Assessment of electronic structure methods for the determination of the ground spin states of Fe( ii ), Fe( iii ) and Fe( iv ) complexes

Our ability to understand and simulate the reactions catalyzed by iron depends strongly on our ability to predict the relative energetics of spin states. In this work, we studied the electronic structures of Fe 2+ ion, gaseous FeO and 14 iron complexes using Kohn–Sham density functional theory with...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 19; no. 20; pp. 13049 - 13069
Main Authors Verma, Pragya, Varga, Zoltan, Klein, Johannes E. M. N., Cramer, Christopher J., Que, Lawrence, Truhlar, Donald G.
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Our ability to understand and simulate the reactions catalyzed by iron depends strongly on our ability to predict the relative energetics of spin states. In this work, we studied the electronic structures of Fe 2+ ion, gaseous FeO and 14 iron complexes using Kohn–Sham density functional theory with particular focus on determining the ground spin state of these species as well as the magnitudes of relevant spin-state energy splittings. The 14 iron complexes investigated in this work have hexacoordinate geometries of which seven are Fe( ii ), five are Fe( iii ) and two are Fe( iv ) complexes. These are calculated using 20 exchange–correlation functionals. In particular, we use a local spin density approximation (LSDA) – GVWN5, four generalized gradient approximations (GGAs) – BLYP, PBE, OPBE and OLYP, two non-separable gradient approximations (NGAs) – GAM and N12, two meta-GGAs – M06-L and M11-L, a meta-NGA – MN15-L, five hybrid GGAs – B3LYP, B3LYP*, PBE0, B97-3 and SOGGA11-X, four hybrid meta-GGAs – M06, PW6B95, MPW1B95 and M08-SO and a hybrid meta-NGA – MN15. The density functional results are compared to reference data, which include experimental results as well as the results of diffusion Monte Carlo (DMC) calculations and ligand field theory estimates from the literature. For the Fe 2+ ion, all functionals except M11-L correctly predict the ground spin state to be quintet. However, quantitatively, most of the functionals are not close to the experimentally determined spin-state splitting energies. For FeO all functionals predict quintet to be the ground spin state. For the 14 iron complexes, the hybrid functionals B3LYP, MPW1B95 and MN15 correctly predict the ground spin state of 13 out of 14 complexes and PW6B95 gets all the 14 complexes right. The local functionals, OPBE, OLYP and M06-L, predict the correct ground spin state for 12 out of 14 complexes. Two of the tested functionals are not recommended to be used for this type of study, in particular M08-SO and M11-L, because M08-SO systematically overstabilizes the high spin state, and M11-L systematically overstabilizes the low spin state.
AbstractList Our ability to understand and simulate the reactions catalyzed by iron depends strongly on our ability to predict the relative energetics of spin states. In this work, we studied the electronic structures of Fe2+ ion, gaseous FeO and 14 iron complexes using Kohn-Sham density functional theory with particular focus on determining the ground spin state of these species as well as the magnitudes of relevant spin-state energy splittings. The 14 iron complexes investigated in this work have hexacoordinate geometries of which seven are Fe(ii), five are Fe(iii) and two are Fe(iv) complexes. These are calculated using 20 exchange-correlation functionals. In particular, we use a local spin density approximation (LSDA) - GVWN5, four generalized gradient approximations (GGAs) - BLYP, PBE, OPBE and OLYP, two non-separable gradient approximations (NGAs) - GAM and N12, two meta-GGAs - M06-L and M11-L, a meta-NGA - MN15-L, five hybrid GGAs - B3LYP, B3LYP*, PBE0, B97-3 and SOGGA11-X, four hybrid meta-GGAs - M06, PW6B95, MPW1B95 and M08-SO and a hybrid meta-NGA - MN15. The density functional results are compared to reference data, which include experimental results as well as the results of diffusion Monte Carlo (DMC) calculations and ligand field theory estimates from the literature. For the Fe2+ ion, all functionals except M11-L correctly predict the ground spin state to be quintet. However, quantitatively, most of the functionals are not close to the experimentally determined spin-state splitting energies. For FeO all functionals predict quintet to be the ground spin state. For the 14 iron complexes, the hybrid functionals B3LYP, MPW1B95 and MN15 correctly predict the ground spin state of 13 out of 14 complexes and PW6B95 gets all the 14 complexes right. The local functionals, OPBE, OLYP and M06-L, predict the correct ground spin state for 12 out of 14 complexes. Two of the tested functionals are not recommended to be used for this type of study, in particular M08-SO and M11-L, because M08-SO systematically overstabilizes the high spin state, and M11-L systematically overstabilizes the low spin state.Our ability to understand and simulate the reactions catalyzed by iron depends strongly on our ability to predict the relative energetics of spin states. In this work, we studied the electronic structures of Fe2+ ion, gaseous FeO and 14 iron complexes using Kohn-Sham density functional theory with particular focus on determining the ground spin state of these species as well as the magnitudes of relevant spin-state energy splittings. The 14 iron complexes investigated in this work have hexacoordinate geometries of which seven are Fe(ii), five are Fe(iii) and two are Fe(iv) complexes. These are calculated using 20 exchange-correlation functionals. In particular, we use a local spin density approximation (LSDA) - GVWN5, four generalized gradient approximations (GGAs) - BLYP, PBE, OPBE and OLYP, two non-separable gradient approximations (NGAs) - GAM and N12, two meta-GGAs - M06-L and M11-L, a meta-NGA - MN15-L, five hybrid GGAs - B3LYP, B3LYP*, PBE0, B97-3 and SOGGA11-X, four hybrid meta-GGAs - M06, PW6B95, MPW1B95 and M08-SO and a hybrid meta-NGA - MN15. The density functional results are compared to reference data, which include experimental results as well as the results of diffusion Monte Carlo (DMC) calculations and ligand field theory estimates from the literature. For the Fe2+ ion, all functionals except M11-L correctly predict the ground spin state to be quintet. However, quantitatively, most of the functionals are not close to the experimentally determined spin-state splitting energies. For FeO all functionals predict quintet to be the ground spin state. For the 14 iron complexes, the hybrid functionals B3LYP, MPW1B95 and MN15 correctly predict the ground spin state of 13 out of 14 complexes and PW6B95 gets all the 14 complexes right. The local functionals, OPBE, OLYP and M06-L, predict the correct ground spin state for 12 out of 14 complexes. Two of the tested functionals are not recommended to be used for this type of study, in particular M08-SO and M11-L, because M08-SO systematically overstabilizes the high spin state, and M11-L systematically overstabilizes the low spin state.
Our ability to understand and simulate the reactions catalyzed by iron depends strongly on our ability to predict the relative energetics of spin states. In this work, we studied the electronic structures of Fe 2+ ion, gaseous FeO and 14 iron complexes using Kohn–Sham density functional theory with particular focus on determining the ground spin state of these species as well as the magnitudes of relevant spin-state energy splittings. The 14 iron complexes investigated in this work have hexacoordinate geometries of which seven are Fe( ii ), five are Fe( iii ) and two are Fe( iv ) complexes. These are calculated using 20 exchange–correlation functionals. In particular, we use a local spin density approximation (LSDA) – GVWN5, four generalized gradient approximations (GGAs) – BLYP, PBE, OPBE and OLYP, two non-separable gradient approximations (NGAs) – GAM and N12, two meta-GGAs – M06-L and M11-L, a meta-NGA – MN15-L, five hybrid GGAs – B3LYP, B3LYP*, PBE0, B97-3 and SOGGA11-X, four hybrid meta-GGAs – M06, PW6B95, MPW1B95 and M08-SO and a hybrid meta-NGA – MN15. The density functional results are compared to reference data, which include experimental results as well as the results of diffusion Monte Carlo (DMC) calculations and ligand field theory estimates from the literature. For the Fe 2+ ion, all functionals except M11-L correctly predict the ground spin state to be quintet. However, quantitatively, most of the functionals are not close to the experimentally determined spin-state splitting energies. For FeO all functionals predict quintet to be the ground spin state. For the 14 iron complexes, the hybrid functionals B3LYP, MPW1B95 and MN15 correctly predict the ground spin state of 13 out of 14 complexes and PW6B95 gets all the 14 complexes right. The local functionals, OPBE, OLYP and M06-L, predict the correct ground spin state for 12 out of 14 complexes. Two of the tested functionals are not recommended to be used for this type of study, in particular M08-SO and M11-L, because M08-SO systematically overstabilizes the high spin state, and M11-L systematically overstabilizes the low spin state.
We studied spin states of Fe2+ion, gaseous FeO, and 14 Fe(ii), Fe(iii) and Fe(iv) complexes using density functional theory.
Our ability to understand and simulate the reactions catalyzed by iron depends strongly on our ability to predict the relative energetics of spin states. In this work, we studied the electronic structures of Fe2+ ion, gaseous FeO and 14 iron complexes using Kohn-Sham density functional theory with particular focus on determining the ground spin state of these species as well as the magnitudes of relevant spin-state energy splittings. The 14 iron complexes investigated in this work have hexacoordinate geometries of which seven are Fe(ii), five are Fe(iii) and two are Fe(iv) complexes. These are calculated using 20 exchange-correlation functionals. In particular, we use a local spin density approximation (LSDA) - GVWN5, four generalized gradient approximations (GGAs) - BLYP, PBE, OPBE and OLYP, two non-separable gradient approximations (NGAs) - GAM and N12, two meta-GGAs - M06-L and M11-L, a meta-NGA - MN15-L, five hybrid GGAs - B3LYP, B3LYP*, PBE0, B97-3 and SOGGA11-X, four hybrid meta-GGAs - M06, PW6B95, MPW1B95 and M08-SO and a hybrid meta-NGA - MN15. The density functional results are compared to reference data, which include experimental results as well as the results of diffusion Monte Carlo (DMC) calculations and ligand field theory estimates from the literature. For the Fe2+ ion, all functionals except M11-L correctly predict the ground spin state to be quintet. However, quantitatively, most of the functionals are not close to the experimentally determined spin-state splitting energies. For FeO all functionals predict quintet to be the ground spin state. For the 14 iron complexes, the hybrid functionals B3LYP, MPW1B95 and MN15 correctly predict the ground spin state of 13 out of 14 complexes and PW6B95 gets all the 14 complexes right. The local functionals, OPBE, OLYP and M06-L, predict the correct ground spin state for 12 out of 14 complexes. Two of the tested functionals are not recommended to be used for this type of study, in particular M08-SO and M11-L, because M08-SO systematically overstabilizes the high spin state, and M11-L systematically overstabilizes the low spin state.
Our ability to understand and simulate the reactions catalyzed by iron depends strongly on our ability to predict the relative energetics of spin states. In this work, we studied the electronic structures of Fe ion, gaseous FeO and 14 iron complexes using Kohn-Sham density functional theory with particular focus on determining the ground spin state of these species as well as the magnitudes of relevant spin-state energy splittings. The 14 iron complexes investigated in this work have hexacoordinate geometries of which seven are Fe(ii), five are Fe(iii) and two are Fe(iv) complexes. These are calculated using 20 exchange-correlation functionals. In particular, we use a local spin density approximation (LSDA) - GVWN5, four generalized gradient approximations (GGAs) - BLYP, PBE, OPBE and OLYP, two non-separable gradient approximations (NGAs) - GAM and N12, two meta-GGAs - M06-L and M11-L, a meta-NGA - MN15-L, five hybrid GGAs - B3LYP, B3LYP*, PBE0, B97-3 and SOGGA11-X, four hybrid meta-GGAs - M06, PW6B95, MPW1B95 and M08-SO and a hybrid meta-NGA - MN15. The density functional results are compared to reference data, which include experimental results as well as the results of diffusion Monte Carlo (DMC) calculations and ligand field theory estimates from the literature. For the Fe ion, all functionals except M11-L correctly predict the ground spin state to be quintet. However, quantitatively, most of the functionals are not close to the experimentally determined spin-state splitting energies. For FeO all functionals predict quintet to be the ground spin state. For the 14 iron complexes, the hybrid functionals B3LYP, MPW1B95 and MN15 correctly predict the ground spin state of 13 out of 14 complexes and PW6B95 gets all the 14 complexes right. The local functionals, OPBE, OLYP and M06-L, predict the correct ground spin state for 12 out of 14 complexes. Two of the tested functionals are not recommended to be used for this type of study, in particular M08-SO and M11-L, because M08-SO systematically overstabilizes the high spin state, and M11-L systematically overstabilizes the low spin state.
Author Que, Lawrence
Truhlar, Donald G.
Verma, Pragya
Varga, Zoltan
Klein, Johannes E. M. N.
Cramer, Christopher J.
Author_xml – sequence: 1
  givenname: Pragya
  orcidid: 0000-0002-5722-0894
  surname: Verma
  fullname: Verma, Pragya
  organization: Department of Chemistry, University of Minnesota, Minneapolis, USA, Chemical Theory Center and Minnesota Supercomputing Institute
– sequence: 2
  givenname: Zoltan
  surname: Varga
  fullname: Varga, Zoltan
  organization: Department of Chemistry, University of Minnesota, Minneapolis, USA, Chemical Theory Center and Minnesota Supercomputing Institute
– sequence: 3
  givenname: Johannes E. M. N.
  surname: Klein
  fullname: Klein, Johannes E. M. N.
  organization: Department of Chemistry, University of Minnesota, Minneapolis, USA, Center for Metals in Biocatalysis
– sequence: 4
  givenname: Christopher J.
  surname: Cramer
  fullname: Cramer, Christopher J.
  organization: Department of Chemistry, University of Minnesota, Minneapolis, USA, Chemical Theory Center and Minnesota Supercomputing Institute
– sequence: 5
  givenname: Lawrence
  surname: Que
  fullname: Que, Lawrence
  organization: Department of Chemistry, University of Minnesota, Minneapolis, USA, Center for Metals in Biocatalysis
– sequence: 6
  givenname: Donald G.
  orcidid: 0000-0002-7742-7294
  surname: Truhlar
  fullname: Truhlar, Donald G.
  organization: Department of Chemistry, University of Minnesota, Minneapolis, USA, Chemical Theory Center and Minnesota Supercomputing Institute
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28484765$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1535192$$D View this record in Osti.gov
BookMark eNqFkctuFDEQRS0URJKBDR-ALFYBMeBnP5ZhRAApEixgbXnsasao2x5c7gj-gM_GnZmAhJBY-ZZ9bslV95ycxBSBkMecveRM9q827eYj46KRr--RM64aue5Zp05-67Y5JeeIXxljXHP5gJyKTnWqbfQZ-XmJCIgTxELTQGEEV3KKwVEseXZlzkAnKLvkkQ4p07ID6qFAnkK0JaS4uJbLLznN0VPch1ittgAuL1dwQUOgz14cVZXUVuy2uqmFS9N-hO-AD8n9wY4Ij47niny-evNp8259_eHt-83l9dop1Zc1aGsbcMPWylbyrpWa9cwp1go_NK5TMGjLlO4lE3YQQ6u58IIBb5n3fCu8XJGnh74JSzDoQgG3cynGOrjhWmreiwpdHKB9Tt9mwGKmgA7G0UZIMxreV1JoLZv_o13fdH27wCvy5IjO2wm82ecw2fzD3KVRAXYAXE6IGQZTv3e75ZJtGA1nZgnc_Am8Wp7_Zbnr-g_4FwjYqCQ
CitedBy_id crossref_primary_10_1021_acs_organomet_4c00343
crossref_primary_10_1021_acs_jpca_2c08456
crossref_primary_10_1002_cssc_202002594
crossref_primary_10_1021_jacs_7b06107
crossref_primary_10_1021_acs_jpca_4c04959
crossref_primary_10_1021_jacs_3c06709
crossref_primary_10_1039_C8CP04381G
crossref_primary_10_1021_acs_jctc_9b00842
crossref_primary_10_1002_chem_202101045
crossref_primary_10_1039_C8CP01333K
crossref_primary_10_1039_C9NJ02462J
crossref_primary_10_1039_C7CY01283G
crossref_primary_10_1007_s00775_019_01678_x
crossref_primary_10_1021_acs_inorgchem_1c01306
crossref_primary_10_1002_jcc_26818
crossref_primary_10_1088_2058_9565_ad9ed3
crossref_primary_10_1039_D0CP00807A
crossref_primary_10_1021_acs_jpcc_8b02698
crossref_primary_10_1021_acs_inorgchem_8b00333
crossref_primary_10_1002_zaac_202400061
crossref_primary_10_1021_acs_inorgchem_3c01335
crossref_primary_10_1039_D4SC02882A
crossref_primary_10_1002_zaac_202000355
crossref_primary_10_1021_acs_jpcc_0c03294
crossref_primary_10_1039_C8CP07671E
crossref_primary_10_1002_adfm_202213039
crossref_primary_10_1002_chem_201800423
crossref_primary_10_1021_acs_inorgchem_7b02964
crossref_primary_10_1039_C9CP00105K
crossref_primary_10_1039_D3DT02032K
crossref_primary_10_1021_acs_jpca_2c07556
crossref_primary_10_1021_acs_jctc_2c00265
crossref_primary_10_3390_molecules25051224
crossref_primary_10_1021_acs_jctc_4c00092
crossref_primary_10_1016_j_jaecs_2023_100184
crossref_primary_10_1002_ijch_201700059
crossref_primary_10_1039_D3CP03537A
crossref_primary_10_1016_j_jmgm_2024_108867
crossref_primary_10_1002_chem_201704977
crossref_primary_10_1039_C9DT01731C
crossref_primary_10_1002_jcc_27179
crossref_primary_10_1021_acs_jpca_7b12652
crossref_primary_10_1021_acs_organomet_0c00149
crossref_primary_10_1021_acs_jpca_9b10772
crossref_primary_10_1002_jcc_25714
crossref_primary_10_1002_chem_201800071
crossref_primary_10_1021_acs_inorgchem_8b01695
crossref_primary_10_1002_chem_202303300
crossref_primary_10_1021_acs_jctc_7b00848
crossref_primary_10_1039_D2CY00200K
crossref_primary_10_1021_acs_inorgchem_2c00640
crossref_primary_10_1039_D1DT01508G
crossref_primary_10_1039_C7DT03067C
crossref_primary_10_3390_molecules28083487
crossref_primary_10_1039_D0CP04401F
crossref_primary_10_1016_j_saa_2021_120072
crossref_primary_10_1021_acs_jctc_4c00063
crossref_primary_10_1021_acs_jpca_0c01458
crossref_primary_10_1039_C7OB01814B
crossref_primary_10_1039_C9ME00069K
crossref_primary_10_1021_acs_jpca_8b12479
crossref_primary_10_1007_s00214_023_02974_1
crossref_primary_10_3389_fchem_2019_00219
crossref_primary_10_1021_acs_jctc_8b00337
crossref_primary_10_1021_acs_inorgchem_7b01459
crossref_primary_10_1002_cplu_202400550
crossref_primary_10_1021_acs_jpca_7b06032
crossref_primary_10_1021_acs_jctc_1c01267
crossref_primary_10_1039_C7CP04913G
crossref_primary_10_1016_j_scitotenv_2024_171072
crossref_primary_10_1021_acs_inorgchem_2c02812
crossref_primary_10_1039_D4CP01327A
crossref_primary_10_1021_acs_jctc_2c00925
crossref_primary_10_1021_acs_jctc_2c00924
crossref_primary_10_1021_acs_jpca_1c04793
crossref_primary_10_1021_acs_jpca_8b02027
crossref_primary_10_1039_D0CP02977G
crossref_primary_10_1039_D1NJ01849C
crossref_primary_10_1080_08927022_2018_1557331
crossref_primary_10_1039_C9DT04578C
crossref_primary_10_1103_PhysRevX_10_011041
crossref_primary_10_1021_acs_inorgchem_0c00454
crossref_primary_10_1021_acs_jctc_0c00518
crossref_primary_10_1021_acs_jpca_4c05046
crossref_primary_10_1021_acs_jpca_3c08325
crossref_primary_10_1002_cssc_202300482
crossref_primary_10_1021_acscatal_0c04300
crossref_primary_10_1021_jacs_3c06030
crossref_primary_10_1039_C9CP01465A
crossref_primary_10_1021_acs_jctc_8b00200
Cites_doi 10.1063/1.3695642
10.1063/1.1710046
10.1016/j.ccr.2012.08.002
10.1021/ct800277a
10.1021/ja405086e
10.1063/1.448627
10.1021/jp102712z
10.1038/35051697
10.1016/0022-2852(80)90025-9
10.1016/j.cplett.2004.08.032
10.1016/S0010-8545(00)80430-0
10.1063/1.474622
10.1080/00268970512331317309
10.1103/PhysRevA.33.3742
10.1021/acs.accounts.5b00218
10.1103/PhysRev.140.A1133
10.1021/ja061609o
10.1016/0009-2614(85)80025-7
10.1007/s00214-010-0846-z
10.1002/9781119951438.eibc2344
10.1002/cphc.200400584
10.1039/b907148b
10.1021/ct800246v
10.1016/j.ijms.2013.05.032
10.1021/ja066615z
10.1126/science.299.5609.1037
10.1002/qua.560160511
10.1063/1.2406067
10.1007/s00775-015-1294-y
10.1021/jp074480t
10.1103/PhysRevA.38.3098
10.1073/pnas.0709471104
10.1002/zaac.200600200
10.1103/PhysRevA.47.2783
10.1039/C5CP01425E
10.1002/advs.201500006
10.1126/science.1119092
10.1021/jp803441m
10.1021/ja961199b
10.1021/ja205976v
10.1063/1.456153
10.1039/c2cp42025b
10.1021/ic901891n
10.1021/jp030141y
10.1103/PhysRevB.37.785
10.1063/1.3607312
10.1007/BF03159758
10.1021/jp048147q
10.1063/1.1998907
10.1021/ja991878x
10.1063/1.2061227
10.1016/0010-8545(90)80076-6
10.1039/C4CP01478B
10.1021/acs.jpclett.7b00570
10.1002/chem.200701739
10.1007/s00775-004-0588-2
10.1063/1.478522
10.1016/j.ccr.2012.04.020
10.1080/00268976.2015.1005706
10.1002/anie.200801832
10.1016/0009-2614(96)00521-0
10.1039/C6SC00705H
10.1063/1.1822923
10.1021/cr00027a011
10.1021/j100096a001
10.1021/jp040065e
10.1038/nchem.1132
10.1039/C3CP55506B
10.1080/00268970009483386
10.1023/A:1009252919854
10.1063/1.2335444
10.1016/0010-8545(89)80045-1
10.1038/ncomms1718
10.1021/acs.accounts.5b00053
10.1063/1.2353829
10.1103/PhysRevLett.77.3865
10.1021/ar600042c
10.1002/9781118898277
10.1021/acs.accounts.6b00271
10.1021/ic00162a037
10.1016/S1381-1169(00)00460-X
10.1103/PhysRevB.93.165120
10.1063/1.464913
10.1063/1.4926836
10.1016/0022-2852(82)90248-X
10.1039/b801803k
10.1063/1.1927081
10.1063/1.4752411
10.1021/jp050536c
10.1021/jp049043i
10.1039/B605229K
10.1103/PhysRevB.59.7413
10.1021/jp0539223
10.1038/nchem.1956
10.1039/c3cc42200c
10.1063/1.2370993
10.1063/1.2406071
10.1038/nchembio.71
10.1021/ct400712k
10.1021/ct3002656
10.1021/acs.jctc.6b01102
10.1139/p80-159
10.1063/1.2820786
10.1021/ct900567c
10.1063/1.1493179
10.1063/1.440892
10.1021/ic202344w
10.1080/00268970010018431
10.1016/0301-0104(82)87004-3
10.1021/ja053847+
10.1039/b508541a
10.1007/s00214-001-0300-3
10.1103/RevModPhys.73.33
10.1063/1.2991180
10.1021/ja205254s
10.1021/ja065365j
10.1063/1.1678164
10.1063/1.3598529
10.1039/c0cp02984j
10.1038/nchem.943
10.1103/PhysRevB.31.7588
10.1021/jz201525m
10.1021/jacs.5b00382
10.1063/1.2148954
10.1002/qua.24255
10.1016/j.ccr.2008.05.014
10.1021/ar990028j
10.1021/ja9106176
10.1063/1.462209
10.1002/anie.200803066
10.1021/ja507617h
10.1021/ja509465w
10.1021/cr500425u
10.1038/nature19059
10.1063/1.3663871
10.1021/ic0261068
10.1021/ja044940l
10.1007/s00214-007-0310-x
10.1063/1.470829
10.1021/ct300737t
10.1039/C3SC52755G
10.1007/BF03156228
10.1021/jz100359h
10.1103/PhysRevB.33.8822
10.1021/acs.inorgchem.5b02371
10.1021/acs.jctc.5b01082
10.1021/ic000954q
10.1016/S0010-8545(02)00330-2
10.1063/1.1839854
10.1063/1.2838987
ContentType Journal Article
CorporateAuthor Univ. of Minnesota, Minneapolis, MN (United States)
CorporateAuthor_xml – name: Univ. of Minnesota, Minneapolis, MN (United States)
DBID AAYXX
CITATION
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
OTOTI
DOI 10.1039/C7CP01263B
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
OSTI.GOV
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList MEDLINE - Academic
CrossRef

Materials Research Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1463-9084
EndPage 13069
ExternalDocumentID 1535192
28484765
10_1039_C7CP01263B
Genre Journal Article
GroupedDBID ---
-DZ
-~X
0-7
0R~
0UZ
123
1TJ
29O
2WC
4.4
53G
6TJ
705
70~
71~
7~J
87K
9M8
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACHDF
ACIWK
ACLDK
ACNCT
ACRPL
ADMRA
ADNMO
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFFNX
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGKEF
AGQPQ
AGRSR
AHGCF
AHGXI
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALSGL
ALUYA
ANBJS
ANLMG
ANUXI
APEMP
ASKNT
ASPBG
AUDPV
AVWKF
AZFZN
BBWZM
BLAPV
BSQNT
C6K
CAG
CITATION
COF
CS3
D0L
DU5
EBS
ECGLT
EE0
EEHRC
EF-
EJD
F5P
FEDTE
GGIMP
GNO
H13
HVGLF
HZ~
H~9
H~N
IDY
IDZ
J3G
J3H
J3I
L-8
M4U
MVM
N9A
NDZJH
NHB
O9-
P2P
R56
R7B
R7C
RAOCF
RCLXC
RCNCU
RIG
RNS
ROL
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UHB
VH6
WH7
XJT
XOL
YNT
ZCG
-JG
AGSTE
NPM
OK1
UCJ
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
70J
AAGNR
ABGFH
OTOTI
XFK
ID FETCH-LOGICAL-c449t-e5aa6ecfba37318735090c4072df6c84ef5a0459302af2f7512d20e170dd1b2d3
ISSN 1463-9076
1463-9084
IngestDate Fri May 19 02:14:19 EDT 2023
Fri Jul 11 07:07:54 EDT 2025
Fri Jul 11 10:56:54 EDT 2025
Wed Feb 19 02:40:08 EST 2025
Tue Jul 01 01:55:04 EDT 2025
Thu Apr 24 22:56:41 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c449t-e5aa6ecfba37318735090c4072df6c84ef5a0459302af2f7512d20e170dd1b2d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE Office of Science (SC)
SC0008688
ORCID 0000-0002-7742-7294
0000-0002-5722-0894
0000000277427294
0000000257220894
OpenAccessLink https://www.osti.gov/biblio/2311186
PMID 28484765
PQID 1896897255
PQPubID 23479
PageCount 21
ParticipantIDs osti_scitechconnect_1535192
proquest_miscellaneous_1915325536
proquest_miscellaneous_1896897255
pubmed_primary_28484765
crossref_citationtrail_10_1039_C7CP01263B
crossref_primary_10_1039_C7CP01263B
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-00-00
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017-00-00
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: United States
PublicationTitle Physical chemistry chemical physics : PCCP
PublicationTitleAlternate Phys Chem Chem Phys
PublicationYear 2017
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Hess (C7CP01263B-(cit154)/*[position()=1]) 1986; 33
Meng (C7CP01263B-(cit12)/*[position()=1]) 2011; 133
Swart (C7CP01263B-(cit45)/*[position()=1]) 2008; 4
Schultz (C7CP01263B-(cit72)/*[position()=1]) 2005; 109
Luo (C7CP01263B-(cit56)/*[position()=1]) 2014; 10
Peverati (C7CP01263B-(cit102)/*[position()=1]) 2011; 135
Bowman (C7CP01263B-(cit48)/*[position()=1]) 2012; 51
Ruiz (C7CP01263B-(cit49)/*[position()=1]) 1997; 119
Ruedenberg (C7CP01263B-(cit118)/*[position()=1]) 1979; 16
Neese (C7CP01263B-(cit114)/*[position()=1]) 2009; 253
Choi (C7CP01263B-(cit32)/*[position()=1]) 2003; 107
Swart (C7CP01263B-(cit153)/*[position()=1]) 2010; 114
Thibon (C7CP01263B-(cit86)/*[position()=1]) 2008; 47
Bruschi (C7CP01263B-(cit61)/*[position()=1]) 2004; 9
Hirao (C7CP01263B-(cit5)/*[position()=1]) 2006; 128
Zhao (C7CP01263B-(cit108)/*[position()=1]) 2008; 4
Roos (C7CP01263B-(cit119)/*[position()=1]) 1980; 14
Lee (C7CP01263B-(cit68)/*[position()=1]) 1988; 37
Moore (C7CP01263B-(cit128)/*[position()=1]) 1952
Zhao (C7CP01263B-(cit105)/*[position()=1]) 2004; 108
Allen (C7CP01263B-(cit156)/*[position()=1]) 1996; 257
Bao (C7CP01263B-(cit79)/*[position()=1]) 2017; 13
Hirao (C7CP01263B-(cit136)/*[position()=1]) 2008; 14
Crabtree (C7CP01263B-(cit149)/*[position()=1]) 1994
Grimme (C7CP01263B-(cit71)/*[position()=1]) 2006; 124
Swart (C7CP01263B-(cit52)/*[position()=1]) 2013; 113
Yang (C7CP01263B-(cit54)/*[position()=1]) 2011; 135
Luo (C7CP01263B-(cit55)/*[position()=1]) 2012; 8
England (C7CP01263B-(cit87)/*[position()=1]) 2014; 5
Kepp (C7CP01263B-(cit47)/*[position()=1]) 2016; 55
Daku (C7CP01263B-(cit43)/*[position()=1]) 2005; 6
Toftlund (C7CP01263B-(cit19)/*[position()=1]) 1989; 94
Gáspár (C7CP01263B-(cit93)/*[position()=1]) 1974; 35
Kovaleva (C7CP01263B-(cit15)/*[position()=1]) 2008; 4
Peverati (C7CP01263B-(cit98)/*[position()=1]) 2012; 3
Kepp (C7CP01263B-(cit37)/*[position()=1]) 2013; 257
Pierloot (C7CP01263B-(cit64)/*[position()=1]) 2008; 128
Hohenberger (C7CP01263B-(cit21)/*[position()=1]) 2012; 3
McDonald (C7CP01263B-(cit138)/*[position()=1]) 2013; 257
Balabanov (C7CP01263B-(cit112)/*[position()=1]) 2005; 123
Kohn (C7CP01263B-(cit91)/*[position()=1]) 1965; 140
Goerigk (C7CP01263B-(cit155)/*[position()=1]) 2011; 13
Snyder (C7CP01263B-(cit10)/*[position()=1]) 2016; 536
Oloo (C7CP01263B-(cit23)/*[position()=1]) 2015; 48
Valero (C7CP01263B-(cit145)/*[position()=1]) 2008; 128
Prat (C7CP01263B-(cit24)/*[position()=1]) 2011; 3
Berry (C7CP01263B-(cit26)/*[position()=1]) 2008; 10
de Visser (C7CP01263B-(cit46)/*[position()=1]) 2006; 128
Ruedenberg (C7CP01263B-(cit121)/*[position()=1]) 1982; 71
Ganzenmüller (C7CP01263B-(cit60)/*[position()=1]) 2005; 122
Perdew (C7CP01263B-(cit82)/*[position()=1]) 1986; 33
Becke (C7CP01263B-(cit81)/*[position()=1]) 1988; 38
Needs (C7CP01263B-(cit75)/*[position()=1]) 2010; 22
Goodwin (C7CP01263B-(cit18)/*[position()=1]) 1976; 18
Becke (C7CP01263B-(cit83)/*[position()=1]) 1993; 98
Klein (C7CP01263B-(cit139)/*[position()=1]) 2016
Vosko (C7CP01263B-(cit94)/*[position()=1]) 1980; 58
Yamamoto (C7CP01263B-(cit148)/*[position()=1]) 1986
Salomon (C7CP01263B-(cit59)/*[position()=1]) 2002; 117
Gagliardi (C7CP01263B-(cit125)/*[position()=1]) 2005; 127
Fouqueau (C7CP01263B-(cit42)/*[position()=1]) 2004; 120
Feig (C7CP01263B-(cit14)/*[position()=1]) 1994; 94
Yu (C7CP01263B-(cit104)/*[position()=1]) 2016; 7
Reiher (C7CP01263B-(cit58)/*[position()=1]) 2001; 107
Bauer (C7CP01263B-(cit7)/*[position()=1]) 2015; 115
Mal (C7CP01263B-(cit11)/*[position()=1]) 2008; 47
Bloch (C7CP01263B-(cit27)/*[position()=1]) 2011; 133
Shaik (C7CP01263B-(cit35)/*[position()=1]) 2013; 354–355
Foulkes (C7CP01263B-(cit74)/*[position()=1]) 2001; 73
Bukowski (C7CP01263B-(cit131)/*[position()=1]) 2005; 310
Güell (C7CP01263B-(cit152)/*[position()=1]) 2008; 112
Docken (C7CP01263B-(cit117)/*[position()=1]) 1972; 57
Gütlich (C7CP01263B-(cit20)/*[position()=1]) 1990; 97
Shi (C7CP01263B-(cit29)/*[position()=1]) 2015; 2
Pierre (C7CP01263B-(cit17)/*[position()=1]) 1999; 12
Berning (C7CP01263B-(cit116)/*[position()=1]) 2000; 98
Malassa (C7CP01263B-(cit129)/*[position()=1]) 2006; 632
Chen (C7CP01263B-(cit141)/*[position()=1]) 2010; 1
Nam (C7CP01263B-(cit22)/*[position()=1]) 2015; 48
Swart (C7CP01263B-(cit3)/*[position()=1]) 2016; 49
Schmidt (C7CP01263B-(cit57)/*[position()=1]) 2016; 93
Sakellaris (C7CP01263B-(cit133)/*[position()=1]) 2011; 134
Roos (C7CP01263B-(cit126)/*[position()=1]) 2006; 128
Jensen (C7CP01263B-(cit70)/*[position()=1]) 2007; 126
Hirao (C7CP01263B-(cit4)/*[position()=1]) 2005; 127
Conradie (C7CP01263B-(cit50)/*[position()=1]) 2007; 111
Görling (C7CP01263B-(cit150)/*[position()=1]) 1993; 47
Verma (C7CP01263B-(cit9)/*[position()=1]) 2015; 137
Fouqueau (C7CP01263B-(cit41)/*[position()=1]) 2005; 122
Swart (C7CP01263B-(cit63)/*[position()=1]) 2004; 108
Harris (C7CP01263B-(cit159)/*[position()=1]) 1980; 84
Perdew (C7CP01263B-(cit67)/*[position()=1]) 1996; 77
Schröder (C7CP01263B-(cit34)/*[position()=1]) 2000; 33
Ghigo (C7CP01263B-(cit77)/*[position()=1]) 2004; 396
Dunning, Jr. (C7CP01263B-(cit127)/*[position()=1]) 1989; 90
Ogliaro (C7CP01263B-(cit1)/*[position()=1]) 2000; 122
Keal (C7CP01263B-(cit106)/*[position()=1]) 2005; 123
Mandal (C7CP01263B-(cit137)/*[position()=1]) 2015; 137
Swart (C7CP01263B-(cit2)/*[position()=1]) 2015
Zein (C7CP01263B-(cit40)/*[position()=1]) 2007; 126
Ioannidis (C7CP01263B-(cit38)/*[position()=1]) 2015; 143
Zhao (C7CP01263B-(cit103)/*[position()=1]) 2008; 120
Zheng (C7CP01263B-(cit110)/*[position()=1]) 2011; 128
Zhao (C7CP01263B-(cit97)/*[position()=1]) 2006; 125
Wieghardt (C7CP01263B-(cit130)/*[position()=1]) 1983; 22
Radoń (C7CP01263B-(cit73)/*[position()=1]) 2014; 16
Rohde (C7CP01263B-(cit132)/*[position()=1]) 2003; 299
Zhao (C7CP01263B-(cit107)/*[position()=1]) 2005; 109
Vancoillie (C7CP01263B-(cit84)/*[position()=1]) 2010; 6
Shaik (C7CP01263B-(cit140)/*[position()=1]) 2011; 3
Walsh (C7CP01263B-(cit8)/*[position()=1]) 2001; 409
Shaik (C7CP01263B-(cit6)/*[position()=1]) 2007; 40
Xiao (C7CP01263B-(cit28)/*[position()=1]) 2014; 6
Adamo (C7CP01263B-(cit101)/*[position()=1]) 1999; 110
Cheung (C7CP01263B-(cit134)/*[position()=1]) 1982; 95
Smith (C7CP01263B-(cit62)/*[position()=1]) 2005; 103
Drechsler (C7CP01263B-(cit158)/*[position()=1]) 1997; 107
Mukherjee (C7CP01263B-(cit16)/*[position()=1]) 2010; 49
Hammer (C7CP01263B-(cit69)/*[position()=1]) 1999; 59
Balabanov (C7CP01263B-(cit111)/*[position()=1]) 2006; 125
Yi (C7CP01263B-(cit143)/*[position()=1]) 2015; 20
Sastri (C7CP01263B-(cit135)/*[position()=1]) 2007; 104
Gáspár (C7CP01263B-(cit92)/*[position()=1]) 1954; 3
Werner (C7CP01263B-(cit122)/*[position()=1]) 1985; 82
Laurier (C7CP01263B-(cit30)/*[position()=1]) 2013; 135
Werner (C7CP01263B-(cit120)/*[position()=1]) 1981; 74
Gagliardi (C7CP01263B-(cit124)/*[position()=1]) 2003; 42
Knowles (C7CP01263B-(cit123)/*[position()=1]) 1985; 115
Yu (C7CP01263B-(cit99)/*[position()=1]) 2016; 12
Andersson (C7CP01263B-(cit76)/*[position()=1]) 1992; 96
Wilbraham (C7CP01263B-(cit80)/*[position()=1]) 2017; 8
Droghetti (C7CP01263B-(cit39)/*[position()=1]) 2012; 137
Reiher (C7CP01263B-(cit151)/*[position()=1]) 2007; 135
Johansson (C7CP01263B-(cit144)/*[position()=1]) 2008; 129
Isley, III (C7CP01263B-(cit65)/*[position()=1]) 2014; 16
Handy (C7CP01263B-(cit66)/*[position()=1]) 2001; 99
Stephens (C7CP01263B-(cit100)/*[position()=1]) 1994; 98
Peverati (C7CP01263B-(cit95)/*[position()=1]) 2012; 8
Weigend (C7CP01263B-(cit109)/*[position()=1]) 2005; 7
Kumar (C7CP01263B-(cit25)/*[position()=1]) 2010; 132
Knops-Gerrits (C7CP01263B-(cit31)/*[position()=1]) 2001; 166
Sharma (C7CP01263B-(cit78)/*[position()=1]) 2012; 136
Paulsen (C7CP01263B-(cit36)/*[position()=1]) 2001; 40
Cramer (C7CP01263B-(cit51)/*[position()=1]) 2009; 11
Ronson (C7CP01263B-(cit13)/*[position()=1]) 2014; 136
Kim (C7CP01263B-(cit160)/*[position()=1]) 2015; 113
Gunnarsson (C7CP01263B-(cit53)/*[position()=1]) 1985; 31
Pierloot (C7CP01263B-(cit44)/*[position()=1]) 2006; 125
Becke (C7CP01263B-(cit146)/*[position()=1]) 1996; 104
Rohde (C7CP01263B-(cit85)/*[position()=1]) 2003; 299
Choi (C7CP01263B-(cit33)/*[position()=1]) 2004; 108
Peverati (C7CP01263B-(cit147)/*[position()=1]) 2012; 14
Yu (C7CP01263B-(cit96)/*[position()=1]) 2015; 17
Swart (C7CP01263B-(cit142)/*[position()=1]) 2013; 49
Steimle (C7CP01263B-(cit157)/*[position()=1]) 2004; 121
Ciofini (C7CP01263B-(cit113)/*[position()=1]) 2003; 238
References_xml – volume: 136
  start-page: 124121
  year: 2012
  ident: C7CP01263B-(cit78)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3695642
– volume: 120
  start-page: 9473
  year: 2004
  ident: C7CP01263B-(cit42)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1710046
– volume: 257
  start-page: 414
  year: 2013
  ident: C7CP01263B-(cit138)/*[position()=1]
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2012.08.002
– volume: 4
  start-page: 2057
  year: 2008
  ident: C7CP01263B-(cit45)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct800277a
– volume: 135
  start-page: 14488
  year: 2013
  ident: C7CP01263B-(cit30)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja405086e
– volume: 82
  start-page: 5053
  year: 1985
  ident: C7CP01263B-(cit122)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.448627
– volume: 114
  start-page: 7191
  year: 2010
  ident: C7CP01263B-(cit153)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp102712z
– volume: 409
  start-page: 226
  year: 2001
  ident: C7CP01263B-(cit8)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/35051697
– volume: 84
  start-page: 334
  year: 1980
  ident: C7CP01263B-(cit159)/*[position()=1]
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/0022-2852(80)90025-9
– volume: 396
  start-page: 142
  year: 2004
  ident: C7CP01263B-(cit77)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2004.08.032
– volume: 18
  start-page: 293
  year: 1976
  ident: C7CP01263B-(cit18)/*[position()=1]
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/S0010-8545(00)80430-0
– volume: 107
  start-page: 2284
  year: 1997
  ident: C7CP01263B-(cit158)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.474622
– volume: 103
  start-page: 273
  year: 2005
  ident: C7CP01263B-(cit62)/*[position()=1]
  publication-title: Mol. Phys.
  doi: 10.1080/00268970512331317309
– volume: 33
  start-page: 3742
  year: 1986
  ident: C7CP01263B-(cit154)/*[position()=1]
  publication-title: Phys. Rev. A: At., Mol., Opt. Phys.
  doi: 10.1103/PhysRevA.33.3742
– volume: 48
  start-page: 2415
  year: 2015
  ident: C7CP01263B-(cit22)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.5b00218
– volume: 140
  start-page: A1133
  year: 1965
  ident: C7CP01263B-(cit91)/*[position()=1]
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.140.A1133
– volume: 128
  start-page: 8590
  year: 2006
  ident: C7CP01263B-(cit5)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja061609o
– volume: 115
  start-page: 259
  year: 1985
  ident: C7CP01263B-(cit123)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(85)80025-7
– volume: 128
  start-page: 295
  year: 2011
  ident: C7CP01263B-(cit110)/*[position()=1]
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s00214-010-0846-z
– volume-title: Encyclopedia of Inorganic and Bioinorganic Chemistry (EIBC)
  year: 2016
  ident: C7CP01263B-(cit139)/*[position()=1]
  doi: 10.1002/9781119951438.eibc2344
– volume: 6
  start-page: 1393
  year: 2005
  ident: C7CP01263B-(cit43)/*[position()=1]
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.200400584
– volume: 11
  start-page: 10757
  year: 2009
  ident: C7CP01263B-(cit51)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b907148b
– volume: 4
  start-page: 1849
  year: 2008
  ident: C7CP01263B-(cit108)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct800246v
– volume: 354–355
  start-page: 5
  year: 2013
  ident: C7CP01263B-(cit35)/*[position()=1]
  publication-title: Int. J. Mass Spectrom.
  doi: 10.1016/j.ijms.2013.05.032
– volume: 128
  start-page: 1700
  year: 2006
  ident: C7CP01263B-(cit126)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja066615z
– volume: 299
  start-page: 1037
  year: 2003
  ident: C7CP01263B-(cit85)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.299.5609.1037
– volume: 16
  start-page: 1069
  year: 1979
  ident: C7CP01263B-(cit118)/*[position()=1]
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.560160511
– volume: 126
  start-page: 014105
  year: 2007
  ident: C7CP01263B-(cit40)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2406067
– volume: 20
  start-page: 1123
  year: 2015
  ident: C7CP01263B-(cit143)/*[position()=1]
  publication-title: J. Biol. Inorg. Chem.
  doi: 10.1007/s00775-015-1294-y
– volume: 111
  start-page: 12621
  year: 2007
  ident: C7CP01263B-(cit50)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp074480t
– volume: 38
  start-page: 3098
  year: 1988
  ident: C7CP01263B-(cit81)/*[position()=1]
  publication-title: Phys. Rev. A: At., Mol., Opt. Phys.
  doi: 10.1103/PhysRevA.38.3098
– volume: 14
  start-page: 175
  year: 1980
  ident: C7CP01263B-(cit119)/*[position()=1]
  publication-title: Int. J. Quantum Chem., Symp.
– volume: 104
  start-page: 19181
  year: 2007
  ident: C7CP01263B-(cit135)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0709471104
– volume: 632
  start-page: 2355
  year: 2006
  ident: C7CP01263B-(cit129)/*[position()=1]
  publication-title: Z. Anorg. Allg. Chem.
  doi: 10.1002/zaac.200600200
– volume: 47
  start-page: 2783
  year: 1993
  ident: C7CP01263B-(cit150)/*[position()=1]
  publication-title: Phys. Rev. A: At., Mol., Opt. Phys.
  doi: 10.1103/PhysRevA.47.2783
– volume: 17
  start-page: 12146
  year: 2015
  ident: C7CP01263B-(cit96)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C5CP01425E
– volume: 2
  start-page: 1500006
  year: 2015
  ident: C7CP01263B-(cit29)/*[position()=1]
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201500006
– volume: 310
  start-page: 1000
  year: 2005
  ident: C7CP01263B-(cit131)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1119092
– volume: 112
  start-page: 6384
  year: 2008
  ident: C7CP01263B-(cit152)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp803441m
– volume: 119
  start-page: 1297
  year: 1997
  ident: C7CP01263B-(cit49)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja961199b
– volume: 133
  start-page: 14814
  year: 2011
  ident: C7CP01263B-(cit27)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja205976v
– volume: 90
  start-page: 1007
  year: 1989
  ident: C7CP01263B-(cit127)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.456153
– volume: 14
  start-page: 13171
  year: 2012
  ident: C7CP01263B-(cit147)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c2cp42025b
– volume: 49
  start-page: 3618
  year: 2010
  ident: C7CP01263B-(cit16)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/ic901891n
– volume: 107
  start-page: 11843
  year: 2003
  ident: C7CP01263B-(cit32)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp030141y
– volume: 37
  start-page: 785
  year: 1988
  ident: C7CP01263B-(cit68)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.37.785
– volume: 135
  start-page: 044118
  year: 2011
  ident: C7CP01263B-(cit54)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3607312
– volume: 35
  start-page: 213
  year: 1974
  ident: C7CP01263B-(cit93)/*[position()=1]
  publication-title: Acta Phys. Hung.
  doi: 10.1007/BF03159758
– volume: 108
  start-page: 6908
  year: 2004
  ident: C7CP01263B-(cit105)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp048147q
– volume: 123
  start-page: 064107
  year: 2005
  ident: C7CP01263B-(cit112)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1998907
– volume: 122
  start-page: 8977
  year: 2000
  ident: C7CP01263B-(cit1)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja991878x
– volume: 123
  start-page: 121103
  year: 2005
  ident: C7CP01263B-(cit106)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2061227
– volume: 97
  start-page: 1
  year: 1990
  ident: C7CP01263B-(cit20)/*[position()=1]
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/0010-8545(90)80076-6
– volume: 16
  start-page: 10620
  year: 2014
  ident: C7CP01263B-(cit65)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP01478B
– volume: 8
  start-page: 2026
  year: 2017
  ident: C7CP01263B-(cit80)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.7b00570
– volume: 14
  start-page: 1740
  year: 2008
  ident: C7CP01263B-(cit136)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.200701739
– volume: 9
  start-page: 873
  year: 2004
  ident: C7CP01263B-(cit61)/*[position()=1]
  publication-title: J. Biol. Inorg. Chem.
  doi: 10.1007/s00775-004-0588-2
– volume: 110
  start-page: 6158
  year: 1999
  ident: C7CP01263B-(cit101)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.478522
– volume-title: Organotransition Metal Chemistry
  year: 1986
  ident: C7CP01263B-(cit148)/*[position()=1]
– volume: 257
  start-page: 196
  year: 2013
  ident: C7CP01263B-(cit37)/*[position()=1]
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2012.04.020
– volume: 113
  start-page: 2105
  year: 2015
  ident: C7CP01263B-(cit160)/*[position()=1]
  publication-title: Mol. Phys.
  doi: 10.1080/00268976.2015.1005706
– volume: 47
  start-page: 7064
  year: 2008
  ident: C7CP01263B-(cit86)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200801832
– volume: 257
  start-page: 130
  year: 1996
  ident: C7CP01263B-(cit156)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(96)00521-0
– volume: 7
  start-page: 5032
  year: 2016
  ident: C7CP01263B-(cit104)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C6SC00705H
– volume: 121
  start-page: 12303
  year: 2004
  ident: C7CP01263B-(cit157)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1822923
– volume: 94
  start-page: 759
  year: 1994
  ident: C7CP01263B-(cit14)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr00027a011
– volume: 98
  start-page: 11623
  year: 1994
  ident: C7CP01263B-(cit100)/*[position()=1]
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100096a001
– volume: 108
  start-page: 8970
  year: 2004
  ident: C7CP01263B-(cit33)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp040065e
– volume: 3
  start-page: 788
  year: 2011
  ident: C7CP01263B-(cit24)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1132
– volume: 16
  start-page: 14479
  year: 2014
  ident: C7CP01263B-(cit73)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C3CP55506B
– volume: 98
  start-page: 1823
  year: 2000
  ident: C7CP01263B-(cit116)/*[position()=1]
  publication-title: Mol. Phys.
  doi: 10.1080/00268970009483386
– volume-title: The Organometallic Chemistry of the Transition Metals
  year: 1994
  ident: C7CP01263B-(cit149)/*[position()=1]
– volume: 12
  start-page: 195
  year: 1999
  ident: C7CP01263B-(cit17)/*[position()=1]
  publication-title: BioMetals
  doi: 10.1023/A:1009252919854
– volume: 125
  start-page: 074110
  year: 2006
  ident: C7CP01263B-(cit111)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2335444
– volume: 94
  start-page: 67
  year: 1989
  ident: C7CP01263B-(cit19)/*[position()=1]
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/0010-8545(89)80045-1
– volume: 3
  start-page: 720
  year: 2012
  ident: C7CP01263B-(cit21)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1718
– volume: 48
  start-page: 2612
  year: 2015
  ident: C7CP01263B-(cit23)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.5b00053
– volume: 125
  start-page: 124303
  year: 2006
  ident: C7CP01263B-(cit44)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2353829
– volume: 77
  start-page: 3865
  year: 1996
  ident: C7CP01263B-(cit67)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 40
  start-page: 532
  year: 2007
  ident: C7CP01263B-(cit6)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar600042c
– volume-title: Spin States in Biochemistry and Inorganic Chemistry: Influence on Structure and Reactivity
  year: 2015
  ident: C7CP01263B-(cit2)/*[position()=1]
  doi: 10.1002/9781118898277
– volume: 49
  start-page: 2690
  year: 2016
  ident: C7CP01263B-(cit3)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00271
– volume: 22
  start-page: 2953
  year: 1983
  ident: C7CP01263B-(cit130)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/ic00162a037
– volume: 166
  start-page: 135
  year: 2001
  ident: C7CP01263B-(cit31)/*[position()=1]
  publication-title: J. Mol. Catal. A: Chem.
  doi: 10.1016/S1381-1169(00)00460-X
– volume: 93
  start-page: 165120
  year: 2016
  ident: C7CP01263B-(cit57)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.93.165120
– volume: 98
  start-page: 5648
  year: 1993
  ident: C7CP01263B-(cit83)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.464913
– volume: 143
  start-page: 034104
  year: 2015
  ident: C7CP01263B-(cit38)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4926836
– volume: 95
  start-page: 213
  year: 1982
  ident: C7CP01263B-(cit134)/*[position()=1]
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/0022-2852(82)90248-X
– volume: 10
  start-page: 4361
  year: 2008
  ident: C7CP01263B-(cit26)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b801803k
– volume: 22
  start-page: 023201
  year: 2010
  ident: C7CP01263B-(cit75)/*[position()=1]
  publication-title: J. Phys.: Condens. Matter
– volume: 122
  start-page: 234321
  year: 2005
  ident: C7CP01263B-(cit60)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1927081
– volume: 137
  start-page: 124303
  year: 2012
  ident: C7CP01263B-(cit39)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4752411
– volume: 109
  start-page: 5656
  year: 2005
  ident: C7CP01263B-(cit107)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp050536c
– volume: 108
  start-page: 5479
  year: 2004
  ident: C7CP01263B-(cit63)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp049043i
– volume: 135
  start-page: 97
  year: 2007
  ident: C7CP01263B-(cit151)/*[position()=1]
  publication-title: Faraday Discuss.
  doi: 10.1039/B605229K
– volume: 59
  start-page: 7413
  year: 1999
  ident: C7CP01263B-(cit69)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.59.7413
– volume: 109
  start-page: 11127
  year: 2005
  ident: C7CP01263B-(cit72)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp0539223
– volume: 6
  start-page: 590
  year: 2014
  ident: C7CP01263B-(cit28)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1956
– volume: 49
  start-page: 6650
  year: 2013
  ident: C7CP01263B-(cit142)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc42200c
– volume: 125
  start-page: 194101
  year: 2006
  ident: C7CP01263B-(cit97)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2370993
– volume: 126
  start-page: 014103
  year: 2007
  ident: C7CP01263B-(cit70)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2406071
– volume: 4
  start-page: 186
  year: 2008
  ident: C7CP01263B-(cit15)/*[position()=1]
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.71
– volume: 10
  start-page: 102
  year: 2014
  ident: C7CP01263B-(cit56)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct400712k
– volume: 8
  start-page: 2310
  year: 2012
  ident: C7CP01263B-(cit95)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct3002656
– volume: 13
  start-page: 616
  year: 2017
  ident: C7CP01263B-(cit79)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.6b01102
– volume: 58
  start-page: 1200
  year: 1980
  ident: C7CP01263B-(cit94)/*[position()=1]
  publication-title: Can. J. Phys.
  doi: 10.1139/p80-159
– volume: 128
  start-page: 034104
  year: 2008
  ident: C7CP01263B-(cit64)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2820786
– volume: 6
  start-page: 576
  year: 2010
  ident: C7CP01263B-(cit84)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct900567c
– volume: 117
  start-page: 4729
  year: 2002
  ident: C7CP01263B-(cit59)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1493179
– volume: 74
  start-page: 5794
  year: 1981
  ident: C7CP01263B-(cit120)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.440892
– volume-title: Atomic Energy Levels
  year: 1952
  ident: C7CP01263B-(cit128)/*[position()=1]
– volume: 51
  start-page: 6011
  year: 2012
  ident: C7CP01263B-(cit48)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/ic202344w
– volume: 99
  start-page: 403
  year: 2001
  ident: C7CP01263B-(cit66)/*[position()=1]
  publication-title: Mol. Phys.
  doi: 10.1080/00268970010018431
– volume: 71
  start-page: 41
  year: 1982
  ident: C7CP01263B-(cit121)/*[position()=1]
  publication-title: Chem. Phys.
  doi: 10.1016/0301-0104(82)87004-3
– volume: 127
  start-page: 13007
  year: 2005
  ident: C7CP01263B-(cit4)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja053847+
– volume: 7
  start-page: 3297
  year: 2005
  ident: C7CP01263B-(cit109)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b508541a
– volume: 107
  start-page: 48
  year: 2001
  ident: C7CP01263B-(cit58)/*[position()=1]
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s00214-001-0300-3
– volume: 73
  start-page: 33
  year: 2001
  ident: C7CP01263B-(cit74)/*[position()=1]
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.73.33
– volume: 129
  start-page: 154301
  year: 2008
  ident: C7CP01263B-(cit144)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2991180
– volume: 133
  start-page: 13652
  year: 2011
  ident: C7CP01263B-(cit12)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja205254s
– volume: 128
  start-page: 15809
  year: 2006
  ident: C7CP01263B-(cit46)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja065365j
– volume: 57
  start-page: 4928
  year: 1972
  ident: C7CP01263B-(cit117)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1678164
– volume: 134
  start-page: 234308
  year: 2011
  ident: C7CP01263B-(cit133)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3598529
– volume: 13
  start-page: 6670
  year: 2011
  ident: C7CP01263B-(cit155)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c0cp02984j
– volume: 3
  start-page: 19
  year: 2011
  ident: C7CP01263B-(cit140)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.943
– volume: 31
  start-page: 7588
  year: 1985
  ident: C7CP01263B-(cit53)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.31.7588
– volume: 3
  start-page: 117
  year: 2012
  ident: C7CP01263B-(cit98)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz201525m
– volume: 137
  start-page: 5770
  year: 2015
  ident: C7CP01263B-(cit9)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b00382
– volume: 124
  start-page: 034108
  year: 2006
  ident: C7CP01263B-(cit71)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2148954
– volume: 113
  start-page: 2
  year: 2013
  ident: C7CP01263B-(cit52)/*[position()=1]
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.24255
– volume: 253
  start-page: 526
  year: 2009
  ident: C7CP01263B-(cit114)/*[position()=1]
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2008.05.014
– volume: 33
  start-page: 139
  year: 2000
  ident: C7CP01263B-(cit34)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar990028j
– volume: 132
  start-page: 7656
  year: 2010
  ident: C7CP01263B-(cit25)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9106176
– volume: 96
  start-page: 1218
  year: 1992
  ident: C7CP01263B-(cit76)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.462209
– volume: 47
  start-page: 8297
  year: 2008
  ident: C7CP01263B-(cit11)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200803066
– volume: 136
  start-page: 15615
  year: 2014
  ident: C7CP01263B-(cit13)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja507617h
– volume: 299
  start-page: 1037
  year: 2003
  ident: C7CP01263B-(cit132)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.299.5609.1037
– volume: 137
  start-page: 722
  year: 2015
  ident: C7CP01263B-(cit137)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja509465w
– volume: 115
  start-page: 3170
  year: 2015
  ident: C7CP01263B-(cit7)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr500425u
– volume: 536
  start-page: 317
  year: 2016
  ident: C7CP01263B-(cit10)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature19059
– volume: 135
  start-page: 191102
  year: 2011
  ident: C7CP01263B-(cit102)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3663871
– volume: 42
  start-page: 1599
  year: 2003
  ident: C7CP01263B-(cit124)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/ic0261068
– volume: 127
  start-page: 86
  year: 2005
  ident: C7CP01263B-(cit125)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja044940l
– volume: 120
  start-page: 215
  year: 2008
  ident: C7CP01263B-(cit103)/*[position()=1]
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s00214-007-0310-x
– volume: 104
  start-page: 1040
  year: 1996
  ident: C7CP01263B-(cit146)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.470829
– volume: 8
  start-page: 4112
  year: 2012
  ident: C7CP01263B-(cit55)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct300737t
– volume: 5
  start-page: 1204
  year: 2014
  ident: C7CP01263B-(cit87)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C3SC52755G
– volume: 3
  start-page: 263
  year: 1954
  ident: C7CP01263B-(cit92)/*[position()=1]
  publication-title: Acta Phys. Hung.
  doi: 10.1007/BF03156228
– volume: 1
  start-page: 1533
  year: 2010
  ident: C7CP01263B-(cit141)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz100359h
– volume: 33
  start-page: 8822
  year: 1986
  ident: C7CP01263B-(cit82)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.33.8822
– volume: 55
  start-page: 2717
  year: 2016
  ident: C7CP01263B-(cit47)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.5b02371
– volume: 12
  start-page: 1280
  year: 2016
  ident: C7CP01263B-(cit99)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.5b01082
– volume: 40
  start-page: 2201
  year: 2001
  ident: C7CP01263B-(cit36)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/ic000954q
– volume: 238
  start-page: 187
  year: 2003
  ident: C7CP01263B-(cit113)/*[position()=1]
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/S0010-8545(02)00330-2
– volume: 122
  start-page: 044110
  year: 2005
  ident: C7CP01263B-(cit41)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1839854
– volume: 128
  start-page: 114103
  year: 2008
  ident: C7CP01263B-(cit145)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2838987
SSID ssj0001513
Score 2.528809
Snippet Our ability to understand and simulate the reactions catalyzed by iron depends strongly on our ability to predict the relative energetics of spin states. In...
We studied spin states of Fe2+ion, gaseous FeO, and 14 Fe(ii), Fe(iii) and Fe(iv) complexes using density functional theory.
SourceID osti
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 13049
SubjectTerms Approximation
Chemistry
Coordination compounds
Electron spin
Electronic structure
Functionals
Grounds
Iron
Mathematical analysis
Physics
Title Assessment of electronic structure methods for the determination of the ground spin states of Fe( ii ), Fe( iii ) and Fe( iv ) complexes
URI https://www.ncbi.nlm.nih.gov/pubmed/28484765
https://www.proquest.com/docview/1896897255
https://www.proquest.com/docview/1915325536
https://www.osti.gov/biblio/1535192
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdKd4AL4psyQEZwoCrZkjgf9bFErcboRg_ttFvkOA5Uqppq7SbgyB_D38l7tpN0qKDBpY1dJ037fvH7Pft9EPIGJrx-KGTgAJUHA8X3AqcvC-mITIRZBk9fEGM08slpdDQLjs_D81br55bX0uUmO5Dfd8aV_I9UoQ_kilGy_yDZ-qLQAccgX3gFCcPrjWQ8qNNqIufbqmhjssLi3oCpEL2uvQnzyv2lYorYiaEduH6-mi97OsJI-3eMFLDPOdwe1wzXtLCpNxxM-wqb2i1dfbXeiJbpTioAyKqknDnCLrOcstbLEZMkqUPMzlBNaF57IT5_qxXGGRbj1bso5WLToPnjwhbqPC6_CFAX696wd9JsLSXodnbxWwIFuwtmlzlMPKedk4OIOdw1leQO1I6-aiLnW4D13a1p2cPNxJ0Kw2WYb1XGcgWaOmJZoxYrV4DTT-loNh6n0-H59BbZ88Ec8dtkbzCcfhjXOh94EzNxbOa2qkS4jB82175GfdolTOF_Nms0vZneI3etXUIHBmT3SUstH5DbSSW7h-RHAzZaFrQBG63BRi3YKICNAq7oNbDhWdhpwEYRbNSADT8ZqbfzefedeZ93KUBMH191aQ2vR2Q2Gk6TI8cW8HBkEPCNo0IhIiWLTLAYdEfMgJ26ElPy5UUk-4EqQgEmBWeuLwq_iIF85r6rvNjNcy_zc_aYtJflUj0llMsczgDyLnIWFF4Gcwz3Yy9QuSsLzmWHdKv_NpU2uz0WWVmk2suC8TSJk4mWw_sOeV2PXZmcLjtH7aOIUmCimE5Zot-Z3KTAEMDo8TvkVSW5FASBu2xiqcrLder1edTnMZjqfxnD4TIwgkUd8sSIvb4T4Ivw46Lw2Q2-YZ_cwWfFLAk-J22Qt3oBJHmTvbQI_QVErb7y
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+electronic+structure+methods+for+the+determination+of+the+ground+spin+states+of+Fe%28ii%29%2C+Fe%28iii%29+and+Fe%28iv%29+complexes&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Verma%2C+Pragya&rft.au=Varga%2C+Zoltan&rft.au=Klein%2C+Johannes+E+M+N&rft.au=Cramer%2C+Christopher+J&rft.date=2017&rft.issn=1463-9084&rft.eissn=1463-9084&rft.volume=19&rft.issue=20&rft.spage=13049&rft_id=info:doi/10.1039%2Fc7cp01263b&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon