Assessment of electronic structure methods for the determination of the ground spin states of Fe( ii ), Fe( iii ) and Fe( iv ) complexes
Our ability to understand and simulate the reactions catalyzed by iron depends strongly on our ability to predict the relative energetics of spin states. In this work, we studied the electronic structures of Fe 2+ ion, gaseous FeO and 14 iron complexes using Kohn–Sham density functional theory with...
Saved in:
Published in | Physical chemistry chemical physics : PCCP Vol. 19; no. 20; pp. 13049 - 13069 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Our ability to understand and simulate the reactions catalyzed by iron depends strongly on our ability to predict the relative energetics of spin states. In this work, we studied the electronic structures of Fe
2+
ion, gaseous FeO and 14 iron complexes using Kohn–Sham density functional theory with particular focus on determining the ground spin state of these species as well as the magnitudes of relevant spin-state energy splittings. The 14 iron complexes investigated in this work have hexacoordinate geometries of which seven are Fe(
ii
), five are Fe(
iii
) and two are Fe(
iv
) complexes. These are calculated using 20 exchange–correlation functionals. In particular, we use a local spin density approximation (LSDA) – GVWN5, four generalized gradient approximations (GGAs) – BLYP, PBE, OPBE and OLYP, two non-separable gradient approximations (NGAs) – GAM and N12, two meta-GGAs – M06-L and M11-L, a meta-NGA – MN15-L, five hybrid GGAs – B3LYP, B3LYP*, PBE0, B97-3 and SOGGA11-X, four hybrid meta-GGAs – M06, PW6B95, MPW1B95 and M08-SO and a hybrid meta-NGA – MN15. The density functional results are compared to reference data, which include experimental results as well as the results of diffusion Monte Carlo (DMC) calculations and ligand field theory estimates from the literature. For the Fe
2+
ion, all functionals except M11-L correctly predict the ground spin state to be quintet. However, quantitatively, most of the functionals are not close to the experimentally determined spin-state splitting energies. For FeO all functionals predict quintet to be the ground spin state. For the 14 iron complexes, the hybrid functionals B3LYP, MPW1B95 and MN15 correctly predict the ground spin state of 13 out of 14 complexes and PW6B95 gets all the 14 complexes right. The local functionals, OPBE, OLYP and M06-L, predict the correct ground spin state for 12 out of 14 complexes. Two of the tested functionals are not recommended to be used for this type of study, in particular M08-SO and M11-L, because M08-SO systematically overstabilizes the high spin state, and M11-L systematically overstabilizes the low spin state. |
---|---|
AbstractList | Our ability to understand and simulate the reactions catalyzed by iron depends strongly on our ability to predict the relative energetics of spin states. In this work, we studied the electronic structures of Fe2+ ion, gaseous FeO and 14 iron complexes using Kohn-Sham density functional theory with particular focus on determining the ground spin state of these species as well as the magnitudes of relevant spin-state energy splittings. The 14 iron complexes investigated in this work have hexacoordinate geometries of which seven are Fe(ii), five are Fe(iii) and two are Fe(iv) complexes. These are calculated using 20 exchange-correlation functionals. In particular, we use a local spin density approximation (LSDA) - GVWN5, four generalized gradient approximations (GGAs) - BLYP, PBE, OPBE and OLYP, two non-separable gradient approximations (NGAs) - GAM and N12, two meta-GGAs - M06-L and M11-L, a meta-NGA - MN15-L, five hybrid GGAs - B3LYP, B3LYP*, PBE0, B97-3 and SOGGA11-X, four hybrid meta-GGAs - M06, PW6B95, MPW1B95 and M08-SO and a hybrid meta-NGA - MN15. The density functional results are compared to reference data, which include experimental results as well as the results of diffusion Monte Carlo (DMC) calculations and ligand field theory estimates from the literature. For the Fe2+ ion, all functionals except M11-L correctly predict the ground spin state to be quintet. However, quantitatively, most of the functionals are not close to the experimentally determined spin-state splitting energies. For FeO all functionals predict quintet to be the ground spin state. For the 14 iron complexes, the hybrid functionals B3LYP, MPW1B95 and MN15 correctly predict the ground spin state of 13 out of 14 complexes and PW6B95 gets all the 14 complexes right. The local functionals, OPBE, OLYP and M06-L, predict the correct ground spin state for 12 out of 14 complexes. Two of the tested functionals are not recommended to be used for this type of study, in particular M08-SO and M11-L, because M08-SO systematically overstabilizes the high spin state, and M11-L systematically overstabilizes the low spin state.Our ability to understand and simulate the reactions catalyzed by iron depends strongly on our ability to predict the relative energetics of spin states. In this work, we studied the electronic structures of Fe2+ ion, gaseous FeO and 14 iron complexes using Kohn-Sham density functional theory with particular focus on determining the ground spin state of these species as well as the magnitudes of relevant spin-state energy splittings. The 14 iron complexes investigated in this work have hexacoordinate geometries of which seven are Fe(ii), five are Fe(iii) and two are Fe(iv) complexes. These are calculated using 20 exchange-correlation functionals. In particular, we use a local spin density approximation (LSDA) - GVWN5, four generalized gradient approximations (GGAs) - BLYP, PBE, OPBE and OLYP, two non-separable gradient approximations (NGAs) - GAM and N12, two meta-GGAs - M06-L and M11-L, a meta-NGA - MN15-L, five hybrid GGAs - B3LYP, B3LYP*, PBE0, B97-3 and SOGGA11-X, four hybrid meta-GGAs - M06, PW6B95, MPW1B95 and M08-SO and a hybrid meta-NGA - MN15. The density functional results are compared to reference data, which include experimental results as well as the results of diffusion Monte Carlo (DMC) calculations and ligand field theory estimates from the literature. For the Fe2+ ion, all functionals except M11-L correctly predict the ground spin state to be quintet. However, quantitatively, most of the functionals are not close to the experimentally determined spin-state splitting energies. For FeO all functionals predict quintet to be the ground spin state. For the 14 iron complexes, the hybrid functionals B3LYP, MPW1B95 and MN15 correctly predict the ground spin state of 13 out of 14 complexes and PW6B95 gets all the 14 complexes right. The local functionals, OPBE, OLYP and M06-L, predict the correct ground spin state for 12 out of 14 complexes. Two of the tested functionals are not recommended to be used for this type of study, in particular M08-SO and M11-L, because M08-SO systematically overstabilizes the high spin state, and M11-L systematically overstabilizes the low spin state. Our ability to understand and simulate the reactions catalyzed by iron depends strongly on our ability to predict the relative energetics of spin states. In this work, we studied the electronic structures of Fe 2+ ion, gaseous FeO and 14 iron complexes using Kohn–Sham density functional theory with particular focus on determining the ground spin state of these species as well as the magnitudes of relevant spin-state energy splittings. The 14 iron complexes investigated in this work have hexacoordinate geometries of which seven are Fe( ii ), five are Fe( iii ) and two are Fe( iv ) complexes. These are calculated using 20 exchange–correlation functionals. In particular, we use a local spin density approximation (LSDA) – GVWN5, four generalized gradient approximations (GGAs) – BLYP, PBE, OPBE and OLYP, two non-separable gradient approximations (NGAs) – GAM and N12, two meta-GGAs – M06-L and M11-L, a meta-NGA – MN15-L, five hybrid GGAs – B3LYP, B3LYP*, PBE0, B97-3 and SOGGA11-X, four hybrid meta-GGAs – M06, PW6B95, MPW1B95 and M08-SO and a hybrid meta-NGA – MN15. The density functional results are compared to reference data, which include experimental results as well as the results of diffusion Monte Carlo (DMC) calculations and ligand field theory estimates from the literature. For the Fe 2+ ion, all functionals except M11-L correctly predict the ground spin state to be quintet. However, quantitatively, most of the functionals are not close to the experimentally determined spin-state splitting energies. For FeO all functionals predict quintet to be the ground spin state. For the 14 iron complexes, the hybrid functionals B3LYP, MPW1B95 and MN15 correctly predict the ground spin state of 13 out of 14 complexes and PW6B95 gets all the 14 complexes right. The local functionals, OPBE, OLYP and M06-L, predict the correct ground spin state for 12 out of 14 complexes. Two of the tested functionals are not recommended to be used for this type of study, in particular M08-SO and M11-L, because M08-SO systematically overstabilizes the high spin state, and M11-L systematically overstabilizes the low spin state. We studied spin states of Fe2+ion, gaseous FeO, and 14 Fe(ii), Fe(iii) and Fe(iv) complexes using density functional theory. Our ability to understand and simulate the reactions catalyzed by iron depends strongly on our ability to predict the relative energetics of spin states. In this work, we studied the electronic structures of Fe2+ ion, gaseous FeO and 14 iron complexes using Kohn-Sham density functional theory with particular focus on determining the ground spin state of these species as well as the magnitudes of relevant spin-state energy splittings. The 14 iron complexes investigated in this work have hexacoordinate geometries of which seven are Fe(ii), five are Fe(iii) and two are Fe(iv) complexes. These are calculated using 20 exchange-correlation functionals. In particular, we use a local spin density approximation (LSDA) - GVWN5, four generalized gradient approximations (GGAs) - BLYP, PBE, OPBE and OLYP, two non-separable gradient approximations (NGAs) - GAM and N12, two meta-GGAs - M06-L and M11-L, a meta-NGA - MN15-L, five hybrid GGAs - B3LYP, B3LYP*, PBE0, B97-3 and SOGGA11-X, four hybrid meta-GGAs - M06, PW6B95, MPW1B95 and M08-SO and a hybrid meta-NGA - MN15. The density functional results are compared to reference data, which include experimental results as well as the results of diffusion Monte Carlo (DMC) calculations and ligand field theory estimates from the literature. For the Fe2+ ion, all functionals except M11-L correctly predict the ground spin state to be quintet. However, quantitatively, most of the functionals are not close to the experimentally determined spin-state splitting energies. For FeO all functionals predict quintet to be the ground spin state. For the 14 iron complexes, the hybrid functionals B3LYP, MPW1B95 and MN15 correctly predict the ground spin state of 13 out of 14 complexes and PW6B95 gets all the 14 complexes right. The local functionals, OPBE, OLYP and M06-L, predict the correct ground spin state for 12 out of 14 complexes. Two of the tested functionals are not recommended to be used for this type of study, in particular M08-SO and M11-L, because M08-SO systematically overstabilizes the high spin state, and M11-L systematically overstabilizes the low spin state. Our ability to understand and simulate the reactions catalyzed by iron depends strongly on our ability to predict the relative energetics of spin states. In this work, we studied the electronic structures of Fe ion, gaseous FeO and 14 iron complexes using Kohn-Sham density functional theory with particular focus on determining the ground spin state of these species as well as the magnitudes of relevant spin-state energy splittings. The 14 iron complexes investigated in this work have hexacoordinate geometries of which seven are Fe(ii), five are Fe(iii) and two are Fe(iv) complexes. These are calculated using 20 exchange-correlation functionals. In particular, we use a local spin density approximation (LSDA) - GVWN5, four generalized gradient approximations (GGAs) - BLYP, PBE, OPBE and OLYP, two non-separable gradient approximations (NGAs) - GAM and N12, two meta-GGAs - M06-L and M11-L, a meta-NGA - MN15-L, five hybrid GGAs - B3LYP, B3LYP*, PBE0, B97-3 and SOGGA11-X, four hybrid meta-GGAs - M06, PW6B95, MPW1B95 and M08-SO and a hybrid meta-NGA - MN15. The density functional results are compared to reference data, which include experimental results as well as the results of diffusion Monte Carlo (DMC) calculations and ligand field theory estimates from the literature. For the Fe ion, all functionals except M11-L correctly predict the ground spin state to be quintet. However, quantitatively, most of the functionals are not close to the experimentally determined spin-state splitting energies. For FeO all functionals predict quintet to be the ground spin state. For the 14 iron complexes, the hybrid functionals B3LYP, MPW1B95 and MN15 correctly predict the ground spin state of 13 out of 14 complexes and PW6B95 gets all the 14 complexes right. The local functionals, OPBE, OLYP and M06-L, predict the correct ground spin state for 12 out of 14 complexes. Two of the tested functionals are not recommended to be used for this type of study, in particular M08-SO and M11-L, because M08-SO systematically overstabilizes the high spin state, and M11-L systematically overstabilizes the low spin state. |
Author | Que, Lawrence Truhlar, Donald G. Verma, Pragya Varga, Zoltan Klein, Johannes E. M. N. Cramer, Christopher J. |
Author_xml | – sequence: 1 givenname: Pragya orcidid: 0000-0002-5722-0894 surname: Verma fullname: Verma, Pragya organization: Department of Chemistry, University of Minnesota, Minneapolis, USA, Chemical Theory Center and Minnesota Supercomputing Institute – sequence: 2 givenname: Zoltan surname: Varga fullname: Varga, Zoltan organization: Department of Chemistry, University of Minnesota, Minneapolis, USA, Chemical Theory Center and Minnesota Supercomputing Institute – sequence: 3 givenname: Johannes E. M. N. surname: Klein fullname: Klein, Johannes E. M. N. organization: Department of Chemistry, University of Minnesota, Minneapolis, USA, Center for Metals in Biocatalysis – sequence: 4 givenname: Christopher J. surname: Cramer fullname: Cramer, Christopher J. organization: Department of Chemistry, University of Minnesota, Minneapolis, USA, Chemical Theory Center and Minnesota Supercomputing Institute – sequence: 5 givenname: Lawrence surname: Que fullname: Que, Lawrence organization: Department of Chemistry, University of Minnesota, Minneapolis, USA, Center for Metals in Biocatalysis – sequence: 6 givenname: Donald G. orcidid: 0000-0002-7742-7294 surname: Truhlar fullname: Truhlar, Donald G. organization: Department of Chemistry, University of Minnesota, Minneapolis, USA, Chemical Theory Center and Minnesota Supercomputing Institute |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28484765$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1535192$$D View this record in Osti.gov |
BookMark | eNqFkctuFDEQRS0URJKBDR-ALFYBMeBnP5ZhRAApEixgbXnsasao2x5c7gj-gM_GnZmAhJBY-ZZ9bslV95ycxBSBkMecveRM9q827eYj46KRr--RM64aue5Zp05-67Y5JeeIXxljXHP5gJyKTnWqbfQZ-XmJCIgTxELTQGEEV3KKwVEseXZlzkAnKLvkkQ4p07ID6qFAnkK0JaS4uJbLLznN0VPch1ittgAuL1dwQUOgz14cVZXUVuy2uqmFS9N-hO-AD8n9wY4Ij47niny-evNp8259_eHt-83l9dop1Zc1aGsbcMPWylbyrpWa9cwp1go_NK5TMGjLlO4lE3YQQ6u58IIBb5n3fCu8XJGnh74JSzDoQgG3cynGOrjhWmreiwpdHKB9Tt9mwGKmgA7G0UZIMxreV1JoLZv_o13fdH27wCvy5IjO2wm82ecw2fzD3KVRAXYAXE6IGQZTv3e75ZJtGA1nZgnc_Am8Wp7_Zbnr-g_4FwjYqCQ |
CitedBy_id | crossref_primary_10_1021_acs_organomet_4c00343 crossref_primary_10_1021_acs_jpca_2c08456 crossref_primary_10_1002_cssc_202002594 crossref_primary_10_1021_jacs_7b06107 crossref_primary_10_1021_acs_jpca_4c04959 crossref_primary_10_1021_jacs_3c06709 crossref_primary_10_1039_C8CP04381G crossref_primary_10_1021_acs_jctc_9b00842 crossref_primary_10_1002_chem_202101045 crossref_primary_10_1039_C8CP01333K crossref_primary_10_1039_C9NJ02462J crossref_primary_10_1039_C7CY01283G crossref_primary_10_1007_s00775_019_01678_x crossref_primary_10_1021_acs_inorgchem_1c01306 crossref_primary_10_1002_jcc_26818 crossref_primary_10_1088_2058_9565_ad9ed3 crossref_primary_10_1039_D0CP00807A crossref_primary_10_1021_acs_jpcc_8b02698 crossref_primary_10_1021_acs_inorgchem_8b00333 crossref_primary_10_1002_zaac_202400061 crossref_primary_10_1021_acs_inorgchem_3c01335 crossref_primary_10_1039_D4SC02882A crossref_primary_10_1002_zaac_202000355 crossref_primary_10_1021_acs_jpcc_0c03294 crossref_primary_10_1039_C8CP07671E crossref_primary_10_1002_adfm_202213039 crossref_primary_10_1002_chem_201800423 crossref_primary_10_1021_acs_inorgchem_7b02964 crossref_primary_10_1039_C9CP00105K crossref_primary_10_1039_D3DT02032K crossref_primary_10_1021_acs_jpca_2c07556 crossref_primary_10_1021_acs_jctc_2c00265 crossref_primary_10_3390_molecules25051224 crossref_primary_10_1021_acs_jctc_4c00092 crossref_primary_10_1016_j_jaecs_2023_100184 crossref_primary_10_1002_ijch_201700059 crossref_primary_10_1039_D3CP03537A crossref_primary_10_1016_j_jmgm_2024_108867 crossref_primary_10_1002_chem_201704977 crossref_primary_10_1039_C9DT01731C crossref_primary_10_1002_jcc_27179 crossref_primary_10_1021_acs_jpca_7b12652 crossref_primary_10_1021_acs_organomet_0c00149 crossref_primary_10_1021_acs_jpca_9b10772 crossref_primary_10_1002_jcc_25714 crossref_primary_10_1002_chem_201800071 crossref_primary_10_1021_acs_inorgchem_8b01695 crossref_primary_10_1002_chem_202303300 crossref_primary_10_1021_acs_jctc_7b00848 crossref_primary_10_1039_D2CY00200K crossref_primary_10_1021_acs_inorgchem_2c00640 crossref_primary_10_1039_D1DT01508G crossref_primary_10_1039_C7DT03067C crossref_primary_10_3390_molecules28083487 crossref_primary_10_1039_D0CP04401F crossref_primary_10_1016_j_saa_2021_120072 crossref_primary_10_1021_acs_jctc_4c00063 crossref_primary_10_1021_acs_jpca_0c01458 crossref_primary_10_1039_C7OB01814B crossref_primary_10_1039_C9ME00069K crossref_primary_10_1021_acs_jpca_8b12479 crossref_primary_10_1007_s00214_023_02974_1 crossref_primary_10_3389_fchem_2019_00219 crossref_primary_10_1021_acs_jctc_8b00337 crossref_primary_10_1021_acs_inorgchem_7b01459 crossref_primary_10_1002_cplu_202400550 crossref_primary_10_1021_acs_jpca_7b06032 crossref_primary_10_1021_acs_jctc_1c01267 crossref_primary_10_1039_C7CP04913G crossref_primary_10_1016_j_scitotenv_2024_171072 crossref_primary_10_1021_acs_inorgchem_2c02812 crossref_primary_10_1039_D4CP01327A crossref_primary_10_1021_acs_jctc_2c00925 crossref_primary_10_1021_acs_jctc_2c00924 crossref_primary_10_1021_acs_jpca_1c04793 crossref_primary_10_1021_acs_jpca_8b02027 crossref_primary_10_1039_D0CP02977G crossref_primary_10_1039_D1NJ01849C crossref_primary_10_1080_08927022_2018_1557331 crossref_primary_10_1039_C9DT04578C crossref_primary_10_1103_PhysRevX_10_011041 crossref_primary_10_1021_acs_inorgchem_0c00454 crossref_primary_10_1021_acs_jctc_0c00518 crossref_primary_10_1021_acs_jpca_4c05046 crossref_primary_10_1021_acs_jpca_3c08325 crossref_primary_10_1002_cssc_202300482 crossref_primary_10_1021_acscatal_0c04300 crossref_primary_10_1021_jacs_3c06030 crossref_primary_10_1039_C9CP01465A crossref_primary_10_1021_acs_jctc_8b00200 |
Cites_doi | 10.1063/1.3695642 10.1063/1.1710046 10.1016/j.ccr.2012.08.002 10.1021/ct800277a 10.1021/ja405086e 10.1063/1.448627 10.1021/jp102712z 10.1038/35051697 10.1016/0022-2852(80)90025-9 10.1016/j.cplett.2004.08.032 10.1016/S0010-8545(00)80430-0 10.1063/1.474622 10.1080/00268970512331317309 10.1103/PhysRevA.33.3742 10.1021/acs.accounts.5b00218 10.1103/PhysRev.140.A1133 10.1021/ja061609o 10.1016/0009-2614(85)80025-7 10.1007/s00214-010-0846-z 10.1002/9781119951438.eibc2344 10.1002/cphc.200400584 10.1039/b907148b 10.1021/ct800246v 10.1016/j.ijms.2013.05.032 10.1021/ja066615z 10.1126/science.299.5609.1037 10.1002/qua.560160511 10.1063/1.2406067 10.1007/s00775-015-1294-y 10.1021/jp074480t 10.1103/PhysRevA.38.3098 10.1073/pnas.0709471104 10.1002/zaac.200600200 10.1103/PhysRevA.47.2783 10.1039/C5CP01425E 10.1002/advs.201500006 10.1126/science.1119092 10.1021/jp803441m 10.1021/ja961199b 10.1021/ja205976v 10.1063/1.456153 10.1039/c2cp42025b 10.1021/ic901891n 10.1021/jp030141y 10.1103/PhysRevB.37.785 10.1063/1.3607312 10.1007/BF03159758 10.1021/jp048147q 10.1063/1.1998907 10.1021/ja991878x 10.1063/1.2061227 10.1016/0010-8545(90)80076-6 10.1039/C4CP01478B 10.1021/acs.jpclett.7b00570 10.1002/chem.200701739 10.1007/s00775-004-0588-2 10.1063/1.478522 10.1016/j.ccr.2012.04.020 10.1080/00268976.2015.1005706 10.1002/anie.200801832 10.1016/0009-2614(96)00521-0 10.1039/C6SC00705H 10.1063/1.1822923 10.1021/cr00027a011 10.1021/j100096a001 10.1021/jp040065e 10.1038/nchem.1132 10.1039/C3CP55506B 10.1080/00268970009483386 10.1023/A:1009252919854 10.1063/1.2335444 10.1016/0010-8545(89)80045-1 10.1038/ncomms1718 10.1021/acs.accounts.5b00053 10.1063/1.2353829 10.1103/PhysRevLett.77.3865 10.1021/ar600042c 10.1002/9781118898277 10.1021/acs.accounts.6b00271 10.1021/ic00162a037 10.1016/S1381-1169(00)00460-X 10.1103/PhysRevB.93.165120 10.1063/1.464913 10.1063/1.4926836 10.1016/0022-2852(82)90248-X 10.1039/b801803k 10.1063/1.1927081 10.1063/1.4752411 10.1021/jp050536c 10.1021/jp049043i 10.1039/B605229K 10.1103/PhysRevB.59.7413 10.1021/jp0539223 10.1038/nchem.1956 10.1039/c3cc42200c 10.1063/1.2370993 10.1063/1.2406071 10.1038/nchembio.71 10.1021/ct400712k 10.1021/ct3002656 10.1021/acs.jctc.6b01102 10.1139/p80-159 10.1063/1.2820786 10.1021/ct900567c 10.1063/1.1493179 10.1063/1.440892 10.1021/ic202344w 10.1080/00268970010018431 10.1016/0301-0104(82)87004-3 10.1021/ja053847+ 10.1039/b508541a 10.1007/s00214-001-0300-3 10.1103/RevModPhys.73.33 10.1063/1.2991180 10.1021/ja205254s 10.1021/ja065365j 10.1063/1.1678164 10.1063/1.3598529 10.1039/c0cp02984j 10.1038/nchem.943 10.1103/PhysRevB.31.7588 10.1021/jz201525m 10.1021/jacs.5b00382 10.1063/1.2148954 10.1002/qua.24255 10.1016/j.ccr.2008.05.014 10.1021/ar990028j 10.1021/ja9106176 10.1063/1.462209 10.1002/anie.200803066 10.1021/ja507617h 10.1021/ja509465w 10.1021/cr500425u 10.1038/nature19059 10.1063/1.3663871 10.1021/ic0261068 10.1021/ja044940l 10.1007/s00214-007-0310-x 10.1063/1.470829 10.1021/ct300737t 10.1039/C3SC52755G 10.1007/BF03156228 10.1021/jz100359h 10.1103/PhysRevB.33.8822 10.1021/acs.inorgchem.5b02371 10.1021/acs.jctc.5b01082 10.1021/ic000954q 10.1016/S0010-8545(02)00330-2 10.1063/1.1839854 10.1063/1.2838987 |
ContentType | Journal Article |
CorporateAuthor | Univ. of Minnesota, Minneapolis, MN (United States) |
CorporateAuthor_xml | – name: Univ. of Minnesota, Minneapolis, MN (United States) |
DBID | AAYXX CITATION NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M OTOTI |
DOI | 10.1039/C7CP01263B |
DatabaseName | CrossRef PubMed MEDLINE - Academic Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace OSTI.GOV |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | MEDLINE - Academic CrossRef Materials Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1463-9084 |
EndPage | 13069 |
ExternalDocumentID | 1535192 28484765 10_1039_C7CP01263B |
Genre | Journal Article |
GroupedDBID | --- -DZ -~X 0-7 0R~ 0UZ 123 1TJ 29O 2WC 4.4 53G 6TJ 705 70~ 71~ 7~J 87K 9M8 AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACHDF ACIWK ACLDK ACNCT ACRPL ADMRA ADNMO ADSRN AEFDR AENEX AENGV AESAV AETIL AFFNX AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGKEF AGQPQ AGRSR AHGCF AHGXI AKMSF ALMA_UNASSIGNED_HOLDINGS ALSGL ALUYA ANBJS ANLMG ANUXI APEMP ASKNT ASPBG AUDPV AVWKF AZFZN BBWZM BLAPV BSQNT C6K CAG CITATION COF CS3 D0L DU5 EBS ECGLT EE0 EEHRC EF- EJD F5P FEDTE GGIMP GNO H13 HVGLF HZ~ H~9 H~N IDY IDZ J3G J3H J3I L-8 M4U MVM N9A NDZJH NHB O9- P2P R56 R7B R7C RAOCF RCLXC RCNCU RIG RNS ROL RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UHB VH6 WH7 XJT XOL YNT ZCG -JG AGSTE NPM OK1 UCJ 7X8 7SR 7U5 8BQ 8FD JG9 L7M 70J AAGNR ABGFH OTOTI XFK |
ID | FETCH-LOGICAL-c449t-e5aa6ecfba37318735090c4072df6c84ef5a0459302af2f7512d20e170dd1b2d3 |
ISSN | 1463-9076 1463-9084 |
IngestDate | Fri May 19 02:14:19 EDT 2023 Fri Jul 11 07:07:54 EDT 2025 Fri Jul 11 10:56:54 EDT 2025 Wed Feb 19 02:40:08 EST 2025 Tue Jul 01 01:55:04 EDT 2025 Thu Apr 24 22:56:41 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c449t-e5aa6ecfba37318735090c4072df6c84ef5a0459302af2f7512d20e170dd1b2d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE Office of Science (SC) SC0008688 |
ORCID | 0000-0002-7742-7294 0000-0002-5722-0894 0000000277427294 0000000257220894 |
OpenAccessLink | https://www.osti.gov/biblio/2311186 |
PMID | 28484765 |
PQID | 1896897255 |
PQPubID | 23479 |
PageCount | 21 |
ParticipantIDs | osti_scitechconnect_1535192 proquest_miscellaneous_1915325536 proquest_miscellaneous_1896897255 pubmed_primary_28484765 crossref_citationtrail_10_1039_C7CP01263B crossref_primary_10_1039_C7CP01263B |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-00-00 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – year: 2017 text: 2017-00-00 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: United States |
PublicationTitle | Physical chemistry chemical physics : PCCP |
PublicationTitleAlternate | Phys Chem Chem Phys |
PublicationYear | 2017 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Hess (C7CP01263B-(cit154)/*[position()=1]) 1986; 33 Meng (C7CP01263B-(cit12)/*[position()=1]) 2011; 133 Swart (C7CP01263B-(cit45)/*[position()=1]) 2008; 4 Schultz (C7CP01263B-(cit72)/*[position()=1]) 2005; 109 Luo (C7CP01263B-(cit56)/*[position()=1]) 2014; 10 Peverati (C7CP01263B-(cit102)/*[position()=1]) 2011; 135 Bowman (C7CP01263B-(cit48)/*[position()=1]) 2012; 51 Ruiz (C7CP01263B-(cit49)/*[position()=1]) 1997; 119 Ruedenberg (C7CP01263B-(cit118)/*[position()=1]) 1979; 16 Neese (C7CP01263B-(cit114)/*[position()=1]) 2009; 253 Choi (C7CP01263B-(cit32)/*[position()=1]) 2003; 107 Swart (C7CP01263B-(cit153)/*[position()=1]) 2010; 114 Thibon (C7CP01263B-(cit86)/*[position()=1]) 2008; 47 Bruschi (C7CP01263B-(cit61)/*[position()=1]) 2004; 9 Hirao (C7CP01263B-(cit5)/*[position()=1]) 2006; 128 Zhao (C7CP01263B-(cit108)/*[position()=1]) 2008; 4 Roos (C7CP01263B-(cit119)/*[position()=1]) 1980; 14 Lee (C7CP01263B-(cit68)/*[position()=1]) 1988; 37 Moore (C7CP01263B-(cit128)/*[position()=1]) 1952 Zhao (C7CP01263B-(cit105)/*[position()=1]) 2004; 108 Allen (C7CP01263B-(cit156)/*[position()=1]) 1996; 257 Bao (C7CP01263B-(cit79)/*[position()=1]) 2017; 13 Hirao (C7CP01263B-(cit136)/*[position()=1]) 2008; 14 Crabtree (C7CP01263B-(cit149)/*[position()=1]) 1994 Grimme (C7CP01263B-(cit71)/*[position()=1]) 2006; 124 Swart (C7CP01263B-(cit52)/*[position()=1]) 2013; 113 Yang (C7CP01263B-(cit54)/*[position()=1]) 2011; 135 Luo (C7CP01263B-(cit55)/*[position()=1]) 2012; 8 England (C7CP01263B-(cit87)/*[position()=1]) 2014; 5 Kepp (C7CP01263B-(cit47)/*[position()=1]) 2016; 55 Daku (C7CP01263B-(cit43)/*[position()=1]) 2005; 6 Toftlund (C7CP01263B-(cit19)/*[position()=1]) 1989; 94 Gáspár (C7CP01263B-(cit93)/*[position()=1]) 1974; 35 Kovaleva (C7CP01263B-(cit15)/*[position()=1]) 2008; 4 Peverati (C7CP01263B-(cit98)/*[position()=1]) 2012; 3 Kepp (C7CP01263B-(cit37)/*[position()=1]) 2013; 257 Pierloot (C7CP01263B-(cit64)/*[position()=1]) 2008; 128 Hohenberger (C7CP01263B-(cit21)/*[position()=1]) 2012; 3 McDonald (C7CP01263B-(cit138)/*[position()=1]) 2013; 257 Balabanov (C7CP01263B-(cit112)/*[position()=1]) 2005; 123 Kohn (C7CP01263B-(cit91)/*[position()=1]) 1965; 140 Goerigk (C7CP01263B-(cit155)/*[position()=1]) 2011; 13 Snyder (C7CP01263B-(cit10)/*[position()=1]) 2016; 536 Oloo (C7CP01263B-(cit23)/*[position()=1]) 2015; 48 Valero (C7CP01263B-(cit145)/*[position()=1]) 2008; 128 Prat (C7CP01263B-(cit24)/*[position()=1]) 2011; 3 Berry (C7CP01263B-(cit26)/*[position()=1]) 2008; 10 de Visser (C7CP01263B-(cit46)/*[position()=1]) 2006; 128 Ruedenberg (C7CP01263B-(cit121)/*[position()=1]) 1982; 71 Ganzenmüller (C7CP01263B-(cit60)/*[position()=1]) 2005; 122 Perdew (C7CP01263B-(cit82)/*[position()=1]) 1986; 33 Becke (C7CP01263B-(cit81)/*[position()=1]) 1988; 38 Needs (C7CP01263B-(cit75)/*[position()=1]) 2010; 22 Goodwin (C7CP01263B-(cit18)/*[position()=1]) 1976; 18 Becke (C7CP01263B-(cit83)/*[position()=1]) 1993; 98 Klein (C7CP01263B-(cit139)/*[position()=1]) 2016 Vosko (C7CP01263B-(cit94)/*[position()=1]) 1980; 58 Yamamoto (C7CP01263B-(cit148)/*[position()=1]) 1986 Salomon (C7CP01263B-(cit59)/*[position()=1]) 2002; 117 Gagliardi (C7CP01263B-(cit125)/*[position()=1]) 2005; 127 Fouqueau (C7CP01263B-(cit42)/*[position()=1]) 2004; 120 Feig (C7CP01263B-(cit14)/*[position()=1]) 1994; 94 Yu (C7CP01263B-(cit104)/*[position()=1]) 2016; 7 Reiher (C7CP01263B-(cit58)/*[position()=1]) 2001; 107 Bauer (C7CP01263B-(cit7)/*[position()=1]) 2015; 115 Mal (C7CP01263B-(cit11)/*[position()=1]) 2008; 47 Bloch (C7CP01263B-(cit27)/*[position()=1]) 2011; 133 Shaik (C7CP01263B-(cit35)/*[position()=1]) 2013; 354–355 Foulkes (C7CP01263B-(cit74)/*[position()=1]) 2001; 73 Bukowski (C7CP01263B-(cit131)/*[position()=1]) 2005; 310 Güell (C7CP01263B-(cit152)/*[position()=1]) 2008; 112 Docken (C7CP01263B-(cit117)/*[position()=1]) 1972; 57 Gütlich (C7CP01263B-(cit20)/*[position()=1]) 1990; 97 Shi (C7CP01263B-(cit29)/*[position()=1]) 2015; 2 Pierre (C7CP01263B-(cit17)/*[position()=1]) 1999; 12 Berning (C7CP01263B-(cit116)/*[position()=1]) 2000; 98 Malassa (C7CP01263B-(cit129)/*[position()=1]) 2006; 632 Chen (C7CP01263B-(cit141)/*[position()=1]) 2010; 1 Nam (C7CP01263B-(cit22)/*[position()=1]) 2015; 48 Swart (C7CP01263B-(cit3)/*[position()=1]) 2016; 49 Schmidt (C7CP01263B-(cit57)/*[position()=1]) 2016; 93 Sakellaris (C7CP01263B-(cit133)/*[position()=1]) 2011; 134 Roos (C7CP01263B-(cit126)/*[position()=1]) 2006; 128 Jensen (C7CP01263B-(cit70)/*[position()=1]) 2007; 126 Hirao (C7CP01263B-(cit4)/*[position()=1]) 2005; 127 Conradie (C7CP01263B-(cit50)/*[position()=1]) 2007; 111 Görling (C7CP01263B-(cit150)/*[position()=1]) 1993; 47 Verma (C7CP01263B-(cit9)/*[position()=1]) 2015; 137 Fouqueau (C7CP01263B-(cit41)/*[position()=1]) 2005; 122 Swart (C7CP01263B-(cit63)/*[position()=1]) 2004; 108 Harris (C7CP01263B-(cit159)/*[position()=1]) 1980; 84 Perdew (C7CP01263B-(cit67)/*[position()=1]) 1996; 77 Schröder (C7CP01263B-(cit34)/*[position()=1]) 2000; 33 Ghigo (C7CP01263B-(cit77)/*[position()=1]) 2004; 396 Dunning, Jr. (C7CP01263B-(cit127)/*[position()=1]) 1989; 90 Ogliaro (C7CP01263B-(cit1)/*[position()=1]) 2000; 122 Keal (C7CP01263B-(cit106)/*[position()=1]) 2005; 123 Mandal (C7CP01263B-(cit137)/*[position()=1]) 2015; 137 Swart (C7CP01263B-(cit2)/*[position()=1]) 2015 Zein (C7CP01263B-(cit40)/*[position()=1]) 2007; 126 Ioannidis (C7CP01263B-(cit38)/*[position()=1]) 2015; 143 Zhao (C7CP01263B-(cit103)/*[position()=1]) 2008; 120 Zheng (C7CP01263B-(cit110)/*[position()=1]) 2011; 128 Zhao (C7CP01263B-(cit97)/*[position()=1]) 2006; 125 Wieghardt (C7CP01263B-(cit130)/*[position()=1]) 1983; 22 Radoń (C7CP01263B-(cit73)/*[position()=1]) 2014; 16 Rohde (C7CP01263B-(cit132)/*[position()=1]) 2003; 299 Zhao (C7CP01263B-(cit107)/*[position()=1]) 2005; 109 Vancoillie (C7CP01263B-(cit84)/*[position()=1]) 2010; 6 Shaik (C7CP01263B-(cit140)/*[position()=1]) 2011; 3 Walsh (C7CP01263B-(cit8)/*[position()=1]) 2001; 409 Shaik (C7CP01263B-(cit6)/*[position()=1]) 2007; 40 Xiao (C7CP01263B-(cit28)/*[position()=1]) 2014; 6 Adamo (C7CP01263B-(cit101)/*[position()=1]) 1999; 110 Cheung (C7CP01263B-(cit134)/*[position()=1]) 1982; 95 Smith (C7CP01263B-(cit62)/*[position()=1]) 2005; 103 Drechsler (C7CP01263B-(cit158)/*[position()=1]) 1997; 107 Mukherjee (C7CP01263B-(cit16)/*[position()=1]) 2010; 49 Hammer (C7CP01263B-(cit69)/*[position()=1]) 1999; 59 Balabanov (C7CP01263B-(cit111)/*[position()=1]) 2006; 125 Yi (C7CP01263B-(cit143)/*[position()=1]) 2015; 20 Sastri (C7CP01263B-(cit135)/*[position()=1]) 2007; 104 Gáspár (C7CP01263B-(cit92)/*[position()=1]) 1954; 3 Werner (C7CP01263B-(cit122)/*[position()=1]) 1985; 82 Laurier (C7CP01263B-(cit30)/*[position()=1]) 2013; 135 Werner (C7CP01263B-(cit120)/*[position()=1]) 1981; 74 Gagliardi (C7CP01263B-(cit124)/*[position()=1]) 2003; 42 Knowles (C7CP01263B-(cit123)/*[position()=1]) 1985; 115 Yu (C7CP01263B-(cit99)/*[position()=1]) 2016; 12 Andersson (C7CP01263B-(cit76)/*[position()=1]) 1992; 96 Wilbraham (C7CP01263B-(cit80)/*[position()=1]) 2017; 8 Droghetti (C7CP01263B-(cit39)/*[position()=1]) 2012; 137 Reiher (C7CP01263B-(cit151)/*[position()=1]) 2007; 135 Johansson (C7CP01263B-(cit144)/*[position()=1]) 2008; 129 Isley, III (C7CP01263B-(cit65)/*[position()=1]) 2014; 16 Handy (C7CP01263B-(cit66)/*[position()=1]) 2001; 99 Stephens (C7CP01263B-(cit100)/*[position()=1]) 1994; 98 Peverati (C7CP01263B-(cit95)/*[position()=1]) 2012; 8 Weigend (C7CP01263B-(cit109)/*[position()=1]) 2005; 7 Kumar (C7CP01263B-(cit25)/*[position()=1]) 2010; 132 Knops-Gerrits (C7CP01263B-(cit31)/*[position()=1]) 2001; 166 Sharma (C7CP01263B-(cit78)/*[position()=1]) 2012; 136 Paulsen (C7CP01263B-(cit36)/*[position()=1]) 2001; 40 Cramer (C7CP01263B-(cit51)/*[position()=1]) 2009; 11 Ronson (C7CP01263B-(cit13)/*[position()=1]) 2014; 136 Kim (C7CP01263B-(cit160)/*[position()=1]) 2015; 113 Gunnarsson (C7CP01263B-(cit53)/*[position()=1]) 1985; 31 Pierloot (C7CP01263B-(cit44)/*[position()=1]) 2006; 125 Becke (C7CP01263B-(cit146)/*[position()=1]) 1996; 104 Rohde (C7CP01263B-(cit85)/*[position()=1]) 2003; 299 Choi (C7CP01263B-(cit33)/*[position()=1]) 2004; 108 Peverati (C7CP01263B-(cit147)/*[position()=1]) 2012; 14 Yu (C7CP01263B-(cit96)/*[position()=1]) 2015; 17 Swart (C7CP01263B-(cit142)/*[position()=1]) 2013; 49 Steimle (C7CP01263B-(cit157)/*[position()=1]) 2004; 121 Ciofini (C7CP01263B-(cit113)/*[position()=1]) 2003; 238 |
References_xml | – volume: 136 start-page: 124121 year: 2012 ident: C7CP01263B-(cit78)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.3695642 – volume: 120 start-page: 9473 year: 2004 ident: C7CP01263B-(cit42)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1710046 – volume: 257 start-page: 414 year: 2013 ident: C7CP01263B-(cit138)/*[position()=1] publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2012.08.002 – volume: 4 start-page: 2057 year: 2008 ident: C7CP01263B-(cit45)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/ct800277a – volume: 135 start-page: 14488 year: 2013 ident: C7CP01263B-(cit30)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja405086e – volume: 82 start-page: 5053 year: 1985 ident: C7CP01263B-(cit122)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.448627 – volume: 114 start-page: 7191 year: 2010 ident: C7CP01263B-(cit153)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/jp102712z – volume: 409 start-page: 226 year: 2001 ident: C7CP01263B-(cit8)/*[position()=1] publication-title: Nature doi: 10.1038/35051697 – volume: 84 start-page: 334 year: 1980 ident: C7CP01263B-(cit159)/*[position()=1] publication-title: J. Mol. Spectrosc. doi: 10.1016/0022-2852(80)90025-9 – volume: 396 start-page: 142 year: 2004 ident: C7CP01263B-(cit77)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2004.08.032 – volume: 18 start-page: 293 year: 1976 ident: C7CP01263B-(cit18)/*[position()=1] publication-title: Coord. Chem. Rev. doi: 10.1016/S0010-8545(00)80430-0 – volume: 107 start-page: 2284 year: 1997 ident: C7CP01263B-(cit158)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.474622 – volume: 103 start-page: 273 year: 2005 ident: C7CP01263B-(cit62)/*[position()=1] publication-title: Mol. Phys. doi: 10.1080/00268970512331317309 – volume: 33 start-page: 3742 year: 1986 ident: C7CP01263B-(cit154)/*[position()=1] publication-title: Phys. Rev. A: At., Mol., Opt. Phys. doi: 10.1103/PhysRevA.33.3742 – volume: 48 start-page: 2415 year: 2015 ident: C7CP01263B-(cit22)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.5b00218 – volume: 140 start-page: A1133 year: 1965 ident: C7CP01263B-(cit91)/*[position()=1] publication-title: Phys. Rev. doi: 10.1103/PhysRev.140.A1133 – volume: 128 start-page: 8590 year: 2006 ident: C7CP01263B-(cit5)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja061609o – volume: 115 start-page: 259 year: 1985 ident: C7CP01263B-(cit123)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(85)80025-7 – volume: 128 start-page: 295 year: 2011 ident: C7CP01263B-(cit110)/*[position()=1] publication-title: Theor. Chem. Acc. doi: 10.1007/s00214-010-0846-z – volume-title: Encyclopedia of Inorganic and Bioinorganic Chemistry (EIBC) year: 2016 ident: C7CP01263B-(cit139)/*[position()=1] doi: 10.1002/9781119951438.eibc2344 – volume: 6 start-page: 1393 year: 2005 ident: C7CP01263B-(cit43)/*[position()=1] publication-title: ChemPhysChem doi: 10.1002/cphc.200400584 – volume: 11 start-page: 10757 year: 2009 ident: C7CP01263B-(cit51)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b907148b – volume: 4 start-page: 1849 year: 2008 ident: C7CP01263B-(cit108)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/ct800246v – volume: 354–355 start-page: 5 year: 2013 ident: C7CP01263B-(cit35)/*[position()=1] publication-title: Int. J. Mass Spectrom. doi: 10.1016/j.ijms.2013.05.032 – volume: 128 start-page: 1700 year: 2006 ident: C7CP01263B-(cit126)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja066615z – volume: 299 start-page: 1037 year: 2003 ident: C7CP01263B-(cit85)/*[position()=1] publication-title: Science doi: 10.1126/science.299.5609.1037 – volume: 16 start-page: 1069 year: 1979 ident: C7CP01263B-(cit118)/*[position()=1] publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.560160511 – volume: 126 start-page: 014105 year: 2007 ident: C7CP01263B-(cit40)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.2406067 – volume: 20 start-page: 1123 year: 2015 ident: C7CP01263B-(cit143)/*[position()=1] publication-title: J. Biol. Inorg. Chem. doi: 10.1007/s00775-015-1294-y – volume: 111 start-page: 12621 year: 2007 ident: C7CP01263B-(cit50)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp074480t – volume: 38 start-page: 3098 year: 1988 ident: C7CP01263B-(cit81)/*[position()=1] publication-title: Phys. Rev. A: At., Mol., Opt. Phys. doi: 10.1103/PhysRevA.38.3098 – volume: 14 start-page: 175 year: 1980 ident: C7CP01263B-(cit119)/*[position()=1] publication-title: Int. J. Quantum Chem., Symp. – volume: 104 start-page: 19181 year: 2007 ident: C7CP01263B-(cit135)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0709471104 – volume: 632 start-page: 2355 year: 2006 ident: C7CP01263B-(cit129)/*[position()=1] publication-title: Z. Anorg. Allg. Chem. doi: 10.1002/zaac.200600200 – volume: 47 start-page: 2783 year: 1993 ident: C7CP01263B-(cit150)/*[position()=1] publication-title: Phys. Rev. A: At., Mol., Opt. Phys. doi: 10.1103/PhysRevA.47.2783 – volume: 17 start-page: 12146 year: 2015 ident: C7CP01263B-(cit96)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C5CP01425E – volume: 2 start-page: 1500006 year: 2015 ident: C7CP01263B-(cit29)/*[position()=1] publication-title: Adv. Sci. doi: 10.1002/advs.201500006 – volume: 310 start-page: 1000 year: 2005 ident: C7CP01263B-(cit131)/*[position()=1] publication-title: Science doi: 10.1126/science.1119092 – volume: 112 start-page: 6384 year: 2008 ident: C7CP01263B-(cit152)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/jp803441m – volume: 119 start-page: 1297 year: 1997 ident: C7CP01263B-(cit49)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja961199b – volume: 133 start-page: 14814 year: 2011 ident: C7CP01263B-(cit27)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja205976v – volume: 90 start-page: 1007 year: 1989 ident: C7CP01263B-(cit127)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.456153 – volume: 14 start-page: 13171 year: 2012 ident: C7CP01263B-(cit147)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c2cp42025b – volume: 49 start-page: 3618 year: 2010 ident: C7CP01263B-(cit16)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic901891n – volume: 107 start-page: 11843 year: 2003 ident: C7CP01263B-(cit32)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp030141y – volume: 37 start-page: 785 year: 1988 ident: C7CP01263B-(cit68)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.37.785 – volume: 135 start-page: 044118 year: 2011 ident: C7CP01263B-(cit54)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.3607312 – volume: 35 start-page: 213 year: 1974 ident: C7CP01263B-(cit93)/*[position()=1] publication-title: Acta Phys. Hung. doi: 10.1007/BF03159758 – volume: 108 start-page: 6908 year: 2004 ident: C7CP01263B-(cit105)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/jp048147q – volume: 123 start-page: 064107 year: 2005 ident: C7CP01263B-(cit112)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1998907 – volume: 122 start-page: 8977 year: 2000 ident: C7CP01263B-(cit1)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja991878x – volume: 123 start-page: 121103 year: 2005 ident: C7CP01263B-(cit106)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.2061227 – volume: 97 start-page: 1 year: 1990 ident: C7CP01263B-(cit20)/*[position()=1] publication-title: Coord. Chem. Rev. doi: 10.1016/0010-8545(90)80076-6 – volume: 16 start-page: 10620 year: 2014 ident: C7CP01263B-(cit65)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP01478B – volume: 8 start-page: 2026 year: 2017 ident: C7CP01263B-(cit80)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.7b00570 – volume: 14 start-page: 1740 year: 2008 ident: C7CP01263B-(cit136)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.200701739 – volume: 9 start-page: 873 year: 2004 ident: C7CP01263B-(cit61)/*[position()=1] publication-title: J. Biol. Inorg. Chem. doi: 10.1007/s00775-004-0588-2 – volume: 110 start-page: 6158 year: 1999 ident: C7CP01263B-(cit101)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.478522 – volume-title: Organotransition Metal Chemistry year: 1986 ident: C7CP01263B-(cit148)/*[position()=1] – volume: 257 start-page: 196 year: 2013 ident: C7CP01263B-(cit37)/*[position()=1] publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2012.04.020 – volume: 113 start-page: 2105 year: 2015 ident: C7CP01263B-(cit160)/*[position()=1] publication-title: Mol. Phys. doi: 10.1080/00268976.2015.1005706 – volume: 47 start-page: 7064 year: 2008 ident: C7CP01263B-(cit86)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200801832 – volume: 257 start-page: 130 year: 1996 ident: C7CP01263B-(cit156)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(96)00521-0 – volume: 7 start-page: 5032 year: 2016 ident: C7CP01263B-(cit104)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C6SC00705H – volume: 121 start-page: 12303 year: 2004 ident: C7CP01263B-(cit157)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1822923 – volume: 94 start-page: 759 year: 1994 ident: C7CP01263B-(cit14)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr00027a011 – volume: 98 start-page: 11623 year: 1994 ident: C7CP01263B-(cit100)/*[position()=1] publication-title: J. Phys. Chem. doi: 10.1021/j100096a001 – volume: 108 start-page: 8970 year: 2004 ident: C7CP01263B-(cit33)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp040065e – volume: 3 start-page: 788 year: 2011 ident: C7CP01263B-(cit24)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.1132 – volume: 16 start-page: 14479 year: 2014 ident: C7CP01263B-(cit73)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C3CP55506B – volume: 98 start-page: 1823 year: 2000 ident: C7CP01263B-(cit116)/*[position()=1] publication-title: Mol. Phys. doi: 10.1080/00268970009483386 – volume-title: The Organometallic Chemistry of the Transition Metals year: 1994 ident: C7CP01263B-(cit149)/*[position()=1] – volume: 12 start-page: 195 year: 1999 ident: C7CP01263B-(cit17)/*[position()=1] publication-title: BioMetals doi: 10.1023/A:1009252919854 – volume: 125 start-page: 074110 year: 2006 ident: C7CP01263B-(cit111)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.2335444 – volume: 94 start-page: 67 year: 1989 ident: C7CP01263B-(cit19)/*[position()=1] publication-title: Coord. Chem. Rev. doi: 10.1016/0010-8545(89)80045-1 – volume: 3 start-page: 720 year: 2012 ident: C7CP01263B-(cit21)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms1718 – volume: 48 start-page: 2612 year: 2015 ident: C7CP01263B-(cit23)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.5b00053 – volume: 125 start-page: 124303 year: 2006 ident: C7CP01263B-(cit44)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.2353829 – volume: 77 start-page: 3865 year: 1996 ident: C7CP01263B-(cit67)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 40 start-page: 532 year: 2007 ident: C7CP01263B-(cit6)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar600042c – volume-title: Spin States in Biochemistry and Inorganic Chemistry: Influence on Structure and Reactivity year: 2015 ident: C7CP01263B-(cit2)/*[position()=1] doi: 10.1002/9781118898277 – volume: 49 start-page: 2690 year: 2016 ident: C7CP01263B-(cit3)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00271 – volume: 22 start-page: 2953 year: 1983 ident: C7CP01263B-(cit130)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic00162a037 – volume: 166 start-page: 135 year: 2001 ident: C7CP01263B-(cit31)/*[position()=1] publication-title: J. Mol. Catal. A: Chem. doi: 10.1016/S1381-1169(00)00460-X – volume: 93 start-page: 165120 year: 2016 ident: C7CP01263B-(cit57)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.93.165120 – volume: 98 start-page: 5648 year: 1993 ident: C7CP01263B-(cit83)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.464913 – volume: 143 start-page: 034104 year: 2015 ident: C7CP01263B-(cit38)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.4926836 – volume: 95 start-page: 213 year: 1982 ident: C7CP01263B-(cit134)/*[position()=1] publication-title: J. Mol. Spectrosc. doi: 10.1016/0022-2852(82)90248-X – volume: 10 start-page: 4361 year: 2008 ident: C7CP01263B-(cit26)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b801803k – volume: 22 start-page: 023201 year: 2010 ident: C7CP01263B-(cit75)/*[position()=1] publication-title: J. Phys.: Condens. Matter – volume: 122 start-page: 234321 year: 2005 ident: C7CP01263B-(cit60)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1927081 – volume: 137 start-page: 124303 year: 2012 ident: C7CP01263B-(cit39)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.4752411 – volume: 109 start-page: 5656 year: 2005 ident: C7CP01263B-(cit107)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/jp050536c – volume: 108 start-page: 5479 year: 2004 ident: C7CP01263B-(cit63)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/jp049043i – volume: 135 start-page: 97 year: 2007 ident: C7CP01263B-(cit151)/*[position()=1] publication-title: Faraday Discuss. doi: 10.1039/B605229K – volume: 59 start-page: 7413 year: 1999 ident: C7CP01263B-(cit69)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.59.7413 – volume: 109 start-page: 11127 year: 2005 ident: C7CP01263B-(cit72)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/jp0539223 – volume: 6 start-page: 590 year: 2014 ident: C7CP01263B-(cit28)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.1956 – volume: 49 start-page: 6650 year: 2013 ident: C7CP01263B-(cit142)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c3cc42200c – volume: 125 start-page: 194101 year: 2006 ident: C7CP01263B-(cit97)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.2370993 – volume: 126 start-page: 014103 year: 2007 ident: C7CP01263B-(cit70)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.2406071 – volume: 4 start-page: 186 year: 2008 ident: C7CP01263B-(cit15)/*[position()=1] publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.71 – volume: 10 start-page: 102 year: 2014 ident: C7CP01263B-(cit56)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/ct400712k – volume: 8 start-page: 2310 year: 2012 ident: C7CP01263B-(cit95)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/ct3002656 – volume: 13 start-page: 616 year: 2017 ident: C7CP01263B-(cit79)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.6b01102 – volume: 58 start-page: 1200 year: 1980 ident: C7CP01263B-(cit94)/*[position()=1] publication-title: Can. J. Phys. doi: 10.1139/p80-159 – volume: 128 start-page: 034104 year: 2008 ident: C7CP01263B-(cit64)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.2820786 – volume: 6 start-page: 576 year: 2010 ident: C7CP01263B-(cit84)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/ct900567c – volume: 117 start-page: 4729 year: 2002 ident: C7CP01263B-(cit59)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1493179 – volume: 74 start-page: 5794 year: 1981 ident: C7CP01263B-(cit120)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.440892 – volume-title: Atomic Energy Levels year: 1952 ident: C7CP01263B-(cit128)/*[position()=1] – volume: 51 start-page: 6011 year: 2012 ident: C7CP01263B-(cit48)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic202344w – volume: 99 start-page: 403 year: 2001 ident: C7CP01263B-(cit66)/*[position()=1] publication-title: Mol. Phys. doi: 10.1080/00268970010018431 – volume: 71 start-page: 41 year: 1982 ident: C7CP01263B-(cit121)/*[position()=1] publication-title: Chem. Phys. doi: 10.1016/0301-0104(82)87004-3 – volume: 127 start-page: 13007 year: 2005 ident: C7CP01263B-(cit4)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja053847+ – volume: 7 start-page: 3297 year: 2005 ident: C7CP01263B-(cit109)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b508541a – volume: 107 start-page: 48 year: 2001 ident: C7CP01263B-(cit58)/*[position()=1] publication-title: Theor. Chem. Acc. doi: 10.1007/s00214-001-0300-3 – volume: 73 start-page: 33 year: 2001 ident: C7CP01263B-(cit74)/*[position()=1] publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.73.33 – volume: 129 start-page: 154301 year: 2008 ident: C7CP01263B-(cit144)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.2991180 – volume: 133 start-page: 13652 year: 2011 ident: C7CP01263B-(cit12)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja205254s – volume: 128 start-page: 15809 year: 2006 ident: C7CP01263B-(cit46)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja065365j – volume: 57 start-page: 4928 year: 1972 ident: C7CP01263B-(cit117)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1678164 – volume: 134 start-page: 234308 year: 2011 ident: C7CP01263B-(cit133)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.3598529 – volume: 13 start-page: 6670 year: 2011 ident: C7CP01263B-(cit155)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c0cp02984j – volume: 3 start-page: 19 year: 2011 ident: C7CP01263B-(cit140)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.943 – volume: 31 start-page: 7588 year: 1985 ident: C7CP01263B-(cit53)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.31.7588 – volume: 3 start-page: 117 year: 2012 ident: C7CP01263B-(cit98)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz201525m – volume: 137 start-page: 5770 year: 2015 ident: C7CP01263B-(cit9)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b00382 – volume: 124 start-page: 034108 year: 2006 ident: C7CP01263B-(cit71)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.2148954 – volume: 113 start-page: 2 year: 2013 ident: C7CP01263B-(cit52)/*[position()=1] publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.24255 – volume: 253 start-page: 526 year: 2009 ident: C7CP01263B-(cit114)/*[position()=1] publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2008.05.014 – volume: 33 start-page: 139 year: 2000 ident: C7CP01263B-(cit34)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar990028j – volume: 132 start-page: 7656 year: 2010 ident: C7CP01263B-(cit25)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9106176 – volume: 96 start-page: 1218 year: 1992 ident: C7CP01263B-(cit76)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.462209 – volume: 47 start-page: 8297 year: 2008 ident: C7CP01263B-(cit11)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200803066 – volume: 136 start-page: 15615 year: 2014 ident: C7CP01263B-(cit13)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja507617h – volume: 299 start-page: 1037 year: 2003 ident: C7CP01263B-(cit132)/*[position()=1] publication-title: Science doi: 10.1126/science.299.5609.1037 – volume: 137 start-page: 722 year: 2015 ident: C7CP01263B-(cit137)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja509465w – volume: 115 start-page: 3170 year: 2015 ident: C7CP01263B-(cit7)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr500425u – volume: 536 start-page: 317 year: 2016 ident: C7CP01263B-(cit10)/*[position()=1] publication-title: Nature doi: 10.1038/nature19059 – volume: 135 start-page: 191102 year: 2011 ident: C7CP01263B-(cit102)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.3663871 – volume: 42 start-page: 1599 year: 2003 ident: C7CP01263B-(cit124)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic0261068 – volume: 127 start-page: 86 year: 2005 ident: C7CP01263B-(cit125)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja044940l – volume: 120 start-page: 215 year: 2008 ident: C7CP01263B-(cit103)/*[position()=1] publication-title: Theor. Chem. Acc. doi: 10.1007/s00214-007-0310-x – volume: 104 start-page: 1040 year: 1996 ident: C7CP01263B-(cit146)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.470829 – volume: 8 start-page: 4112 year: 2012 ident: C7CP01263B-(cit55)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/ct300737t – volume: 5 start-page: 1204 year: 2014 ident: C7CP01263B-(cit87)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C3SC52755G – volume: 3 start-page: 263 year: 1954 ident: C7CP01263B-(cit92)/*[position()=1] publication-title: Acta Phys. Hung. doi: 10.1007/BF03156228 – volume: 1 start-page: 1533 year: 2010 ident: C7CP01263B-(cit141)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz100359h – volume: 33 start-page: 8822 year: 1986 ident: C7CP01263B-(cit82)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.33.8822 – volume: 55 start-page: 2717 year: 2016 ident: C7CP01263B-(cit47)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.5b02371 – volume: 12 start-page: 1280 year: 2016 ident: C7CP01263B-(cit99)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.5b01082 – volume: 40 start-page: 2201 year: 2001 ident: C7CP01263B-(cit36)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic000954q – volume: 238 start-page: 187 year: 2003 ident: C7CP01263B-(cit113)/*[position()=1] publication-title: Coord. Chem. Rev. doi: 10.1016/S0010-8545(02)00330-2 – volume: 122 start-page: 044110 year: 2005 ident: C7CP01263B-(cit41)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1839854 – volume: 128 start-page: 114103 year: 2008 ident: C7CP01263B-(cit145)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.2838987 |
SSID | ssj0001513 |
Score | 2.528809 |
Snippet | Our ability to understand and simulate the reactions catalyzed by iron depends strongly on our ability to predict the relative energetics of spin states. In... We studied spin states of Fe2+ion, gaseous FeO, and 14 Fe(ii), Fe(iii) and Fe(iv) complexes using density functional theory. |
SourceID | osti proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 13049 |
SubjectTerms | Approximation Chemistry Coordination compounds Electron spin Electronic structure Functionals Grounds Iron Mathematical analysis Physics |
Title | Assessment of electronic structure methods for the determination of the ground spin states of Fe( ii ), Fe( iii ) and Fe( iv ) complexes |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28484765 https://www.proquest.com/docview/1896897255 https://www.proquest.com/docview/1915325536 https://www.osti.gov/biblio/1535192 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdKd4AL4psyQEZwoCrZkjgf9bFErcboRg_ttFvkOA5Uqppq7SbgyB_D38l7tpN0qKDBpY1dJ037fvH7Pft9EPIGJrx-KGTgAJUHA8X3AqcvC-mITIRZBk9fEGM08slpdDQLjs_D81br55bX0uUmO5Dfd8aV_I9UoQ_kilGy_yDZ-qLQAccgX3gFCcPrjWQ8qNNqIufbqmhjssLi3oCpEL2uvQnzyv2lYorYiaEduH6-mi97OsJI-3eMFLDPOdwe1wzXtLCpNxxM-wqb2i1dfbXeiJbpTioAyKqknDnCLrOcstbLEZMkqUPMzlBNaF57IT5_qxXGGRbj1bso5WLToPnjwhbqPC6_CFAX696wd9JsLSXodnbxWwIFuwtmlzlMPKedk4OIOdw1leQO1I6-aiLnW4D13a1p2cPNxJ0Kw2WYb1XGcgWaOmJZoxYrV4DTT-loNh6n0-H59BbZ88Ec8dtkbzCcfhjXOh94EzNxbOa2qkS4jB82175GfdolTOF_Nms0vZneI3etXUIHBmT3SUstH5DbSSW7h-RHAzZaFrQBG63BRi3YKICNAq7oNbDhWdhpwEYRbNSADT8ZqbfzefedeZ93KUBMH191aQ2vR2Q2Gk6TI8cW8HBkEPCNo0IhIiWLTLAYdEfMgJ26ElPy5UUk-4EqQgEmBWeuLwq_iIF85r6rvNjNcy_zc_aYtJflUj0llMsczgDyLnIWFF4Gcwz3Yy9QuSsLzmWHdKv_NpU2uz0WWVmk2suC8TSJk4mWw_sOeV2PXZmcLjtH7aOIUmCimE5Zot-Z3KTAEMDo8TvkVSW5FASBu2xiqcrLder1edTnMZjqfxnD4TIwgkUd8sSIvb4T4Ivw46Lw2Q2-YZ_cwWfFLAk-J22Qt3oBJHmTvbQI_QVErb7y |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+electronic+structure+methods+for+the+determination+of+the+ground+spin+states+of+Fe%28ii%29%2C+Fe%28iii%29+and+Fe%28iv%29+complexes&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Verma%2C+Pragya&rft.au=Varga%2C+Zoltan&rft.au=Klein%2C+Johannes+E+M+N&rft.au=Cramer%2C+Christopher+J&rft.date=2017&rft.issn=1463-9084&rft.eissn=1463-9084&rft.volume=19&rft.issue=20&rft.spage=13049&rft_id=info:doi/10.1039%2Fc7cp01263b&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon |