hafner (10.1016/j.freeradbiomed.2016.04.197_bib69) 2010; 2 Guan (10.1016/j.freeradbiomed.2016.04.197_bib7) 2010; 36 Du (10.1016/j.freeradbiomed.2016.04.197_bib27) 2011; 334 Haigis (10.1016/j.freeradbiomed.2016.04.197_bib87) 2012; 72 Tan (10.1016/j.freeradbiomed.2016.04.197_bib26) 2014; 19 Ogura (10.1016/j.freeradbiomed.2016.04.197_bib127) 2010; 393 Nakamura (10.1016/j.freeradbiomed.2016.04.197_bib128) 2012; 586 Onyango (10.1016/j.freeradbiomed.2016.04.197_bib161) 2002; 99 Kumar (10.1016/j.freeradbiomed.2016.04.197_bib143) 2015; 22 Schwer (10.1016/j.freeradbiomed.2016.04.197_bib17) 2002; 158 Zhu (10.1016/j.freeradbiomed.2016.04.197_bib116) 2014; 2 Fritz (10.1016/j.freeradbiomed.2016.04.197_bib32) 2013; 8 Faletra (10.1016/j.freeradbiomed.2016.04.197_bib121) 2013; 521 North (10.1016/j.freeradbiomed.2016.04.197_bib16) 2003; 11 Ahuja (10.1016/j.freeradbiomed.2016.04.197_bib104) 2007; 282 Weinert (10.1016/j.freeradbiomed.2016.04.197_bib153) 2013; 4 Canto (10.1016/j.freeradbiomed.2016.04.197_bib162) 2012; 15 Glozak (10.1016/j.freeradbiomed.2016.04.197_bib3) 2005; 363 Nakagawa (10.1016/j.freeradbiomed.2016.04.197_bib126) 2009; 137 Choudhary (10.1016/j.freeradbiomed.2016.04.197_bib4) 2009; 325 Verdin (10.1016/j.freeradbiomed.2016.04.197_bib8) 2010; 35 Hallows (10.1016/j.freeradbiomed.2016.04.197_bib45) 2011; 41 Verma (10.1016/j.freeradbiomed.2016.04.197_bib107) 2013; 1827 Rauh (10.1016/j.freeradbiomed.2016.04.197_bib111) 2013; 4 Scher (10.1016/j.freeradbiomed.2016.04.197_bib24) 2007; 21 Komlos (10.1016/j.freeradbiomed.2016.04.197_bib101) 2013; 61 Davies (10.1016/j.freeradbiomed.2016.04.197_bib147) 2016; 14 McDonnell (10.1016/j.freeradbiomed.2016.04.197_bib72) 2015; 26 Hirschey (10.1016/j.freeradbiomed.2016.04.197_bib46) 2011; 44 Saunders (10.1016/j.freeradbiomed.2016.04.197_bib5) 2007; 26 Kincaid (10.1016/j.freeradbiomed.2016.04.197_bib98) 2013; 5 Wang (10.1016/j.freeradbiomed.2016.04.197_bib119) 2015; 6 Michan (10.1016/j.freeradbiomed.2016.04.197_bib1) 2007; 404 Sinclair (10.1016/j.freeradbiomed.2016.04.197_bib10) 1997; 91 Lundby (10.1016/j.freeradbiomed.2016.04.197_bib39) 2012; 2 Hebert (10.1016/j.freeradbiomed.2016.04.197_bib51) 2013; 49 Rardin (10.1016/j.freeradbiomed.2016.04.197_bib37) 2013; 110 Cheng (10.1016/j.freeradbiomed.2016.04.197_bib97) 2016; 23 Han (10.1016/j.freeradbiomed.2016.04.197_bib96) 2014; 35 Koentges (10.1016/j.freeradbiomed.2016.04.197_bib76) 2015; 110 He (10.1016/j.freeradbiomed.2016.04.197_bib2) 2012; 23 Lai (10.1016/j.freeradbiomed.2016.04.197_bib140) 2013; 34 Hirschey (10.1016/j.freeradbiomed.2016.04.197_bib152) 2011; 44 Wagner (10.1016/j.freeradbiomed.2016.04.197_bib145) 2014; 54 Huang (10.1016/j.freeradbiomed.2016.04.197_bib117) 2015; 72 Shih (10.1016/j.freeradbiomed.2016.04.197_bib122) 2014; 131 Baeza (10.1016/j.freeradbiomed.2016.04.197_bib149) 2014; 289 Bao (10.1016/j.freeradbiomed.2016.04.197_bib60) 2010; 49 He (10.1016/j.freeradbiomed.2016.04.197_bib158) 2012; 134 Jing (10.1016/j.freeradbiomed.2016.04.197_bib48) 2013; 62 Alhazzazi (10.1016/j.freeradbiomed.2016.04.197_bib90) 2011; 117 Vaquero (10.1016/j.freeradbiomed.2016.04.197_bib15) 2006; 20 Jeong (10.1016/j.freeradbiomed.2016.04.197_bib109) 2013; 23 Tissenbaum (10.1016/j.freeradbiomed.2016.04.197_bib71) 2001; 410 Bartosch (10.1016/j.freeradbiomed.2016.04.197_bib118) 2016; 7 Ho (10.1016/j.freeradbiomed.2016.04.197_bib108) 2013; 5 Quan (10.1016/j.freeradbiomed.2016.04.197_bib83) 2015; 6 Brown (10.1016/j.freeradbiomed.2016.04.197_bib168) 2014; 20 Zhou (10.1016/j.freeradbiomed.2016.04.197_bib129) 2012; 287 Cerutti (10.1016/j.freeradbiomed.2016.04.197_bib164) 2014; 19 Fernandez-Marcos (10.1016/j.freeradbiomed.2016.04.197_bib64) 2012; 2 Yu (10.1016/j.freeradbiomed.2016.04.197_bib135) 2013; 3 Winnik (10.1016/j.freeradbiomed.2016.04.197_bib77) 2015; 36 Allison (10.1016/j.freeradbiomed.2016.04.197_bib52) 2007; 6 Frye (10.1016/j.freeradbiomed.2016.04.197_bib103) 1999; 260 Chang (10.1016/j.freeradbiomed.2016.04.197_bib9) 2014; 25 Novgorodov (10.1016/j.freeradbio |
References_xml | – volume: 35 start-page: 146 year: 2014 end-page: 154 ident: bib154 article-title: Small molecule SIRT1 activators for the treatment of aging and age-related diseases publication-title: Trends Pharmacol. Sci. – volume: 35 start-page: 2064 year: 2014 end-page: 2071 ident: bib96 article-title: Pituitary adenylate cyclase-activating polypeptide protects against beta-amyloid toxicity publication-title: Neurobiol. Aging – volume: 20 start-page: 1256 year: 2006 end-page: 1261 ident: bib15 article-title: SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis publication-title: Genes Dev. – volume: 586 start-page: 4076 year: 2012 end-page: 4081 ident: bib128 article-title: SIRT5 deacetylates and activates urate oxidase in liver mitochondria of mice publication-title: FEBS Lett. – volume: 35 start-page: 669 year: 2010 end-page: 675 ident: bib8 article-title: Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling publication-title: Trends Biochem. Sci. – volume: 25 start-page: 138 year: 2014 end-page: 145 ident: bib9 article-title: SIRT1 and other sirtuins in metabolism publication-title: Trends Endocrinol. Metab. – volume: 56 start-page: 1068 year: 2013 end-page: 1077 ident: bib74 article-title: Sirtuin 3 regulates mouse pancreatic beta cell function and is suppressed in pancreatic islets isolated from human type 2 diabetic patients publication-title: Diabetologia – volume: 49 start-page: 304 year: 2010 end-page: 311 ident: bib58 article-title: Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria publication-title: Biochemistry – volume: 137 start-page: 560 year: 2009 end-page: 570 ident: bib126 article-title: SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle publication-title: Cell – volume: 20 start-page: 1075 year: 2006 end-page: 1080 ident: bib13 article-title: Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription publication-title: Genes Dev. – volume: 7 start-page: e48225 year: 2012 ident: bib94 article-title: CNS SIRT3 expression is altered by reactive oxygen species and in Alzheimer’s disease publication-title: PLoS One – volume: 28 start-page: 3225 year: 2014 end-page: 3237 ident: bib134 article-title: SIRT5 is under the control of PGC-1alpha and AMPK and is involved in regulation of mitochondrial energy metabolism publication-title: FASEB J. – volume: 155 start-page: 1624 year: 2013 end-page: 1638 ident: bib167 article-title: Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging publication-title: Cell – year: 2014 ident: bib138 article-title: Mitochondrial sirtuins: emerging roles in metabolic regulations, energy homeostasis and diseases publication-title: Exp. Gerontol. – volume: 2 start-page: 425 year: 2012 ident: bib64 article-title: Muscle or liver-specific Sirt3 deficiency induces hyperacetylation of mitochondrial proteins without affecting global metabolic homeostasis publication-title: Sci. Rep. – volume: 44 start-page: 177 year: 2011 end-page: 190 ident: bib152 article-title: SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome publication-title: Mol. Cell – volume: 126 start-page: 274 year: 2013 end-page: 288 ident: bib91 article-title: Sirtuin-3 modulates Bak- and Bax-dependent apoptosis publication-title: J. Cell Sci. – volume: 393 start-page: 73 year: 2010 end-page: 78 ident: bib127 article-title: Overexpression of SIRT5 confirms its involvement in deacetylation and activation of carbamoyl phosphate synthetase 1 publication-title: Biochem. Biophys. Res. Commun. – volume: 199 start-page: 205 year: 2012 end-page: 209 ident: bib163 article-title: Exploring the therapeutic space around NAD publication-title: J. Cell Biol. – volume: 108 start-page: 14608 year: 2011 end-page: 14613 ident: bib61 article-title: Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production publication-title: Proc. Natl. Acad. Sci. USA – volume: 273 start-page: 793 year: 2000 end-page: 798 ident: bib11 article-title: Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins publication-title: Biochem. Biophys. Res. Commun. – start-page: 1 year: 2016 end-page: 26 ident: bib156 article-title: Using mitochondrial sirtuins as drug targets: disease implications and available compounds publication-title: Cell. Mol. Life Sci. – volume: 423 start-page: 26 year: 2012 end-page: 31 ident: bib82 article-title: Sirt3 inhibits hepatocellular carcinoma cell growth through reducing Mdm2-mediated p53 degradation publication-title: Biochem. Biophys. Res. Commun. – volume: 35 start-page: 10699 year: 2014 end-page: 10705 ident: bib142 article-title: SIRT5 facilitates cancer cell growth and drug resistance in non-small cell lung cancer publication-title: Tumor Biol. – volume: 404 start-page: 1 year: 2007 end-page: 13 ident: bib1 article-title: Sirtuins in mammals: insights into their biological function publication-title: Biochem. J. – volume: 15 start-page: 536 year: 2014 end-page: 550 ident: bib150 article-title: The growing landscape of lysine acetylation links metabolism and cell signalling publication-title: Nat. Rev. Mol. Cell Biol. – volume: 5 start-page: 835 year: 2013 end-page: 849 ident: bib108 article-title: SIRT4 regulates ATP homeostasis and mediates a retrograde signaling via AMPK publication-title: Aging – volume: 41 start-page: 139 year: 2011 end-page: 149 ident: bib45 article-title: Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction publication-title: Mol. Cell – volume: 32 start-page: 5022 year: 2012 end-page: 5034 ident: bib23 article-title: SIRT3 functions in the nucleus in the control of stress-related gene expression publication-title: Mol. Cell. Biol. – volume: 2 start-page: 419 year: 2012 end-page: 431 ident: bib39 article-title: Proteomic analysis of lysine acetylation sites in rat tissues reveals organ specificity and subcellular patterns publication-title: Cell Rep. – volume: 20 start-page: 1423 year: 2014 end-page: 1435 ident: bib85 article-title: Superoxide mediates acute liver injury in irradiated mice lacking sirtuin 3 publication-title: Antioxid. Redox Signal. – volume: 5 start-page: 1583 year: 2010 end-page: 1595 ident: bib41 article-title: Generation of acetyllysine antibodies and affinity enrichment of acetylated peptides publication-title: Nat. Protoc. – volume: 433 start-page: 505 year: 2011 end-page: 514 ident: bib73 article-title: Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation publication-title: Biochem. J. – volume: 34 start-page: 1847 year: 2013 end-page: 1854 ident: bib140 article-title: Altered expression of SIRT gene family in head and neck squamous cell carcinoma publication-title: Tumour Biol. – volume: 6 start-page: e23295 year: 2011 ident: bib59 article-title: Succinate dehydrogenase is a direct target of sirtuin 3 deacetylase activity publication-title: PLoS One – volume: 15 start-page: 595 year: 2012 end-page: 605 ident: bib62 article-title: Lipid-induced mitochondrial stress and insulin action in muscle publication-title: Cell Metab. – volume: 8 start-page: 604 year: 2009 end-page: 606 ident: bib47 article-title: Calorie restriction alters mitochondrial protein acetylation publication-title: Aging Cell – volume: 110 start-page: 36 year: 2015 ident: bib76 article-title: SIRT3 deficiency impairs mitochondrial and contractile function in the heart publication-title: Basic Res. Cardiol. – volume: 23 start-page: 128 year: 2016 end-page: 142 ident: bib97 article-title: Mitochondrial SIRT3 mediates adaptive responses of neurons to exercise and metabolic and excitatory challenges publication-title: Cell Metab. – volume: 285 start-page: 31995 year: 2010 end-page: 32002 ident: bib105 article-title: SIRT4 regulates fatty acid oxidation and mitochondrial gene expression in liver and muscle cells publication-title: J. Biol. Chem. – volume: 55 start-page: e10 year: 2011 ident: bib112 article-title: The expression of Sirtuins 1 and 4 in peripheral blood leukocytes from patients with type 2 diabetes publication-title: Eur. J. Histochem. – volume: 123 start-page: 894 year: 2010 end-page: 902 ident: bib88 article-title: Sirtuin-3 deacetylation of cyclophilin D induces dissociation of hexokinase II from the mitochondria publication-title: J. Cell Sci. – volume: 291 start-page: 1957 year: 2016 end-page: 1973 ident: bib100 article-title: SIRT3 deacetylates ceramide synthases: implications for mitochondrial dysfunction and brain injury publication-title: J. Biol. Chem. – volume: 11 start-page: 437 year: 2003 end-page: 444 ident: bib16 article-title: The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase publication-title: Mol. Cell – volume: 282 start-page: 30239 year: 2007 end-page: 30245 ident: bib33 article-title: N-lysine propionylation controls the activity of propionyl-CoA synthetase publication-title: J. Biol. Chem. – volume: 23 start-page: 607 year: 2006 end-page: 618 ident: bib36 article-title: Substrate and functional diversity of lysine acetylation revealed by a proteomics survey publication-title: Mol. Cell – volume: 410 start-page: 227 year: 2001 end-page: 230 ident: bib71 article-title: Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans publication-title: Nature – volume: 287 start-page: 28307 year: 2012 end-page: 28314 ident: bib129 article-title: The bicyclic intermediate structure provides insights into the desuccinylation mechanism of human sirtuin 5 (SIRT5) publication-title: J. Biol. Chem. – volume: 143 start-page: 802 year: 2010 end-page: 812 ident: bib65 article-title: Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction publication-title: Cell – volume: 19 start-page: 416 year: 2011 end-page: 428 ident: bib79 article-title: SIRT3 opposes reprogramming of cancer cell metabolism through HIF1alpha destabilization publication-title: Cancer Cell – volume: 49 start-page: 186 year: 2013 end-page: 199 ident: bib51 article-title: Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome publication-title: Mol. Cell – volume: 32 start-page: 655 year: 2013 end-page: 662 ident: bib123 article-title: SIRT4 prevents hypoxia-induced apoptosis in H9c2 cardiomyoblast cells publication-title: Cell. Physiol. Biochem. – volume: 36 start-page: 3404 year: 2015 end-page: 3412 ident: bib77 article-title: Protective effects of sirtuins in cardiovascular diseases: from bench to bedside publication-title: Eur. Heart J. – year: 2016 ident: bib132 article-title: SIRT5 promotes IDH2 desuccinylation and G6PD deglutarylation to enhance cellular antioxidant defense publication-title: EMBO Rep. – volume: 103 start-page: 10230 year: 2006 end-page: 10235 ident: bib50 article-title: Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases publication-title: Proc. Natl. Acad. Sci. USA – volume: 22 start-page: 1060 year: 2015 end-page: 1077 ident: bib143 article-title: Mitochondrial sirtuins and their relationships with metabolic disease and cancer publication-title: Antioxid. Redox Signal. – volume: 19 start-page: 1042 year: 2014 end-page: 1049 ident: bib164 article-title: NAD+-dependent activation of Sirt1 corrects the phenotype in a mouse model of mitochondrial disease publication-title: Cell Metab. – volume: 14 start-page: 2090 year: 2015 end-page: 2102 ident: bib92 article-title: CDK1-mediated SIRT3 activation enhances mitochondrial function and tumor radioresistance publication-title: Mol. Cancer Ther. – volume: 54 start-page: 363 year: 2014 end-page: 380 ident: bib155 article-title: Small-molecule allosteric activators of sirtuins publication-title: Annu. Rev. Pharmacol. Toxicol. – volume: 50 start-page: 686 year: 2013 end-page: 698 ident: bib106 article-title: SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase publication-title: Mol. Cell – volume: 20 start-page: 842 year: 2015 end-page: 848 ident: bib157 article-title: Discovery of SIRT3 inhibitors using SAMDI mass spectrometry publication-title: J. Biomol. Screen. – volume: 136 start-page: 809 year: 2016 end-page: 818 ident: bib89 article-title: Pro-Proliferative Function of Mitochondrial Sirtuin Deacetylase SIRT3 in Human Melanoma publication-title: J. Investig. Dermatol. – volume: 1827 start-page: 38 year: 2013 end-page: 49 ident: bib107 article-title: Sirtuin-4 modulates sensitivity to induction of the mitochondrial permeability transition pore publication-title: Biochim. Biophys. Acta – volume: 26 start-page: 5489 year: 2007 end-page: 5504 ident: bib5 article-title: Sirtuins: critical regulators at the crossroads between cancer and aging publication-title: Oncogene – volume: 2 start-page: 15 year: 2014 ident: bib116 article-title: SIRT3 and SIRT4 are mitochondrial tumor suppressor proteins that connect mitochondrial metabolism and carcinogenesis publication-title: Cancer Metab. – volume: 366 start-page: 174 year: 2008 end-page: 179 ident: bib21 article-title: Localization of mouse mitochondrial SIRT proteins: shift of SIRT3 to nucleus by co-expression with SIRT5 publication-title: Biochem. Biophys. Res. Commun. – volume: 101 start-page: 275 year: 2016 end-page: 283 ident: bib136 article-title: Obesity is associated with low NAD(+)/SIRT pathway expression in adipose tissue of BMI-discordant monozygotic twins publication-title: J. Clin. Endocrinol. Metab. – volume: 161 start-page: 731 year: 2009 end-page: 735 ident: bib120 article-title: Hyperinsulinism–hyperammonaemia syndrome: novel mutations in the GLUD1 gene and genotype–phenotype correlations publication-title: Eur. J. Endocrinol. – volume: 107 start-page: 273 year: 2012 ident: bib12 article-title: Emerging beneficial roles of sirtuins in heart failure publication-title: Basic Res. Cardiol. – volume: 4 start-page: 2327 year: 2013 ident: bib111 article-title: An acetylome peptide microarray reveals specificities and deacetylation substrates for all human sirtuin isoforms publication-title: Nat. Commun. – volume: 14 start-page: 243 year: 2016 end-page: 254 ident: bib147 article-title: The acetyl group buffering action of carnitine acetyltransferase offsets macronutrient-induced lysine acetylation of mitochondrial proteins publication-title: Cell Rep. – volume: 62 start-page: 3404 year: 2013 end-page: 3417 ident: bib48 article-title: Sirt3 regulates metabolic flexibility of skeletal muscle through reversible enzymatic deacetylation publication-title: Diabetes – volume: 411 start-page: 279 year: 2008 end-page: 285 ident: bib18 article-title: The human SIRT3 protein deacetylase is exclusively mitochondrial publication-title: Biochem. J. – volume: 131 start-page: 573 year: 2014 end-page: 581 ident: bib122 article-title: Loss of SIRT4 decreases GLT-1-dependent glutamate uptake and increases sensitivity to kainic acid publication-title: J. Neurochem. – volume: 325 start-page: 834 year: 2009 end-page: 840 ident: bib4 article-title: Lysine acetylation targets protein complexes and co-regulates major cellular functions publication-title: Science – volume: 72 start-page: 2468 year: 2012 end-page: 2472 ident: bib87 article-title: SIRT3 is a mitochondrial tumor suppressor: a scientific tale that connects aberrant cellular ROS, the Warburg effect, and carcinogenesis publication-title: Cancer Res. – volume: 16 start-page: 4623 year: 2005 end-page: 4635 ident: bib102 article-title: Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins publication-title: Mol. Biol. Cell – volume: 91 start-page: 1033 year: 1997 end-page: 1042 ident: bib10 article-title: Extrachromosomal rDNA circles—a cause of aging in yeast publication-title: Cell – volume: 26 start-page: 486 year: 2015 end-page: 492 ident: bib72 article-title: SIRT3 regulates progression and development of diseases of aging publication-title: Trends Endocrinol. Metab. – volume: 260 start-page: 273 year: 1999 end-page: 279 ident: bib103 article-title: Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity publication-title: Biochem. Biophys. Res. Commun. – volume: 15 start-page: 217 year: 2015 end-page: 223 ident: bib124 article-title: SIRT4 suppresses inflammatory responses in human umbilical vein endothelial cells publication-title: Cardiovasc. Toxicol. – volume: 10 start-page: 716 year: 2014 ident: bib146 article-title: Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae publication-title: Mol. Syst. Biol. – volume: 7 start-page: 1144 year: 2016 end-page: 1154 ident: bib118 article-title: Assessing sirtuin expression in endometrial carcinoma and non-neoplastic endometrium publication-title: Oncotarget – volume: 36 start-page: 49 year: 2016 end-page: 60 ident: bib93 article-title: A novel Sirtuin-3 inhibitor, LC-0296, inhibits cell survival and proliferation, and promotes apoptosis of head and neck cancer cells publication-title: Anticancer Res. – volume: 521 start-page: 160 year: 2013 end-page: 165 ident: bib121 article-title: Congenital hyperinsulinism: clinical and molecular analysis of a large Italian cohort publication-title: Gene – volume: 3 year: 2014 ident: bib30 article-title: Identification of ‘erasers’ for lysine crotonylated histone marks using a chemical proteomics approach publication-title: eLife – volume: 28 start-page: 6384 year: 2008 end-page: 6401 ident: bib66 article-title: SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70 publication-title: Mol. Cell. Biol. – volume: 23 start-page: 450 year: 2013 end-page: 463 ident: bib109 article-title: SIRT4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism publication-title: Cancer Cell – volume: 2 start-page: 914 year: 2010 end-page: 923 ident: bib69 article-title: Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy publication-title: Aging – volume: 117 start-page: 904 year: 2016 end-page: 916 ident: bib125 article-title: Sirtuin 4 regulates lipopolysaccharide mediated leydig cell dysfunction publication-title: J. Cell Biochem. – volume: 27 start-page: 8807 year: 2007 end-page: 8814 ident: bib43 article-title: Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation publication-title: Mol. Cell. Biol. – volume: 59 start-page: 321 year: 2015 end-page: 332 ident: bib133 article-title: SIRT5 regulates both cytosolic and mitochondrial protein malonylation with glycolysis as a major target publication-title: Mol. Cell – volume: 21 start-page: 920 year: 2007 end-page: 928 ident: bib24 article-title: SirT3 is a nuclear NAD+-dependent histone deacetylase that translocates to the mitochondria upon cellular stress publication-title: Genes Dev. – volume: 1 start-page: 771 year: 2009 end-page: 783 ident: bib44 article-title: Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1alpha in skeletal muscle publication-title: Aging – volume: 119 start-page: 2758 year: 2009 end-page: 2771 ident: bib75 article-title: Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice publication-title: J. Clin. Invest. – volume: 3 start-page: 2806 year: 2013 ident: bib135 article-title: Metabolic characterization of a Sirt5 deficient mouse model publication-title: Sci. Rep. – volume: 180 start-page: 156 year: 2013 end-page: 165 ident: bib86 article-title: Low-dose radiation-induced enhancement of thymic lymphomagenesis in Lck-Bax mice is dependent on LET and gender publication-title: Radiat. Res. – volume: 4 start-page: 842 year: 2013 end-page: 851 ident: bib153 article-title: Lysine succinylation is a frequently occurring modification in prokaryotes and eukaryotes and extensively overlaps with acetylation publication-title: Cell Rep. – volume: 60 start-page: 661 year: 2015 end-page: 675 ident: bib141 article-title: NADP(+)-IDH mutations promote hypersuccinylation that impairs mitochondria respiration and induces apoptosis resistance publication-title: Mol. Cell – volume: 5 start-page: 48 year: 2013 ident: bib98 article-title: Forever young: SIRT3 a shield against mitochondrial meltdown, aging, and neurodegeneration publication-title: Front. Aging Neurosci. – volume: 14 start-page: 528 year: 2011 end-page: 536 ident: bib165 article-title: Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice publication-title: Cell Metab. – volume: 289 start-page: 4135 year: 2014 end-page: 4144 ident: bib115 article-title: SIRT4 protein suppresses tumor formation in genetic models of Myc-induced B cell lymphoma publication-title: J. Biol. Chem. – volume: 110 start-page: 6601 year: 2013 end-page: 6606 ident: bib37 article-title: Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways publication-title: Proc. Natl. Acad. Sci. USA – volume: 496 start-page: 110 year: 2013 end-page: 113 ident: bib31 article-title: SIRT6 regulates TNF-[agr] secretion through hydrolysis of long-chain fatty acyl lysine publication-title: Nature – volume: 334 start-page: 806 year: 2011 end-page: 809 ident: bib27 article-title: Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase publication-title: Science – volume: 11 start-page: 1510 year: 2012 end-page: 1522 ident: bib40 article-title: Proteome-wide analysis of lysine acetylation suggests its broad regulatory scope in Saccharomyces cerevisiae publication-title: Mol. Cell. Proteom. – volume: 278 start-page: 18426 year: 2003 end-page: 18433 ident: bib99 article-title: Intra-mitochondrial poly(ADP-ribosylation) contributes to NAD+ depletion and cell death induced by oxidative stress publication-title: J. Biol. Chem. – volume: 61 start-page: 394 year: 2013 end-page: 408 ident: bib101 article-title: Glutamate dehydrogenase 1 and SIRT4 regulate glial development publication-title: Glia – volume: 99 start-page: 13653 year: 2002 end-page: 13658 ident: bib161 article-title: SIRT3, a human SIR2 homologue, is an NAD-dependent deacetylase localized to mitochondria publication-title: Proc. Natl. Acad. Sci. USA – volume: 50 start-page: 919 year: 2013 end-page: 930 ident: bib130 article-title: SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways publication-title: Mol. Cell – volume: 10 year: 2011 ident: bib25 article-title: The First identification of lysine malonylation substrates and its regulatory enzyme publication-title: Mol. Cell. Proteom. – volume: 20 start-page: 1059 year: 2014 end-page: 1068 ident: bib168 article-title: Activation of SIRT3 by the NAD(+) precursor nicotinamide riboside protects from noise-induced hearing loss publication-title: Cell Metab. – volume: 281 start-page: 215 year: 2015 end-page: 221 ident: bib139 article-title: Protective role of SIRT5 against motor deficit and dopaminergic degeneration in MPTP-induced mice model of Parkinson’s disease publication-title: Behav. Brain Res. – volume: 287 start-page: 42436 year: 2012 end-page: 42443 ident: bib151 article-title: Mitochondrial protein acylation and intermediary metabolism: regulation by sirtuins and implications for metabolic disease publication-title: J Biol. Chem. – volume: 49 start-page: 1230 year: 2010 end-page: 1237 ident: bib60 article-title: SIRT3 is regulated by nutrient excess and modulates hepatic susceptibility to lipotoxicity publication-title: Free Radic. Biol. Medi. – volume: 282 start-page: 33583 year: 2007 end-page: 33592 ident: bib104 article-title: Regulation of insulin secretion by SIRT4, a mitochondrial ADP-ribosyltransferase publication-title: J. Biol. Chem. – volume: 26 start-page: 1072 year: 2014 end-page: 1083 ident: bib137 article-title: Mitochondrial SIRT5 is present in follicular cells and is altered by reduced ovarian reserve and advanced maternal age publication-title: Reprod., Fertil. Dev. – volume: 327 start-page: 1000 year: 2010 end-page: 1004 ident: bib35 article-title: Regulation of cellular metabolism by protein lysine acetylation publication-title: Science – volume: 103 start-page: 10224 year: 2006 end-page: 10229 ident: bib49 article-title: Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2 publication-title: Proc. Natl. Acad. Sci. USA – year: 2015 ident: bib63 article-title: SIRT3 is crucial for maintaining skeletal muscle insulin action and protects against severe insulin resistance in high fat fed mice publication-title: Diabetes – volume: 34 start-page: 807 year: 2014 end-page: 819 ident: bib70 article-title: SIRT3 deacetylates and activates OPA1 to regulate mitochondrial dynamics during stress publication-title: Mol. Cell. Biol. – volume: 117 start-page: 1670 year: 2011 end-page: 1678 ident: bib90 article-title: Sirtuin-3 (SIRT3), a novel potential therapeutic target for oral cancer publication-title: Cancer – volume: 15 start-page: 838 year: 2012 end-page: 847 ident: bib162 article-title: The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity publication-title: Cell Metab. – volume: 30 start-page: 2986 year: 2011 end-page: 2996 ident: bib81 article-title: SirT3 suppresses hypoxia inducible factor 1alpha and tumor growth by inhibiting mitochondrial ROS production publication-title: Oncogene – volume: 6 start-page: 26494 year: 2015 end-page: 26507 ident: bib83 article-title: SIRT3 inhibits prostate cancer by destabilizing oncoprotein c-MYC through regulation of the PI3K/Akt pathway publication-title: Oncotarget – volume: 44 start-page: 177 year: 2011 end-page: 190 ident: bib46 article-title: SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome publication-title: Mol. Cell – volume: 52 start-page: 23 year: 2012 end-page: 35 ident: bib34 article-title: Mitochondrial protein acetylation regulates metabolism publication-title: Essays Biochem. – volume: 36 start-page: 108 year: 2010 end-page: 116 ident: bib7 article-title: Regulation of intermediary metabolism by protein acetylation publication-title: Trends Biochem. Sci. – volume: 6 start-page: e1620 year: 2015 ident: bib119 article-title: CtBP maintains cancer cell growth and metabolic homeostasis via regulating SIRT4 publication-title: Cell Death Dis. – volume: 382 start-page: 790 year: 2008 end-page: 801 ident: bib20 article-title: Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5 publication-title: J. Mol. Biol. – volume: 40 start-page: 893 year: 2010 end-page: 904 ident: bib53 article-title: Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress publication-title: Mol. Cell – volume: 17 start-page: 41 year: 2010 end-page: 52 ident: bib80 article-title: SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress publication-title: Cancer Cell – volume: 44 start-page: 410 year: 2014 end-page: 418 ident: bib114 article-title: Direct evidence of sirtuin downregulation in the liver of non-alcoholic fatty liver disease patients publication-title: Ann. Clin. Lab. Sci. – volume: 20 start-page: 827 year: 2014 end-page: 839 ident: bib78 article-title: Sirtuin 3 deficiency is associated with inhibited mitochondrial function and pulmonary arterial hypertension in rodents and humans publication-title: Cell Metab. – year: 2015 ident: bib84 article-title: Loss of SIRT3 provides growth advantage for B cell malignancies publication-title: J. Biol. Chem. – volume: 63 start-page: 222 year: 2013 end-page: 234 ident: bib68 article-title: SIRT3 deacetylates FOXO3 to protect mitochondria against oxidative damage publication-title: Free Radic. Biol. Med. – volume: 34 start-page: 2620 year: 2015 end-page: 2632 ident: bib148 article-title: Analysis of acetylation stoichiometry suggests that SIRT3 repairs nonenzymatic acetylation lesions publication-title: EMBO J. – volume: 18 start-page: 516 year: 2012 end-page: 523 ident: bib6 article-title: Metabolic regulation by SIRT3: implications for tumorigenesis publication-title: Trends Mol. Med. – volume: 33 start-page: 4552 year: 2013 end-page: 4561 ident: bib113 article-title: SIRT4 represses peroxisome proliferator-activated receptor α activity to suppress hepatic fat oxidation publication-title: Mol. Cell. Biol. – volume: 134 start-page: 1922 year: 2012 end-page: 1925 ident: bib158 article-title: Thiosuccinyl peptides as Sirt5-specific inhibitors publication-title: J. Am. Chem. Soc. – volume: 111 start-page: E2443 year: 2014 end-page: 2452 ident: bib166 article-title: NAD+ and SIRT3 control microtubule dynamics and reduce susceptibility to antimicrotubule agents publication-title: Proc. Natl. Acad. Sci. USA – volume: 5 start-page: 8529 year: 2015 ident: bib29 article-title: Efficient demyristoylase activity of SIRT2 revealed by kinetic and structural studies publication-title: Sci. Rep. – volume: 105 start-page: 14447 year: 2008 end-page: 14452 ident: bib55 article-title: A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis publication-title: Proc. Natl. Acad. Sci. USA – volume: 23 start-page: 467 year: 2012 end-page: 476 ident: bib2 article-title: Mitochondrial sirtuins: regulators of protein acylation and metabolism publication-title: Trends Endocrinol. Metab. – volume: 72 start-page: 135 year: 2015 end-page: 139 ident: bib117 article-title: Sirtuin-4 (SIRT4) is downregulated and associated with some clinicopathological features in gastric adenocarcinoma publication-title: Biomed. Pharmacother. – volume: 18 start-page: 920 year: 2013 end-page: 933 ident: bib42 article-title: SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks publication-title: Cell Metab. – volume: 159 start-page: 1615 year: 2014 end-page: 1625 ident: bib28 article-title: Sirtuin 4 is a lipoamidase regulating pyruvate dehydrogenase complex activity publication-title: Cell – volume: 289 start-page: 21326 year: 2014 end-page: 21338 ident: bib149 article-title: Stoichiometry of site-specific lysine acetylation in an entire proteome publication-title: J. Biol. Chem. – volume: 290 start-page: 1546 year: 2015 end-page: 1558 ident: bib169 article-title: Increasing NAD synthesis in muscle via nicotinamide phosphoribosyltransferase is not sufficient to promote oxidative metabolism publication-title: J. Biol. Chem. – volume: 464 start-page: 121 year: 2010 end-page: 125 ident: bib56 article-title: SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation publication-title: Nature – volume: 110 start-page: E2772 year: 2013 end-page: E2781 ident: bib160 article-title: Ex-527 inhibits Sirtuins by exploiting their unique NAD+-dependent deacetylation mechanism publication-title: Proc. Natl. Acad. Sci. USA – volume: 12 start-page: 662 year: 2010 end-page: 667 ident: bib54 article-title: Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation publication-title: Cell Metab. – volume: 40 start-page: 1576 year: 2015 end-page: 1582 ident: bib95 article-title: Mitochondrial Sirt3 expression is decreased in APP/PS1 double transgenic mouse model of alzheimer’s disease publication-title: Neurochem. Res. – volume: 288 start-page: 29036 year: 2013 end-page: 29045 ident: bib144 article-title: Widespread and enzyme-independent Nepsilon-acetylation and Nepsilon-succinylation of proteins in the chemical conditions of the mitochondrial matrix publication-title: J. Biol. Chem. – volume: 153 start-page: 840 year: 2013 end-page: 854 ident: bib110 article-title: The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4 publication-title: Cell – volume: 126 start-page: 941 year: 2006 end-page: 954 ident: bib19 article-title: SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells publication-title: Cell – volume: 8 start-page: e75868 year: 2013 ident: bib32 article-title: Ethanol metabolism modifies hepatic protein acylation in mice publication-title: PLoS One – volume: 12 start-page: 654 year: 2010 end-page: 661 ident: bib57 article-title: SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production publication-title: Cell Metab. – volume: 327 start-page: 1004 year: 2010 end-page: 1007 ident: bib38 article-title: Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux publication-title: Science – volume: 6 start-page: 2669 year: 2007 end-page: 2677 ident: bib52 article-title: SIRT3 is pro-apoptotic and participates in distinct basal apoptotic pathways publication-title: Cell Cycle – volume: 19 start-page: 605 year: 2014 end-page: 617 ident: bib26 article-title: Lysine glutarylation is a protein posttranslational modification regulated by SIRT5 publication-title: Cell Metab. – volume: 158 start-page: 647 year: 2002 end-page: 657 ident: bib17 article-title: The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide‚ Äìdependent deacetylase publication-title: J. Cell Biol. – volume: 280 start-page: 3451 year: 2013 end-page: 3466 ident: bib14 article-title: Intracellular distribution of human SIRT7 and mapping of the nuclear/nucleolar localization signal publication-title: FEBS J. – volume: 441 start-page: 191 year: 2013 end-page: 195 ident: bib131 article-title: SIRT5 desuccinylates and activates SOD1 to eliminate ROS publication-title: Biochem. Biophys. Res. Commun. – volume: 3 start-page: 1050 year: 2012 end-page: 1053 ident: bib159 article-title: Inhibitors of the NAD+-dependent protein desuccinylase and demalonylase Sirt5 publication-title: ACS Med. Chem. Lett. – volume: 311 start-page: 398 year: 2015 end-page: 414 ident: bib67 article-title: Sirtuin 3 regulates Foxo3a-mediated antioxidant pathway in microglia publication-title: Neuroscience – volume: 54 start-page: 5 year: 2014 end-page: 16 ident: bib145 article-title: Nonenzymatic protein acylation as a carbon stress regulated by sirtuin deacylases publication-title: Mol. Cell – volume: 113 start-page: 492 year: 2015 end-page: 499 ident: bib22 article-title: Tumour-suppressive function of SIRT4 in human colorectal cancer publication-title: Br. J. Cancer – volume: 363 start-page: 15 year: 2005 end-page: 23 ident: bib3 article-title: Acetylation and deacetylation of non-histone proteins publication-title: Gene – volume: 382 start-page: 790 year: 2008 ident: 10.1016/j.freeradbiomed.2016.04.197_bib20 article-title: Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2008.07.048 – volume: 131 start-page: 573 year: 2014 ident: 10.1016/j.freeradbiomed.2016.04.197_bib122 article-title: Loss of SIRT4 decreases GLT-1-dependent glutamate uptake and increases sensitivity to kainic acid publication-title: J. Neurochem. doi: 10.1111/jnc.12942 – volume: 110 start-page: 6601 year: 2013 ident: 10.1016/j.freeradbiomed.2016.04.197_bib37 article-title: Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1302961110 – volume: 285 start-page: 31995 year: 2010 ident: 10.1016/j.freeradbiomed.2016.04.197_bib105 article-title: SIRT4 regulates fatty acid oxidation and mitochondrial gene expression in liver and muscle cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.124164 – volume: 8 start-page: 604 year: 2009 ident: 10.1016/j.freeradbiomed.2016.04.197_bib47 article-title: Calorie restriction alters mitochondrial protein acetylation publication-title: Aging Cell doi: 10.1111/j.1474-9726.2009.00503.x – volume: 21 start-page: 920 year: 2007 ident: 10.1016/j.freeradbiomed.2016.04.197_bib24 article-title: SirT3 is a nuclear NAD+-dependent histone deacetylase that translocates to the mitochondria upon cellular stress publication-title: Genes Dev. doi: 10.1101/gad.1527307 – volume: 108 start-page: 14608 year: 2011 ident: 10.1016/j.freeradbiomed.2016.04.197_bib61 article-title: Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1111308108 – volume: 15 start-page: 536 year: 2014 ident: 10.1016/j.freeradbiomed.2016.04.197_bib150 article-title: The growing landscape of lysine acetylation links metabolism and cell signalling publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3841 – volume: 2 start-page: 419 year: 2012 ident: 10.1016/j.freeradbiomed.2016.04.197_bib39 article-title: Proteomic analysis of lysine acetylation sites in rat tissues reveals organ specificity and subcellular patterns publication-title: Cell Rep. doi: 10.1016/j.celrep.2012.07.006 – volume: 6 start-page: 2669 year: 2007 ident: 10.1016/j.freeradbiomed.2016.04.197_bib52 article-title: SIRT3 is pro-apoptotic and participates in distinct basal apoptotic pathways publication-title: Cell Cycle doi: 10.4161/cc.6.21.4866 – volume: 288 start-page: 29036 year: 2013 ident: 10.1016/j.freeradbiomed.2016.04.197_bib144 article-title: Widespread and enzyme-independent Nepsilon-acetylation and Nepsilon-succinylation of proteins in the chemical conditions of the mitochondrial matrix publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.486753 – volume: 18 start-page: 516 year: 2012 ident: 10.1016/j.freeradbiomed.2016.04.197_bib6 article-title: Metabolic regulation by SIRT3: implications for tumorigenesis publication-title: Trends Mol. Med. doi: 10.1016/j.molmed.2012.05.004 – volume: 44 start-page: 177 year: 2011 ident: 10.1016/j.freeradbiomed.2016.04.197_bib46 article-title: SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome publication-title: Mol. Cell doi: 10.1016/j.molcel.2011.07.019 – volume: 49 start-page: 186 year: 2013 ident: 10.1016/j.freeradbiomed.2016.04.197_bib51 article-title: Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.10.024 – volume: 49 start-page: 1230 year: 2010 ident: 10.1016/j.freeradbiomed.2016.04.197_bib60 article-title: SIRT3 is regulated by nutrient excess and modulates hepatic susceptibility to lipotoxicity publication-title: Free Radic. Biol. Medi. doi: 10.1016/j.freeradbiomed.2010.07.009 – volume: 40 start-page: 1576 year: 2015 ident: 10.1016/j.freeradbiomed.2016.04.197_bib95 article-title: Mitochondrial Sirt3 expression is decreased in APP/PS1 double transgenic mouse model of alzheimer’s disease publication-title: Neurochem. Res. doi: 10.1007/s11064-015-1630-1 – volume: 63 start-page: 222 year: 2013 ident: 10.1016/j.freeradbiomed.2016.04.197_bib68 article-title: SIRT3 deacetylates FOXO3 to protect mitochondria against oxidative damage publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2013.05.002 – volume: 117 start-page: 904 year: 2016 ident: 10.1016/j.freeradbiomed.2016.04.197_bib125 article-title: Sirtuin 4 regulates lipopolysaccharide mediated leydig cell dysfunction publication-title: J. Cell Biochem. doi: 10.1002/jcb.25374 – volume: 281 start-page: 215 year: 2015 ident: 10.1016/j.freeradbiomed.2016.04.197_bib139 article-title: Protective role of SIRT5 against motor deficit and dopaminergic degeneration in MPTP-induced mice model of Parkinson’s disease publication-title: Behav. Brain Res. doi: 10.1016/j.bbr.2014.12.035 – volume: 3 year: 2014 ident: 10.1016/j.freeradbiomed.2016.04.197_bib30 article-title: Identification of ‘erasers’ for lysine crotonylated histone marks using a chemical proteomics approach publication-title: eLife doi: 10.7554/eLife.02999 – volume: 311 start-page: 398 year: 2015 ident: 10.1016/j.freeradbiomed.2016.04.197_bib67 article-title: Sirtuin 3 regulates Foxo3a-mediated antioxidant pathway in microglia publication-title: Neuroscience doi: 10.1016/j.neuroscience.2015.10.048 – volume: 366 start-page: 174 year: 2008 ident: 10.1016/j.freeradbiomed.2016.04.197_bib21 article-title: Localization of mouse mitochondrial SIRT proteins: shift of SIRT3 to nucleus by co-expression with SIRT5 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2007.11.122 – year: 2016 ident: 10.1016/j.freeradbiomed.2016.04.197_bib132 article-title: SIRT5 promotes IDH2 desuccinylation and G6PD deglutarylation to enhance cellular antioxidant defense publication-title: EMBO Rep. doi: 10.15252/embr.201541643 – volume: 14 start-page: 243 year: 2016 ident: 10.1016/j.freeradbiomed.2016.04.197_bib147 article-title: The acetyl group buffering action of carnitine acetyltransferase offsets macronutrient-induced lysine acetylation of mitochondrial proteins publication-title: Cell Rep. doi: 10.1016/j.celrep.2015.12.030 – volume: 126 start-page: 941 year: 2006 ident: 10.1016/j.freeradbiomed.2016.04.197_bib19 article-title: SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells publication-title: Cell doi: 10.1016/j.cell.2006.06.057 – volume: 143 start-page: 802 year: 2010 ident: 10.1016/j.freeradbiomed.2016.04.197_bib65 article-title: Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction publication-title: Cell doi: 10.1016/j.cell.2010.10.002 – volume: 35 start-page: 669 year: 2010 ident: 10.1016/j.freeradbiomed.2016.04.197_bib8 article-title: Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2010.07.003 – volume: 18 start-page: 920 year: 2013 ident: 10.1016/j.freeradbiomed.2016.04.197_bib42 article-title: SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks publication-title: Cell Metab. doi: 10.1016/j.cmet.2013.11.013 – volume: 10 start-page: 716 year: 2014 ident: 10.1016/j.freeradbiomed.2016.04.197_bib146 article-title: Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae publication-title: Mol. Syst. Biol. doi: 10.1002/msb.134766 – volume: 41 start-page: 139 year: 2011 ident: 10.1016/j.freeradbiomed.2016.04.197_bib45 article-title: Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction publication-title: Mol. Cell doi: 10.1016/j.molcel.2011.01.002 – volume: 7 start-page: 1144 year: 2016 ident: 10.1016/j.freeradbiomed.2016.04.197_bib118 article-title: Assessing sirtuin expression in endometrial carcinoma and non-neoplastic endometrium publication-title: Oncotarget doi: 10.18632/oncotarget.6691 – volume: 28 start-page: 3225 year: 2014 ident: 10.1016/j.freeradbiomed.2016.04.197_bib134 article-title: SIRT5 is under the control of PGC-1alpha and AMPK and is involved in regulation of mitochondrial energy metabolism publication-title: FASEB J. doi: 10.1096/fj.13-245241 – volume: 4 start-page: 2327 year: 2013 ident: 10.1016/j.freeradbiomed.2016.04.197_bib111 article-title: An acetylome peptide microarray reveals specificities and deacetylation substrates for all human sirtuin isoforms publication-title: Nat. Commun. doi: 10.1038/ncomms3327 – volume: 3 start-page: 2806 year: 2013 ident: 10.1016/j.freeradbiomed.2016.04.197_bib135 article-title: Metabolic characterization of a Sirt5 deficient mouse model publication-title: Sci. Rep. doi: 10.1038/srep02806 – volume: 52 start-page: 23 year: 2012 ident: 10.1016/j.freeradbiomed.2016.04.197_bib34 article-title: Mitochondrial protein acetylation regulates metabolism publication-title: Essays Biochem. doi: 10.1042/bse0520023 – volume: 50 start-page: 686 year: 2013 ident: 10.1016/j.freeradbiomed.2016.04.197_bib106 article-title: SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase publication-title: Mol. Cell doi: 10.1016/j.molcel.2013.05.012 – volume: 334 start-page: 806 year: 2011 ident: 10.1016/j.freeradbiomed.2016.04.197_bib27 article-title: Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase publication-title: Science doi: 10.1126/science.1207861 – volume: 30 start-page: 2986 year: 2011 ident: 10.1016/j.freeradbiomed.2016.04.197_bib81 article-title: SirT3 suppresses hypoxia inducible factor 1alpha and tumor growth by inhibiting mitochondrial ROS production publication-title: Oncogene doi: 10.1038/onc.2011.37 – volume: 2 start-page: 425 year: 2012 ident: 10.1016/j.freeradbiomed.2016.04.197_bib64 article-title: Muscle or liver-specific Sirt3 deficiency induces hyperacetylation of mitochondrial proteins without affecting global metabolic homeostasis publication-title: Sci. Rep. doi: 10.1038/srep00425 – volume: 34 start-page: 807 year: 2014 ident: 10.1016/j.freeradbiomed.2016.04.197_bib70 article-title: SIRT3 deacetylates and activates OPA1 to regulate mitochondrial dynamics during stress publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.01483-13 – volume: 123 start-page: 894 year: 2010 ident: 10.1016/j.freeradbiomed.2016.04.197_bib88 article-title: Sirtuin-3 deacetylation of cyclophilin D induces dissociation of hexokinase II from the mitochondria publication-title: J. Cell Sci. doi: 10.1242/jcs.061846 – volume: 20 start-page: 842 year: 2015 ident: 10.1016/j.freeradbiomed.2016.04.197_bib157 article-title: Discovery of SIRT3 inhibitors using SAMDI mass spectrometry publication-title: J. Biomol. Screen. doi: 10.1177/1087057115588512 – volume: 126 start-page: 274 year: 2013 ident: 10.1016/j.freeradbiomed.2016.04.197_bib91 article-title: Sirtuin-3 modulates Bak- and Bax-dependent apoptosis publication-title: J. Cell Sci. doi: 10.1242/jcs.115188 – volume: 282 start-page: 33583 year: 2007 ident: 10.1016/j.freeradbiomed.2016.04.197_bib104 article-title: Regulation of insulin secretion by SIRT4, a mitochondrial ADP-ribosyltransferase publication-title: J. Biol. Chem. doi: 10.1074/jbc.M705488200 – volume: 33 start-page: 4552 year: 2013 ident: 10.1016/j.freeradbiomed.2016.04.197_bib113 article-title: SIRT4 represses peroxisome proliferator-activated receptor α activity to suppress hepatic fat oxidation publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00087-13 – volume: 44 start-page: 410 year: 2014 ident: 10.1016/j.freeradbiomed.2016.04.197_bib114 article-title: Direct evidence of sirtuin downregulation in the liver of non-alcoholic fatty liver disease patients publication-title: Ann. Clin. Lab. Sci. – volume: 287 start-page: 28307 year: 2012 ident: 10.1016/j.freeradbiomed.2016.04.197_bib129 article-title: The bicyclic intermediate structure provides insights into the desuccinylation mechanism of human sirtuin 5 (SIRT5) publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.384511 – volume: 521 start-page: 160 year: 2013 ident: 10.1016/j.freeradbiomed.2016.04.197_bib121 article-title: Congenital hyperinsulinism: clinical and molecular analysis of a large Italian cohort publication-title: Gene doi: 10.1016/j.gene.2013.03.021 – volume: 12 start-page: 662 year: 2010 ident: 10.1016/j.freeradbiomed.2016.04.197_bib54 article-title: Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation publication-title: Cell Metab. doi: 10.1016/j.cmet.2010.11.015 – volume: 103 start-page: 10224 year: 2006 ident: 10.1016/j.freeradbiomed.2016.04.197_bib49 article-title: Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0603968103 – volume: 101 start-page: 275 year: 2016 ident: 10.1016/j.freeradbiomed.2016.04.197_bib136 article-title: Obesity is associated with low NAD(+)/SIRT pathway expression in adipose tissue of BMI-discordant monozygotic twins publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jc.2015-3095 – volume: 14 start-page: 528 year: 2011 ident: 10.1016/j.freeradbiomed.2016.04.197_bib165 article-title: Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice publication-title: Cell Metab. doi: 10.1016/j.cmet.2011.08.014 – volume: 20 start-page: 827 year: 2014 ident: 10.1016/j.freeradbiomed.2016.04.197_bib78 article-title: Sirtuin 3 deficiency is associated with inhibited mitochondrial function and pulmonary arterial hypertension in rodents and humans publication-title: Cell Metab. doi: 10.1016/j.cmet.2014.08.011 – volume: 19 start-page: 416 year: 2011 ident: 10.1016/j.freeradbiomed.2016.04.197_bib79 article-title: SIRT3 opposes reprogramming of cancer cell metabolism through HIF1alpha destabilization publication-title: Cancer Cell doi: 10.1016/j.ccr.2011.02.014 – volume: 99 start-page: 13653 year: 2002 ident: 10.1016/j.freeradbiomed.2016.04.197_bib161 article-title: SIRT3, a human SIR2 homologue, is an NAD-dependent deacetylase localized to mitochondria publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.222538099 – volume: 159 start-page: 1615 year: 2014 ident: 10.1016/j.freeradbiomed.2016.04.197_bib28 article-title: Sirtuin 4 is a lipoamidase regulating pyruvate dehydrogenase complex activity publication-title: Cell doi: 10.1016/j.cell.2014.11.046 – volume: 134 start-page: 1922 year: 2012 ident: 10.1016/j.freeradbiomed.2016.04.197_bib158 article-title: Thiosuccinyl peptides as Sirt5-specific inhibitors publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2090417 – volume: 363 start-page: 15 year: 2005 ident: 10.1016/j.freeradbiomed.2016.04.197_bib3 article-title: Acetylation and deacetylation of non-histone proteins publication-title: Gene doi: 10.1016/j.gene.2005.09.010 – volume: 36 start-page: 49 year: 2016 ident: 10.1016/j.freeradbiomed.2016.04.197_bib93 article-title: A novel Sirtuin-3 inhibitor, LC-0296, inhibits cell survival and proliferation, and promotes apoptosis of head and neck cancer cells publication-title: Anticancer Res. – volume: 35 start-page: 146 year: 2014 ident: 10.1016/j.freeradbiomed.2016.04.197_bib154 article-title: Small molecule SIRT1 activators for the treatment of aging and age-related diseases publication-title: Trends Pharmacol. Sci. doi: 10.1016/j.tips.2013.12.004 – volume: 325 start-page: 834 year: 2009 ident: 10.1016/j.freeradbiomed.2016.04.197_bib4 article-title: Lysine acetylation targets protein complexes and co-regulates major cellular functions publication-title: Science doi: 10.1126/science.1175371 – volume: 20 start-page: 1059 year: 2014 ident: 10.1016/j.freeradbiomed.2016.04.197_bib168 article-title: Activation of SIRT3 by the NAD(+) precursor nicotinamide riboside protects from noise-induced hearing loss publication-title: Cell Metab. doi: 10.1016/j.cmet.2014.11.003 – volume: 1827 start-page: 38 year: 2013 ident: 10.1016/j.freeradbiomed.2016.04.197_bib107 article-title: Sirtuin-4 modulates sensitivity to induction of the mitochondrial permeability transition pore publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbabio.2012.09.016 – volume: 199 start-page: 205 year: 2012 ident: 10.1016/j.freeradbiomed.2016.04.197_bib163 article-title: Exploring the therapeutic space around NAD+ publication-title: J. Cell Biol. doi: 10.1083/jcb.201207019 – volume: 136 start-page: 809 year: 2016 ident: 10.1016/j.freeradbiomed.2016.04.197_bib89 article-title: Pro-Proliferative Function of Mitochondrial Sirtuin Deacetylase SIRT3 in Human Melanoma publication-title: J. Investig. Dermatol. doi: 10.1016/j.jid.2015.12.026 – volume: 23 start-page: 450 year: 2013 ident: 10.1016/j.freeradbiomed.2016.04.197_bib109 article-title: SIRT4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism publication-title: Cancer Cell doi: 10.1016/j.ccr.2013.02.024 – volume: 4 start-page: 842 year: 2013 ident: 10.1016/j.freeradbiomed.2016.04.197_bib153 article-title: Lysine succinylation is a frequently occurring modification in prokaryotes and eukaryotes and extensively overlaps with acetylation publication-title: Cell Rep. doi: 10.1016/j.celrep.2013.07.024 – volume: 111 start-page: E2443 year: 2014 ident: 10.1016/j.freeradbiomed.2016.04.197_bib166 article-title: NAD+ and SIRT3 control microtubule dynamics and reduce susceptibility to antimicrotubule agents publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1404269111 – volume: 20 start-page: 1256 year: 2006 ident: 10.1016/j.freeradbiomed.2016.04.197_bib15 article-title: SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis publication-title: Genes Dev. doi: 10.1101/gad.1412706 – volume: 280 start-page: 3451 year: 2013 ident: 10.1016/j.freeradbiomed.2016.04.197_bib14 article-title: Intracellular distribution of human SIRT7 and mapping of the nuclear/nucleolar localization signal publication-title: FEBS J. doi: 10.1111/febs.12346 – volume: 404 start-page: 1 year: 2007 ident: 10.1016/j.freeradbiomed.2016.04.197_bib1 article-title: Sirtuins in mammals: insights into their biological function publication-title: Biochem. J. doi: 10.1042/BJ20070140 – volume: 110 start-page: E2772 year: 2013 ident: 10.1016/j.freeradbiomed.2016.04.197_bib160 article-title: Ex-527 inhibits Sirtuins by exploiting their unique NAD+-dependent deacetylation mechanism publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1303628110 – volume: 61 start-page: 394 year: 2013 ident: 10.1016/j.freeradbiomed.2016.04.197_bib101 article-title: Glutamate dehydrogenase 1 and SIRT4 regulate glial development publication-title: Glia doi: 10.1002/glia.22442 – volume: 26 start-page: 1072 year: 2014 ident: 10.1016/j.freeradbiomed.2016.04.197_bib137 article-title: Mitochondrial SIRT5 is present in follicular cells and is altered by reduced ovarian reserve and advanced maternal age publication-title: Reprod., Fertil. Dev. doi: 10.1071/RD13178 – volume: 260 start-page: 273 year: 1999 ident: 10.1016/j.freeradbiomed.2016.04.197_bib103 article-title: Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity publication-title: Biochem. Biophys. Res. Commun. doi: 10.1006/bbrc.1999.0897 – volume: 6 start-page: 26494 year: 2015 ident: 10.1016/j.freeradbiomed.2016.04.197_bib83 article-title: SIRT3 inhibits prostate cancer by destabilizing oncoprotein c-MYC through regulation of the PI3K/Akt pathway publication-title: Oncotarget doi: 10.18632/oncotarget.4764 – volume: 423 start-page: 26 year: 2012 ident: 10.1016/j.freeradbiomed.2016.04.197_bib82 article-title: Sirt3 inhibits hepatocellular carcinoma cell growth through reducing Mdm2-mediated p53 degradation publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2012.05.053 – volume: 20 start-page: 1423 year: 2014 ident: 10.1016/j.freeradbiomed.2016.04.197_bib85 article-title: Superoxide mediates acute liver injury in irradiated mice lacking sirtuin 3 publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2012.5091 – volume: 15 start-page: 217 year: 2015 ident: 10.1016/j.freeradbiomed.2016.04.197_bib124 article-title: SIRT4 suppresses inflammatory responses in human umbilical vein endothelial cells publication-title: Cardiovasc. Toxicol. doi: 10.1007/s12012-014-9287-6 – volume: 153 start-page: 840 year: 2013 ident: 10.1016/j.freeradbiomed.2016.04.197_bib110 article-title: The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4 publication-title: Cell doi: 10.1016/j.cell.2013.04.023 – volume: 11 start-page: 437 year: 2003 ident: 10.1016/j.freeradbiomed.2016.04.197_bib16 article-title: The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase publication-title: Mol. Cell doi: 10.1016/S1097-2765(03)00038-8 – volume: 56 start-page: 1068 year: 2013 ident: 10.1016/j.freeradbiomed.2016.04.197_bib74 article-title: Sirtuin 3 regulates mouse pancreatic beta cell function and is suppressed in pancreatic islets isolated from human type 2 diabetic patients publication-title: Diabetologia doi: 10.1007/s00125-013-2851-y – volume: 433 start-page: 505 year: 2011 ident: 10.1016/j.freeradbiomed.2016.04.197_bib73 article-title: Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation publication-title: Biochem. J. doi: 10.1042/BJ20100791 – volume: 273 start-page: 793 year: 2000 ident: 10.1016/j.freeradbiomed.2016.04.197_bib11 article-title: Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins publication-title: Biochem. Biophys. Res. Commun. doi: 10.1006/bbrc.2000.3000 – volume: 113 start-page: 492 year: 2015 ident: 10.1016/j.freeradbiomed.2016.04.197_bib22 article-title: Tumour-suppressive function of SIRT4 in human colorectal cancer publication-title: Br. J. Cancer doi: 10.1038/bjc.2015.226 – volume: 327 start-page: 1004 year: 2010 ident: 10.1016/j.freeradbiomed.2016.04.197_bib38 article-title: Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux publication-title: Science doi: 10.1126/science.1179687 – volume: 49 start-page: 304 year: 2010 ident: 10.1016/j.freeradbiomed.2016.04.197_bib58 article-title: Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria publication-title: Biochemistry doi: 10.1021/bi901627u – volume: 278 start-page: 18426 year: 2003 ident: 10.1016/j.freeradbiomed.2016.04.197_bib99 article-title: Intra-mitochondrial poly(ADP-ribosylation) contributes to NAD+ depletion and cell death induced by oxidative stress publication-title: J. Biol. Chem. doi: 10.1074/jbc.M301295200 – volume: 158 start-page: 647 year: 2002 ident: 10.1016/j.freeradbiomed.2016.04.197_bib17 article-title: The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide‚ Äìdependent deacetylase publication-title: J. Cell Biol. doi: 10.1083/jcb.200205057 – volume: 34 start-page: 2620 year: 2015 ident: 10.1016/j.freeradbiomed.2016.04.197_bib148 article-title: Analysis of acetylation stoichiometry suggests that SIRT3 repairs nonenzymatic acetylation lesions publication-title: EMBO J. doi: 10.15252/embj.201591271 – year: 2014 ident: 10.1016/j.freeradbiomed.2016.04.197_bib138 article-title: Mitochondrial sirtuins: emerging roles in metabolic regulations, energy homeostasis and diseases publication-title: Exp. Gerontol. – volume: 586 start-page: 4076 year: 2012 ident: 10.1016/j.freeradbiomed.2016.04.197_bib128 article-title: SIRT5 deacetylates and activates urate oxidase in liver mitochondria of mice publication-title: FEBS Lett. doi: 10.1016/j.febslet.2012.10.009 – volume: 14 start-page: 2090 year: 2015 ident: 10.1016/j.freeradbiomed.2016.04.197_bib92 article-title: CDK1-mediated SIRT3 activation enhances mitochondrial function and tumor radioresistance publication-title: Mol. Cancer Ther. doi: 10.1158/1535-7163.MCT-15-0017 – volume: 23 start-page: 607 year: 2006 ident: 10.1016/j.freeradbiomed.2016.04.197_bib36 article-title: Substrate and functional diversity of lysine acetylation revealed by a proteomics survey publication-title: Mol. Cell doi: 10.1016/j.molcel.2006.06.026 – volume: 105 start-page: 14447 year: 2008 ident: 10.1016/j.freeradbiomed.2016.04.197_bib55 article-title: A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0803790105 – volume: 59 start-page: 321 year: 2015 ident: 10.1016/j.freeradbiomed.2016.04.197_bib133 article-title: SIRT5 regulates both cytosolic and mitochondrial protein malonylation with glycolysis as a major target publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.05.022 – volume: 72 start-page: 2468 year: 2012 ident: 10.1016/j.freeradbiomed.2016.04.197_bib87 article-title: SIRT3 is a mitochondrial tumor suppressor: a scientific tale that connects aberrant cellular ROS, the Warburg effect, and carcinogenesis publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-11-3633 – volume: 34 start-page: 1847 year: 2013 ident: 10.1016/j.freeradbiomed.2016.04.197_bib140 article-title: Altered expression of SIRT gene family in head and neck squamous cell carcinoma publication-title: Tumour Biol. doi: 10.1007/s13277-013-0726-y – volume: 5 start-page: 48 year: 2013 ident: 10.1016/j.freeradbiomed.2016.04.197_bib98 article-title: Forever young: SIRT3 a shield against mitochondrial meltdown, aging, and neurodegeneration publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2013.00048 – volume: 17 start-page: 41 year: 2010 ident: 10.1016/j.freeradbiomed.2016.04.197_bib80 article-title: SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress publication-title: Cancer Cell doi: 10.1016/j.ccr.2009.11.023 – volume: 32 start-page: 5022 year: 2012 ident: 10.1016/j.freeradbiomed.2016.04.197_bib23 article-title: SIRT3 functions in the nucleus in the control of stress-related gene expression publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00822-12 – volume: 23 start-page: 128 year: 2016 ident: 10.1016/j.freeradbiomed.2016.04.197_bib97 article-title: Mitochondrial SIRT3 mediates adaptive responses of neurons to exercise and metabolic and excitatory challenges publication-title: Cell Metab. doi: 10.1016/j.cmet.2015.10.013 – volume: 91 start-page: 1033 year: 1997 ident: 10.1016/j.freeradbiomed.2016.04.197_bib10 article-title: Extrachromosomal rDNA circles—a cause of aging in yeast publication-title: Cell doi: 10.1016/S0092-8674(00)80493-6 – volume: 27 start-page: 8807 year: 2007 ident: 10.1016/j.freeradbiomed.2016.04.197_bib43 article-title: Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.01636-07 – year: 2015 ident: 10.1016/j.freeradbiomed.2016.04.197_bib84 article-title: Loss of SIRT3 provides growth advantage for B cell malignancies publication-title: J. Biol. Chem. – volume: 6 start-page: e1620 year: 2015 ident: 10.1016/j.freeradbiomed.2016.04.197_bib119 article-title: CtBP maintains cancer cell growth and metabolic homeostasis via regulating SIRT4 publication-title: Cell Death Dis. doi: 10.1038/cddis.2014.587 – volume: 19 start-page: 1042 year: 2014 ident: 10.1016/j.freeradbiomed.2016.04.197_bib164 article-title: NAD+-dependent activation of Sirt1 corrects the phenotype in a mouse model of mitochondrial disease publication-title: Cell Metab. doi: 10.1016/j.cmet.2014.04.001 – volume: 5 start-page: 835 year: 2013 ident: 10.1016/j.freeradbiomed.2016.04.197_bib108 article-title: SIRT4 regulates ATP homeostasis and mediates a retrograde signaling via AMPK publication-title: Aging doi: 10.18632/aging.100616 – volume: 6 start-page: e23295 year: 2011 ident: 10.1016/j.freeradbiomed.2016.04.197_bib59 article-title: Succinate dehydrogenase is a direct target of sirtuin 3 deacetylase activity publication-title: PLoS One doi: 10.1371/journal.pone.0023295 – volume: 289 start-page: 21326 year: 2014 ident: 10.1016/j.freeradbiomed.2016.04.197_bib149 article-title: Stoichiometry of site-specific lysine acetylation in an entire proteome publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.581843 – volume: 327 start-page: 1000 year: 2010 ident: 10.1016/j.freeradbiomed.2016.04.197_bib35 article-title: Regulation of cellular metabolism by protein lysine acetylation publication-title: Science doi: 10.1126/science.1179689 – volume: 25 start-page: 138 year: 2014 ident: 10.1016/j.freeradbiomed.2016.04.197_bib9 article-title: SIRT1 and other sirtuins in metabolism publication-title: Trends Endocrinol. Metab. doi: 10.1016/j.tem.2013.12.001 – volume: 12 start-page: 654 year: 2010 ident: 10.1016/j.freeradbiomed.2016.04.197_bib57 article-title: SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production publication-title: Cell Metab. doi: 10.1016/j.cmet.2010.11.003 – volume: 441 start-page: 191 year: 2013 ident: 10.1016/j.freeradbiomed.2016.04.197_bib131 article-title: SIRT5 desuccinylates and activates SOD1 to eliminate ROS publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2013.10.033 – volume: 291 start-page: 1957 year: 2016 ident: 10.1016/j.freeradbiomed.2016.04.197_bib100 article-title: SIRT3 deacetylates ceramide synthases: implications for mitochondrial dysfunction and brain injury publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.668228 – volume: 28 start-page: 6384 year: 2008 ident: 10.1016/j.freeradbiomed.2016.04.197_bib66 article-title: SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70 publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00426-08 – volume: 289 start-page: 4135 year: 2014 ident: 10.1016/j.freeradbiomed.2016.04.197_bib115 article-title: SIRT4 protein suppresses tumor formation in genetic models of Myc-induced B cell lymphoma publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.525949 – volume: 8 start-page: e75868 year: 2013 ident: 10.1016/j.freeradbiomed.2016.04.197_bib32 article-title: Ethanol metabolism modifies hepatic protein acylation in mice publication-title: PLoS One doi: 10.1371/journal.pone.0075868 – volume: 22 start-page: 1060 year: 2015 ident: 10.1016/j.freeradbiomed.2016.04.197_bib143 article-title: Mitochondrial sirtuins and their relationships with metabolic disease and cancer publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2014.6213 – volume: 287 start-page: 42436 year: 2012 ident: 10.1016/j.freeradbiomed.2016.04.197_bib151 article-title: Mitochondrial protein acylation and intermediary metabolism: regulation by sirtuins and implications for metabolic disease publication-title: J Biol. Chem. doi: 10.1074/jbc.R112.404863 – volume: 110 start-page: 36 year: 2015 ident: 10.1016/j.freeradbiomed.2016.04.197_bib76 article-title: SIRT3 deficiency impairs mitochondrial and contractile function in the heart publication-title: Basic Res. Cardiol. doi: 10.1007/s00395-015-0493-6 – volume: 26 start-page: 5489 year: 2007 ident: 10.1016/j.freeradbiomed.2016.04.197_bib5 article-title: Sirtuins: critical regulators at the crossroads between cancer and aging publication-title: Oncogene doi: 10.1038/sj.onc.1210616 – volume: 10 year: 2011 ident: 10.1016/j.freeradbiomed.2016.04.197_bib25 article-title: The First identification of lysine malonylation substrates and its regulatory enzyme publication-title: Mol. Cell. Proteom. doi: 10.1074/mcp.M111.012658 – volume: 2 start-page: 914 year: 2010 ident: 10.1016/j.freeradbiomed.2016.04.197_bib69 article-title: Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy publication-title: Aging doi: 10.18632/aging.100252 – volume: 50 start-page: 919 year: 2013 ident: 10.1016/j.freeradbiomed.2016.04.197_bib130 article-title: SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways publication-title: Mol. Cell doi: 10.1016/j.molcel.2013.06.001 – volume: 3 start-page: 1050 year: 2012 ident: 10.1016/j.freeradbiomed.2016.04.197_bib159 article-title: Inhibitors of the NAD+-dependent protein desuccinylase and demalonylase Sirt5 publication-title: ACS Med. Chem. Lett. doi: 10.1021/ml3002709 – volume: 464 start-page: 121 year: 2010 ident: 10.1016/j.freeradbiomed.2016.04.197_bib56 article-title: SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation publication-title: Nature doi: 10.1038/nature08778 – volume: 62 start-page: 3404 year: 2013 ident: 10.1016/j.freeradbiomed.2016.04.197_bib48 article-title: Sirt3 regulates metabolic flexibility of skeletal muscle through reversible enzymatic deacetylation publication-title: Diabetes doi: 10.2337/db12-1650 – volume: 290 start-page: 1546 year: 2015 ident: 10.1016/j.freeradbiomed.2016.04.197_bib169 article-title: Increasing NAD synthesis in muscle via nicotinamide phosphoribosyltransferase is not sufficient to promote oxidative metabolism publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.579565 – volume: 55 start-page: e10 year: 2011 ident: 10.1016/j.freeradbiomed.2016.04.197_bib112 article-title: The expression of Sirtuins 1 and 4 in peripheral blood leukocytes from patients with type 2 diabetes publication-title: Eur. J. Histochem. doi: 10.4081/ejh.2011.e10 – volume: 15 start-page: 838 year: 2012 ident: 10.1016/j.freeradbiomed.2016.04.197_bib162 article-title: The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity publication-title: Cell Metab. doi: 10.1016/j.cmet.2012.04.022 – volume: 23 start-page: 467 year: 2012 ident: 10.1016/j.freeradbiomed.2016.04.197_bib2 article-title: Mitochondrial sirtuins: regulators of protein acylation and metabolism publication-title: Trends Endocrinol. Metab. doi: 10.1016/j.tem.2012.07.004 – volume: 54 start-page: 363 year: 2014 ident: 10.1016/j.freeradbiomed.2016.04.197_bib155 article-title: Small-molecule allosteric activators of sirtuins publication-title: Annu. Rev. Pharmacol. Toxicol. doi: 10.1146/annurev-pharmtox-010611-134657 – volume: 282 start-page: 30239 year: 2007 ident: 10.1016/j.freeradbiomed.2016.04.197_bib33 article-title: N-lysine propionylation controls the activity of propionyl-CoA synthetase publication-title: J. Biol. Chem. doi: 10.1074/jbc.M704409200 – volume: 410 start-page: 227 year: 2001 ident: 10.1016/j.freeradbiomed.2016.04.197_bib71 article-title: Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans publication-title: Nature doi: 10.1038/35065638 – volume: 11 start-page: 1510 year: 2012 ident: 10.1016/j.freeradbiomed.2016.04.197_bib40 article-title: Proteome-wide analysis of lysine acetylation suggests its broad regulatory scope in Saccharomyces cerevisiae publication-title: Mol. Cell. Proteom. doi: 10.1074/mcp.M112.017251 – volume: 180 start-page: 156 year: 2013 ident: 10.1016/j.freeradbiomed.2016.04.197_bib86 article-title: Low-dose radiation-induced enhancement of thymic lymphomagenesis in Lck-Bax mice is dependent on LET and gender publication-title: Radiat. Res. doi: 10.1667/RR3293.1 – volume: 137 start-page: 560 year: 2009 ident: 10.1016/j.freeradbiomed.2016.04.197_bib126 article-title: SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle publication-title: Cell doi: 10.1016/j.cell.2009.02.026 – volume: 35 start-page: 10699 year: 2014 ident: 10.1016/j.freeradbiomed.2016.04.197_bib142 article-title: SIRT5 facilitates cancer cell growth and drug resistance in non-small cell lung cancer publication-title: Tumor Biol. doi: 10.1007/s13277-014-2372-4 – volume: 117 start-page: 1670 year: 2011 ident: 10.1016/j.freeradbiomed.2016.04.197_bib90 article-title: Sirtuin-3 (SIRT3), a novel potential therapeutic target for oral cancer publication-title: Cancer doi: 10.1002/cncr.25676 – year: 2015 ident: 10.1016/j.freeradbiomed.2016.04.197_bib63 article-title: SIRT3 is crucial for maintaining skeletal muscle insulin action and protects against severe insulin resistance in high fat fed mice publication-title: Diabetes doi: 10.2337/db14-1810 – volume: 393 start-page: 73 year: 2010 ident: 10.1016/j.freeradbiomed.2016.04.197_bib127 article-title: Overexpression of SIRT5 confirms its involvement in deacetylation and activation of carbamoyl phosphate synthetase 1 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2010.01.081 – volume: 496 start-page: 110 year: 2013 ident: 10.1016/j.freeradbiomed.2016.04.197_bib31 article-title: SIRT6 regulates TNF-[agr] secretion through hydrolysis of long-chain fatty acyl lysine publication-title: Nature doi: 10.1038/nature12038 – volume: 15 start-page: 595 year: 2012 ident: 10.1016/j.freeradbiomed.2016.04.197_bib62 article-title: Lipid-induced mitochondrial stress and insulin action in muscle publication-title: Cell Metab. doi: 10.1016/j.cmet.2012.04.010 – volume: 20 start-page: 1075 year: 2006 ident: 10.1016/j.freeradbiomed.2016.04.197_bib13 article-title: Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription publication-title: Genes Dev. doi: 10.1101/gad.1399706 – volume: 72 start-page: 135 year: 2015 ident: 10.1016/j.freeradbiomed.2016.04.197_bib117 article-title: Sirtuin-4 (SIRT4) is downregulated and associated with some clinicopathological features in gastric adenocarcinoma publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2015.04.013 – volume: 36 start-page: 3404 year: 2015 ident: 10.1016/j.freeradbiomed.2016.04.197_bib77 article-title: Protective effects of sirtuins in cardiovascular diseases: from bench to bedside publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehv290 – volume: 54 start-page: 5 year: 2014 ident: 10.1016/j.freeradbiomed.2016.04.197_bib145 article-title: Nonenzymatic protein acylation as a carbon stress regulated by sirtuin deacylases publication-title: Mol. Cell doi: 10.1016/j.molcel.2014.03.027 – volume: 36 start-page: 108 year: 2010 ident: 10.1016/j.freeradbiomed.2016.04.197_bib7 article-title: Regulation of intermediary metabolism by protein acetylation publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2010.09.003 – volume: 26 start-page: 486 year: 2015 ident: 10.1016/j.freeradbiomed.2016.04.197_bib72 article-title: SIRT3 regulates progression and development of diseases of aging publication-title: Trends Endocrinol. Metab. – volume: 40 start-page: 893 year: 2010 ident: 10.1016/j.freeradbiomed.2016.04.197_bib53 article-title: Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.12.013 – volume: 1 start-page: 771 year: 2009 ident: 10.1016/j.freeradbiomed.2016.04.197_bib44 article-title: Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1alpha in skeletal muscle publication-title: Aging doi: 10.18632/aging.100075 – start-page: 1 year: 2016 ident: 10.1016/j.freeradbiomed.2016.04.197_bib156 article-title: Using mitochondrial sirtuins as drug targets: disease implications and available compounds publication-title: Cell. Mol. Life Sci. – volume: 103 start-page: 10230 year: 2006 ident: 10.1016/j.freeradbiomed.2016.04.197_bib50 article-title: Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0604392103 – volume: 107 start-page: 273 year: 2012 ident: 10.1016/j.freeradbiomed.2016.04.197_bib12 article-title: Emerging beneficial roles of sirtuins in heart failure publication-title: Basic Res. Cardiol. doi: 10.1007/s00395-012-0273-5 – volume: 5 start-page: 1583 year: 2010 ident: 10.1016/j.freeradbiomed.2016.04.197_bib41 article-title: Generation of acetyllysine antibodies and affinity enrichment of acetylated peptides publication-title: Nat. Protoc. doi: 10.1038/nprot.2010.117 – volume: 35 start-page: 2064 year: 2014 ident: 10.1016/j.freeradbiomed.2016.04.197_bib96 article-title: Pituitary adenylate cyclase-activating polypeptide protects against beta-amyloid toxicity publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2014.03.022 – volume: 60 start-page: 661 year: 2015 ident: 10.1016/j.freeradbiomed.2016.04.197_bib141 article-title: NADP(+)-IDH mutations promote hypersuccinylation that impairs mitochondria respiration and induces apoptosis resistance publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.10.017 – volume: 155 start-page: 1624 year: 2013 ident: 10.1016/j.freeradbiomed.2016.04.197_bib167 article-title: Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging publication-title: Cell doi: 10.1016/j.cell.2013.11.037 – volume: 16 start-page: 4623 year: 2005 ident: 10.1016/j.freeradbiomed.2016.04.197_bib102 article-title: Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E05-01-0033 – volume: 161 start-page: 731 year: 2009 ident: 10.1016/j.freeradbiomed.2016.04.197_bib120 article-title: Hyperinsulinism–hyperammonaemia syndrome: novel mutations in the GLUD1 gene and genotype–phenotype correlations publication-title: Eur. J. Endocrinol. doi: 10.1530/EJE-09-0615 – volume: 19 start-page: 605 year: 2014 ident: 10.1016/j.freeradbiomed.2016.04.197_bib26 article-title: Lysine glutarylation is a protein posttranslational modification regulated by SIRT5 publication-title: Cell Metab. doi: 10.1016/j.cmet.2014.03.014 – volume: 5 start-page: 8529 year: 2015 ident: 10.1016/j.freeradbiomed.2016.04.197_bib29 article-title: Efficient demyristoylase activity of SIRT2 revealed by kinetic and structural studies publication-title: Sci. Rep. doi: 10.1038/srep08529 – volume: 119 start-page: 2758 year: 2009 ident: 10.1016/j.freeradbiomed.2016.04.197_bib75 article-title: Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice publication-title: J. Clin. Invest. – volume: 44 start-page: 177 year: 2011 ident: 10.1016/j.freeradbiomed.2016.04.197_bib152 article-title: SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome publication-title: Mol. Cell doi: 10.1016/j.molcel.2011.07.019 – volume: 32 start-page: 655 year: 2013 ident: 10.1016/j.freeradbiomed.2016.04.197_bib123 article-title: SIRT4 prevents hypoxia-induced apoptosis in H9c2 cardiomyoblast cells publication-title: Cell. Physiol. Biochem. doi: 10.1159/000354469 – volume: 2 start-page: 15 year: 2014 ident: 10.1016/j.freeradbiomed.2016.04.197_bib116 article-title: SIRT3 and SIRT4 are mitochondrial tumor suppressor proteins that connect mitochondrial metabolism and carcinogenesis publication-title: Cancer Metab. doi: 10.1186/2049-3002-2-15 – volume: 411 start-page: 279 year: 2008 ident: 10.1016/j.freeradbiomed.2016.04.197_bib18 article-title: The human SIRT3 protein deacetylase is exclusively mitochondrial publication-title: Biochem. J. doi: 10.1042/BJ20071624 – volume: 7 start-page: e48225 year: 2012 ident: 10.1016/j.freeradbiomed.2016.04.197_bib94 article-title: CNS SIRT3 expression is altered by reactive oxygen species and in Alzheimer’s disease publication-title: PLoS One doi: 10.1371/journal.pone.0048225 |
SSID | ssj0004538 |
Score | 2.5595577 |
SecondaryResourceType | review_article |
Snippet | Mitochondria play a critical role in energy production, cell signalling and cell survival. Defects in mitochondrial function contribute to the ageing process... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 164 |
SubjectTerms | Acylation Ageing Aging Animals Humans Metabolic Diseases - enzymology Metabolic Diseases - physiopathology Metabolism Mitochondria Mitochondria - enzymology Mitochondrial Proteins - metabolism Neoplasms - enzymology Neoplasms - physiopathology Neurodegenerative Diseases - enzymology Neurodegenerative Diseases - physiopathology Protein Processing, Post-Translational SIRT3 SIRT4 SIRT5 Sirtuins Sirtuins - metabolism |
Title | The role of mitochondrial sirtuins in health and disease |
URI | https://dx.doi.org/10.1016/j.freeradbiomed.2016.04.197 https://www.ncbi.nlm.nih.gov/pubmed/27164052 https://www.proquest.com/docview/1826679792 |
Volume | 100 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEB9EUfoiftazKistfYuXbDbZxAfhOCqnUl9a4d6WZD8gpe7JfTz44t_emXycCi0c9C0Ju8kyOzsfmZnfAHwpUk3hwRjdktAEaIHjkdJlHmSGW5PIwnFOxcnf79PRg7gdJ-M1GHa1MJRW2cr-RqbX0rp90m-p2X-qqv6PMMsjVJ9o38RkWFMRnxCSuPziJXqDGF53s6bBAY3egs-vOV5uai2FrOtKd8rzSgn3NCIEqL9rqX9ZobU2ut6B7daMZINmpbuwZv0e7A88utCPz-wrqxM76z_me7DZ9Jt83ocMmYJRPiGbOPaIZxllnzfEgmxWTeeLys9Y5VlTG8kKb1gbvzmAh-tvP4ejoG2dEGgh8nlgpUwI6t2lIuVWcxtavOAycuhPaaSY5qEQGh_ZWBpbyqjk0hA6XCytQxV-COt-4u0RME2AM4UjlBouMpeXosgil4WxMUWiM9eDy45USre44tTe4rfqEsh-qXd0VkRnFQqFdO6BWE5-auA1Vpt21e2JesctChXBai8473ZS4XmiIEnh7WQxU-RvpTKXOe_Bx2aLlyvj5FyGCT_-389_gg9019Q0nsD6fLqwp2jczMuzmnvPYGNwcze6_wMD3vjC |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7BolIuiGe7PFpXrbhFmzhOnHBAWqGipcBeAImblfghpSpetI8D_74zeVCQQELqLXLixBqP55GZ-QbgR5FqCg_G6JaEJkALHI-ULvMgM9yaRBaOcypOvhqno1vx6y65W4LTrhaG0ipb2d_I9FpatyODlpqDh6oaXIdZHqH6RPsmJsM6X4YVQqdKerAyPL8YjZ-BhtcNren5gCaswvd_aV5uai1Fretid0r1Sgn6NCIQqNcV1VuGaK2QzjZgvbUk2bBZ7CYsWb8F20OPXvT9IztidW5n_dN8Cz40LScftyFDvmCUUsgmjt3jcUbx5w1xIZtV0_mi8jNWedaUR7LCG9aGcHbg9uznzekoaLsnBFqIfB5YKRNCe3epSLnV3IYWL7iMHLpUGommeSiExiEbS2NLGZVcGgKIi6V1qMV3oecn3n4GpglzpnAEVMNF5vJSFFnksjA2pkh05vpw3JFK6RZanDpc_FFdDtlv9YLOiuisQqGQzn0QT5MfGoSN90076fZEvWAYhbrgfS_41u2kwiNFcZLC28lipsjlSmUuc96HT80WP62Mk38ZJnzvfz__FT6Obq4u1eX5-GIf1uhOU-J4AL35dGEP0daZl19aXv4LiPj7cw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+role+of+mitochondrial+sirtuins+in+health+and+disease&rft.jtitle=Free+radical+biology+%26+medicine&rft.au=Osborne%2C+Brenna&rft.au=Bentley%2C+Nicholas+L.&rft.au=Montgomery%2C+Magdalene+K.&rft.au=Turner%2C+Nigel&rft.date=2016-11-01&rft.issn=0891-5849&rft.volume=100&rft.spage=164&rft.epage=174&rft_id=info:doi/10.1016%2Fj.freeradbiomed.2016.04.197&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_freeradbiomed_2016_04_197 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0891-5849&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0891-5849&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0891-5849&client=summon |