The role of mitochondrial sirtuins in health and disease

Mitochondria play a critical role in energy production, cell signalling and cell survival. Defects in mitochondrial function contribute to the ageing process and ageing-related disorders such as metabolic disease, cancer, and neurodegeneration. The sirtuin family of deacylase enzymes have a variety...

Full description

Saved in:
Bibliographic Details
Published inFree radical biology & medicine Vol. 100; pp. 164 - 174
Main Authors Osborne, Brenna, Bentley, Nicholas L., Montgomery, Magdalene K., Turner, Nigel
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.11.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mitochondria play a critical role in energy production, cell signalling and cell survival. Defects in mitochondrial function contribute to the ageing process and ageing-related disorders such as metabolic disease, cancer, and neurodegeneration. The sirtuin family of deacylase enzymes have a variety of subcellular localisations and have been found to remove a growing list of post-translational acyl modifications from target proteins. SIRT3, SIRT4, and SIRT5 are found primarily located in the mitochondria, and are involved in many of the key processes of this organelle. SIRT3 has been the subject of intense research and is primarily a deacetylase thought to function as a mitochondrial fidelity protein, with roles in mitochondrial substrate metabolism, protection against oxidative stress, and cell survival pathways. Less is known about the functional targets of SIRT4, which has deacetylase, ADP-ribosylase, and a newly-described lipoamidase function, although key roles in lipid and glutamine metabolism have been reported. SIRT5 modulates a host of newly-discovered acyl modifications including succinylation, malonylation, and glutarylation in both mitochondrial and extra-mitochondrial compartments, however the functional significance of SIRT5 in the regulation of many of its proposed target proteins remains to be discovered. Because of their influence on a broad range of pathways, SIRT3, SIRT4, and SIRT5 are implicated in a range of disease-states including metabolic disease such as diabetes, neurodegenerative diseases, cancer, and ageing-related disorders such as hearing-loss and cardiac dysfunction. We review the current knowledge on the function of the three mitochondrial sirtuins, their role in disease, and the current outstanding questions in the field. [Display omitted] •SIRT3, SIRT4 and SIRT5 modulate acyl modifications such as acetylation and succinylation.•Mitochondrial SIRTs are implicated in metabolism, mitochondrial fidelity, and cell stress.•Alterations in the expression/activity of SIRT3, SIRT4, SIRT5 are linked with disease.•Questions remain about the potential of mitochondrial SIRTs as therapeutic targets.
AbstractList Mitochondria play a critical role in energy production, cell signalling and cell survival. Defects in mitochondrial function contribute to the ageing process and ageing-related disorders such as metabolic disease, cancer, and neurodegeneration. The sirtuin family of deacylase enzymes have a variety of subcellular localisations and have been found to remove a growing list of post-translational acyl modifications from target proteins. SIRT3, SIRT4, and SIRT5 are found primarily located in the mitochondria, and are involved in many of the key processes of this organelle. SIRT3 has been the subject of intense research and is primarily a deacetylase thought to function as a mitochondrial fidelity protein, with roles in mitochondrial substrate metabolism, protection against oxidative stress, and cell survival pathways. Less is known about the functional targets of SIRT4, which has deacetylase, ADP-ribosylase, and a newly-described lipoamidase function, although key roles in lipid and glutamine metabolism have been reported. SIRT5 modulates a host of newly-discovered acyl modifications including succinylation, malonylation, and glutarylation in both mitochondrial and extra-mitochondrial compartments, however the functional significance of SIRT5 in the regulation of many of its proposed target proteins remains to be discovered. Because of their influence on a broad range of pathways, SIRT3, SIRT4, and SIRT5 are implicated in a range of disease-states including metabolic disease such as diabetes, neurodegenerative diseases, cancer, and ageing-related disorders such as hearing-loss and cardiac dysfunction. We review the current knowledge on the function of the three mitochondrial sirtuins, their role in disease, and the current outstanding questions in the field. [Display omitted] •SIRT3, SIRT4 and SIRT5 modulate acyl modifications such as acetylation and succinylation.•Mitochondrial SIRTs are implicated in metabolism, mitochondrial fidelity, and cell stress.•Alterations in the expression/activity of SIRT3, SIRT4, SIRT5 are linked with disease.•Questions remain about the potential of mitochondrial SIRTs as therapeutic targets.
Mitochondria play a critical role in energy production, cell signalling and cell survival. Defects in mitochondrial function contribute to the ageing process and ageing-related disorders such as metabolic disease, cancer, and neurodegeneration. The sirtuin family of deacylase enzymes have a variety of subcellular localisations and have been found to remove a growing list of post-translational acyl modifications from target proteins. SIRT3, SIRT4, and SIRT5 are found primarily located in the mitochondria, and are involved in many of the key processes of this organelle. SIRT3 has been the subject of intense research and is primarily a deacetylase thought to function as a mitochondrial fidelity protein, with roles in mitochondrial substrate metabolism, protection against oxidative stress, and cell survival pathways. Less is known about the functional targets of SIRT4, which has deacetylase, ADP-ribosylase, and a newly-described lipoamidase function, although key roles in lipid and glutamine metabolism have been reported. SIRT5 modulates a host of newly-discovered acyl modifications including succinylation, malonylation, and glutarylation in both mitochondrial and extra-mitochondrial compartments, however the functional significance of SIRT5 in the regulation of many of its proposed target proteins remains to be discovered. Because of their influence on a broad range of pathways, SIRT3, SIRT4, and SIRT5 are implicated in a range of disease-states including metabolic disease such as diabetes, neurodegenerative diseases, cancer, and ageing-related disorders such as hearing-loss and cardiac dysfunction. We review the current knowledge on the function of the three mitochondrial sirtuins, their role in disease, and the current outstanding questions in the field.
Mitochondria play a critical role in energy production, cell signalling and cell survival. Defects in mitochondrial function contribute to the ageing process and ageing-related disorders such as metabolic disease, cancer, and neurodegeneration. The sirtuin family of deacylase enzymes have a variety of subcellular localisations and have been found to remove a growing list of post-translational acyl modifications from target proteins. SIRT3, SIRT4, and SIRT5 are found primarily located in the mitochondria, and are involved in many of the key processes of this organelle. SIRT3 has been the subject of intense research and is primarily a deacetylase thought to function as a mitochondrial fidelity protein, with roles in mitochondrial substrate metabolism, protection against oxidative stress, and cell survival pathways. Less is known about the functional targets of SIRT4, which has deacetylase, ADP-ribosylase, and a newly-described lipoamidase function, although key roles in lipid and glutamine metabolism have been reported. SIRT5 modulates a host of newly-discovered acyl modifications including succinylation, malonylation, and glutarylation in both mitochondrial and extra-mitochondrial compartments, however the functional significance of SIRT5 in the regulation of many of its proposed target proteins remains to be discovered. Because of their influence on a broad range of pathways, SIRT3, SIRT4, and SIRT5 are implicated in a range of disease-states including metabolic disease such as diabetes, neurodegenerative diseases, cancer, and ageing-related disorders such as hearing-loss and cardiac dysfunction. We review the current knowledge on the function of the three mitochondrial sirtuins, their role in disease, and the current outstanding questions in the field.Mitochondria play a critical role in energy production, cell signalling and cell survival. Defects in mitochondrial function contribute to the ageing process and ageing-related disorders such as metabolic disease, cancer, and neurodegeneration. The sirtuin family of deacylase enzymes have a variety of subcellular localisations and have been found to remove a growing list of post-translational acyl modifications from target proteins. SIRT3, SIRT4, and SIRT5 are found primarily located in the mitochondria, and are involved in many of the key processes of this organelle. SIRT3 has been the subject of intense research and is primarily a deacetylase thought to function as a mitochondrial fidelity protein, with roles in mitochondrial substrate metabolism, protection against oxidative stress, and cell survival pathways. Less is known about the functional targets of SIRT4, which has deacetylase, ADP-ribosylase, and a newly-described lipoamidase function, although key roles in lipid and glutamine metabolism have been reported. SIRT5 modulates a host of newly-discovered acyl modifications including succinylation, malonylation, and glutarylation in both mitochondrial and extra-mitochondrial compartments, however the functional significance of SIRT5 in the regulation of many of its proposed target proteins remains to be discovered. Because of their influence on a broad range of pathways, SIRT3, SIRT4, and SIRT5 are implicated in a range of disease-states including metabolic disease such as diabetes, neurodegenerative diseases, cancer, and ageing-related disorders such as hearing-loss and cardiac dysfunction. We review the current knowledge on the function of the three mitochondrial sirtuins, their role in disease, and the current outstanding questions in the field.
Author Turner, Nigel
Montgomery, Magdalene K.
Bentley, Nicholas L.
Osborne, Brenna
Author_xml – sequence: 1
  givenname: Brenna
  surname: Osborne
  fullname: Osborne, Brenna
– sequence: 2
  givenname: Nicholas L.
  surname: Bentley
  fullname: Bentley, Nicholas L.
– sequence: 3
  givenname: Magdalene K.
  surname: Montgomery
  fullname: Montgomery, Magdalene K.
– sequence: 4
  givenname: Nigel
  surname: Turner
  fullname: Turner, Nigel
  email: n.turner@unsw.edu.au
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27164052$$D View this record in MEDLINE/PubMed
BookMark eNqNkE1LAzEQhoNUtH78BVnw4mXXJJtNNniSUj-g4EXPIU1maco20SQV_PdGWgU9eZpheOYd5jlBEx88IHRJcEMw4dfrZogAUdulCxuwDS3DBrOGSHGApqQXbc06ySdointJ6q5n8hidpLTGGLOu7Y_QMRWEM9zRKeqfV1DFMEIVhmrjcjCr4G10eqySi3nrfKqcr1agx7yqtLeVdQl0gjN0OOgxwfm-nqKXu_nz7KFePN0_zm4XtWFM5hqE6Djp8MAZp2AoYChNuT8wTAzhraGYMVNG0AoLS0GWVFgipGwFDH3XnqKrXe5rDG9bSFltXDIwjtpD2CZFesq5kELSgl7s0e2yiFGv0W10_FDf3xbgZgeYGFKKMPwgBKsvt2qtfrlVX24VZqq4Ldu3f7aNyzq74HPUbvxnxnyXAUXZu4OoknHgDVgXwWRlg_tXzicdMJ36
CitedBy_id crossref_primary_10_1016_j_brainresbull_2017_03_009
crossref_primary_10_1016_j_freeradbiomed_2016_11_050
crossref_primary_10_1016_j_ijcard_2018_08_065
crossref_primary_10_1016_j_cotox_2017_10_005
crossref_primary_10_3389_fimmu_2024_1448535
crossref_primary_10_1039_C8TX00169C
crossref_primary_10_1111_jpi_12418
crossref_primary_10_2174_2589977512666201207200626
crossref_primary_10_3389_fphys_2022_908689
crossref_primary_10_3389_fimmu_2018_00419
crossref_primary_10_1016_j_lfs_2020_117846
crossref_primary_10_3390_nu15163578
crossref_primary_10_3390_nu17050837
crossref_primary_10_1016_j_celrep_2024_115136
crossref_primary_10_3390_antiox10050794
crossref_primary_10_1073_pnas_1902346116
crossref_primary_10_1080_10715762_2018_1549732
crossref_primary_10_1152_ajpcell_00012_2024
crossref_primary_10_1038_s41598_023_28226_7
crossref_primary_10_1089_ars_2017_7311
crossref_primary_10_3390_antiox10081198
crossref_primary_10_1016_j_lfs_2024_122993
crossref_primary_10_3389_fphys_2019_01006
crossref_primary_10_1039_C9MO00028C
crossref_primary_10_1016_j_tibs_2019_08_002
crossref_primary_10_3389_fmicb_2020_632367
crossref_primary_10_1007_s11626_017_0200_z
crossref_primary_10_3389_fphar_2022_852858
crossref_primary_10_1155_2022_4722647
crossref_primary_10_1155_2021_5577019
crossref_primary_10_3389_fgene_2022_885929
crossref_primary_10_1080_13813455_2021_1956976
crossref_primary_10_3390_antiox11030480
crossref_primary_10_1186_s12986_018_0265_z
crossref_primary_10_1016_j_bbrc_2022_03_088
crossref_primary_10_1016_j_neubiorev_2021_10_047
crossref_primary_10_1016_j_freeradbiomed_2022_01_005
crossref_primary_10_1155_2018_7293861
crossref_primary_10_1155_2022_5567174
crossref_primary_10_1111_jpi_12431
crossref_primary_10_1093_humupd_dmy003
crossref_primary_10_3390_ijms24119363
crossref_primary_10_1002_1873_3468_12692
crossref_primary_10_1038_s41392_021_00646_9
crossref_primary_10_1021_acs_jproteome_0c00314
crossref_primary_10_1080_00207454_2022_2057849
crossref_primary_10_1089_ars_2017_7258
crossref_primary_10_1002_jcp_26398
crossref_primary_10_1016_j_ejphar_2017_11_005
crossref_primary_10_1007_s00018_023_05061_7
crossref_primary_10_1016_j_fsi_2020_01_029
crossref_primary_10_3390_ijms25041956
crossref_primary_10_1002_2211_5463_13715
crossref_primary_10_1111_php_13254
crossref_primary_10_1016_j_gene_2018_07_010
crossref_primary_10_12677_ACM_2023_13122640
crossref_primary_10_3389_fimmu_2025_1531246
crossref_primary_10_3390_life12081213
crossref_primary_10_3390_ijms23062988
crossref_primary_10_1248_yakushi_19_00193_4
crossref_primary_10_3389_fendo_2018_00724
crossref_primary_10_18632_aging_101307
crossref_primary_10_1016_j_jbc_2022_101723
crossref_primary_10_3892_ol_2018_9764
crossref_primary_10_3389_fonc_2020_562950
crossref_primary_10_1007_s12192_017_0841_6
crossref_primary_10_1016_j_biopha_2020_110260
crossref_primary_10_1097_WNR_0000000000001383
crossref_primary_10_1186_s12964_023_01253_7
crossref_primary_10_3389_fonc_2020_00045
crossref_primary_10_3390_biom12081079
crossref_primary_10_2174_2665978601666200213121512
crossref_primary_10_1128_MCB_00269_20
crossref_primary_10_1016_j_diabres_2019_107801
crossref_primary_10_1016_j_cbd_2025_101425
crossref_primary_10_1038_s41598_020_65351_z
crossref_primary_10_1002_jcp_25669
crossref_primary_10_1016_j_mgene_2021_100965
crossref_primary_10_1159_000530351
crossref_primary_10_1016_j_freeradbiomed_2016_08_004
crossref_primary_10_3390_ijms22115681
crossref_primary_10_1007_s12038_020_00055_0
crossref_primary_10_3390_nu11010105
crossref_primary_10_1016_j_mce_2016_11_003
crossref_primary_10_3389_fgene_2019_00879
crossref_primary_10_14814_phy2_14331
crossref_primary_10_1515_hsz_2017_0209
crossref_primary_10_1016_j_jbc_2022_102128
crossref_primary_10_1186_s12964_024_02025_7
crossref_primary_10_1016_j_clinre_2024_102394
crossref_primary_10_1016_j_molmet_2017_07_009
crossref_primary_10_1016_j_biocel_2021_105962
crossref_primary_10_3389_fcell_2021_667684
crossref_primary_10_18632_genesandcancer_153
crossref_primary_10_1016_j_bbrc_2018_07_047
crossref_primary_10_3389_fendo_2018_00783
crossref_primary_10_3389_fimmu_2022_943321
crossref_primary_10_1016_j_abb_2019_03_019
crossref_primary_10_3390_biomedicines12091987
crossref_primary_10_1007_s10522_023_10022_5
crossref_primary_10_1039_C8SC03781G
crossref_primary_10_3389_fnins_2020_00614
crossref_primary_10_1016_j_biopha_2018_06_042
crossref_primary_10_1186_s12931_022_01986_y
crossref_primary_10_1158_2326_6066_CIR_23_0786
crossref_primary_10_1016_j_freeradbiomed_2019_01_030
crossref_primary_10_1016_j_ejphar_2018_12_028
crossref_primary_10_1111_bph_13861
crossref_primary_10_1155_2021_9984330
crossref_primary_10_1080_13813455_2018_1543328
crossref_primary_10_1155_2021_5520794
crossref_primary_10_14336_AD_2022_00725
crossref_primary_10_1111_cpr_13362
crossref_primary_10_1016_j_freeradbiomed_2021_12_264
crossref_primary_10_1186_s12931_023_02613_0
crossref_primary_10_3389_fcvm_2023_1204483
crossref_primary_10_1016_j_molmet_2020_01_005
crossref_primary_10_1016_j_toxicon_2019_11_009
crossref_primary_10_3390_ijms26020774
crossref_primary_10_1002_jcp_27200
crossref_primary_10_1093_stcltm_szae069
crossref_primary_10_3389_fimmu_2019_02341
crossref_primary_10_3390_ph15010080
crossref_primary_10_1016_j_freeradbiomed_2019_09_004
crossref_primary_10_1016_j_bbadis_2023_166935
crossref_primary_10_1111_jne_12508
crossref_primary_10_1089_ars_2017_7290
crossref_primary_10_3390_ijms232112889
crossref_primary_10_1007_s11596_019_1997_3
crossref_primary_10_1186_s12929_020_00660_z
crossref_primary_10_3390_antiox12081635
crossref_primary_10_3390_ijms19092592
crossref_primary_10_1074_jbc_RA118_003629
crossref_primary_10_3390_biom13081210
Cites_doi 10.1016/j.jmb.2008.07.048
10.1111/jnc.12942
10.1073/pnas.1302961110
10.1074/jbc.M110.124164
10.1111/j.1474-9726.2009.00503.x
10.1101/gad.1527307
10.1073/pnas.1111308108
10.1038/nrm3841
10.1016/j.celrep.2012.07.006
10.4161/cc.6.21.4866
10.1074/jbc.M113.486753
10.1016/j.molmed.2012.05.004
10.1016/j.molcel.2011.07.019
10.1016/j.molcel.2012.10.024
10.1016/j.freeradbiomed.2010.07.009
10.1007/s11064-015-1630-1
10.1016/j.freeradbiomed.2013.05.002
10.1002/jcb.25374
10.1016/j.bbr.2014.12.035
10.7554/eLife.02999
10.1016/j.neuroscience.2015.10.048
10.1016/j.bbrc.2007.11.122
10.15252/embr.201541643
10.1016/j.celrep.2015.12.030
10.1016/j.cell.2006.06.057
10.1016/j.cell.2010.10.002
10.1016/j.tibs.2010.07.003
10.1016/j.cmet.2013.11.013
10.1002/msb.134766
10.1016/j.molcel.2011.01.002
10.18632/oncotarget.6691
10.1096/fj.13-245241
10.1038/ncomms3327
10.1038/srep02806
10.1042/bse0520023
10.1016/j.molcel.2013.05.012
10.1126/science.1207861
10.1038/onc.2011.37
10.1038/srep00425
10.1128/MCB.01483-13
10.1242/jcs.061846
10.1177/1087057115588512
10.1242/jcs.115188
10.1074/jbc.M705488200
10.1128/MCB.00087-13
10.1074/jbc.M112.384511
10.1016/j.gene.2013.03.021
10.1016/j.cmet.2010.11.015
10.1073/pnas.0603968103
10.1210/jc.2015-3095
10.1016/j.cmet.2011.08.014
10.1016/j.cmet.2014.08.011
10.1016/j.ccr.2011.02.014
10.1073/pnas.222538099
10.1016/j.cell.2014.11.046
10.1021/ja2090417
10.1016/j.gene.2005.09.010
10.1016/j.tips.2013.12.004
10.1126/science.1175371
10.1016/j.cmet.2014.11.003
10.1016/j.bbabio.2012.09.016
10.1083/jcb.201207019
10.1016/j.jid.2015.12.026
10.1016/j.ccr.2013.02.024
10.1016/j.celrep.2013.07.024
10.1073/pnas.1404269111
10.1101/gad.1412706
10.1111/febs.12346
10.1042/BJ20070140
10.1073/pnas.1303628110
10.1002/glia.22442
10.1071/RD13178
10.1006/bbrc.1999.0897
10.18632/oncotarget.4764
10.1016/j.bbrc.2012.05.053
10.1089/ars.2012.5091
10.1007/s12012-014-9287-6
10.1016/j.cell.2013.04.023
10.1016/S1097-2765(03)00038-8
10.1007/s00125-013-2851-y
10.1042/BJ20100791
10.1006/bbrc.2000.3000
10.1038/bjc.2015.226
10.1126/science.1179687
10.1021/bi901627u
10.1074/jbc.M301295200
10.1083/jcb.200205057
10.15252/embj.201591271
10.1016/j.febslet.2012.10.009
10.1158/1535-7163.MCT-15-0017
10.1016/j.molcel.2006.06.026
10.1073/pnas.0803790105
10.1016/j.molcel.2015.05.022
10.1158/0008-5472.CAN-11-3633
10.1007/s13277-013-0726-y
10.3389/fnagi.2013.00048
10.1016/j.ccr.2009.11.023
10.1128/MCB.00822-12
10.1016/j.cmet.2015.10.013
10.1016/S0092-8674(00)80493-6
10.1128/MCB.01636-07
10.1038/cddis.2014.587
10.1016/j.cmet.2014.04.001
10.18632/aging.100616
10.1371/journal.pone.0023295
10.1074/jbc.M114.581843
10.1126/science.1179689
10.1016/j.tem.2013.12.001
10.1016/j.cmet.2010.11.003
10.1016/j.bbrc.2013.10.033
10.1074/jbc.M115.668228
10.1128/MCB.00426-08
10.1074/jbc.M113.525949
10.1371/journal.pone.0075868
10.1089/ars.2014.6213
10.1074/jbc.R112.404863
10.1007/s00395-015-0493-6
10.1038/sj.onc.1210616
10.1074/mcp.M111.012658
10.18632/aging.100252
10.1016/j.molcel.2013.06.001
10.1021/ml3002709
10.1038/nature08778
10.2337/db12-1650
10.1074/jbc.M114.579565
10.4081/ejh.2011.e10
10.1016/j.cmet.2012.04.022
10.1016/j.tem.2012.07.004
10.1146/annurev-pharmtox-010611-134657
10.1074/jbc.M704409200
10.1038/35065638
10.1074/mcp.M112.017251
10.1667/RR3293.1
10.1016/j.cell.2009.02.026
10.1007/s13277-014-2372-4
10.1002/cncr.25676
10.2337/db14-1810
10.1016/j.bbrc.2010.01.081
10.1038/nature12038
10.1016/j.cmet.2012.04.010
10.1101/gad.1399706
10.1016/j.biopha.2015.04.013
10.1093/eurheartj/ehv290
10.1016/j.molcel.2014.03.027
10.1016/j.tibs.2010.09.003
10.1016/j.molcel.2010.12.013
10.18632/aging.100075
10.1073/pnas.0604392103
10.1007/s00395-012-0273-5
10.1038/nprot.2010.117
10.1016/j.neurobiolaging.2014.03.022
10.1016/j.molcel.2015.10.017
10.1016/j.cell.2013.11.037
10.1091/mbc.E05-01-0033
10.1530/EJE-09-0615
10.1016/j.cmet.2014.03.014
10.1038/srep08529
10.1159/000354469
10.1186/2049-3002-2-15
10.1042/BJ20071624
10.1371/journal.pone.0048225
ContentType Journal Article
Copyright 2016 Elsevier Inc.
Copyright © 2016 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2016 Elsevier Inc.
– notice: Copyright © 2016 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.freeradbiomed.2016.04.197
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1873-4596
EndPage 174
ExternalDocumentID 27164052
10_1016_j_freeradbiomed_2016_04_197
S0891584916302179
Genre Journal Article
Review
GroupedDBID ---
--K
--M
-~X
.GJ
.HR
.~1
0R~
1B1
1RT
1~.
1~5
29H
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABBQC
ABFNM
ABFRF
ABGSF
ABJNI
ABLJU
ABLVK
ABMAC
ABMZM
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
C45
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEA
HLW
HMK
HMO
HVGLF
HX~
HZ~
IHE
J1W
KOM
LCYCR
LX3
LZ2
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAE
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSH
SSU
SSZ
T5K
TEORI
WUQ
XPP
ZGI
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c449t-e7756150f6462ec2e0e462271f401c163c2044c622e37deb71b27d179937ef853
IEDL.DBID .~1
ISSN 0891-5849
1873-4596
IngestDate Fri Jul 11 03:41:59 EDT 2025
Thu Apr 03 07:07:15 EDT 2025
Tue Jul 01 03:38:13 EDT 2025
Thu Apr 24 23:03:43 EDT 2025
Fri Feb 23 02:21:35 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Sirtuins
NF-κβ
NAFLD
PTM
GDH
SDHa
mPTP
Mitochondria
OPA1
PDH
HMGCS2
PGC1 α
WT
ANT2/ANT3
BMI
HI/HA
Acylation
NDUFA9
G6PD
KO
NSCLC
TCA cycle
Ageing
IDH2
T2D
STACs
SIRT4
SIRT5
SOD2
Metabolism
CR
MCD
MEF
SOD1
SIRT3
AceCS2
CPS1
ROS
AMPK
LCAD
FOXO3a
ATP
GAPDH
mtHsp60
CtBP
OTC
UOX
Language English
License Copyright © 2016 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c449t-e7756150f6462ec2e0e462271f401c163c2044c622e37deb71b27d179937ef853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 27164052
PQID 1826679792
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_1826679792
pubmed_primary_27164052
crossref_primary_10_1016_j_freeradbiomed_2016_04_197
crossref_citationtrail_10_1016_j_freeradbiomed_2016_04_197
elsevier_sciencedirect_doi_10_1016_j_freeradbiomed_2016_04_197
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2016
2016-11-00
2016-Nov
20161101
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: November 2016
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Free radical biology & medicine
PublicationTitleAlternate Free Radic Biol Med
PublicationYear 2016
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Du, Zhou, Su, Yu, Khan, Jiang, Kim, Woo, Kim, Choi, He, Chen, Zhang, Cerione, Auwerx, Hao, Lin (bib27) 2011; 334
Park, Chen, Tishkoff, Daniel, Peng, Tan, Dai, Xie, Zhang, Zwaans Bernadette, Skinner Mary, Lombard David, Zhao (bib130) 2013; 50
Rardin, Newman, Held, Cusack, Sorensen, Li, Schilling, Mooney, Kahn, Verdin, Gibson (bib37) 2013; 110
Muoio, Neufer (bib62) 2012; 15
Kapoor, Flanagan, Fulton, Chakrapani, Chadefaux, Ben-Omran, Banerjee, Shield, Ellard, Hussain (bib120) 2009; 161
He, Newman, Wang, Ho, Verdin (bib2) 2012; 23
Liu, Fan, Candas, Qin, Zhang, Eldridge, Zou, Zhang, Juma, Jin, Li, Perks, Sun, Vaughan, Hai, Gius, Li (bib92) 2015; 14
Bao, Wang, Li, Li, Liu, Yang, Wong, Zhang, Hao, Li (bib30) 2014; 3
Ho, Titus, Banerjee, George, Lin, Deota, Saha, Nakamura, Gut, Verdin, Kolthur-Seetharam (bib108) 2013; 5
Verdin, Hirschey, Finley, Haigis (bib8) 2010; 35
Kumar, Lombard (bib143) 2015; 22
Michishita, Park, Burneskis, Barrett, Horikawa (bib102) 2005; 16
Gertz, Fischer, Nguyen, Lakshminarasimhan, Schutkowski, Weyand, Steegborn (bib160) 2013; 110
Nishida, Rardin, Matthew, Carrico, He, Sahu Alexandria, Gut, Najjar, Fitch, Hellerstein, Gibson Bradford, Verdin (bib133) 2015; 59
Fernandez-Marcos, Jeninga, Canto, Harach, de Boer, Andreux, Moullan, Pirinen, Yamamoto, Houten, Schoonjans, Auwerx (bib64) 2012; 2
Canto, Houtkooper, Pirinen, Youn, Oosterveer, Cen, Fernandez-Marcos, Yamamoto, Andreux, Cettour-Rose, Gademann, Rinsch, Schoonjans, Sauve, Auwerx (bib162) 2012; 15
Haigis, Deng, Finley, Kim, Gius (bib87) 2012; 72
Gomes, Price, Ling, Moslehi, Montgomery, Rajman, White, Teodoro, Wrann, Hubbard, Mercken, Palmeira, de Cabo, Rolo, Turner, Bell, Sinclair (bib167) 2013; 155
Komlos, Mann, Zhuo, Ricupero, Hart, Liu, Firestein (bib101) 2013; 61
Guan, Yu, Lin, Xiong, Zhao (bib41) 2010; 5
He, Du, Lin (bib158) 2012; 134
Zhang, Zhou (bib82) 2012; 423
Guan, Xiong (bib7) 2010; 36
Paulin, Dromparis, Sutendra, Gurtu, Zervopoulos, Bowers, Haromy, Webster, Provencher, Bonnet, Michelakis (bib78) 2014; 20
Laurent, German, Saha, de Boer, Davies, Koves, Dephoure, Fischer, Boanca, Vaitheesvaran, Lovitch, Sharpe, Kurland, Steegborn, Gygi, Muoio, Ruderman, Haigis (bib106) 2013; 50
Wu, Liu, Fu, Liu, Zhou (bib114) 2014; 44
Jacobus, Duda, Coleman, Martin, Mapuskar, Mao, Smith, Aykin-Burns, Guida, Gius, Domann, Knudson, Spitz (bib86) 2013; 180
Maurer, Rumpf, Scharfe, Stolfa, Schmitt, He, Verdin, Sippl, Jung (bib159) 2012; 3
Allison, Milner (bib52) 2007; 6
Scher, Vaquero, Reinberg (bib24) 2007; 21
Ahn, Kim, Song, Lee, Liu, Vassilopoulos, Deng, Finkel (bib55) 2008; 105
Yu, Denu, Kruatkramer, Grindle, Yang, Asimakopoulos, Hematti, Denu (bib84) 2015
Finley, Haas, Desquiret-Dumas, Wallace, Procaccio, Gygi, Haigis (bib59) 2011; 6
Koentges, Pfeil, Schnick, Wiese, Dahlbock, Cimolai, Meyer-Steenbuck, Cenkerova, Hoffmann, Jaeger, Odening, Kammerer, Hein, Bode, Bugger (bib76) 2015; 110
Chang, Guarente (bib9) 2014; 25
Tanno, Kuno, Horio, Miura (bib12) 2012; 107
Schwer, Eckersdorff, Li, Silva, Fermin, Kurtev, Giallourakis, Comb, Alt, Lombard (bib47) 2009; 8
Li, He, Ye, Lin, Yu, Yao, Huang, Zhang, Wang, Xu, Wu, Liu, Yang, Shi, He, Liu, Qu, Guo, Zhao, Xu, Zhao (bib141) 2015; 60
Winnik, Auwerx, Sinclair, Matter (bib77) 2015; 36
Nasrin, Wu, Fortier, Feng, Bare, Chen, Ren, Wu, Streeper, Bordone (bib105) 2010; 285
Tao, Coleman, Pennington, Ozden, Park, Jiang, Kim, Flynn, Hill, Hayes McDonald, Olivier, Spitz, Gius (bib53) 2010; 40
Lundby, Lage, Weinert, Bekker-Jensen, Secher, Skovgaard, Kelstrup, Dmytriyev, Choudhary, Lundby, Olsen (bib39) 2012; 2
Bartosch, Monteiro-Reis, Almeida-Rios, Vieira, Castro, Moutinho, Rodrigues, Graca, Lopes, Jeronimo (bib118) 2016; 7
Sinclair, Guarente (bib10) 1997; 91
Fritz, Green, Petersen, Hirschey (bib32) 2013; 8
Jeong, Lee, Lee, Haigis (bib115) 2014; 289
Bell, Emerling, Ricoult, Guarente (bib81) 2011; 30
Coleman, Olivier, Jacobus, Mapuskar, Mao, Martin, Riley, Gius, Spitz (bib85) 2014; 20
Schwer, North, Frye, Ott, Verdin (bib17) 2002; 158
Zhao, Xu, Jiang, Yu, Lin, Zhang, Yao, Zhou, Zeng, Li, Li, Shi, An, Hancock, He, Qin, Chin, Yang, Chen, Lei, Xiong, Guan (bib35) 2010; 327
Shimazu, Hirschey, Hua, Dittenhafer-Reed, Schwer, Lombard, Li, Bunkenborg, Alt, Denu, Jacobson, Verdin (bib57) 2010; 12
Onyango, Celic, McCaffery, Boeke, Feinberg (bib161) 2002; 99
Alhazzazi, Kamarajan, Joo, Huang, Verdin, D’Silva, Kapila (bib90) 2011; 117
Faletra, Athanasakis, Morgan, Biarnés, Fornasier, Parini, Furlan, Boiani, Maiorana, Dionisi-Vici, Giordano, Burlina, Ventura, Gasparini (bib121) 2013; 521
Weinert, Moustafa, Iesmantavicius, Zechner, Choudhary (bib148) 2015; 34
Cheng, Yang, Zhou, Maharana, Lu, Peng, Liu, Wan, Marosi, Misiak, Bohr, Mattson (bib97) 2016; 23
Song, Xu, Chen, Li, Zeng, Fu (bib112) 2011; 55
Liu, Peritore, Ginsberg, Shih, Arun, Donmez (bib139) 2015; 281
Han, Tang, Yin, Maalouf, Beach, Reiman, Shi (bib96) 2014; 35
Hirschey, Shimazu, Goetzman, Jing, Schwer, Lombard, Grueter, Harris, Biddinger, Ilkayeva, Stevens, Li, Saha, Ruderman, Bain, Newgard, Farese, Alt, Kahn, Verdin (bib56) 2010; 464
Rauh, Fischer, Gertz, Lakshminarasimhan, Bergbrede, Aladini, Kambach, Becker, Zerweck, Schutkowski, Steegborn (bib111) 2013; 4
Hebert, Dittenhafer-Reed, Yu, Bailey, Selen, Boersma, Carson, Tonelli, Balloon, Higbee, Westphall, Pagliarini, Prolla, Assadi-Porter, Roy, Denu, Coon (bib51) 2013; 49
Jukarainen, Heinonen, Ramo, Rinnankoski-Tuikka, Rappou, Tummers, Muniandy, Hakkarainen, Lundbom, Lundbom, Kaprio, Rissanen, Pirinen, Pietilainen (bib136) 2016; 101
Brown, Maqsood, Huang, Pan, Harkcom, Li, Sauve, Verdin, Jaffrey (bib168) 2014; 20
Kim, Sprung, Chen, Xu, Ball, Pei, Cheng, Kho, Xiao, Xiao, Grishin, White, Yang, Zhao (bib36) 2006; 23
Jing, O’Neill, Rardin, Kleinridders, Ilkeyeva, Ussar, Bain, Lee, Verdin, Newgard, Gibson, Kahn (bib48) 2013; 62
Verma, Shulga, Pastorino (bib91) 2013; 126
Ford, Voit, Liszt, Magin, Grummt, Guarente (bib13) 2006; 20
Mathias, Greco, Oberstein, Budayeva, Chakrabarti, Rowland, Kang, Shenk, Cristea (bib28) 2014; 159
Jing, Emanuelli, Hirschey, Boucher, Lee, Lombard, Verdin, Kahn (bib61) 2011; 108
Lombard, Alt, Cheng, Bunkenborg, Streeper, Mostoslavsky, Kim, Yancopoulos, Valenzuela, Murphy, Yang, Chen, Hirschey, Bronson, Haigis, Guarente, Farese, Weissman, Verdin, Schwer (bib43) 2007; 27
Choudhary, Kumar, Gnad, Nielsen, Rehman, Walther, Olsen, Mann (bib4) 2009; 325
Verma, Shulga, Pastorino (bib107) 2013; 1827
Du, Zhang, Han, Burke, Kochanek, Watkins, Graham, Carcillo, Szabo, Clark (bib99) 2003; 278
Wang, Zhou, Wang, Cui, Di (bib119) 2015; 6
Jeong, Xiao, Finley, Lahusen, Souza, Pierce, Li, Wang, Laurent, German, Xu, Li, Wang, Lee, Csibi, Cerione, Blenis, Clish, Kimmelman, Deng, Haigis (bib109) 2013; 23
Shih, Liu, Mason, Higashimori, Donmez (bib122) 2014; 131
Bao, Scott, Lu, Pang, Dimond, Gius, Sack (bib60) 2010; 49
Frye (bib11) 2000; 273
Rangarajan, Karthikeyan, Lu, Ling, Dheen (bib67) 2015; 311
Michan, Sinclair (bib1) 2007; 404
Iwahara, Bonasio, Narendra, Reinberg (bib23) 2012; 32
Pacella-Ince, Zander-Fox, Lane (bib137) 2014; 26
Saunders, Verdin (bib5) 2007; 26
Vaquero, Scher, Lee, Sutton, Cheng, Alt, Serrano, Sternglanz, Reinberg (bib15) 2006; 20
Peng, Lu, Xie, Cheng, Chen, Tan, Luo, Zhang, He, Yang, Zwaans, Tishkoff, Ho, Lombard, He, Dai, Verdin, Ye, Zhao (bib25) 2011; 10
Cooper, Spelbrink (bib18) 2008; 411
Nakamura, Ogura, Ogura, Tanaka, Inagaki (bib128) 2012; 586
Sundaresan, Gupta, Kim, Rajamohan, Isbatan, Gupta (bib75) 2009; 119
Patel, Sherrill, Mrksich, Scholle (bib157) 2015; 20
Liu, Che, Xue, Zheng, Tang, Zhang, Wen, Xu (bib123) 2013; 32
Teng, Jing, Aramsangtienchai, He, Khan, Hu, Lin, Hao (bib29) 2015; 5
Gertz, Steegborn (bib156) 2016
Lin, Xu, Wang, Lin, Ruan, Liu, Jin, Huang, Chen (bib131) 2013; 441
Buler, Aatsinki, Izzi, Uusimaa, Hakkola (bib134) 2014; 28
Sundaresan, Samant, Pillai, Rajamohan, Gupta (bib66) 2008; 28
Laurent, de Boer, Finley, Sweeney, Lu, Schug, Cen, Jeong, Li, Sauve, Haigis (bib113) 2013; 33
Hubbard, Sinclair (bib154) 2014; 35
Wagner, Hirschey (bib145) 2014; 54
Garrity, Gardner, Hawse, Wolberger, Escalante-Semerena (bib33) 2007; 282
Tseng, Shieh, Wang (bib68) 2013; 63
Nakamura, Ogura, Tanaka, Inagaki (bib21) 2008; 366
Miyo, Yamamoto, Konno, Colvin, Nishida, Koseki, Kawamoto, Ogawa, Hamabe, Uemura, Nishimura, Hata, Takemasa, Mizushima, Doki, Mori, Ishii (bib22) 2015; 113
Wang, Zhang, Yang, Xiong, Lin, Yao, Li, Xie, Zhao, Yao, Ning, Zeng, Xiong, Guan, Zhao, Zhao (bib38) 2010; 327
North, Marshall, Borra, Denu, Verdin (bib16) 2003; 11
Haigis, Mostoslavsky, Haigis, Fahie, Christodoulou, Murphy, Valenzuela, Yancopoulos, Karow, Blander, Wolberger, Prolla, Weindruch, Alt, Guarente (bib19) 2006; 126
Zhu, Yan, Principe, Zou, Vassilopoulos, Gius (bib116) 2014; 2
Wagner, Payne (bib144) 2013; 288
Glozak, Sengupta, Zhang, Seto (bib3) 2005; 363
Palacios, Carmona, Michan, Chen, Manabe, Ward, Goodyear, Tong (bib44) 2009; 1
McDonnell, Peterson, Bomze, Hirschey (bib72) 2015; 26
Finley, Haigis (bib6) 2012; 18
Someya, Yu, Hallows, Xu, Vann, Leeuwenburgh, Tanokura, Denu, Prolla (bib65) 2010; 143
Baeza, Dowell, Smallegan, Fan, Amador-Noguez, Khan, Denu (bib149) 2014; 289
Choudhary, Weinert, Nishida, Verdin, Mann (bib150) 2014; 15
Yoshino, Mills, Yoon, Imai (bib165) 2011; 14
Shulga, Wilson-Smith, Pastorino (bib88) 2010; 123
Frye (bib103) 1999; 260
Davies, Kjalarsdottir, Thompson, Dubois, Stevens, Ilkayeva, Brosnan, Rolph, Grimsrud, Muoio (bib147) 2016; 14
Hafner, Dai, Gomes, Xiao, Palmeira, Rosenzweig, Sinclair (bib69) 2010; 2
Samant, Zhang, Hong, Pillai, Sundaresan, Wolfgeher, Archer, Chan, Gupta (bib70) 2014; 34
Yang, Zou, Zhang, Zhao, Tian, Gu, Liu, Shi, Lu, Yu (bib95) 2015; 40
Yu, Sadhukhan, Noriega, Moullan, He, Weiss, Lin, Schoonjans, Auwerx (bib135) 2013; 3
Houtkooper, Auwerx (bib163) 2012; 199
Hallows, Lee, Denu (bib50) 2006; 103
Ogura, Nakamura, Tanaka, Zhuang, Fujita, Obara, Hamasaki, Hosokawa, Inagaki (bib127) 2010; 393
Hallows, Yu, Smith, Devries, Ellinger, Someya, Shortreed, Prolla, Markley, Smith, Zhao, Guan, Denu (bib45) 2011; 41
Weinert, Scholz, Wagner, Iesmantavicius, Su, Daniel, Choudhary (bib153) 2013; 4
Cimen, Han, Yang, Tong,
Wu (10.1016/j.freeradbiomed.2016.04.197_bib114) 2014; 44
Someya (10.1016/j.freeradbiomed.2016.04.197_bib65) 2010; 143
Park (10.1016/j.freeradbiomed.2016.04.197_bib130) 2013; 50
Lombard (10.1016/j.freeradbiomed.2016.04.197_bib43) 2007; 27
Lantier (10.1016/j.freeradbiomed.2016.04.197_bib63) 2015
Ramatchandirin (10.1016/j.freeradbiomed.2016.04.197_bib125) 2016; 117
Lu (10.1016/j.freeradbiomed.2016.04.197_bib142) 2014; 35
Finley (10.1016/j.freeradbiomed.2016.04.197_bib6) 2012; 18
Kendrick (10.1016/j.freeradbiomed.2016.04.197_bib73) 2011; 433
Csibi (10.1016/j.freeradbiomed.2016.04.197_bib110) 2013; 153
Wagner (10.1016/j.freeradbiomed.2016.04.197_bib144) 2013; 288
Schwer (10.1016/j.freeradbiomed.2016.04.197_bib49) 2006; 103
Frederick (10.1016/j.freeradbiomed.2016.04.197_bib169) 2015; 290
Zhang (10.1016/j.freeradbiomed.2016.04.197_bib82) 2012; 423
Nasrin (10.1016/j.freeradbiomed.2016.04.197_bib105) 2010; 285
Weir (10.1016/j.freeradbiomed.2016.04.197_bib94) 2012; 7
Shulga (10.1016/j.freeradbiomed.2016.04.197_bib88) 2010; 123
Schlicker (10.1016/j.freeradbiomed.2016.04.197_bib20) 2008; 382
Qiu (10.1016/j.freeradbiomed.2016.04.197_bib54) 2010; 12
Liu (10.1016/j.freeradbiomed.2016.04.197_bib92) 2015; 14
Teng (10.1016/j.freeradbiomed.2016.04.197_bib29) 2015; 5
Rangarajan (10.1016/j.freeradbiomed.2016.04.197_bib67) 2015; 311
Peng (10.1016/j.freeradbiomed.2016.04.197_bib25) 2011; 10
Du (10.1016/j.freeradbiomed.2016.04.197_bib99) 2003; 278
Sundaresan (10.1016/j.freeradbiomed.2016.04.197_bib75) 2009; 119
Patel (10.1016/j.freeradbiomed.2016.04.197_bib157) 2015; 20
Cooper (10.1016/j.freeradbiomed.2016.04.197_bib18) 2008; 411
Yang (10.1016/j.freeradbiomed.2016.04.197_bib95) 2015; 40
Laurent (10.1016/j.freeradbiomed.2016.04.197_bib113) 2013; 33
Li (10.1016/j.freeradbiomed.2016.04.197_bib141) 2015; 60
Rardin Matthew (10.1016/j.freeradbiomed.2016.04.197_bib42) 2013; 18
Mathias (10.1016/j.freeradbiomed.2016.04.197_bib28) 2014; 159
Tao (10.1016/j.freeradbiomed.2016.04.197_bib53) 2010; 40
Wang (10.1016/j.freeradbiomed.2016.04.197_bib38) 2010; 327
Verma (10.1016/j.freeradbiomed.2016.04.197_bib91) 2013; 126
Nishida (10.1016/j.freeradbiomed.2016.04.197_bib133) 2015; 59
Shimazu (10.1016/j.freeradbiomed.2016.04.197_bib57) 2010; 12
Yu (10.1016/j.freeradbiomed.2016.04.197_bib84) 2015
Kapoor (10.1016/j.freeradbiomed.2016.04.197_bib120) 2009; 161
Newman (10.1016/j.freeradbiomed.2016.04.197_bib151) 2012; 287
Jacobus (10.1016/j.freeradbiomed.2016.04.197_bib86) 2013; 180
Maurer (10.1016/j.freeradbiomed.2016.04.197_bib159) 2012; 3
Jeong (10.1016/j.freeradbiomed.2016.04.197_bib115) 2014; 289
Hubbard (10.1016/j.freeradbiomed.2016.04.197_bib154) 2014; 35
Frye (10.1016/j.freeradbiomed.2016.04.197_bib11) 2000; 273
Laurent (10.1016/j.freeradbiomed.2016.04.197_bib106) 2013; 50
Tanno (10.1016/j.freeradbiomed.2016.04.197_bib12) 2012; 107
Bell (10.1016/j.freeradbiomed.2016.04.197_bib81) 2011; 30
Samant (10.1016/j.freeradbiomed.2016.04.197_bib70) 2014; 34
Buler (10.1016/j.freeradbiomed.2016.04.197_bib134) 2014; 28
Haigis (10.1016/j.freeradbiomed.2016.04.197_bib19) 2006; 126
Garrity (10.1016/j.freeradbiomed.2016.04.197_bib33) 2007; 282
Zhou (10.1016/j.freeradbiomed.2016.04.197_bib132) 2016
Miyo (10.1016/j.freeradbiomed.2016.04.197_bib22) 2015; 113
Kim (10.1016/j.freeradbiomed.2016.04.197_bib80) 2010; 17
Ahn (10.1016/j.freeradbiomed.2016.04.197_bib55) 2008; 105
Anderson (10.1016/j.freeradbiomed.2016.04.197_bib34) 2012; 52
Caton (10.1016/j.freeradbiomed.2016.04.197_bib74) 2013; 56
Finley (10.1016/j.freeradbiomed.2016.04.197_bib59) 2011; 6
Finley (10.1016/j.freeradbiomed.2016.04.197_bib79) 2011; 19
Hallows (10.1016/j.freeradbiomed.2016.04.197_bib50) 2006; 103
Paulin (10.1016/j.freeradbiomed.2016.04.197_bib78) 2014; 20
Choudhary (10.1016/j.freeradbiomed.2016.04.197_bib150) 2014; 15
Harkcom (10.1016/j.freeradbiomed.2016.04.197_bib166) 2014; 111
Coleman (10.1016/j.freeradbiomed.2016.04.197_bib85) 2014; 20
Weinert (10.1016/j.freeradbiomed.2016.04.197_bib146) 2014; 10
Iwahara (10.1016/j.freeradbiomed.2016.04.197_bib23) 2012; 32
Henriksen (10.1016/j.freeradbiomed.2016.04.197_bib40) 2012; 11
Bao (10.1016/j.freeradbiomed.2016.04.197_bib30) 2014; 3
George (10.1016/j.freeradbiomed.2016.04.197_bib89) 2016; 136
Nakamura (10.1016/j.freeradbiomed.2016.04.197_bib21) 2008; 366
Gomes (10.1016/j.freeradbiomed.2016.04.197_bib167) 2013; 155
Tseng (10.1016/j.freeradbiomed.2016.04.197_bib68) 2013; 63
Yoshino (10.1016/j.freeradbiomed.2016.04.197_bib165) 2011; 14
Liu (10.1016/j.freeradbiomed.2016.04.197_bib139) 2015; 281
Palacios (10.1016/j.freeradbiomed.2016.04.197_bib44) 2009; 1
Houtkooper (10.1016/j.freeradbiomed.2016.04.197_bib163) 2012; 199
Kiran (10.1016/j.freeradbiomed.2016.04.197_bib14) 2013; 280
Weinert (10.1016/j.freeradbiomed.2016.04.197_bib148) 2015; 34
Jukarainen (10.1016/j.freeradbiomed.2016.04.197_bib136) 2016; 101
Song (10.1016/j.freeradbiomed.2016.04.197_bib112) 2011; 55
Schwer (10.1016/j.freeradbiomed.2016.04.197_bib47) 2009; 8
Cimen (10.1016/j.freeradbiomed.2016.04.197_bib58) 2010; 49
Gertz (10.1016/j.freeradbiomed.2016.04.197_bib160) 2013; 110
Guan (10.1016/j.freeradbiomed.2016.04.197_bib41) 2010; 5
Jing (10.1016/j.freeradbiomed.2016.04.197_bib61) 2011; 108
Parihar (10.1016/j.freeradbiomed.2016.04.197_bib138) 2014
Jiang (10.1016/j.freeradbiomed.2016.04.197_bib31) 2013; 496
Liu (10.1016/j.freeradbiomed.2016.04.197_bib123) 2013; 32
Lin (10.1016/j.freeradbiomed.2016.04.197_bib131) 2013; 441
Hirschey (10.1016/j.freeradbiomed.2016.04.197_bib56) 2010; 464
Zhao (10.1016/j.freeradbiomed.2016.04.197_bib35) 2010; 327
Tao (10.1016/j.freeradbiomed.2016.04.197_bib124) 2015; 15
Gertz (10.1016/j.freeradbiomed.2016.04.197_bib156) 2016
Muoio (10.1016/j.freeradbiomed.2016.04.197_bib62) 2012; 15
Sundaresan (10.1016/j.freeradbiomed.2016.04.197_bib66) 2008; 28
Michishita (10.1016/j.freeradbiomed.2016.04.197_bib102) 2005; 16
Ford (10.1016/j.freeradbiomed.2016.04.197_bib13) 2006; 20
Sinclair (10.1016/j.freeradbiomed.2016.04.197_bib155) 2014; 54
Kim (10.1016/j.freeradbiomed.2016.04.197_bib36) 2006; 23
Alhazzazi (10.1016/j.freeradbiomed.2016.04.197_bib93) 2016; 36
Pacella-Ince (10.1016/j.freeradbiomed.2016.04.197_bib137) 2014; 26
Hafner (10.1016/j.freeradbiomed.2016.04.197_bib69) 2010; 2
Guan (10.1016/j.freeradbiomed.2016.04.197_bib7) 2010; 36
Du (10.1016/j.freeradbiomed.2016.04.197_bib27) 2011; 334
Haigis (10.1016/j.freeradbiomed.2016.04.197_bib87) 2012; 72
Tan (10.1016/j.freeradbiomed.2016.04.197_bib26) 2014; 19
Ogura (10.1016/j.freeradbiomed.2016.04.197_bib127) 2010; 393
Nakamura (10.1016/j.freeradbiomed.2016.04.197_bib128) 2012; 586
Onyango (10.1016/j.freeradbiomed.2016.04.197_bib161) 2002; 99
Kumar (10.1016/j.freeradbiomed.2016.04.197_bib143) 2015; 22
Schwer (10.1016/j.freeradbiomed.2016.04.197_bib17) 2002; 158
Zhu (10.1016/j.freeradbiomed.2016.04.197_bib116) 2014; 2
Fritz (10.1016/j.freeradbiomed.2016.04.197_bib32) 2013; 8
Faletra (10.1016/j.freeradbiomed.2016.04.197_bib121) 2013; 521
North (10.1016/j.freeradbiomed.2016.04.197_bib16) 2003; 11
Ahuja (10.1016/j.freeradbiomed.2016.04.197_bib104) 2007; 282
Weinert (10.1016/j.freeradbiomed.2016.04.197_bib153) 2013; 4
Canto (10.1016/j.freeradbiomed.2016.04.197_bib162) 2012; 15
Glozak (10.1016/j.freeradbiomed.2016.04.197_bib3) 2005; 363
Nakagawa (10.1016/j.freeradbiomed.2016.04.197_bib126) 2009; 137
Choudhary (10.1016/j.freeradbiomed.2016.04.197_bib4) 2009; 325
Verdin (10.1016/j.freeradbiomed.2016.04.197_bib8) 2010; 35
Hallows (10.1016/j.freeradbiomed.2016.04.197_bib45) 2011; 41
Verma (10.1016/j.freeradbiomed.2016.04.197_bib107) 2013; 1827
Rauh (10.1016/j.freeradbiomed.2016.04.197_bib111) 2013; 4
Scher (10.1016/j.freeradbiomed.2016.04.197_bib24) 2007; 21
Komlos (10.1016/j.freeradbiomed.2016.04.197_bib101) 2013; 61
Davies (10.1016/j.freeradbiomed.2016.04.197_bib147) 2016; 14
McDonnell (10.1016/j.freeradbiomed.2016.04.197_bib72) 2015; 26
Hirschey (10.1016/j.freeradbiomed.2016.04.197_bib46) 2011; 44
Saunders (10.1016/j.freeradbiomed.2016.04.197_bib5) 2007; 26
Kincaid (10.1016/j.freeradbiomed.2016.04.197_bib98) 2013; 5
Wang (10.1016/j.freeradbiomed.2016.04.197_bib119) 2015; 6
Michan (10.1016/j.freeradbiomed.2016.04.197_bib1) 2007; 404
Sinclair (10.1016/j.freeradbiomed.2016.04.197_bib10) 1997; 91
Lundby (10.1016/j.freeradbiomed.2016.04.197_bib39) 2012; 2
Hebert (10.1016/j.freeradbiomed.2016.04.197_bib51) 2013; 49
Rardin (10.1016/j.freeradbiomed.2016.04.197_bib37) 2013; 110
Cheng (10.1016/j.freeradbiomed.2016.04.197_bib97) 2016; 23
Han (10.1016/j.freeradbiomed.2016.04.197_bib96) 2014; 35
Koentges (10.1016/j.freeradbiomed.2016.04.197_bib76) 2015; 110
He (10.1016/j.freeradbiomed.2016.04.197_bib2) 2012; 23
Lai (10.1016/j.freeradbiomed.2016.04.197_bib140) 2013; 34
Hirschey (10.1016/j.freeradbiomed.2016.04.197_bib152) 2011; 44
Wagner (10.1016/j.freeradbiomed.2016.04.197_bib145) 2014; 54
Huang (10.1016/j.freeradbiomed.2016.04.197_bib117) 2015; 72
Shih (10.1016/j.freeradbiomed.2016.04.197_bib122) 2014; 131
Baeza (10.1016/j.freeradbiomed.2016.04.197_bib149) 2014; 289
Bao (10.1016/j.freeradbiomed.2016.04.197_bib60) 2010; 49
He (10.1016/j.freeradbiomed.2016.04.197_bib158) 2012; 134
Jing (10.1016/j.freeradbiomed.2016.04.197_bib48) 2013; 62
Alhazzazi (10.1016/j.freeradbiomed.2016.04.197_bib90) 2011; 117
Vaquero (10.1016/j.freeradbiomed.2016.04.197_bib15) 2006; 20
Jeong (10.1016/j.freeradbiomed.2016.04.197_bib109) 2013; 23
Tissenbaum (10.1016/j.freeradbiomed.2016.04.197_bib71) 2001; 410
Bartosch (10.1016/j.freeradbiomed.2016.04.197_bib118) 2016; 7
Ho (10.1016/j.freeradbiomed.2016.04.197_bib108) 2013; 5
Quan (10.1016/j.freeradbiomed.2016.04.197_bib83) 2015; 6
Brown (10.1016/j.freeradbiomed.2016.04.197_bib168) 2014; 20
Zhou (10.1016/j.freeradbiomed.2016.04.197_bib129) 2012; 287
Cerutti (10.1016/j.freeradbiomed.2016.04.197_bib164) 2014; 19
Fernandez-Marcos (10.1016/j.freeradbiomed.2016.04.197_bib64) 2012; 2
Yu (10.1016/j.freeradbiomed.2016.04.197_bib135) 2013; 3
Winnik (10.1016/j.freeradbiomed.2016.04.197_bib77) 2015; 36
Allison (10.1016/j.freeradbiomed.2016.04.197_bib52) 2007; 6
Frye (10.1016/j.freeradbiomed.2016.04.197_bib103) 1999; 260
Chang (10.1016/j.freeradbiomed.2016.04.197_bib9) 2014; 25
Novgorodov (10.1016/j.freeradbio
References_xml – volume: 35
  start-page: 146
  year: 2014
  end-page: 154
  ident: bib154
  article-title: Small molecule SIRT1 activators for the treatment of aging and age-related diseases
  publication-title: Trends Pharmacol. Sci.
– volume: 35
  start-page: 2064
  year: 2014
  end-page: 2071
  ident: bib96
  article-title: Pituitary adenylate cyclase-activating polypeptide protects against beta-amyloid toxicity
  publication-title: Neurobiol. Aging
– volume: 20
  start-page: 1256
  year: 2006
  end-page: 1261
  ident: bib15
  article-title: SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis
  publication-title: Genes Dev.
– volume: 586
  start-page: 4076
  year: 2012
  end-page: 4081
  ident: bib128
  article-title: SIRT5 deacetylates and activates urate oxidase in liver mitochondria of mice
  publication-title: FEBS Lett.
– volume: 35
  start-page: 669
  year: 2010
  end-page: 675
  ident: bib8
  article-title: Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling
  publication-title: Trends Biochem. Sci.
– volume: 25
  start-page: 138
  year: 2014
  end-page: 145
  ident: bib9
  article-title: SIRT1 and other sirtuins in metabolism
  publication-title: Trends Endocrinol. Metab.
– volume: 56
  start-page: 1068
  year: 2013
  end-page: 1077
  ident: bib74
  article-title: Sirtuin 3 regulates mouse pancreatic beta cell function and is suppressed in pancreatic islets isolated from human type 2 diabetic patients
  publication-title: Diabetologia
– volume: 49
  start-page: 304
  year: 2010
  end-page: 311
  ident: bib58
  article-title: Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria
  publication-title: Biochemistry
– volume: 137
  start-page: 560
  year: 2009
  end-page: 570
  ident: bib126
  article-title: SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle
  publication-title: Cell
– volume: 20
  start-page: 1075
  year: 2006
  end-page: 1080
  ident: bib13
  article-title: Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription
  publication-title: Genes Dev.
– volume: 7
  start-page: e48225
  year: 2012
  ident: bib94
  article-title: CNS SIRT3 expression is altered by reactive oxygen species and in Alzheimer’s disease
  publication-title: PLoS One
– volume: 28
  start-page: 3225
  year: 2014
  end-page: 3237
  ident: bib134
  article-title: SIRT5 is under the control of PGC-1alpha and AMPK and is involved in regulation of mitochondrial energy metabolism
  publication-title: FASEB J.
– volume: 155
  start-page: 1624
  year: 2013
  end-page: 1638
  ident: bib167
  article-title: Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging
  publication-title: Cell
– year: 2014
  ident: bib138
  article-title: Mitochondrial sirtuins: emerging roles in metabolic regulations, energy homeostasis and diseases
  publication-title: Exp. Gerontol.
– volume: 2
  start-page: 425
  year: 2012
  ident: bib64
  article-title: Muscle or liver-specific Sirt3 deficiency induces hyperacetylation of mitochondrial proteins without affecting global metabolic homeostasis
  publication-title: Sci. Rep.
– volume: 44
  start-page: 177
  year: 2011
  end-page: 190
  ident: bib152
  article-title: SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome
  publication-title: Mol. Cell
– volume: 126
  start-page: 274
  year: 2013
  end-page: 288
  ident: bib91
  article-title: Sirtuin-3 modulates Bak- and Bax-dependent apoptosis
  publication-title: J. Cell Sci.
– volume: 393
  start-page: 73
  year: 2010
  end-page: 78
  ident: bib127
  article-title: Overexpression of SIRT5 confirms its involvement in deacetylation and activation of carbamoyl phosphate synthetase 1
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 199
  start-page: 205
  year: 2012
  end-page: 209
  ident: bib163
  article-title: Exploring the therapeutic space around NAD
  publication-title: J. Cell Biol.
– volume: 108
  start-page: 14608
  year: 2011
  end-page: 14613
  ident: bib61
  article-title: Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 273
  start-page: 793
  year: 2000
  end-page: 798
  ident: bib11
  article-title: Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins
  publication-title: Biochem. Biophys. Res. Commun.
– start-page: 1
  year: 2016
  end-page: 26
  ident: bib156
  article-title: Using mitochondrial sirtuins as drug targets: disease implications and available compounds
  publication-title: Cell. Mol. Life Sci.
– volume: 423
  start-page: 26
  year: 2012
  end-page: 31
  ident: bib82
  article-title: Sirt3 inhibits hepatocellular carcinoma cell growth through reducing Mdm2-mediated p53 degradation
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 35
  start-page: 10699
  year: 2014
  end-page: 10705
  ident: bib142
  article-title: SIRT5 facilitates cancer cell growth and drug resistance in non-small cell lung cancer
  publication-title: Tumor Biol.
– volume: 404
  start-page: 1
  year: 2007
  end-page: 13
  ident: bib1
  article-title: Sirtuins in mammals: insights into their biological function
  publication-title: Biochem. J.
– volume: 15
  start-page: 536
  year: 2014
  end-page: 550
  ident: bib150
  article-title: The growing landscape of lysine acetylation links metabolism and cell signalling
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 5
  start-page: 835
  year: 2013
  end-page: 849
  ident: bib108
  article-title: SIRT4 regulates ATP homeostasis and mediates a retrograde signaling via AMPK
  publication-title: Aging
– volume: 41
  start-page: 139
  year: 2011
  end-page: 149
  ident: bib45
  article-title: Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction
  publication-title: Mol. Cell
– volume: 32
  start-page: 5022
  year: 2012
  end-page: 5034
  ident: bib23
  article-title: SIRT3 functions in the nucleus in the control of stress-related gene expression
  publication-title: Mol. Cell. Biol.
– volume: 2
  start-page: 419
  year: 2012
  end-page: 431
  ident: bib39
  article-title: Proteomic analysis of lysine acetylation sites in rat tissues reveals organ specificity and subcellular patterns
  publication-title: Cell Rep.
– volume: 20
  start-page: 1423
  year: 2014
  end-page: 1435
  ident: bib85
  article-title: Superoxide mediates acute liver injury in irradiated mice lacking sirtuin 3
  publication-title: Antioxid. Redox Signal.
– volume: 5
  start-page: 1583
  year: 2010
  end-page: 1595
  ident: bib41
  article-title: Generation of acetyllysine antibodies and affinity enrichment of acetylated peptides
  publication-title: Nat. Protoc.
– volume: 433
  start-page: 505
  year: 2011
  end-page: 514
  ident: bib73
  article-title: Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation
  publication-title: Biochem. J.
– volume: 34
  start-page: 1847
  year: 2013
  end-page: 1854
  ident: bib140
  article-title: Altered expression of SIRT gene family in head and neck squamous cell carcinoma
  publication-title: Tumour Biol.
– volume: 6
  start-page: e23295
  year: 2011
  ident: bib59
  article-title: Succinate dehydrogenase is a direct target of sirtuin 3 deacetylase activity
  publication-title: PLoS One
– volume: 15
  start-page: 595
  year: 2012
  end-page: 605
  ident: bib62
  article-title: Lipid-induced mitochondrial stress and insulin action in muscle
  publication-title: Cell Metab.
– volume: 8
  start-page: 604
  year: 2009
  end-page: 606
  ident: bib47
  article-title: Calorie restriction alters mitochondrial protein acetylation
  publication-title: Aging Cell
– volume: 110
  start-page: 36
  year: 2015
  ident: bib76
  article-title: SIRT3 deficiency impairs mitochondrial and contractile function in the heart
  publication-title: Basic Res. Cardiol.
– volume: 23
  start-page: 128
  year: 2016
  end-page: 142
  ident: bib97
  article-title: Mitochondrial SIRT3 mediates adaptive responses of neurons to exercise and metabolic and excitatory challenges
  publication-title: Cell Metab.
– volume: 285
  start-page: 31995
  year: 2010
  end-page: 32002
  ident: bib105
  article-title: SIRT4 regulates fatty acid oxidation and mitochondrial gene expression in liver and muscle cells
  publication-title: J. Biol. Chem.
– volume: 55
  start-page: e10
  year: 2011
  ident: bib112
  article-title: The expression of Sirtuins 1 and 4 in peripheral blood leukocytes from patients with type 2 diabetes
  publication-title: Eur. J. Histochem.
– volume: 123
  start-page: 894
  year: 2010
  end-page: 902
  ident: bib88
  article-title: Sirtuin-3 deacetylation of cyclophilin D induces dissociation of hexokinase II from the mitochondria
  publication-title: J. Cell Sci.
– volume: 291
  start-page: 1957
  year: 2016
  end-page: 1973
  ident: bib100
  article-title: SIRT3 deacetylates ceramide synthases: implications for mitochondrial dysfunction and brain injury
  publication-title: J. Biol. Chem.
– volume: 11
  start-page: 437
  year: 2003
  end-page: 444
  ident: bib16
  article-title: The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase
  publication-title: Mol. Cell
– volume: 282
  start-page: 30239
  year: 2007
  end-page: 30245
  ident: bib33
  article-title: N-lysine propionylation controls the activity of propionyl-CoA synthetase
  publication-title: J. Biol. Chem.
– volume: 23
  start-page: 607
  year: 2006
  end-page: 618
  ident: bib36
  article-title: Substrate and functional diversity of lysine acetylation revealed by a proteomics survey
  publication-title: Mol. Cell
– volume: 410
  start-page: 227
  year: 2001
  end-page: 230
  ident: bib71
  article-title: Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans
  publication-title: Nature
– volume: 287
  start-page: 28307
  year: 2012
  end-page: 28314
  ident: bib129
  article-title: The bicyclic intermediate structure provides insights into the desuccinylation mechanism of human sirtuin 5 (SIRT5)
  publication-title: J. Biol. Chem.
– volume: 143
  start-page: 802
  year: 2010
  end-page: 812
  ident: bib65
  article-title: Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction
  publication-title: Cell
– volume: 19
  start-page: 416
  year: 2011
  end-page: 428
  ident: bib79
  article-title: SIRT3 opposes reprogramming of cancer cell metabolism through HIF1alpha destabilization
  publication-title: Cancer Cell
– volume: 49
  start-page: 186
  year: 2013
  end-page: 199
  ident: bib51
  article-title: Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome
  publication-title: Mol. Cell
– volume: 32
  start-page: 655
  year: 2013
  end-page: 662
  ident: bib123
  article-title: SIRT4 prevents hypoxia-induced apoptosis in H9c2 cardiomyoblast cells
  publication-title: Cell. Physiol. Biochem.
– volume: 36
  start-page: 3404
  year: 2015
  end-page: 3412
  ident: bib77
  article-title: Protective effects of sirtuins in cardiovascular diseases: from bench to bedside
  publication-title: Eur. Heart J.
– year: 2016
  ident: bib132
  article-title: SIRT5 promotes IDH2 desuccinylation and G6PD deglutarylation to enhance cellular antioxidant defense
  publication-title: EMBO Rep.
– volume: 103
  start-page: 10230
  year: 2006
  end-page: 10235
  ident: bib50
  article-title: Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 22
  start-page: 1060
  year: 2015
  end-page: 1077
  ident: bib143
  article-title: Mitochondrial sirtuins and their relationships with metabolic disease and cancer
  publication-title: Antioxid. Redox Signal.
– volume: 19
  start-page: 1042
  year: 2014
  end-page: 1049
  ident: bib164
  article-title: NAD+-dependent activation of Sirt1 corrects the phenotype in a mouse model of mitochondrial disease
  publication-title: Cell Metab.
– volume: 14
  start-page: 2090
  year: 2015
  end-page: 2102
  ident: bib92
  article-title: CDK1-mediated SIRT3 activation enhances mitochondrial function and tumor radioresistance
  publication-title: Mol. Cancer Ther.
– volume: 54
  start-page: 363
  year: 2014
  end-page: 380
  ident: bib155
  article-title: Small-molecule allosteric activators of sirtuins
  publication-title: Annu. Rev. Pharmacol. Toxicol.
– volume: 50
  start-page: 686
  year: 2013
  end-page: 698
  ident: bib106
  article-title: SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase
  publication-title: Mol. Cell
– volume: 20
  start-page: 842
  year: 2015
  end-page: 848
  ident: bib157
  article-title: Discovery of SIRT3 inhibitors using SAMDI mass spectrometry
  publication-title: J. Biomol. Screen.
– volume: 136
  start-page: 809
  year: 2016
  end-page: 818
  ident: bib89
  article-title: Pro-Proliferative Function of Mitochondrial Sirtuin Deacetylase SIRT3 in Human Melanoma
  publication-title: J. Investig. Dermatol.
– volume: 1827
  start-page: 38
  year: 2013
  end-page: 49
  ident: bib107
  article-title: Sirtuin-4 modulates sensitivity to induction of the mitochondrial permeability transition pore
  publication-title: Biochim. Biophys. Acta
– volume: 26
  start-page: 5489
  year: 2007
  end-page: 5504
  ident: bib5
  article-title: Sirtuins: critical regulators at the crossroads between cancer and aging
  publication-title: Oncogene
– volume: 2
  start-page: 15
  year: 2014
  ident: bib116
  article-title: SIRT3 and SIRT4 are mitochondrial tumor suppressor proteins that connect mitochondrial metabolism and carcinogenesis
  publication-title: Cancer Metab.
– volume: 366
  start-page: 174
  year: 2008
  end-page: 179
  ident: bib21
  article-title: Localization of mouse mitochondrial SIRT proteins: shift of SIRT3 to nucleus by co-expression with SIRT5
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 101
  start-page: 275
  year: 2016
  end-page: 283
  ident: bib136
  article-title: Obesity is associated with low NAD(+)/SIRT pathway expression in adipose tissue of BMI-discordant monozygotic twins
  publication-title: J. Clin. Endocrinol. Metab.
– volume: 161
  start-page: 731
  year: 2009
  end-page: 735
  ident: bib120
  article-title: Hyperinsulinism–hyperammonaemia syndrome: novel mutations in the GLUD1 gene and genotype–phenotype correlations
  publication-title: Eur. J. Endocrinol.
– volume: 107
  start-page: 273
  year: 2012
  ident: bib12
  article-title: Emerging beneficial roles of sirtuins in heart failure
  publication-title: Basic Res. Cardiol.
– volume: 4
  start-page: 2327
  year: 2013
  ident: bib111
  article-title: An acetylome peptide microarray reveals specificities and deacetylation substrates for all human sirtuin isoforms
  publication-title: Nat. Commun.
– volume: 14
  start-page: 243
  year: 2016
  end-page: 254
  ident: bib147
  article-title: The acetyl group buffering action of carnitine acetyltransferase offsets macronutrient-induced lysine acetylation of mitochondrial proteins
  publication-title: Cell Rep.
– volume: 62
  start-page: 3404
  year: 2013
  end-page: 3417
  ident: bib48
  article-title: Sirt3 regulates metabolic flexibility of skeletal muscle through reversible enzymatic deacetylation
  publication-title: Diabetes
– volume: 411
  start-page: 279
  year: 2008
  end-page: 285
  ident: bib18
  article-title: The human SIRT3 protein deacetylase is exclusively mitochondrial
  publication-title: Biochem. J.
– volume: 131
  start-page: 573
  year: 2014
  end-page: 581
  ident: bib122
  article-title: Loss of SIRT4 decreases GLT-1-dependent glutamate uptake and increases sensitivity to kainic acid
  publication-title: J. Neurochem.
– volume: 325
  start-page: 834
  year: 2009
  end-page: 840
  ident: bib4
  article-title: Lysine acetylation targets protein complexes and co-regulates major cellular functions
  publication-title: Science
– volume: 72
  start-page: 2468
  year: 2012
  end-page: 2472
  ident: bib87
  article-title: SIRT3 is a mitochondrial tumor suppressor: a scientific tale that connects aberrant cellular ROS, the Warburg effect, and carcinogenesis
  publication-title: Cancer Res.
– volume: 16
  start-page: 4623
  year: 2005
  end-page: 4635
  ident: bib102
  article-title: Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins
  publication-title: Mol. Biol. Cell
– volume: 91
  start-page: 1033
  year: 1997
  end-page: 1042
  ident: bib10
  article-title: Extrachromosomal rDNA circles—a cause of aging in yeast
  publication-title: Cell
– volume: 26
  start-page: 486
  year: 2015
  end-page: 492
  ident: bib72
  article-title: SIRT3 regulates progression and development of diseases of aging
  publication-title: Trends Endocrinol. Metab.
– volume: 260
  start-page: 273
  year: 1999
  end-page: 279
  ident: bib103
  article-title: Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 15
  start-page: 217
  year: 2015
  end-page: 223
  ident: bib124
  article-title: SIRT4 suppresses inflammatory responses in human umbilical vein endothelial cells
  publication-title: Cardiovasc. Toxicol.
– volume: 10
  start-page: 716
  year: 2014
  ident: bib146
  article-title: Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae
  publication-title: Mol. Syst. Biol.
– volume: 7
  start-page: 1144
  year: 2016
  end-page: 1154
  ident: bib118
  article-title: Assessing sirtuin expression in endometrial carcinoma and non-neoplastic endometrium
  publication-title: Oncotarget
– volume: 36
  start-page: 49
  year: 2016
  end-page: 60
  ident: bib93
  article-title: A novel Sirtuin-3 inhibitor, LC-0296, inhibits cell survival and proliferation, and promotes apoptosis of head and neck cancer cells
  publication-title: Anticancer Res.
– volume: 521
  start-page: 160
  year: 2013
  end-page: 165
  ident: bib121
  article-title: Congenital hyperinsulinism: clinical and molecular analysis of a large Italian cohort
  publication-title: Gene
– volume: 3
  year: 2014
  ident: bib30
  article-title: Identification of ‘erasers’ for lysine crotonylated histone marks using a chemical proteomics approach
  publication-title: eLife
– volume: 28
  start-page: 6384
  year: 2008
  end-page: 6401
  ident: bib66
  article-title: SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70
  publication-title: Mol. Cell. Biol.
– volume: 23
  start-page: 450
  year: 2013
  end-page: 463
  ident: bib109
  article-title: SIRT4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism
  publication-title: Cancer Cell
– volume: 2
  start-page: 914
  year: 2010
  end-page: 923
  ident: bib69
  article-title: Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy
  publication-title: Aging
– volume: 117
  start-page: 904
  year: 2016
  end-page: 916
  ident: bib125
  article-title: Sirtuin 4 regulates lipopolysaccharide mediated leydig cell dysfunction
  publication-title: J. Cell Biochem.
– volume: 27
  start-page: 8807
  year: 2007
  end-page: 8814
  ident: bib43
  article-title: Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation
  publication-title: Mol. Cell. Biol.
– volume: 59
  start-page: 321
  year: 2015
  end-page: 332
  ident: bib133
  article-title: SIRT5 regulates both cytosolic and mitochondrial protein malonylation with glycolysis as a major target
  publication-title: Mol. Cell
– volume: 21
  start-page: 920
  year: 2007
  end-page: 928
  ident: bib24
  article-title: SirT3 is a nuclear NAD+-dependent histone deacetylase that translocates to the mitochondria upon cellular stress
  publication-title: Genes Dev.
– volume: 1
  start-page: 771
  year: 2009
  end-page: 783
  ident: bib44
  article-title: Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1alpha in skeletal muscle
  publication-title: Aging
– volume: 119
  start-page: 2758
  year: 2009
  end-page: 2771
  ident: bib75
  article-title: Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice
  publication-title: J. Clin. Invest.
– volume: 3
  start-page: 2806
  year: 2013
  ident: bib135
  article-title: Metabolic characterization of a Sirt5 deficient mouse model
  publication-title: Sci. Rep.
– volume: 180
  start-page: 156
  year: 2013
  end-page: 165
  ident: bib86
  article-title: Low-dose radiation-induced enhancement of thymic lymphomagenesis in Lck-Bax mice is dependent on LET and gender
  publication-title: Radiat. Res.
– volume: 4
  start-page: 842
  year: 2013
  end-page: 851
  ident: bib153
  article-title: Lysine succinylation is a frequently occurring modification in prokaryotes and eukaryotes and extensively overlaps with acetylation
  publication-title: Cell Rep.
– volume: 60
  start-page: 661
  year: 2015
  end-page: 675
  ident: bib141
  article-title: NADP(+)-IDH mutations promote hypersuccinylation that impairs mitochondria respiration and induces apoptosis resistance
  publication-title: Mol. Cell
– volume: 5
  start-page: 48
  year: 2013
  ident: bib98
  article-title: Forever young: SIRT3 a shield against mitochondrial meltdown, aging, and neurodegeneration
  publication-title: Front. Aging Neurosci.
– volume: 14
  start-page: 528
  year: 2011
  end-page: 536
  ident: bib165
  article-title: Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice
  publication-title: Cell Metab.
– volume: 289
  start-page: 4135
  year: 2014
  end-page: 4144
  ident: bib115
  article-title: SIRT4 protein suppresses tumor formation in genetic models of Myc-induced B cell lymphoma
  publication-title: J. Biol. Chem.
– volume: 110
  start-page: 6601
  year: 2013
  end-page: 6606
  ident: bib37
  article-title: Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 496
  start-page: 110
  year: 2013
  end-page: 113
  ident: bib31
  article-title: SIRT6 regulates TNF-[agr] secretion through hydrolysis of long-chain fatty acyl lysine
  publication-title: Nature
– volume: 334
  start-page: 806
  year: 2011
  end-page: 809
  ident: bib27
  article-title: Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase
  publication-title: Science
– volume: 11
  start-page: 1510
  year: 2012
  end-page: 1522
  ident: bib40
  article-title: Proteome-wide analysis of lysine acetylation suggests its broad regulatory scope in Saccharomyces cerevisiae
  publication-title: Mol. Cell. Proteom.
– volume: 278
  start-page: 18426
  year: 2003
  end-page: 18433
  ident: bib99
  article-title: Intra-mitochondrial poly(ADP-ribosylation) contributes to NAD+ depletion and cell death induced by oxidative stress
  publication-title: J. Biol. Chem.
– volume: 61
  start-page: 394
  year: 2013
  end-page: 408
  ident: bib101
  article-title: Glutamate dehydrogenase 1 and SIRT4 regulate glial development
  publication-title: Glia
– volume: 99
  start-page: 13653
  year: 2002
  end-page: 13658
  ident: bib161
  article-title: SIRT3, a human SIR2 homologue, is an NAD-dependent deacetylase localized to mitochondria
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 50
  start-page: 919
  year: 2013
  end-page: 930
  ident: bib130
  article-title: SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways
  publication-title: Mol. Cell
– volume: 10
  year: 2011
  ident: bib25
  article-title: The First identification of lysine malonylation substrates and its regulatory enzyme
  publication-title: Mol. Cell. Proteom.
– volume: 20
  start-page: 1059
  year: 2014
  end-page: 1068
  ident: bib168
  article-title: Activation of SIRT3 by the NAD(+) precursor nicotinamide riboside protects from noise-induced hearing loss
  publication-title: Cell Metab.
– volume: 281
  start-page: 215
  year: 2015
  end-page: 221
  ident: bib139
  article-title: Protective role of SIRT5 against motor deficit and dopaminergic degeneration in MPTP-induced mice model of Parkinson’s disease
  publication-title: Behav. Brain Res.
– volume: 287
  start-page: 42436
  year: 2012
  end-page: 42443
  ident: bib151
  article-title: Mitochondrial protein acylation and intermediary metabolism: regulation by sirtuins and implications for metabolic disease
  publication-title: J Biol. Chem.
– volume: 49
  start-page: 1230
  year: 2010
  end-page: 1237
  ident: bib60
  article-title: SIRT3 is regulated by nutrient excess and modulates hepatic susceptibility to lipotoxicity
  publication-title: Free Radic. Biol. Medi.
– volume: 282
  start-page: 33583
  year: 2007
  end-page: 33592
  ident: bib104
  article-title: Regulation of insulin secretion by SIRT4, a mitochondrial ADP-ribosyltransferase
  publication-title: J. Biol. Chem.
– volume: 26
  start-page: 1072
  year: 2014
  end-page: 1083
  ident: bib137
  article-title: Mitochondrial SIRT5 is present in follicular cells and is altered by reduced ovarian reserve and advanced maternal age
  publication-title: Reprod., Fertil. Dev.
– volume: 327
  start-page: 1000
  year: 2010
  end-page: 1004
  ident: bib35
  article-title: Regulation of cellular metabolism by protein lysine acetylation
  publication-title: Science
– volume: 103
  start-page: 10224
  year: 2006
  end-page: 10229
  ident: bib49
  article-title: Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2
  publication-title: Proc. Natl. Acad. Sci. USA
– year: 2015
  ident: bib63
  article-title: SIRT3 is crucial for maintaining skeletal muscle insulin action and protects against severe insulin resistance in high fat fed mice
  publication-title: Diabetes
– volume: 34
  start-page: 807
  year: 2014
  end-page: 819
  ident: bib70
  article-title: SIRT3 deacetylates and activates OPA1 to regulate mitochondrial dynamics during stress
  publication-title: Mol. Cell. Biol.
– volume: 117
  start-page: 1670
  year: 2011
  end-page: 1678
  ident: bib90
  article-title: Sirtuin-3 (SIRT3), a novel potential therapeutic target for oral cancer
  publication-title: Cancer
– volume: 15
  start-page: 838
  year: 2012
  end-page: 847
  ident: bib162
  article-title: The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity
  publication-title: Cell Metab.
– volume: 30
  start-page: 2986
  year: 2011
  end-page: 2996
  ident: bib81
  article-title: SirT3 suppresses hypoxia inducible factor 1alpha and tumor growth by inhibiting mitochondrial ROS production
  publication-title: Oncogene
– volume: 6
  start-page: 26494
  year: 2015
  end-page: 26507
  ident: bib83
  article-title: SIRT3 inhibits prostate cancer by destabilizing oncoprotein c-MYC through regulation of the PI3K/Akt pathway
  publication-title: Oncotarget
– volume: 44
  start-page: 177
  year: 2011
  end-page: 190
  ident: bib46
  article-title: SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome
  publication-title: Mol. Cell
– volume: 52
  start-page: 23
  year: 2012
  end-page: 35
  ident: bib34
  article-title: Mitochondrial protein acetylation regulates metabolism
  publication-title: Essays Biochem.
– volume: 36
  start-page: 108
  year: 2010
  end-page: 116
  ident: bib7
  article-title: Regulation of intermediary metabolism by protein acetylation
  publication-title: Trends Biochem. Sci.
– volume: 6
  start-page: e1620
  year: 2015
  ident: bib119
  article-title: CtBP maintains cancer cell growth and metabolic homeostasis via regulating SIRT4
  publication-title: Cell Death Dis.
– volume: 382
  start-page: 790
  year: 2008
  end-page: 801
  ident: bib20
  article-title: Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5
  publication-title: J. Mol. Biol.
– volume: 40
  start-page: 893
  year: 2010
  end-page: 904
  ident: bib53
  article-title: Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress
  publication-title: Mol. Cell
– volume: 17
  start-page: 41
  year: 2010
  end-page: 52
  ident: bib80
  article-title: SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress
  publication-title: Cancer Cell
– volume: 44
  start-page: 410
  year: 2014
  end-page: 418
  ident: bib114
  article-title: Direct evidence of sirtuin downregulation in the liver of non-alcoholic fatty liver disease patients
  publication-title: Ann. Clin. Lab. Sci.
– volume: 20
  start-page: 827
  year: 2014
  end-page: 839
  ident: bib78
  article-title: Sirtuin 3 deficiency is associated with inhibited mitochondrial function and pulmonary arterial hypertension in rodents and humans
  publication-title: Cell Metab.
– year: 2015
  ident: bib84
  article-title: Loss of SIRT3 provides growth advantage for B cell malignancies
  publication-title: J. Biol. Chem.
– volume: 63
  start-page: 222
  year: 2013
  end-page: 234
  ident: bib68
  article-title: SIRT3 deacetylates FOXO3 to protect mitochondria against oxidative damage
  publication-title: Free Radic. Biol. Med.
– volume: 34
  start-page: 2620
  year: 2015
  end-page: 2632
  ident: bib148
  article-title: Analysis of acetylation stoichiometry suggests that SIRT3 repairs nonenzymatic acetylation lesions
  publication-title: EMBO J.
– volume: 18
  start-page: 516
  year: 2012
  end-page: 523
  ident: bib6
  article-title: Metabolic regulation by SIRT3: implications for tumorigenesis
  publication-title: Trends Mol. Med.
– volume: 33
  start-page: 4552
  year: 2013
  end-page: 4561
  ident: bib113
  article-title: SIRT4 represses peroxisome proliferator-activated receptor α activity to suppress hepatic fat oxidation
  publication-title: Mol. Cell. Biol.
– volume: 134
  start-page: 1922
  year: 2012
  end-page: 1925
  ident: bib158
  article-title: Thiosuccinyl peptides as Sirt5-specific inhibitors
  publication-title: J. Am. Chem. Soc.
– volume: 111
  start-page: E2443
  year: 2014
  end-page: 2452
  ident: bib166
  article-title: NAD+ and SIRT3 control microtubule dynamics and reduce susceptibility to antimicrotubule agents
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 5
  start-page: 8529
  year: 2015
  ident: bib29
  article-title: Efficient demyristoylase activity of SIRT2 revealed by kinetic and structural studies
  publication-title: Sci. Rep.
– volume: 105
  start-page: 14447
  year: 2008
  end-page: 14452
  ident: bib55
  article-title: A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 23
  start-page: 467
  year: 2012
  end-page: 476
  ident: bib2
  article-title: Mitochondrial sirtuins: regulators of protein acylation and metabolism
  publication-title: Trends Endocrinol. Metab.
– volume: 72
  start-page: 135
  year: 2015
  end-page: 139
  ident: bib117
  article-title: Sirtuin-4 (SIRT4) is downregulated and associated with some clinicopathological features in gastric adenocarcinoma
  publication-title: Biomed. Pharmacother.
– volume: 18
  start-page: 920
  year: 2013
  end-page: 933
  ident: bib42
  article-title: SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks
  publication-title: Cell Metab.
– volume: 159
  start-page: 1615
  year: 2014
  end-page: 1625
  ident: bib28
  article-title: Sirtuin 4 is a lipoamidase regulating pyruvate dehydrogenase complex activity
  publication-title: Cell
– volume: 289
  start-page: 21326
  year: 2014
  end-page: 21338
  ident: bib149
  article-title: Stoichiometry of site-specific lysine acetylation in an entire proteome
  publication-title: J. Biol. Chem.
– volume: 290
  start-page: 1546
  year: 2015
  end-page: 1558
  ident: bib169
  article-title: Increasing NAD synthesis in muscle via nicotinamide phosphoribosyltransferase is not sufficient to promote oxidative metabolism
  publication-title: J. Biol. Chem.
– volume: 464
  start-page: 121
  year: 2010
  end-page: 125
  ident: bib56
  article-title: SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation
  publication-title: Nature
– volume: 110
  start-page: E2772
  year: 2013
  end-page: E2781
  ident: bib160
  article-title: Ex-527 inhibits Sirtuins by exploiting their unique NAD+-dependent deacetylation mechanism
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 12
  start-page: 662
  year: 2010
  end-page: 667
  ident: bib54
  article-title: Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation
  publication-title: Cell Metab.
– volume: 40
  start-page: 1576
  year: 2015
  end-page: 1582
  ident: bib95
  article-title: Mitochondrial Sirt3 expression is decreased in APP/PS1 double transgenic mouse model of alzheimer’s disease
  publication-title: Neurochem. Res.
– volume: 288
  start-page: 29036
  year: 2013
  end-page: 29045
  ident: bib144
  article-title: Widespread and enzyme-independent Nepsilon-acetylation and Nepsilon-succinylation of proteins in the chemical conditions of the mitochondrial matrix
  publication-title: J. Biol. Chem.
– volume: 153
  start-page: 840
  year: 2013
  end-page: 854
  ident: bib110
  article-title: The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4
  publication-title: Cell
– volume: 126
  start-page: 941
  year: 2006
  end-page: 954
  ident: bib19
  article-title: SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells
  publication-title: Cell
– volume: 8
  start-page: e75868
  year: 2013
  ident: bib32
  article-title: Ethanol metabolism modifies hepatic protein acylation in mice
  publication-title: PLoS One
– volume: 12
  start-page: 654
  year: 2010
  end-page: 661
  ident: bib57
  article-title: SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production
  publication-title: Cell Metab.
– volume: 327
  start-page: 1004
  year: 2010
  end-page: 1007
  ident: bib38
  article-title: Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux
  publication-title: Science
– volume: 6
  start-page: 2669
  year: 2007
  end-page: 2677
  ident: bib52
  article-title: SIRT3 is pro-apoptotic and participates in distinct basal apoptotic pathways
  publication-title: Cell Cycle
– volume: 19
  start-page: 605
  year: 2014
  end-page: 617
  ident: bib26
  article-title: Lysine glutarylation is a protein posttranslational modification regulated by SIRT5
  publication-title: Cell Metab.
– volume: 158
  start-page: 647
  year: 2002
  end-page: 657
  ident: bib17
  article-title: The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide‚ Äìdependent deacetylase
  publication-title: J. Cell Biol.
– volume: 280
  start-page: 3451
  year: 2013
  end-page: 3466
  ident: bib14
  article-title: Intracellular distribution of human SIRT7 and mapping of the nuclear/nucleolar localization signal
  publication-title: FEBS J.
– volume: 441
  start-page: 191
  year: 2013
  end-page: 195
  ident: bib131
  article-title: SIRT5 desuccinylates and activates SOD1 to eliminate ROS
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 3
  start-page: 1050
  year: 2012
  end-page: 1053
  ident: bib159
  article-title: Inhibitors of the NAD+-dependent protein desuccinylase and demalonylase Sirt5
  publication-title: ACS Med. Chem. Lett.
– volume: 311
  start-page: 398
  year: 2015
  end-page: 414
  ident: bib67
  article-title: Sirtuin 3 regulates Foxo3a-mediated antioxidant pathway in microglia
  publication-title: Neuroscience
– volume: 54
  start-page: 5
  year: 2014
  end-page: 16
  ident: bib145
  article-title: Nonenzymatic protein acylation as a carbon stress regulated by sirtuin deacylases
  publication-title: Mol. Cell
– volume: 113
  start-page: 492
  year: 2015
  end-page: 499
  ident: bib22
  article-title: Tumour-suppressive function of SIRT4 in human colorectal cancer
  publication-title: Br. J. Cancer
– volume: 363
  start-page: 15
  year: 2005
  end-page: 23
  ident: bib3
  article-title: Acetylation and deacetylation of non-histone proteins
  publication-title: Gene
– volume: 382
  start-page: 790
  year: 2008
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib20
  article-title: Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2008.07.048
– volume: 131
  start-page: 573
  year: 2014
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib122
  article-title: Loss of SIRT4 decreases GLT-1-dependent glutamate uptake and increases sensitivity to kainic acid
  publication-title: J. Neurochem.
  doi: 10.1111/jnc.12942
– volume: 110
  start-page: 6601
  year: 2013
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib37
  article-title: Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1302961110
– volume: 285
  start-page: 31995
  year: 2010
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib105
  article-title: SIRT4 regulates fatty acid oxidation and mitochondrial gene expression in liver and muscle cells
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.124164
– volume: 8
  start-page: 604
  year: 2009
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib47
  article-title: Calorie restriction alters mitochondrial protein acetylation
  publication-title: Aging Cell
  doi: 10.1111/j.1474-9726.2009.00503.x
– volume: 21
  start-page: 920
  year: 2007
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib24
  article-title: SirT3 is a nuclear NAD+-dependent histone deacetylase that translocates to the mitochondria upon cellular stress
  publication-title: Genes Dev.
  doi: 10.1101/gad.1527307
– volume: 108
  start-page: 14608
  year: 2011
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib61
  article-title: Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1111308108
– volume: 15
  start-page: 536
  year: 2014
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib150
  article-title: The growing landscape of lysine acetylation links metabolism and cell signalling
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3841
– volume: 2
  start-page: 419
  year: 2012
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib39
  article-title: Proteomic analysis of lysine acetylation sites in rat tissues reveals organ specificity and subcellular patterns
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2012.07.006
– volume: 6
  start-page: 2669
  year: 2007
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib52
  article-title: SIRT3 is pro-apoptotic and participates in distinct basal apoptotic pathways
  publication-title: Cell Cycle
  doi: 10.4161/cc.6.21.4866
– volume: 288
  start-page: 29036
  year: 2013
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib144
  article-title: Widespread and enzyme-independent Nepsilon-acetylation and Nepsilon-succinylation of proteins in the chemical conditions of the mitochondrial matrix
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.486753
– volume: 18
  start-page: 516
  year: 2012
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib6
  article-title: Metabolic regulation by SIRT3: implications for tumorigenesis
  publication-title: Trends Mol. Med.
  doi: 10.1016/j.molmed.2012.05.004
– volume: 44
  start-page: 177
  year: 2011
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib46
  article-title: SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2011.07.019
– volume: 49
  start-page: 186
  year: 2013
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib51
  article-title: Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.10.024
– volume: 49
  start-page: 1230
  year: 2010
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib60
  article-title: SIRT3 is regulated by nutrient excess and modulates hepatic susceptibility to lipotoxicity
  publication-title: Free Radic. Biol. Medi.
  doi: 10.1016/j.freeradbiomed.2010.07.009
– volume: 40
  start-page: 1576
  year: 2015
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib95
  article-title: Mitochondrial Sirt3 expression is decreased in APP/PS1 double transgenic mouse model of alzheimer’s disease
  publication-title: Neurochem. Res.
  doi: 10.1007/s11064-015-1630-1
– volume: 63
  start-page: 222
  year: 2013
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib68
  article-title: SIRT3 deacetylates FOXO3 to protect mitochondria against oxidative damage
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2013.05.002
– volume: 117
  start-page: 904
  year: 2016
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib125
  article-title: Sirtuin 4 regulates lipopolysaccharide mediated leydig cell dysfunction
  publication-title: J. Cell Biochem.
  doi: 10.1002/jcb.25374
– volume: 281
  start-page: 215
  year: 2015
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib139
  article-title: Protective role of SIRT5 against motor deficit and dopaminergic degeneration in MPTP-induced mice model of Parkinson’s disease
  publication-title: Behav. Brain Res.
  doi: 10.1016/j.bbr.2014.12.035
– volume: 3
  year: 2014
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib30
  article-title: Identification of ‘erasers’ for lysine crotonylated histone marks using a chemical proteomics approach
  publication-title: eLife
  doi: 10.7554/eLife.02999
– volume: 311
  start-page: 398
  year: 2015
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib67
  article-title: Sirtuin 3 regulates Foxo3a-mediated antioxidant pathway in microglia
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2015.10.048
– volume: 366
  start-page: 174
  year: 2008
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib21
  article-title: Localization of mouse mitochondrial SIRT proteins: shift of SIRT3 to nucleus by co-expression with SIRT5
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2007.11.122
– year: 2016
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib132
  article-title: SIRT5 promotes IDH2 desuccinylation and G6PD deglutarylation to enhance cellular antioxidant defense
  publication-title: EMBO Rep.
  doi: 10.15252/embr.201541643
– volume: 14
  start-page: 243
  year: 2016
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib147
  article-title: The acetyl group buffering action of carnitine acetyltransferase offsets macronutrient-induced lysine acetylation of mitochondrial proteins
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2015.12.030
– volume: 126
  start-page: 941
  year: 2006
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib19
  article-title: SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells
  publication-title: Cell
  doi: 10.1016/j.cell.2006.06.057
– volume: 143
  start-page: 802
  year: 2010
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib65
  article-title: Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction
  publication-title: Cell
  doi: 10.1016/j.cell.2010.10.002
– volume: 35
  start-page: 669
  year: 2010
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib8
  article-title: Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2010.07.003
– volume: 18
  start-page: 920
  year: 2013
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib42
  article-title: SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2013.11.013
– volume: 10
  start-page: 716
  year: 2014
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib146
  article-title: Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae
  publication-title: Mol. Syst. Biol.
  doi: 10.1002/msb.134766
– volume: 41
  start-page: 139
  year: 2011
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib45
  article-title: Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2011.01.002
– volume: 7
  start-page: 1144
  year: 2016
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib118
  article-title: Assessing sirtuin expression in endometrial carcinoma and non-neoplastic endometrium
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.6691
– volume: 28
  start-page: 3225
  year: 2014
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib134
  article-title: SIRT5 is under the control of PGC-1alpha and AMPK and is involved in regulation of mitochondrial energy metabolism
  publication-title: FASEB J.
  doi: 10.1096/fj.13-245241
– volume: 4
  start-page: 2327
  year: 2013
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib111
  article-title: An acetylome peptide microarray reveals specificities and deacetylation substrates for all human sirtuin isoforms
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3327
– volume: 3
  start-page: 2806
  year: 2013
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib135
  article-title: Metabolic characterization of a Sirt5 deficient mouse model
  publication-title: Sci. Rep.
  doi: 10.1038/srep02806
– volume: 52
  start-page: 23
  year: 2012
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib34
  article-title: Mitochondrial protein acetylation regulates metabolism
  publication-title: Essays Biochem.
  doi: 10.1042/bse0520023
– volume: 50
  start-page: 686
  year: 2013
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib106
  article-title: SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2013.05.012
– volume: 334
  start-page: 806
  year: 2011
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib27
  article-title: Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase
  publication-title: Science
  doi: 10.1126/science.1207861
– volume: 30
  start-page: 2986
  year: 2011
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib81
  article-title: SirT3 suppresses hypoxia inducible factor 1alpha and tumor growth by inhibiting mitochondrial ROS production
  publication-title: Oncogene
  doi: 10.1038/onc.2011.37
– volume: 2
  start-page: 425
  year: 2012
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib64
  article-title: Muscle or liver-specific Sirt3 deficiency induces hyperacetylation of mitochondrial proteins without affecting global metabolic homeostasis
  publication-title: Sci. Rep.
  doi: 10.1038/srep00425
– volume: 34
  start-page: 807
  year: 2014
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib70
  article-title: SIRT3 deacetylates and activates OPA1 to regulate mitochondrial dynamics during stress
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.01483-13
– volume: 123
  start-page: 894
  year: 2010
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib88
  article-title: Sirtuin-3 deacetylation of cyclophilin D induces dissociation of hexokinase II from the mitochondria
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.061846
– volume: 20
  start-page: 842
  year: 2015
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib157
  article-title: Discovery of SIRT3 inhibitors using SAMDI mass spectrometry
  publication-title: J. Biomol. Screen.
  doi: 10.1177/1087057115588512
– volume: 126
  start-page: 274
  year: 2013
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib91
  article-title: Sirtuin-3 modulates Bak- and Bax-dependent apoptosis
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.115188
– volume: 282
  start-page: 33583
  year: 2007
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib104
  article-title: Regulation of insulin secretion by SIRT4, a mitochondrial ADP-ribosyltransferase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M705488200
– volume: 33
  start-page: 4552
  year: 2013
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib113
  article-title: SIRT4 represses peroxisome proliferator-activated receptor α activity to suppress hepatic fat oxidation
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00087-13
– volume: 44
  start-page: 410
  year: 2014
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib114
  article-title: Direct evidence of sirtuin downregulation in the liver of non-alcoholic fatty liver disease patients
  publication-title: Ann. Clin. Lab. Sci.
– volume: 287
  start-page: 28307
  year: 2012
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib129
  article-title: The bicyclic intermediate structure provides insights into the desuccinylation mechanism of human sirtuin 5 (SIRT5)
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.384511
– volume: 521
  start-page: 160
  year: 2013
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib121
  article-title: Congenital hyperinsulinism: clinical and molecular analysis of a large Italian cohort
  publication-title: Gene
  doi: 10.1016/j.gene.2013.03.021
– volume: 12
  start-page: 662
  year: 2010
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib54
  article-title: Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2010.11.015
– volume: 103
  start-page: 10224
  year: 2006
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib49
  article-title: Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0603968103
– volume: 101
  start-page: 275
  year: 2016
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib136
  article-title: Obesity is associated with low NAD(+)/SIRT pathway expression in adipose tissue of BMI-discordant monozygotic twins
  publication-title: J. Clin. Endocrinol. Metab.
  doi: 10.1210/jc.2015-3095
– volume: 14
  start-page: 528
  year: 2011
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib165
  article-title: Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2011.08.014
– volume: 20
  start-page: 827
  year: 2014
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib78
  article-title: Sirtuin 3 deficiency is associated with inhibited mitochondrial function and pulmonary arterial hypertension in rodents and humans
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2014.08.011
– volume: 19
  start-page: 416
  year: 2011
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib79
  article-title: SIRT3 opposes reprogramming of cancer cell metabolism through HIF1alpha destabilization
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2011.02.014
– volume: 99
  start-page: 13653
  year: 2002
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib161
  article-title: SIRT3, a human SIR2 homologue, is an NAD-dependent deacetylase localized to mitochondria
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.222538099
– volume: 159
  start-page: 1615
  year: 2014
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib28
  article-title: Sirtuin 4 is a lipoamidase regulating pyruvate dehydrogenase complex activity
  publication-title: Cell
  doi: 10.1016/j.cell.2014.11.046
– volume: 134
  start-page: 1922
  year: 2012
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib158
  article-title: Thiosuccinyl peptides as Sirt5-specific inhibitors
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2090417
– volume: 363
  start-page: 15
  year: 2005
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib3
  article-title: Acetylation and deacetylation of non-histone proteins
  publication-title: Gene
  doi: 10.1016/j.gene.2005.09.010
– volume: 36
  start-page: 49
  year: 2016
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib93
  article-title: A novel Sirtuin-3 inhibitor, LC-0296, inhibits cell survival and proliferation, and promotes apoptosis of head and neck cancer cells
  publication-title: Anticancer Res.
– volume: 35
  start-page: 146
  year: 2014
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib154
  article-title: Small molecule SIRT1 activators for the treatment of aging and age-related diseases
  publication-title: Trends Pharmacol. Sci.
  doi: 10.1016/j.tips.2013.12.004
– volume: 325
  start-page: 834
  year: 2009
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib4
  article-title: Lysine acetylation targets protein complexes and co-regulates major cellular functions
  publication-title: Science
  doi: 10.1126/science.1175371
– volume: 20
  start-page: 1059
  year: 2014
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib168
  article-title: Activation of SIRT3 by the NAD(+) precursor nicotinamide riboside protects from noise-induced hearing loss
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2014.11.003
– volume: 1827
  start-page: 38
  year: 2013
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib107
  article-title: Sirtuin-4 modulates sensitivity to induction of the mitochondrial permeability transition pore
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbabio.2012.09.016
– volume: 199
  start-page: 205
  year: 2012
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib163
  article-title: Exploring the therapeutic space around NAD+
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201207019
– volume: 136
  start-page: 809
  year: 2016
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib89
  article-title: Pro-Proliferative Function of Mitochondrial Sirtuin Deacetylase SIRT3 in Human Melanoma
  publication-title: J. Investig. Dermatol.
  doi: 10.1016/j.jid.2015.12.026
– volume: 23
  start-page: 450
  year: 2013
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib109
  article-title: SIRT4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2013.02.024
– volume: 4
  start-page: 842
  year: 2013
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib153
  article-title: Lysine succinylation is a frequently occurring modification in prokaryotes and eukaryotes and extensively overlaps with acetylation
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2013.07.024
– volume: 111
  start-page: E2443
  year: 2014
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib166
  article-title: NAD+ and SIRT3 control microtubule dynamics and reduce susceptibility to antimicrotubule agents
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1404269111
– volume: 20
  start-page: 1256
  year: 2006
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib15
  article-title: SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis
  publication-title: Genes Dev.
  doi: 10.1101/gad.1412706
– volume: 280
  start-page: 3451
  year: 2013
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib14
  article-title: Intracellular distribution of human SIRT7 and mapping of the nuclear/nucleolar localization signal
  publication-title: FEBS J.
  doi: 10.1111/febs.12346
– volume: 404
  start-page: 1
  year: 2007
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib1
  article-title: Sirtuins in mammals: insights into their biological function
  publication-title: Biochem. J.
  doi: 10.1042/BJ20070140
– volume: 110
  start-page: E2772
  year: 2013
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib160
  article-title: Ex-527 inhibits Sirtuins by exploiting their unique NAD+-dependent deacetylation mechanism
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1303628110
– volume: 61
  start-page: 394
  year: 2013
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib101
  article-title: Glutamate dehydrogenase 1 and SIRT4 regulate glial development
  publication-title: Glia
  doi: 10.1002/glia.22442
– volume: 26
  start-page: 1072
  year: 2014
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib137
  article-title: Mitochondrial SIRT5 is present in follicular cells and is altered by reduced ovarian reserve and advanced maternal age
  publication-title: Reprod., Fertil. Dev.
  doi: 10.1071/RD13178
– volume: 260
  start-page: 273
  year: 1999
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib103
  article-title: Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1006/bbrc.1999.0897
– volume: 6
  start-page: 26494
  year: 2015
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib83
  article-title: SIRT3 inhibits prostate cancer by destabilizing oncoprotein c-MYC through regulation of the PI3K/Akt pathway
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.4764
– volume: 423
  start-page: 26
  year: 2012
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib82
  article-title: Sirt3 inhibits hepatocellular carcinoma cell growth through reducing Mdm2-mediated p53 degradation
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2012.05.053
– volume: 20
  start-page: 1423
  year: 2014
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib85
  article-title: Superoxide mediates acute liver injury in irradiated mice lacking sirtuin 3
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2012.5091
– volume: 15
  start-page: 217
  year: 2015
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib124
  article-title: SIRT4 suppresses inflammatory responses in human umbilical vein endothelial cells
  publication-title: Cardiovasc. Toxicol.
  doi: 10.1007/s12012-014-9287-6
– volume: 153
  start-page: 840
  year: 2013
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib110
  article-title: The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4
  publication-title: Cell
  doi: 10.1016/j.cell.2013.04.023
– volume: 11
  start-page: 437
  year: 2003
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib16
  article-title: The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(03)00038-8
– volume: 56
  start-page: 1068
  year: 2013
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib74
  article-title: Sirtuin 3 regulates mouse pancreatic beta cell function and is suppressed in pancreatic islets isolated from human type 2 diabetic patients
  publication-title: Diabetologia
  doi: 10.1007/s00125-013-2851-y
– volume: 433
  start-page: 505
  year: 2011
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib73
  article-title: Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation
  publication-title: Biochem. J.
  doi: 10.1042/BJ20100791
– volume: 273
  start-page: 793
  year: 2000
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib11
  article-title: Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1006/bbrc.2000.3000
– volume: 113
  start-page: 492
  year: 2015
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib22
  article-title: Tumour-suppressive function of SIRT4 in human colorectal cancer
  publication-title: Br. J. Cancer
  doi: 10.1038/bjc.2015.226
– volume: 327
  start-page: 1004
  year: 2010
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib38
  article-title: Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux
  publication-title: Science
  doi: 10.1126/science.1179687
– volume: 49
  start-page: 304
  year: 2010
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib58
  article-title: Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria
  publication-title: Biochemistry
  doi: 10.1021/bi901627u
– volume: 278
  start-page: 18426
  year: 2003
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib99
  article-title: Intra-mitochondrial poly(ADP-ribosylation) contributes to NAD+ depletion and cell death induced by oxidative stress
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M301295200
– volume: 158
  start-page: 647
  year: 2002
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib17
  article-title: The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide‚ Äìdependent deacetylase
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200205057
– volume: 34
  start-page: 2620
  year: 2015
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib148
  article-title: Analysis of acetylation stoichiometry suggests that SIRT3 repairs nonenzymatic acetylation lesions
  publication-title: EMBO J.
  doi: 10.15252/embj.201591271
– year: 2014
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib138
  article-title: Mitochondrial sirtuins: emerging roles in metabolic regulations, energy homeostasis and diseases
  publication-title: Exp. Gerontol.
– volume: 586
  start-page: 4076
  year: 2012
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib128
  article-title: SIRT5 deacetylates and activates urate oxidase in liver mitochondria of mice
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2012.10.009
– volume: 14
  start-page: 2090
  year: 2015
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib92
  article-title: CDK1-mediated SIRT3 activation enhances mitochondrial function and tumor radioresistance
  publication-title: Mol. Cancer Ther.
  doi: 10.1158/1535-7163.MCT-15-0017
– volume: 23
  start-page: 607
  year: 2006
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib36
  article-title: Substrate and functional diversity of lysine acetylation revealed by a proteomics survey
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2006.06.026
– volume: 105
  start-page: 14447
  year: 2008
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib55
  article-title: A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0803790105
– volume: 59
  start-page: 321
  year: 2015
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib133
  article-title: SIRT5 regulates both cytosolic and mitochondrial protein malonylation with glycolysis as a major target
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.05.022
– volume: 72
  start-page: 2468
  year: 2012
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib87
  article-title: SIRT3 is a mitochondrial tumor suppressor: a scientific tale that connects aberrant cellular ROS, the Warburg effect, and carcinogenesis
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-11-3633
– volume: 34
  start-page: 1847
  year: 2013
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib140
  article-title: Altered expression of SIRT gene family in head and neck squamous cell carcinoma
  publication-title: Tumour Biol.
  doi: 10.1007/s13277-013-0726-y
– volume: 5
  start-page: 48
  year: 2013
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib98
  article-title: Forever young: SIRT3 a shield against mitochondrial meltdown, aging, and neurodegeneration
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2013.00048
– volume: 17
  start-page: 41
  year: 2010
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib80
  article-title: SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2009.11.023
– volume: 32
  start-page: 5022
  year: 2012
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib23
  article-title: SIRT3 functions in the nucleus in the control of stress-related gene expression
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00822-12
– volume: 23
  start-page: 128
  year: 2016
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib97
  article-title: Mitochondrial SIRT3 mediates adaptive responses of neurons to exercise and metabolic and excitatory challenges
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2015.10.013
– volume: 91
  start-page: 1033
  year: 1997
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib10
  article-title: Extrachromosomal rDNA circles—a cause of aging in yeast
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80493-6
– volume: 27
  start-page: 8807
  year: 2007
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib43
  article-title: Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.01636-07
– year: 2015
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib84
  article-title: Loss of SIRT3 provides growth advantage for B cell malignancies
  publication-title: J. Biol. Chem.
– volume: 6
  start-page: e1620
  year: 2015
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib119
  article-title: CtBP maintains cancer cell growth and metabolic homeostasis via regulating SIRT4
  publication-title: Cell Death Dis.
  doi: 10.1038/cddis.2014.587
– volume: 19
  start-page: 1042
  year: 2014
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib164
  article-title: NAD+-dependent activation of Sirt1 corrects the phenotype in a mouse model of mitochondrial disease
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2014.04.001
– volume: 5
  start-page: 835
  year: 2013
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib108
  article-title: SIRT4 regulates ATP homeostasis and mediates a retrograde signaling via AMPK
  publication-title: Aging
  doi: 10.18632/aging.100616
– volume: 6
  start-page: e23295
  year: 2011
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib59
  article-title: Succinate dehydrogenase is a direct target of sirtuin 3 deacetylase activity
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0023295
– volume: 289
  start-page: 21326
  year: 2014
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib149
  article-title: Stoichiometry of site-specific lysine acetylation in an entire proteome
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M114.581843
– volume: 327
  start-page: 1000
  year: 2010
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib35
  article-title: Regulation of cellular metabolism by protein lysine acetylation
  publication-title: Science
  doi: 10.1126/science.1179689
– volume: 25
  start-page: 138
  year: 2014
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib9
  article-title: SIRT1 and other sirtuins in metabolism
  publication-title: Trends Endocrinol. Metab.
  doi: 10.1016/j.tem.2013.12.001
– volume: 12
  start-page: 654
  year: 2010
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib57
  article-title: SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2010.11.003
– volume: 441
  start-page: 191
  year: 2013
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib131
  article-title: SIRT5 desuccinylates and activates SOD1 to eliminate ROS
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2013.10.033
– volume: 291
  start-page: 1957
  year: 2016
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib100
  article-title: SIRT3 deacetylates ceramide synthases: implications for mitochondrial dysfunction and brain injury
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M115.668228
– volume: 28
  start-page: 6384
  year: 2008
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib66
  article-title: SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00426-08
– volume: 289
  start-page: 4135
  year: 2014
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib115
  article-title: SIRT4 protein suppresses tumor formation in genetic models of Myc-induced B cell lymphoma
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.525949
– volume: 8
  start-page: e75868
  year: 2013
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib32
  article-title: Ethanol metabolism modifies hepatic protein acylation in mice
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0075868
– volume: 22
  start-page: 1060
  year: 2015
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib143
  article-title: Mitochondrial sirtuins and their relationships with metabolic disease and cancer
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2014.6213
– volume: 287
  start-page: 42436
  year: 2012
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib151
  article-title: Mitochondrial protein acylation and intermediary metabolism: regulation by sirtuins and implications for metabolic disease
  publication-title: J Biol. Chem.
  doi: 10.1074/jbc.R112.404863
– volume: 110
  start-page: 36
  year: 2015
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib76
  article-title: SIRT3 deficiency impairs mitochondrial and contractile function in the heart
  publication-title: Basic Res. Cardiol.
  doi: 10.1007/s00395-015-0493-6
– volume: 26
  start-page: 5489
  year: 2007
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib5
  article-title: Sirtuins: critical regulators at the crossroads between cancer and aging
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1210616
– volume: 10
  year: 2011
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib25
  article-title: The First identification of lysine malonylation substrates and its regulatory enzyme
  publication-title: Mol. Cell. Proteom.
  doi: 10.1074/mcp.M111.012658
– volume: 2
  start-page: 914
  year: 2010
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib69
  article-title: Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy
  publication-title: Aging
  doi: 10.18632/aging.100252
– volume: 50
  start-page: 919
  year: 2013
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib130
  article-title: SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2013.06.001
– volume: 3
  start-page: 1050
  year: 2012
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib159
  article-title: Inhibitors of the NAD+-dependent protein desuccinylase and demalonylase Sirt5
  publication-title: ACS Med. Chem. Lett.
  doi: 10.1021/ml3002709
– volume: 464
  start-page: 121
  year: 2010
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib56
  article-title: SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation
  publication-title: Nature
  doi: 10.1038/nature08778
– volume: 62
  start-page: 3404
  year: 2013
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib48
  article-title: Sirt3 regulates metabolic flexibility of skeletal muscle through reversible enzymatic deacetylation
  publication-title: Diabetes
  doi: 10.2337/db12-1650
– volume: 290
  start-page: 1546
  year: 2015
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib169
  article-title: Increasing NAD synthesis in muscle via nicotinamide phosphoribosyltransferase is not sufficient to promote oxidative metabolism
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M114.579565
– volume: 55
  start-page: e10
  year: 2011
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib112
  article-title: The expression of Sirtuins 1 and 4 in peripheral blood leukocytes from patients with type 2 diabetes
  publication-title: Eur. J. Histochem.
  doi: 10.4081/ejh.2011.e10
– volume: 15
  start-page: 838
  year: 2012
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib162
  article-title: The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2012.04.022
– volume: 23
  start-page: 467
  year: 2012
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib2
  article-title: Mitochondrial sirtuins: regulators of protein acylation and metabolism
  publication-title: Trends Endocrinol. Metab.
  doi: 10.1016/j.tem.2012.07.004
– volume: 54
  start-page: 363
  year: 2014
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib155
  article-title: Small-molecule allosteric activators of sirtuins
  publication-title: Annu. Rev. Pharmacol. Toxicol.
  doi: 10.1146/annurev-pharmtox-010611-134657
– volume: 282
  start-page: 30239
  year: 2007
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib33
  article-title: N-lysine propionylation controls the activity of propionyl-CoA synthetase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M704409200
– volume: 410
  start-page: 227
  year: 2001
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib71
  article-title: Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans
  publication-title: Nature
  doi: 10.1038/35065638
– volume: 11
  start-page: 1510
  year: 2012
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib40
  article-title: Proteome-wide analysis of lysine acetylation suggests its broad regulatory scope in Saccharomyces cerevisiae
  publication-title: Mol. Cell. Proteom.
  doi: 10.1074/mcp.M112.017251
– volume: 180
  start-page: 156
  year: 2013
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib86
  article-title: Low-dose radiation-induced enhancement of thymic lymphomagenesis in Lck-Bax mice is dependent on LET and gender
  publication-title: Radiat. Res.
  doi: 10.1667/RR3293.1
– volume: 137
  start-page: 560
  year: 2009
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib126
  article-title: SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle
  publication-title: Cell
  doi: 10.1016/j.cell.2009.02.026
– volume: 35
  start-page: 10699
  year: 2014
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib142
  article-title: SIRT5 facilitates cancer cell growth and drug resistance in non-small cell lung cancer
  publication-title: Tumor Biol.
  doi: 10.1007/s13277-014-2372-4
– volume: 117
  start-page: 1670
  year: 2011
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib90
  article-title: Sirtuin-3 (SIRT3), a novel potential therapeutic target for oral cancer
  publication-title: Cancer
  doi: 10.1002/cncr.25676
– year: 2015
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib63
  article-title: SIRT3 is crucial for maintaining skeletal muscle insulin action and protects against severe insulin resistance in high fat fed mice
  publication-title: Diabetes
  doi: 10.2337/db14-1810
– volume: 393
  start-page: 73
  year: 2010
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib127
  article-title: Overexpression of SIRT5 confirms its involvement in deacetylation and activation of carbamoyl phosphate synthetase 1
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2010.01.081
– volume: 496
  start-page: 110
  year: 2013
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib31
  article-title: SIRT6 regulates TNF-[agr] secretion through hydrolysis of long-chain fatty acyl lysine
  publication-title: Nature
  doi: 10.1038/nature12038
– volume: 15
  start-page: 595
  year: 2012
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib62
  article-title: Lipid-induced mitochondrial stress and insulin action in muscle
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2012.04.010
– volume: 20
  start-page: 1075
  year: 2006
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib13
  article-title: Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription
  publication-title: Genes Dev.
  doi: 10.1101/gad.1399706
– volume: 72
  start-page: 135
  year: 2015
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib117
  article-title: Sirtuin-4 (SIRT4) is downregulated and associated with some clinicopathological features in gastric adenocarcinoma
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2015.04.013
– volume: 36
  start-page: 3404
  year: 2015
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib77
  article-title: Protective effects of sirtuins in cardiovascular diseases: from bench to bedside
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehv290
– volume: 54
  start-page: 5
  year: 2014
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib145
  article-title: Nonenzymatic protein acylation as a carbon stress regulated by sirtuin deacylases
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2014.03.027
– volume: 36
  start-page: 108
  year: 2010
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib7
  article-title: Regulation of intermediary metabolism by protein acetylation
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2010.09.003
– volume: 26
  start-page: 486
  year: 2015
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib72
  article-title: SIRT3 regulates progression and development of diseases of aging
  publication-title: Trends Endocrinol. Metab.
– volume: 40
  start-page: 893
  year: 2010
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib53
  article-title: Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.12.013
– volume: 1
  start-page: 771
  year: 2009
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib44
  article-title: Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1alpha in skeletal muscle
  publication-title: Aging
  doi: 10.18632/aging.100075
– start-page: 1
  year: 2016
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib156
  article-title: Using mitochondrial sirtuins as drug targets: disease implications and available compounds
  publication-title: Cell. Mol. Life Sci.
– volume: 103
  start-page: 10230
  year: 2006
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib50
  article-title: Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0604392103
– volume: 107
  start-page: 273
  year: 2012
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib12
  article-title: Emerging beneficial roles of sirtuins in heart failure
  publication-title: Basic Res. Cardiol.
  doi: 10.1007/s00395-012-0273-5
– volume: 5
  start-page: 1583
  year: 2010
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib41
  article-title: Generation of acetyllysine antibodies and affinity enrichment of acetylated peptides
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2010.117
– volume: 35
  start-page: 2064
  year: 2014
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib96
  article-title: Pituitary adenylate cyclase-activating polypeptide protects against beta-amyloid toxicity
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2014.03.022
– volume: 60
  start-page: 661
  year: 2015
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib141
  article-title: NADP(+)-IDH mutations promote hypersuccinylation that impairs mitochondria respiration and induces apoptosis resistance
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.10.017
– volume: 155
  start-page: 1624
  year: 2013
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib167
  article-title: Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging
  publication-title: Cell
  doi: 10.1016/j.cell.2013.11.037
– volume: 16
  start-page: 4623
  year: 2005
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib102
  article-title: Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E05-01-0033
– volume: 161
  start-page: 731
  year: 2009
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib120
  article-title: Hyperinsulinism–hyperammonaemia syndrome: novel mutations in the GLUD1 gene and genotype–phenotype correlations
  publication-title: Eur. J. Endocrinol.
  doi: 10.1530/EJE-09-0615
– volume: 19
  start-page: 605
  year: 2014
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib26
  article-title: Lysine glutarylation is a protein posttranslational modification regulated by SIRT5
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2014.03.014
– volume: 5
  start-page: 8529
  year: 2015
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib29
  article-title: Efficient demyristoylase activity of SIRT2 revealed by kinetic and structural studies
  publication-title: Sci. Rep.
  doi: 10.1038/srep08529
– volume: 119
  start-page: 2758
  year: 2009
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib75
  article-title: Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice
  publication-title: J. Clin. Invest.
– volume: 44
  start-page: 177
  year: 2011
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib152
  article-title: SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2011.07.019
– volume: 32
  start-page: 655
  year: 2013
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib123
  article-title: SIRT4 prevents hypoxia-induced apoptosis in H9c2 cardiomyoblast cells
  publication-title: Cell. Physiol. Biochem.
  doi: 10.1159/000354469
– volume: 2
  start-page: 15
  year: 2014
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib116
  article-title: SIRT3 and SIRT4 are mitochondrial tumor suppressor proteins that connect mitochondrial metabolism and carcinogenesis
  publication-title: Cancer Metab.
  doi: 10.1186/2049-3002-2-15
– volume: 411
  start-page: 279
  year: 2008
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib18
  article-title: The human SIRT3 protein deacetylase is exclusively mitochondrial
  publication-title: Biochem. J.
  doi: 10.1042/BJ20071624
– volume: 7
  start-page: e48225
  year: 2012
  ident: 10.1016/j.freeradbiomed.2016.04.197_bib94
  article-title: CNS SIRT3 expression is altered by reactive oxygen species and in Alzheimer’s disease
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0048225
SSID ssj0004538
Score 2.5595577
SecondaryResourceType review_article
Snippet Mitochondria play a critical role in energy production, cell signalling and cell survival. Defects in mitochondrial function contribute to the ageing process...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 164
SubjectTerms Acylation
Ageing
Aging
Animals
Humans
Metabolic Diseases - enzymology
Metabolic Diseases - physiopathology
Metabolism
Mitochondria
Mitochondria - enzymology
Mitochondrial Proteins - metabolism
Neoplasms - enzymology
Neoplasms - physiopathology
Neurodegenerative Diseases - enzymology
Neurodegenerative Diseases - physiopathology
Protein Processing, Post-Translational
SIRT3
SIRT4
SIRT5
Sirtuins
Sirtuins - metabolism
Title The role of mitochondrial sirtuins in health and disease
URI https://dx.doi.org/10.1016/j.freeradbiomed.2016.04.197
https://www.ncbi.nlm.nih.gov/pubmed/27164052
https://www.proquest.com/docview/1826679792
Volume 100
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEB9EUfoiftazKistfYuXbDbZxAfhOCqnUl9a4d6WZD8gpe7JfTz44t_emXycCi0c9C0Ju8kyOzsfmZnfAHwpUk3hwRjdktAEaIHjkdJlHmSGW5PIwnFOxcnf79PRg7gdJ-M1GHa1MJRW2cr-RqbX0rp90m-p2X-qqv6PMMsjVJ9o38RkWFMRnxCSuPziJXqDGF53s6bBAY3egs-vOV5uai2FrOtKd8rzSgn3NCIEqL9rqX9ZobU2ut6B7daMZINmpbuwZv0e7A88utCPz-wrqxM76z_me7DZ9Jt83ocMmYJRPiGbOPaIZxllnzfEgmxWTeeLys9Y5VlTG8kKb1gbvzmAh-tvP4ejoG2dEGgh8nlgpUwI6t2lIuVWcxtavOAycuhPaaSY5qEQGh_ZWBpbyqjk0hA6XCytQxV-COt-4u0RME2AM4UjlBouMpeXosgil4WxMUWiM9eDy45USre44tTe4rfqEsh-qXd0VkRnFQqFdO6BWE5-auA1Vpt21e2JesctChXBai8473ZS4XmiIEnh7WQxU-RvpTKXOe_Bx2aLlyvj5FyGCT_-389_gg9019Q0nsD6fLqwp2jczMuzmnvPYGNwcze6_wMD3vjC
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7BolIuiGe7PFpXrbhFmzhOnHBAWqGipcBeAImblfghpSpetI8D_74zeVCQQELqLXLixBqP55GZ-QbgR5FqCg_G6JaEJkALHI-ULvMgM9yaRBaOcypOvhqno1vx6y65W4LTrhaG0ipb2d_I9FpatyODlpqDh6oaXIdZHqH6RPsmJsM6X4YVQqdKerAyPL8YjZ-BhtcNren5gCaswvd_aV5uai1Fretid0r1Sgn6NCIQqNcV1VuGaK2QzjZgvbUk2bBZ7CYsWb8F20OPXvT9IztidW5n_dN8Cz40LScftyFDvmCUUsgmjt3jcUbx5w1xIZtV0_mi8jNWedaUR7LCG9aGcHbg9uznzekoaLsnBFqIfB5YKRNCe3epSLnV3IYWL7iMHLpUGommeSiExiEbS2NLGZVcGgKIi6V1qMV3oecn3n4GpglzpnAEVMNF5vJSFFnksjA2pkh05vpw3JFK6RZanDpc_FFdDtlv9YLOiuisQqGQzn0QT5MfGoSN90076fZEvWAYhbrgfS_41u2kwiNFcZLC28lipsjlSmUuc96HT80WP62Mk38ZJnzvfz__FT6Obq4u1eX5-GIf1uhOU-J4AL35dGEP0daZl19aXv4LiPj7cw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+role+of+mitochondrial+sirtuins+in+health+and+disease&rft.jtitle=Free+radical+biology+%26+medicine&rft.au=Osborne%2C+Brenna&rft.au=Bentley%2C+Nicholas+L.&rft.au=Montgomery%2C+Magdalene+K.&rft.au=Turner%2C+Nigel&rft.date=2016-11-01&rft.issn=0891-5849&rft.volume=100&rft.spage=164&rft.epage=174&rft_id=info:doi/10.1016%2Fj.freeradbiomed.2016.04.197&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_freeradbiomed_2016_04_197
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0891-5849&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0891-5849&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0891-5849&client=summon