Biocatalytic Syntheses of Antiplatelet Metabolites of the Thienopyridines Clopidogrel and Prasugrel Using Fungal Peroxygenases
Antithrombotic thienopyridines, such as clopidogrel and prasugrel, are prodrugs that undergo a metabolic two-step bioactivation for their pharmacological efficacy. In the first step, a thiolactone is formed, which is then converted by cytochrome P450-dependent oxidation via sulfenic acids to the act...
Saved in:
Published in | Journal of fungi (Basel) Vol. 7; no. 9; p. 752 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
13.09.2021
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Antithrombotic thienopyridines, such as clopidogrel and prasugrel, are prodrugs that undergo a metabolic two-step bioactivation for their pharmacological efficacy. In the first step, a thiolactone is formed, which is then converted by cytochrome P450-dependent oxidation via sulfenic acids to the active thiol metabolites. These metabolites are the active compounds that inhibit the platelet P2Y12 receptor and thereby prevent atherothrombotic events. Thus far, described biocatalytic and chemical synthesis approaches to obtain active thienopyridine metabolites are rather complex and suffer from low yields. In the present study, several unspecific peroxygenases (UPOs, EC 1.11.2.1) known to efficiently mimic P450 reactions in vitro—but requiring only hydroperoxide as oxidant—were tested for biocatalytic one-pot syntheses. In the course of the reaction optimization, various parameters such as pH and reductant, as well as organic solvent and amount were varied. The best results for the conversion of 1 mM thienopyridine were achieved using 2 U mL−1 of a UPO from agaric fungus Marasmius rotula (MroUPO) in a phosphate-buffered system (pH 7) containing 5 mM ascorbate, 2 mM h−1 H2O2 and 20% acetone. The preparation of the active metabolite of clopidogrel was successful via a two-step oxidation with an overall yield of 25%. In the case of prasugrel, a cascade of porcine liver esterase (PLE) and MroUPO was applied, resulting in a yield of 44%. The two metabolites were isolated with high purity, and their structures were confirmed by MS and MS2 spectrometry as well as NMR spectroscopy. The findings broaden the scope of UPO applications again and demonstrate that they can be effectively used for the selective synthesis of metabolites and late-state diversification of organic molecules, circumventing complex multistage chemical syntheses and providing sufficient material for structural elucidation, reference material, or cellular assays. |
---|---|
AbstractList | Antithrombotic thienopyridines, such as clopidogrel and prasugrel, are prodrugs that undergo a metabolic two-step bioactivation for their pharmacological efficacy. In the first step, a thiolactone is formed, which is then converted by cytochrome P450-dependent oxidation via sulfenic acids to the active thiol metabolites. These metabolites are the active compounds that inhibit the platelet P2Y
12
receptor and thereby prevent atherothrombotic events. Thus far, described biocatalytic and chemical synthesis approaches to obtain active thienopyridine metabolites are rather complex and suffer from low yields. In the present study, several unspecific peroxygenases (UPOs, EC 1.11.2.1) known to efficiently mimic P450 reactions in vitro—but requiring only hydroperoxide as oxidant—were tested for biocatalytic one-pot syntheses. In the course of the reaction optimization, various parameters such as pH and reductant, as well as organic solvent and amount were varied. The best results for the conversion of 1 mM thienopyridine were achieved using 2 U mL
−1
of a UPO from agaric fungus
Marasmius rotula
(
Mro
UPO) in a phosphate-buffered system (pH 7) containing 5 mM ascorbate, 2 mM h
−1
H
2
O
2
and 20% acetone. The preparation of the active metabolite of clopidogrel was successful via a two-step oxidation with an overall yield of 25%. In the case of prasugrel, a cascade of porcine liver esterase (PLE) and
Mro
UPO was applied, resulting in a yield of 44%. The two metabolites were isolated with high purity, and their structures were confirmed by MS and MS
2
spectrometry as well as NMR spectroscopy. The findings broaden the scope of UPO applications again and demonstrate that they can be effectively used for the selective synthesis of metabolites and late-state diversification of organic molecules, circumventing complex multistage chemical syntheses and providing sufficient material for structural elucidation, reference material, or cellular assays. Antithrombotic thienopyridines, such as clopidogrel and prasugrel, are prodrugs that undergo a metabolic two-step bioactivation for their pharmacological efficacy. In the first step, a thiolactone is formed, which is then converted by cytochrome P450-dependent oxidation via sulfenic acids to the active thiol metabolites. These metabolites are the active compounds that inhibit the platelet P2Y12 receptor and thereby prevent atherothrombotic events. Thus far, described biocatalytic and chemical synthesis approaches to obtain active thienopyridine metabolites are rather complex and suffer from low yields. In the present study, several unspecific peroxygenases (UPOs, EC 1.11.2.1) known to efficiently mimic P450 reactions in vitro-but requiring only hydroperoxide as oxidant-were tested for biocatalytic one-pot syntheses. In the course of the reaction optimization, various parameters such as pH and reductant, as well as organic solvent and amount were varied. The best results for the conversion of 1 mM thienopyridine were achieved using 2 U mL-1 of a UPO from agaric fungus Marasmius rotula (MroUPO) in a phosphate-buffered system (pH 7) containing 5 mM ascorbate, 2 mM h-1 H2O2 and 20% acetone. The preparation of the active metabolite of clopidogrel was successful via a two-step oxidation with an overall yield of 25%. In the case of prasugrel, a cascade of porcine liver esterase (PLE) and MroUPO was applied, resulting in a yield of 44%. The two metabolites were isolated with high purity, and their structures were confirmed by MS and MS2 spectrometry as well as NMR spectroscopy. The findings broaden the scope of UPO applications again and demonstrate that they can be effectively used for the selective synthesis of metabolites and late-state diversification of organic molecules, circumventing complex multistage chemical syntheses and providing sufficient material for structural elucidation, reference material, or cellular assays.Antithrombotic thienopyridines, such as clopidogrel and prasugrel, are prodrugs that undergo a metabolic two-step bioactivation for their pharmacological efficacy. In the first step, a thiolactone is formed, which is then converted by cytochrome P450-dependent oxidation via sulfenic acids to the active thiol metabolites. These metabolites are the active compounds that inhibit the platelet P2Y12 receptor and thereby prevent atherothrombotic events. Thus far, described biocatalytic and chemical synthesis approaches to obtain active thienopyridine metabolites are rather complex and suffer from low yields. In the present study, several unspecific peroxygenases (UPOs, EC 1.11.2.1) known to efficiently mimic P450 reactions in vitro-but requiring only hydroperoxide as oxidant-were tested for biocatalytic one-pot syntheses. In the course of the reaction optimization, various parameters such as pH and reductant, as well as organic solvent and amount were varied. The best results for the conversion of 1 mM thienopyridine were achieved using 2 U mL-1 of a UPO from agaric fungus Marasmius rotula (MroUPO) in a phosphate-buffered system (pH 7) containing 5 mM ascorbate, 2 mM h-1 H2O2 and 20% acetone. The preparation of the active metabolite of clopidogrel was successful via a two-step oxidation with an overall yield of 25%. In the case of prasugrel, a cascade of porcine liver esterase (PLE) and MroUPO was applied, resulting in a yield of 44%. The two metabolites were isolated with high purity, and their structures were confirmed by MS and MS2 spectrometry as well as NMR spectroscopy. The findings broaden the scope of UPO applications again and demonstrate that they can be effectively used for the selective synthesis of metabolites and late-state diversification of organic molecules, circumventing complex multistage chemical syntheses and providing sufficient material for structural elucidation, reference material, or cellular assays. Antithrombotic thienopyridines, such as clopidogrel and prasugrel, are prodrugs that undergo a metabolic two-step bioactivation for their pharmacological efficacy. In the first step, a thiolactone is formed, which is then converted by cytochrome P450-dependent oxidation via sulfenic acids to the active thiol metabolites. These metabolites are the active compounds that inhibit the platelet P2Y12 receptor and thereby prevent atherothrombotic events. Thus far, described biocatalytic and chemical synthesis approaches to obtain active thienopyridine metabolites are rather complex and suffer from low yields. In the present study, several unspecific peroxygenases (UPOs, EC 1.11.2.1) known to efficiently mimic P450 reactions in vitro—but requiring only hydroperoxide as oxidant—were tested for biocatalytic one-pot syntheses. In the course of the reaction optimization, various parameters such as pH and reductant, as well as organic solvent and amount were varied. The best results for the conversion of 1 mM thienopyridine were achieved using 2 U mL−1 of a UPO from agaric fungus Marasmius rotula (MroUPO) in a phosphate-buffered system (pH 7) containing 5 mM ascorbate, 2 mM h−1 H2O2 and 20% acetone. The preparation of the active metabolite of clopidogrel was successful via a two-step oxidation with an overall yield of 25%. In the case of prasugrel, a cascade of porcine liver esterase (PLE) and MroUPO was applied, resulting in a yield of 44%. The two metabolites were isolated with high purity, and their structures were confirmed by MS and MS2 spectrometry as well as NMR spectroscopy. The findings broaden the scope of UPO applications again and demonstrate that they can be effectively used for the selective synthesis of metabolites and late-state diversification of organic molecules, circumventing complex multistage chemical syntheses and providing sufficient material for structural elucidation, reference material, or cellular assays. |
Author | Quint, Stephan Schramm, Marina Hofrichter, Martin Schmidtke, Kai-Uwe Scheibner, Katrin Kohlmann, Johannes Zuhse, Ralf Ullrich, René König, Rosalie Kiebist, Jan |
AuthorAffiliation | 2 Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Mühlenberg 13, 14476 Potsdam-Golm, Germany 4 Department of Bio- and Environmental Sciences, TU Dresden-International Institute Zittau, Markt 23, 02763 Zittau, Germany; rene.ullrich@tu-dresden.de (R.U.); martin.hofrichter@tu-dresden.de (M.H.) 1 Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Universitätsplatz 1, 01968 Senftenberg, Germany; kai-uwe.schmidtke@b-tu.de (K.-U.S.); marina.schramm@b-tu.de (M.S.); rosalie.koenig@b-tu.de (R.K.); katrin.scheibner@b-tu.de (K.S.) 3 Chiracon GmbH, Im Biotechnologiepark 9, 14943 Luckenwalde, Germany; quint@chiracon.de (S.Q.); kohlmann@chiracon.de (J.K.); zuhse@chiracon.de (R.Z.) |
AuthorAffiliation_xml | – name: 1 Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Universitätsplatz 1, 01968 Senftenberg, Germany; kai-uwe.schmidtke@b-tu.de (K.-U.S.); marina.schramm@b-tu.de (M.S.); rosalie.koenig@b-tu.de (R.K.); katrin.scheibner@b-tu.de (K.S.) – name: 4 Department of Bio- and Environmental Sciences, TU Dresden-International Institute Zittau, Markt 23, 02763 Zittau, Germany; rene.ullrich@tu-dresden.de (R.U.); martin.hofrichter@tu-dresden.de (M.H.) – name: 2 Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Mühlenberg 13, 14476 Potsdam-Golm, Germany – name: 3 Chiracon GmbH, Im Biotechnologiepark 9, 14943 Luckenwalde, Germany; quint@chiracon.de (S.Q.); kohlmann@chiracon.de (J.K.); zuhse@chiracon.de (R.Z.) |
Author_xml | – sequence: 1 givenname: Jan surname: Kiebist fullname: Kiebist, Jan – sequence: 2 givenname: Kai-Uwe surname: Schmidtke fullname: Schmidtke, Kai-Uwe – sequence: 3 givenname: Marina surname: Schramm fullname: Schramm, Marina – sequence: 4 givenname: Rosalie surname: König fullname: König, Rosalie – sequence: 5 givenname: Stephan surname: Quint fullname: Quint, Stephan – sequence: 6 givenname: Johannes surname: Kohlmann fullname: Kohlmann, Johannes – sequence: 7 givenname: Ralf surname: Zuhse fullname: Zuhse, Ralf – sequence: 8 givenname: René orcidid: 0000-0002-9165-6341 surname: Ullrich fullname: Ullrich, René – sequence: 9 givenname: Martin orcidid: 0000-0001-5174-7604 surname: Hofrichter fullname: Hofrichter, Martin – sequence: 10 givenname: Katrin surname: Scheibner fullname: Scheibner, Katrin |
BookMark | eNptklFrFDEQxxep2Fr74idY8EWE02ySTTYvQntYLVQs2IJvYTaZ3cuRJmeSFe_Fz-5er6ItPmUy85_fDH_meXUQYsCqetmQt4wp8m4dB0kUkS19Uh1RRtRCkO7bwT_xYXWS85oQ0rSdUIo9qw4Zb2UrFTmqfp25aKCA3xZn6q_bUFaYMddxqE9DcRsPBT2W-jMW6KN3ZV-bVfX1ymGIm21y1oU5vfRx42wcE_oagq2vEuTp7neTXRjr8ymM4OsrTPHndsQA85wX1dMBfMaT-_e4ujn_cL38tLj88vFieXq5MJyrskCqUBlrO9OCokwYKQche1QSe44dkcAoY0iEsYSiaXpKgUDHBOuUZZSz4-piz7UR1nqT3C2krY7g9F0iplFDmh3wqDvLZ0Czc5TyloDiiMLKAaCVjejtzHq_Z22m_hatwVAS-AfQh5XgVnqMP3THJemknAGv7wEpfp8wF33rskHvIWCcsqatlFy0otvt_eqRdB2nFGardirBORVNN6vIXmVSzDnhoI0rUFzczXdeN0TvbkX_vZW55c2jlj_7_0f8Gxo8wus |
CitedBy_id | crossref_primary_10_3390_biomedicines10050964 crossref_primary_10_3389_fbioe_2022_964396 crossref_primary_10_3390_antiox11020284 crossref_primary_10_3390_ijms23020909 |
Cites_doi | 10.1016/j.jchromb.2012.11.005 10.1001/jama.2009.1232 10.1021/ja034142f 10.1002/cctc.201402795 10.1016/j.molcatb.2016.10.014 10.1186/2191-0855-1-31 10.1186/2191-0855-3-5 10.1002/bit.27810 10.1007/978-3-319-16009-2_13 10.1021/acs.oprd.1c00116 10.1016/j.tet.2019.02.013 10.1039/C8CY02114G 10.1039/C9CY02332A 10.1124/dmd.109.029132 10.1093/eurheartj/ehs042 10.1124/dmd.110.032086 10.1016/j.jinorgbio.2018.03.011 10.1016/j.biotechadv.2021.107703 10.1056/NEJMoa0809171 10.1177/0091270009343005 10.1201/9780429353116-18 10.1007/978-3-030-29541-7_14 10.1128/AEM.70.8.4575-4581.2004 10.1038/nm.2436 10.1021/acs.chemrestox.5b00133 10.1021/tx2004085 10.1038/s41929-020-00507-8 10.1007/s00253-008-1778-6 10.1128/AEM.02899-19 10.1021/acs.joc.5b00632 10.1002/cbic.201500493 10.1021/acscatal.9b01454 10.1124/dmd.30.11.1288 10.1016/j.bmcl.2016.04.030 10.1124/dmd.106.014522 10.1160/TH10-09-0582 10.1021/tx400083b 10.1021/tx200519d 10.1021/tx8004828 10.1007/s00542-013-1928-3 10.1021/acscatal.8b01004 10.1021/cr020443g 10.1021/jo0202177 10.1160/TH05-03-0208 10.1186/s13568-020-01064-w 10.1016/j.tet.2014.04.037 10.1056/NEJMoa0706482 10.1124/jpet.112.201640 10.1016/j.biotechadv.2020.107615 10.2165/00003495-200060020-00012 10.1016/j.bmc.2015.06.035 10.1002/bit.24904 10.3389/fmicb.2017.01463 10.1002/cbic.201600677 10.1124/dmd.107.020248 10.1124/dmd.106.014530 10.1021/tx1001332 10.1021/ja962466g 10.1128/AEM.00026-07 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/jof7090752 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 2309-608X |
ExternalDocumentID | oai_doaj_org_article_8d4c1b107522450a94ee6d7faa5716bd PMC8470877 10_3390_jof7090752 |
GeographicLocations | United States--US Germany |
GeographicLocations_xml | – name: United States--US – name: Germany |
GroupedDBID | 53G 5VS 8FE 8FH AADQD AAFWJ AAHBH AAYXX ABDBF ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ HYE IAO ITC KQ8 LK8 M7P MODMG M~E OK1 OZF PGMZT PHGZM PHGZT PIMPY PROAC RPM ABUWG AZQEC DWQXO GNUQQ PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c449t-e29e9cdd8c5a9236c77f67be97eb4e807a3233e06cd02ec1b22a0a836389d3243 |
IEDL.DBID | DOA |
ISSN | 2309-608X |
IngestDate | Wed Aug 27 01:22:45 EDT 2025 Thu Aug 21 14:33:46 EDT 2025 Fri Jul 11 06:03:36 EDT 2025 Fri Jul 25 11:51:56 EDT 2025 Tue Jul 01 03:30:59 EDT 2025 Thu Apr 24 23:05:33 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c449t-e29e9cdd8c5a9236c77f67be97eb4e807a3233e06cd02ec1b22a0a836389d3243 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5174-7604 0000-0002-9165-6341 |
OpenAccessLink | https://doaj.org/article/8d4c1b107522450a94ee6d7faa5716bd |
PMID | 34575790 |
PQID | 2576442618 |
PQPubID | 2059559 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8d4c1b107522450a94ee6d7faa5716bd pubmedcentral_primary_oai_pubmedcentral_nih_gov_8470877 proquest_miscellaneous_2577465684 proquest_journals_2576442618 crossref_citationtrail_10_3390_jof7090752 crossref_primary_10_3390_jof7090752 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210913 |
PublicationDateYYYYMMDD | 2021-09-13 |
PublicationDate_xml | – month: 9 year: 2021 text: 20210913 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Journal of fungi (Basel) |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Dansette (ref_7) 2011; 17 Dansette (ref_9) 2009; 22 Kiebist (ref_30) 2015; 23 Rademacher (ref_44) 2012; 25 Anh (ref_36) 2007; 73 Zetterberg (ref_17) 2016; 26 ref_56 Dansette (ref_47) 2015; 28 Aranda (ref_58) 2021; 51 Hasegawa (ref_23) 2005; 94 Dansette (ref_8) 2012; 25 Aranda (ref_53) 2019; 9 Carro (ref_55) 2020; 10 Hofrichter (ref_50) 2021; 118 Tonin (ref_57) 2021; 25 Gong (ref_15) 2012; 33 Aranda (ref_41) 2009; 82 Carro (ref_54) 2019; 9 Williams (ref_6) 2008; 36 Hagihara (ref_11) 2010; 38 Hofrichter (ref_29) 2015; 851 Kiebist (ref_33) 2017; 18 Farid (ref_24) 2007; 35 ref_28 Bluet (ref_21) 2014; 70 Treiber (ref_43) 2002; 67 Karich (ref_46) 2016; 134 Karich (ref_40) 2013; 3 Kazui (ref_5) 2010; 38 Babot (ref_51) 2013; 110 Jarvis (ref_1) 2000; 60 Pereillo (ref_4) 2002; 30 Ullrich (ref_34) 2018; 183 Cervantes (ref_45) 2019; 75 Zhu (ref_16) 2013; 344 Danielak (ref_19) 2012; 911 Tieves (ref_32) 2018; 8 Hobisch (ref_27) 2020; 51 Meunier (ref_38) 2004; 104 Wiviott (ref_2) 2007; 357 Dansette (ref_10) 2010; 23 Sigmund (ref_25) 2020; 3 Dansette (ref_12) 2013; 26 Tuffal (ref_18) 2011; 105 Shuldiner (ref_14) 2009; 302 Mega (ref_13) 2009; 360 Wickremsinhe (ref_22) 2007; 35 Ullrich (ref_35) 2004; 70 Shaik (ref_39) 2003; 125 Steinbrecht (ref_31) 2020; 10 Shaw (ref_20) 2015; 80 Plou (ref_49) 2016; 17 Babot (ref_52) 2015; 7 Treiber (ref_42) 1997; 119 Ullrich (ref_37) 2011; 1 Kiebist (ref_26) 2019; Volume 5 Farid (ref_3) 2010; 50 Ma (ref_48) 2015; 73 Karich (ref_59) 2017; 8 |
References_xml | – volume: 911 start-page: 105 year: 2012 ident: ref_19 article-title: HPLC–MS/MS Method for the Simultaneous Determination of Clopidogrel, Its Carboxylic Acid Metabolite and Derivatized Isomers of Thiol Metabolite in Clinical Samples publication-title: J. Chromatogr. B doi: 10.1016/j.jchromb.2012.11.005 – volume: 302 start-page: 849 year: 2009 ident: ref_14 article-title: Association of Cytochrome P450 2c19 Genotype with the Antiplatelet Effect and Clinical Efficacy of Clopidogrel Therapy publication-title: JAMA doi: 10.1001/jama.2009.1232 – volume: 125 start-page: 7413 year: 2003 ident: ref_39 article-title: A Proton-Shuttle Mechanism Mediated by the Porphyrin in Benzene Hydroxylation by Cytochrome P450 Enzymes publication-title: J. Am. Chem. Soc. doi: 10.1021/ja034142f – volume: 7 start-page: 283 year: 2015 ident: ref_52 article-title: Regioselective Hydroxylation in the Production of 25-Hydroxyvitamin D by Coprinopsis Cinerea Peroxygenase publication-title: ChemCatChem doi: 10.1002/cctc.201402795 – volume: 134 start-page: 238 year: 2016 ident: ref_46 article-title: Exploring the catalase activity of unspecific peroxygenases and the mechanism of peroxide-dependent heme destruction publication-title: J. Mol. Catal. B Enzym. doi: 10.1016/j.molcatb.2016.10.014 – volume: 1 start-page: 31 year: 2011 ident: ref_37 article-title: High-Yield Production of Aromatic Peroxygenase by the Agaric Fungus Marasmius Rotula publication-title: AMB Express doi: 10.1186/2191-0855-1-31 – volume: 3 start-page: 1 year: 2013 ident: ref_40 article-title: Benzene Oxygenation and Oxidation by the Peroxygenase of Agrocybe aegerita publication-title: AMB Express doi: 10.1186/2191-0855-3-5 – volume: 118 start-page: 3002 year: 2021 ident: ref_50 article-title: Directed Evolution of Unspecific Peroxygenase in Organic Solvents publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.27810 – volume: 851 start-page: 341 year: 2015 ident: ref_29 article-title: Fungal Unspecific Peroxygenases: Heme-Thiolate Proteins That Combine Peroxidase and Cytochrome P450 Properties publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-3-319-16009-2_13 – volume: 25 start-page: 1414 year: 2021 ident: ref_57 article-title: Pilot-Scale Production of Peroxygenase from Agrocybe aegerita publication-title: Org. Process Res. Dev. doi: 10.1021/acs.oprd.1c00116 – volume: 75 start-page: 1827 year: 2019 ident: ref_45 article-title: Benchmarking of Laboratory Evolved Unspecific Peroxygenases for the Synthesis of Human Drug Metabolites publication-title: Tetrahedron doi: 10.1016/j.tet.2019.02.013 – volume: 9 start-page: 1398 year: 2019 ident: ref_53 article-title: Selective Synthesis of 4-Hydroxyisophorone and 4-Ketoisophorone by Fungal Peroxygenases publication-title: Catal. Sci. Technol. doi: 10.1039/C8CY02114G – volume: 10 start-page: 717 year: 2020 ident: ref_55 article-title: Fatty Acid Epoxidation by Collariella Virescens Peroxygenase and Heme-Channel Variants publication-title: Catal. Sci. Technol. doi: 10.1039/C9CY02332A – volume: 38 start-page: 92 year: 2010 ident: ref_5 article-title: Identification of the Human Cytochrome P450 Enzymes Involved in the Two Oxidative Steps in the Bioactivation of Clopidogrel to Its Pharmacologically Active Metabolite publication-title: Drug Metab. Dispos. doi: 10.1124/dmd.109.029132 – volume: 33 start-page: 2856 year: 2012 ident: ref_15 article-title: Clarifying the Importance of Cyp2c19 and Pon1 in the Mechanism of Clopidogrel Bioactivation and in Vivo Antiplatelet Response publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehs042 – volume: 38 start-page: 898 year: 2010 ident: ref_11 article-title: Biotransformation of Prasugrel, a Novel Thienopyridine Antiplatelet Agent, to the Pharmacologically Active Metabolite publication-title: Drug Metab. Dispos. doi: 10.1124/dmd.110.032086 – volume: 183 start-page: 84 year: 2018 ident: ref_34 article-title: Side Chain Removal from Corticosteroids by Unspecific Peroxygenase publication-title: J. Inorg. Biochem. doi: 10.1016/j.jinorgbio.2018.03.011 – volume: 51 start-page: 107703 year: 2021 ident: ref_58 article-title: Advances in Enzymatic Oxyfunctionalization of Aliphatic Compounds publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2021.107703 – volume: 360 start-page: 354 year: 2009 ident: ref_13 article-title: Cytochrome P-450 Polymorphisms and Response to Clopidogrel publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa0809171 – volume: 50 start-page: 126 year: 2010 ident: ref_3 article-title: Metabolism and Disposition of the Thienopyridine Antiplatelet Drugs Ticlopidine, Clopidogrel, and Prasugrel in Humans publication-title: J. Clin. Pharmacol. doi: 10.1177/0091270009343005 – volume: Volume 5 start-page: 643 year: 2019 ident: ref_26 article-title: Oxyfunctionalization of Pharmaceuticals by Fungal Peroxygenases publication-title: Pharmaceutical Biocatalysis doi: 10.1201/9780429353116-18 – ident: ref_28 doi: 10.1007/978-3-030-29541-7_14 – volume: 70 start-page: 4575 year: 2004 ident: ref_35 article-title: Novel Haloperoxidase from the Agaric Basidiomycete Agrocybe Aegerita Oxidizes Aryl Alcohols and Aldehydes publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.70.8.4575-4581.2004 – volume: 17 start-page: 1040 year: 2011 ident: ref_7 article-title: Paraoxonase-1 and Clopidogrel Efficacy publication-title: Nat. Med. doi: 10.1038/nm.2436 – volume: 28 start-page: 1338 year: 2015 ident: ref_47 article-title: Bioactivation of Clopidogrel and Prasugrel: Factors Determining the Stereochemistry of the Thiol Metabolite Double Bond publication-title: Chem. Res. Toxicol. doi: 10.1021/acs.chemrestox.5b00133 – volume: 25 start-page: 348 year: 2012 ident: ref_8 article-title: Cytochromes P450 Catalyze Both Steps of the Major Pathway of Clopidogrel Bioactivation, Whereas Paraoxonase Catalyzes the Formation of a Minor Thiol Metabolite Isomer publication-title: Chem. Res. Toxicol. doi: 10.1021/tx2004085 – volume: 3 start-page: 690 year: 2020 ident: ref_25 article-title: Current State and Future Perspectives of Engineered and Artificial Peroxygenases for the Oxyfunctionalization of Organic Molecules publication-title: Nat. Catal. doi: 10.1038/s41929-020-00507-8 – volume: 82 start-page: 1057 year: 2009 ident: ref_41 article-title: Conversion of Dibenzothiophene by the Mushrooms Agrocybe Aegerita and Coprinellus Radians and Their Extracellular Peroxygenases publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-008-1778-6 – ident: ref_56 doi: 10.1128/AEM.02899-19 – volume: 80 start-page: 7019 year: 2015 ident: ref_20 article-title: Synthesis of Biologically Active Piperidine Metabolites of Clopidogrel: Determination of Structure and Analyte Development publication-title: J. Org. Chem. doi: 10.1021/acs.joc.5b00632 – volume: 17 start-page: 341 year: 2016 ident: ref_49 article-title: Synthesis of 1-Naphthol by a Natural Peroxygenase Engineered by Directed Evolution publication-title: ChemBioChem doi: 10.1002/cbic.201500493 – volume: 9 start-page: 6234 year: 2019 ident: ref_54 article-title: Modulating Fatty Acid Epoxidation Vs Hydroxylation in a Fungal Peroxygenase publication-title: ACS Catal. doi: 10.1021/acscatal.9b01454 – volume: 30 start-page: 1288 year: 2002 ident: ref_4 article-title: Structure and Stereochemistry of the Active Metabolite of Clopidogrel publication-title: Drug Metab. Dispos. doi: 10.1124/dmd.30.11.1288 – volume: 26 start-page: 2739 year: 2016 ident: ref_17 article-title: State of Affairs: Design and Structure–Activity Relationships of Reversible P2y12 Receptor Antagonists publication-title: Bioorg. Med. Chem. Lett. doi: 10.1016/j.bmcl.2016.04.030 – volume: 35 start-page: 1096 year: 2007 ident: ref_24 article-title: The Disposition of Prasugrel, a Novel Thienopyridine, in Humans publication-title: Drug Metab. Dispos. doi: 10.1124/dmd.106.014522 – volume: 105 start-page: 696 year: 2011 ident: ref_18 article-title: An Improved Method for Specific and Quantitative Determination of the Clopidogrel Active Metabolite Isomers in Human Plasma publication-title: Thromb. Haemost. doi: 10.1160/TH10-09-0582 – volume: 26 start-page: 794 year: 2013 ident: ref_12 article-title: Thiolactone Sulfoxides as New Reactive Metabolites Acting as Bis-Electrophiles: Implication in Clopidogrel and Prasugrel Bioactivation publication-title: Chem. Res. Toxicol. doi: 10.1021/tx400083b – volume: 25 start-page: 895 year: 2012 ident: ref_44 article-title: Differential Oxidation of Two Thiophene-Containing Regioisomers to Reactive Metabolites by Cytochrome P450 2c9 publication-title: Chem. Res. Toxicol. doi: 10.1021/tx200519d – volume: 22 start-page: 369 year: 2009 ident: ref_9 article-title: Metabolic Oxidative Cleavage of Thioesters: Evidence for the Formation of Sulfenic Acid Intermediates in the Bioactivation of the Antithrombotic Prodrugs Ticlopidine and Clopidogrel publication-title: Chem. Res. Toxicol. doi: 10.1021/tx8004828 – volume: 73 start-page: 29 year: 2015 ident: ref_48 article-title: Tandem-Yeast Expression System for Engineering and Producing Unspecific Peroxygenase publication-title: Enzyme Microb. Technol. doi: 10.1007/s00542-013-1928-3 – volume: 8 start-page: 4789 year: 2018 ident: ref_32 article-title: Selective Synthesis of the Human Drug Metabolite 5′-Hydroxypropranolol by an Evolved Self-Sufficient Peroxygenase publication-title: ACS Catal. doi: 10.1021/acscatal.8b01004 – volume: 104 start-page: 3947 year: 2004 ident: ref_38 article-title: Mechanism of Oxidation Reactions Catalyzed by Cytochrome P450 Enzymes publication-title: Chem. Rev. doi: 10.1021/cr020443g – volume: 67 start-page: 7261 year: 2002 ident: ref_43 article-title: Mechanism of the Aromatic Hydroxylation of Thiophene by Acid-Catalyzed Peracid Oxidation publication-title: J. Org. Chem. doi: 10.1021/jo0202177 – volume: 94 start-page: 593 year: 2005 ident: ref_23 article-title: Stereoselective Inhibition of Human Platelet Aggregation by R-138727, the Active Metabolite of Cs-747 (Prasugrel, Ly640315), a Novel P2y12 Receptor Inhibitor publication-title: Thromb. Haemost. doi: 10.1160/TH05-03-0208 – volume: 10 start-page: 1 year: 2020 ident: ref_31 article-title: Synthesis of Cyclophosphamide Metabolites by a Peroxygenase from Marasmius Rotula for Toxicological Studies on Human Cancer Cells publication-title: AMB Express doi: 10.1186/s13568-020-01064-w – volume: 70 start-page: 3893 year: 2014 ident: ref_21 article-title: Synthesis of the Stabilized Active Metabolite of Clopidogrel publication-title: Tetrahedron doi: 10.1016/j.tet.2014.04.037 – volume: 357 start-page: 2001 year: 2007 ident: ref_2 article-title: Prasugrel Versus Clopidogrel in Patients with Acute Coronary Syndromes publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa0706482 – volume: 344 start-page: 665 year: 2013 ident: ref_16 article-title: Carboxylesterase 1 as a Determinant of Clopidogrel Metabolism and Activation publication-title: J. Pharmacol. Exp. Ther. doi: 10.1124/jpet.112.201640 – volume: 51 start-page: 107615 year: 2020 ident: ref_27 article-title: Recent Developments in the Use of Peroxygenases–Exploring Their High Potential in Selective Oxyfunctionalisations publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2020.107615 – volume: 60 start-page: 347 year: 2000 ident: ref_1 article-title: Clopidogrel publication-title: Drugs doi: 10.2165/00003495-200060020-00012 – volume: 23 start-page: 4324 year: 2015 ident: ref_30 article-title: One-Pot Synthesis of Human Metabolites of SAR548304 by Fungal Peroxygenases publication-title: Bioorg. Med. Chem. doi: 10.1016/j.bmc.2015.06.035 – volume: 110 start-page: 2323 year: 2013 ident: ref_51 article-title: Oxyfunctionalization of Aliphatic Compounds by a Recombinant Peroxygenase from Coprinopsis cinerea publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.24904 – volume: 8 start-page: 1463 year: 2017 ident: ref_59 article-title: Fungal Unspecific Peroxygenases Oxidize the Majority of Organic EPA Priority Pollutants publication-title: Front. Microbiol. doi: 10.3389/fmicb.2017.01463 – volume: 18 start-page: 563 year: 2017 ident: ref_33 article-title: A Peroxygenase from Chaetomium Globosum Catalyzes the Selective Oxygenation of Testosterone publication-title: ChemBioChem doi: 10.1002/cbic.201600677 – volume: 36 start-page: 1227 year: 2008 ident: ref_6 article-title: The Biotransformation of Prasugrel, a New Thienopyridine Prodrug, by the Human Carboxylesterases 1 and 2 publication-title: Drug Metab. Dispos. doi: 10.1124/dmd.107.020248 – volume: 35 start-page: 917 year: 2007 ident: ref_22 article-title: Stereoselective Metabolism of Prasugrel in Humans Using a Novel Chiral Liquid Chromatography-Tandem Mass Spectrometry Method publication-title: Drug Metab. Dispos. doi: 10.1124/dmd.106.014530 – volume: 23 start-page: 1268 year: 2010 ident: ref_10 article-title: Formation and Fate of a Sulfenic Acid Intermediate in the Metabolic Activation of the Antithrombotic Prodrug Prasugrel publication-title: Chem. Res. Toxicol. doi: 10.1021/tx1001332 – volume: 119 start-page: 1565 year: 1997 ident: ref_42 article-title: Chemical and Biological Oxidation of Thiophene: Preparation and Complete Characterization of Thiophene S-Oxide Dimers and Evidence for Thiophene S-Oxide as an Intermediate in Thiophene Metabolism in Vivo and in Vitro publication-title: J. Am. Chem. Soc. doi: 10.1021/ja962466g – volume: 73 start-page: 5477 year: 2007 ident: ref_36 article-title: The Coprophilous Mushroom Coprinus Radians Secreted a Haloperoxidase That Catalyzes Aromatic Peroxgenation publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00026-07 |
SSID | ssj0001586993 |
Score | 2.1934526 |
Snippet | Antithrombotic thienopyridines, such as clopidogrel and prasugrel, are prodrugs that undergo a metabolic two-step bioactivation for their pharmacological... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 752 |
SubjectTerms | antiplatelet Ascorbic acid Chemicals Chromatography Clopidogrel Cytochrome Cytochrome P450 Enzymes Esterase human drug metabolites Hydrogen peroxide Magnetic resonance spectroscopy Metabolism Metabolites NMR Nuclear magnetic resonance Oxidants Oxidation pH effects prasugrel thienopyridine Thiolactone unspecific peroxygenase |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZt0kMvoU_qJA0q7aUHEz9kST6VbMgSCglLm0BuRi83W4K1Xe8e9pLf3hmtdjeG0qOtMRYaSfPNaPQNIV8MgHhd5i04OTZLwR7bVNZGpRWSERpns1zjbeSra355y77fVXcx4NbHtMrNnhg2ausNxshPERgzxPvy2-xPilWj8HQ1ltB4TvZhC5bgfO2PLq4nP3ZRlkpysMBrXtIS_PvT374VGXiEVTGwRIGwf4AyhzmST4zO-BU5iGiRnq3V-5o8c90b8mLkAdGt3pLH0dSH8MsKmunPVQdgrnc99S096zBNEHAkqIVeuQWoGi8bhzaQojf3sKT9bDWfWsx7p-d4ccp6cL4fqOosncxVvwxPIaeAjmFPgI5MHGa9wJwD29e_I7fji5vzyzTWU0gNY_UidUXtamOtNJUCXMeNEC0X2tXCaeZkJlRZlKXLuLFZ4Uyui0JlSpYIaiwAr_I92et85z4Q6gCFOMfgU6GZqY3mWuSKca6QYFDnCfm6GdvGRLJxrHnx0IDTgXpodnpIyOet7GxNsfFPqRGqaCuBtNjhhZ__auIqa6Rl0O0c5QtWZaqGTnIrWqUq8Au1TcjxRsFNXKt9s5tZCfm0bYZVhkcnqnN-GWQEMstJlhAxmBiDDg1buul94OsGAICjcvj_nx-RlwXmy2B5ivKY7C3mS_cRAM9Cn8RZ_RcmQgZi priority: 102 providerName: ProQuest |
Title | Biocatalytic Syntheses of Antiplatelet Metabolites of the Thienopyridines Clopidogrel and Prasugrel Using Fungal Peroxygenases |
URI | https://www.proquest.com/docview/2576442618 https://www.proquest.com/docview/2577465684 https://pubmed.ncbi.nlm.nih.gov/PMC8470877 https://doaj.org/article/8d4c1b107522450a94ee6d7faa5716bd |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYl6aGX0PRBnRcq7aUHEz9kyT6ukyyhkLC0CeRm9BiTDcEO693DXvrbMyM7mzUUeunJ2BobWTPSfGPPfGLsu0UQb9K4xiDHRSH6YxfmhdVhRmSEFlwUG6pGvrqWl7fi5112t7XVF-WE9fTA_cCd5k7Y2GCQgkBBZJEuBIB0qtY6Q6hvHK2-6PO2gqm-PjiX6Hl7PtIU4_rTh7ZWUUGPGXkgT9Q_Qpfj3MgtZzN9z_YGlMgnfe_22RtoPrC3ZYtIbv2R_Snnrf_sssZm_nvdIIjroONtzScNpQcifkR18CtYooqpyNi3oRS_ucep3D6tF3NH-e78jAqmXItB9yPXjeOzhe5W_sznEvAprgXYkRlQtgvaGvq87hO7nV7cnF2Gwz4KoRWiWIaQFFBY53KbacRz0ipVS2WgUGAE5JHSaZKmEEnrogRwtJNERzpPCcw4BFzpZ7bTtA18YRwQfQAIvFUZYQtrpFGxFlJqIhY0ccB-vIxtZQeScdrr4rHCYIP0UL3qIWDfNrJPPbXGX6VKUtFGguiw_QU0kmowkupfRhKwoxcFV8Mc7SoKtQRFkHnAvm6acXbRLxPdQLvyMooY5XIRMDUyjFGHxi3N_N7zdKPjp1E5-B9vcMjeJZRNQ5tXpEdsZ7lYwTHCoaU5YbuT8ryc4rG8uJ79OvEz4RmcpRCL |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VFAkuiKdIKbAIOHCw6sfaax8QakqjlDZRBKnUm7sv06DKTuNEKBd-Er-RGcdOsIS49Wjv2B7tzM58s56dAXinEcSrwMswyDGug_7YOHGipRNSMUJtjespOo08HEWDc_7lIrzYgd_NWRhKq2xsYmWoTaFpj_yAgDEnvB9_mt041DWK_q42LTTWanFqVz8xZCs_nnxG-b73_f7x5Gjg1F0FHM15snCsn9hEGxPrUCK6ibQQWSSUTYRV3MaukIEfBNaNtHF9qz3l-9KVcUCu3SD8CPC9d2CXBxjKdGC3dzwaf93u6oRxhB5_XQc1CBL34EeRCRcj0NBveb6qQUAL1bZzMv9ycv2H8KBGp-xwrU6PYMfmj-Fur0AEuXoCv3rTotruWeEw-7bKETyWtmRFxg5zSktE3IpqwIZ2gapFh5urMaRikys0IcVsNZ8ayrNnR3RQyxQY7F8zmRs2nstyWV1VOQysjzYIGRlbyrJBHUdfWz6F81uZ6WfQyYvcPgdmEfVYy_FRobhOtIqU8CSPIkkFDZXXhQ_N3Ka6Lm5OPTauUwxySA7pVg5deLuhna1LevyTqkci2lBQGe7qRjH_ntarOo0NR7Y9ovd56MoEmYyMyKQMMQ5Vpgv7jYDT2jaU6VaTu_BmM4yrmn7VyNwWy4pGUCW7mHdBtBSjxVB7JJ9eVfXBEXDQrOz9_-Ov4d5gMjxLz05Gpy_gvk-5OtQaI9iHzmK-tC8RbC3Uq1rDGVze9qL6A62yQxs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VFCEuiKdwKbAIOHCw4sfaax8QatpGLaVRBK3Um7sv06DKTuNEyBd-GL-OGcdJsIS49Wjv2B7tzM58s56dAXinEcSr0M8xyDGei_7YuEmqpRtRMUJtjecrOo18OoqPzvnni-hiC36vzsJQWuXKJjaG2pSa9sj7BIw54f2kn7dpEeOD4afpjUsdpOhP66qdxlJFTmz9E8O36uPxAcr6fRAMD8_2j9y2w4CrOU_nrg1Sm2pjEh1JRDqxFiKPhbKpsIrbxBMyDMLQerE2XmC1r4JAejIJyc0bhCIhvvcObAuMirwebA8OR-Ovmx2eKInR-y9rooZh6vV_lLnwMBqNgo4XbJoFdBBuNz_zL4c3fAgPWqTK9paq9Qi2bPEY7g5KRJP1E_g1mJTN1k-Nw-xbXSCQrGzFypztFZSiiBgWVYKd2jmqGR10bsaQip1doTkpp_VsYijnnu3ToS1TYuB_zWRh2Hgmq0Vz1eQzsCHaI2RkbCnjBvUd_W71FM5vZaafQa8oC_scmEUEZC3HR4XiOtUqVsKXPI4lFTdUvgMfVnOb6bbQOfXbuM4w4CE5ZBs5OPB2TTtdlvf4J9WARLSmoJLczY1y9j1rV3iWGI5s-0Qf8MiTKTIZG5FLGWFMqowDuysBZ62dqLKNVjvwZj2MK5x-28jClouGRlBVu4Q7IDqK0WGoO1JMrppa4Qg-aFZ2_v_x13APF1P25Xh08gLuB5S2Q10ywl3ozWcL-xJx11y9ahWcweVtr6k_UPdHUA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biocatalytic+Syntheses+of+Antiplatelet+Metabolites+of+the+Thienopyridines+Clopidogrel+and+Prasugrel+Using+Fungal+Peroxygenases&rft.jtitle=Journal+of+fungi+%28Basel%29&rft.au=Kiebist%2C+Jan&rft.au=Schmidtke%2C+Kai-Uwe&rft.au=Schramm%2C+Marina&rft.au=K%C3%B6nig%2C+Rosalie&rft.date=2021-09-13&rft.issn=2309-608X&rft.eissn=2309-608X&rft.volume=7&rft.issue=9&rft_id=info:doi/10.3390%2Fjof7090752&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2309-608X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2309-608X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2309-608X&client=summon |