Biocatalytic Syntheses of Antiplatelet Metabolites of the Thienopyridines Clopidogrel and Prasugrel Using Fungal Peroxygenases

Antithrombotic thienopyridines, such as clopidogrel and prasugrel, are prodrugs that undergo a metabolic two-step bioactivation for their pharmacological efficacy. In the first step, a thiolactone is formed, which is then converted by cytochrome P450-dependent oxidation via sulfenic acids to the act...

Full description

Saved in:
Bibliographic Details
Published inJournal of fungi (Basel) Vol. 7; no. 9; p. 752
Main Authors Kiebist, Jan, Schmidtke, Kai-Uwe, Schramm, Marina, König, Rosalie, Quint, Stephan, Kohlmann, Johannes, Zuhse, Ralf, Ullrich, René, Hofrichter, Martin, Scheibner, Katrin
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 13.09.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Antithrombotic thienopyridines, such as clopidogrel and prasugrel, are prodrugs that undergo a metabolic two-step bioactivation for their pharmacological efficacy. In the first step, a thiolactone is formed, which is then converted by cytochrome P450-dependent oxidation via sulfenic acids to the active thiol metabolites. These metabolites are the active compounds that inhibit the platelet P2Y12 receptor and thereby prevent atherothrombotic events. Thus far, described biocatalytic and chemical synthesis approaches to obtain active thienopyridine metabolites are rather complex and suffer from low yields. In the present study, several unspecific peroxygenases (UPOs, EC 1.11.2.1) known to efficiently mimic P450 reactions in vitro—but requiring only hydroperoxide as oxidant—were tested for biocatalytic one-pot syntheses. In the course of the reaction optimization, various parameters such as pH and reductant, as well as organic solvent and amount were varied. The best results for the conversion of 1 mM thienopyridine were achieved using 2 U mL−1 of a UPO from agaric fungus Marasmius rotula (MroUPO) in a phosphate-buffered system (pH 7) containing 5 mM ascorbate, 2 mM h−1 H2O2 and 20% acetone. The preparation of the active metabolite of clopidogrel was successful via a two-step oxidation with an overall yield of 25%. In the case of prasugrel, a cascade of porcine liver esterase (PLE) and MroUPO was applied, resulting in a yield of 44%. The two metabolites were isolated with high purity, and their structures were confirmed by MS and MS2 spectrometry as well as NMR spectroscopy. The findings broaden the scope of UPO applications again and demonstrate that they can be effectively used for the selective synthesis of metabolites and late-state diversification of organic molecules, circumventing complex multistage chemical syntheses and providing sufficient material for structural elucidation, reference material, or cellular assays.
AbstractList Antithrombotic thienopyridines, such as clopidogrel and prasugrel, are prodrugs that undergo a metabolic two-step bioactivation for their pharmacological efficacy. In the first step, a thiolactone is formed, which is then converted by cytochrome P450-dependent oxidation via sulfenic acids to the active thiol metabolites. These metabolites are the active compounds that inhibit the platelet P2Y 12 receptor and thereby prevent atherothrombotic events. Thus far, described biocatalytic and chemical synthesis approaches to obtain active thienopyridine metabolites are rather complex and suffer from low yields. In the present study, several unspecific peroxygenases (UPOs, EC 1.11.2.1) known to efficiently mimic P450 reactions in vitro—but requiring only hydroperoxide as oxidant—were tested for biocatalytic one-pot syntheses. In the course of the reaction optimization, various parameters such as pH and reductant, as well as organic solvent and amount were varied. The best results for the conversion of 1 mM thienopyridine were achieved using 2 U mL −1 of a UPO from agaric fungus Marasmius rotula ( Mro UPO) in a phosphate-buffered system (pH 7) containing 5 mM ascorbate, 2 mM h −1 H 2 O 2 and 20% acetone. The preparation of the active metabolite of clopidogrel was successful via a two-step oxidation with an overall yield of 25%. In the case of prasugrel, a cascade of porcine liver esterase (PLE) and Mro UPO was applied, resulting in a yield of 44%. The two metabolites were isolated with high purity, and their structures were confirmed by MS and MS 2 spectrometry as well as NMR spectroscopy. The findings broaden the scope of UPO applications again and demonstrate that they can be effectively used for the selective synthesis of metabolites and late-state diversification of organic molecules, circumventing complex multistage chemical syntheses and providing sufficient material for structural elucidation, reference material, or cellular assays.
Antithrombotic thienopyridines, such as clopidogrel and prasugrel, are prodrugs that undergo a metabolic two-step bioactivation for their pharmacological efficacy. In the first step, a thiolactone is formed, which is then converted by cytochrome P450-dependent oxidation via sulfenic acids to the active thiol metabolites. These metabolites are the active compounds that inhibit the platelet P2Y12 receptor and thereby prevent atherothrombotic events. Thus far, described biocatalytic and chemical synthesis approaches to obtain active thienopyridine metabolites are rather complex and suffer from low yields. In the present study, several unspecific peroxygenases (UPOs, EC 1.11.2.1) known to efficiently mimic P450 reactions in vitro-but requiring only hydroperoxide as oxidant-were tested for biocatalytic one-pot syntheses. In the course of the reaction optimization, various parameters such as pH and reductant, as well as organic solvent and amount were varied. The best results for the conversion of 1 mM thienopyridine were achieved using 2 U mL-1 of a UPO from agaric fungus Marasmius rotula (MroUPO) in a phosphate-buffered system (pH 7) containing 5 mM ascorbate, 2 mM h-1 H2O2 and 20% acetone. The preparation of the active metabolite of clopidogrel was successful via a two-step oxidation with an overall yield of 25%. In the case of prasugrel, a cascade of porcine liver esterase (PLE) and MroUPO was applied, resulting in a yield of 44%. The two metabolites were isolated with high purity, and their structures were confirmed by MS and MS2 spectrometry as well as NMR spectroscopy. The findings broaden the scope of UPO applications again and demonstrate that they can be effectively used for the selective synthesis of metabolites and late-state diversification of organic molecules, circumventing complex multistage chemical syntheses and providing sufficient material for structural elucidation, reference material, or cellular assays.Antithrombotic thienopyridines, such as clopidogrel and prasugrel, are prodrugs that undergo a metabolic two-step bioactivation for their pharmacological efficacy. In the first step, a thiolactone is formed, which is then converted by cytochrome P450-dependent oxidation via sulfenic acids to the active thiol metabolites. These metabolites are the active compounds that inhibit the platelet P2Y12 receptor and thereby prevent atherothrombotic events. Thus far, described biocatalytic and chemical synthesis approaches to obtain active thienopyridine metabolites are rather complex and suffer from low yields. In the present study, several unspecific peroxygenases (UPOs, EC 1.11.2.1) known to efficiently mimic P450 reactions in vitro-but requiring only hydroperoxide as oxidant-were tested for biocatalytic one-pot syntheses. In the course of the reaction optimization, various parameters such as pH and reductant, as well as organic solvent and amount were varied. The best results for the conversion of 1 mM thienopyridine were achieved using 2 U mL-1 of a UPO from agaric fungus Marasmius rotula (MroUPO) in a phosphate-buffered system (pH 7) containing 5 mM ascorbate, 2 mM h-1 H2O2 and 20% acetone. The preparation of the active metabolite of clopidogrel was successful via a two-step oxidation with an overall yield of 25%. In the case of prasugrel, a cascade of porcine liver esterase (PLE) and MroUPO was applied, resulting in a yield of 44%. The two metabolites were isolated with high purity, and their structures were confirmed by MS and MS2 spectrometry as well as NMR spectroscopy. The findings broaden the scope of UPO applications again and demonstrate that they can be effectively used for the selective synthesis of metabolites and late-state diversification of organic molecules, circumventing complex multistage chemical syntheses and providing sufficient material for structural elucidation, reference material, or cellular assays.
Antithrombotic thienopyridines, such as clopidogrel and prasugrel, are prodrugs that undergo a metabolic two-step bioactivation for their pharmacological efficacy. In the first step, a thiolactone is formed, which is then converted by cytochrome P450-dependent oxidation via sulfenic acids to the active thiol metabolites. These metabolites are the active compounds that inhibit the platelet P2Y12 receptor and thereby prevent atherothrombotic events. Thus far, described biocatalytic and chemical synthesis approaches to obtain active thienopyridine metabolites are rather complex and suffer from low yields. In the present study, several unspecific peroxygenases (UPOs, EC 1.11.2.1) known to efficiently mimic P450 reactions in vitro—but requiring only hydroperoxide as oxidant—were tested for biocatalytic one-pot syntheses. In the course of the reaction optimization, various parameters such as pH and reductant, as well as organic solvent and amount were varied. The best results for the conversion of 1 mM thienopyridine were achieved using 2 U mL−1 of a UPO from agaric fungus Marasmius rotula (MroUPO) in a phosphate-buffered system (pH 7) containing 5 mM ascorbate, 2 mM h−1 H2O2 and 20% acetone. The preparation of the active metabolite of clopidogrel was successful via a two-step oxidation with an overall yield of 25%. In the case of prasugrel, a cascade of porcine liver esterase (PLE) and MroUPO was applied, resulting in a yield of 44%. The two metabolites were isolated with high purity, and their structures were confirmed by MS and MS2 spectrometry as well as NMR spectroscopy. The findings broaden the scope of UPO applications again and demonstrate that they can be effectively used for the selective synthesis of metabolites and late-state diversification of organic molecules, circumventing complex multistage chemical syntheses and providing sufficient material for structural elucidation, reference material, or cellular assays.
Author Quint, Stephan
Schramm, Marina
Hofrichter, Martin
Schmidtke, Kai-Uwe
Scheibner, Katrin
Kohlmann, Johannes
Zuhse, Ralf
Ullrich, René
König, Rosalie
Kiebist, Jan
AuthorAffiliation 2 Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Mühlenberg 13, 14476 Potsdam-Golm, Germany
4 Department of Bio- and Environmental Sciences, TU Dresden-International Institute Zittau, Markt 23, 02763 Zittau, Germany; rene.ullrich@tu-dresden.de (R.U.); martin.hofrichter@tu-dresden.de (M.H.)
1 Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Universitätsplatz 1, 01968 Senftenberg, Germany; kai-uwe.schmidtke@b-tu.de (K.-U.S.); marina.schramm@b-tu.de (M.S.); rosalie.koenig@b-tu.de (R.K.); katrin.scheibner@b-tu.de (K.S.)
3 Chiracon GmbH, Im Biotechnologiepark 9, 14943 Luckenwalde, Germany; quint@chiracon.de (S.Q.); kohlmann@chiracon.de (J.K.); zuhse@chiracon.de (R.Z.)
AuthorAffiliation_xml – name: 1 Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Universitätsplatz 1, 01968 Senftenberg, Germany; kai-uwe.schmidtke@b-tu.de (K.-U.S.); marina.schramm@b-tu.de (M.S.); rosalie.koenig@b-tu.de (R.K.); katrin.scheibner@b-tu.de (K.S.)
– name: 4 Department of Bio- and Environmental Sciences, TU Dresden-International Institute Zittau, Markt 23, 02763 Zittau, Germany; rene.ullrich@tu-dresden.de (R.U.); martin.hofrichter@tu-dresden.de (M.H.)
– name: 2 Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Mühlenberg 13, 14476 Potsdam-Golm, Germany
– name: 3 Chiracon GmbH, Im Biotechnologiepark 9, 14943 Luckenwalde, Germany; quint@chiracon.de (S.Q.); kohlmann@chiracon.de (J.K.); zuhse@chiracon.de (R.Z.)
Author_xml – sequence: 1
  givenname: Jan
  surname: Kiebist
  fullname: Kiebist, Jan
– sequence: 2
  givenname: Kai-Uwe
  surname: Schmidtke
  fullname: Schmidtke, Kai-Uwe
– sequence: 3
  givenname: Marina
  surname: Schramm
  fullname: Schramm, Marina
– sequence: 4
  givenname: Rosalie
  surname: König
  fullname: König, Rosalie
– sequence: 5
  givenname: Stephan
  surname: Quint
  fullname: Quint, Stephan
– sequence: 6
  givenname: Johannes
  surname: Kohlmann
  fullname: Kohlmann, Johannes
– sequence: 7
  givenname: Ralf
  surname: Zuhse
  fullname: Zuhse, Ralf
– sequence: 8
  givenname: René
  orcidid: 0000-0002-9165-6341
  surname: Ullrich
  fullname: Ullrich, René
– sequence: 9
  givenname: Martin
  orcidid: 0000-0001-5174-7604
  surname: Hofrichter
  fullname: Hofrichter, Martin
– sequence: 10
  givenname: Katrin
  surname: Scheibner
  fullname: Scheibner, Katrin
BookMark eNptklFrFDEQxxep2Fr74idY8EWE02ySTTYvQntYLVQs2IJvYTaZ3cuRJmeSFe_Fz-5er6ItPmUy85_fDH_meXUQYsCqetmQt4wp8m4dB0kUkS19Uh1RRtRCkO7bwT_xYXWS85oQ0rSdUIo9qw4Zb2UrFTmqfp25aKCA3xZn6q_bUFaYMddxqE9DcRsPBT2W-jMW6KN3ZV-bVfX1ymGIm21y1oU5vfRx42wcE_oagq2vEuTp7neTXRjr8ymM4OsrTPHndsQA85wX1dMBfMaT-_e4ujn_cL38tLj88vFieXq5MJyrskCqUBlrO9OCokwYKQche1QSe44dkcAoY0iEsYSiaXpKgUDHBOuUZZSz4-piz7UR1nqT3C2krY7g9F0iplFDmh3wqDvLZ0Czc5TyloDiiMLKAaCVjejtzHq_Z22m_hatwVAS-AfQh5XgVnqMP3THJemknAGv7wEpfp8wF33rskHvIWCcsqatlFy0otvt_eqRdB2nFGardirBORVNN6vIXmVSzDnhoI0rUFzczXdeN0TvbkX_vZW55c2jlj_7_0f8Gxo8wus
CitedBy_id crossref_primary_10_3390_biomedicines10050964
crossref_primary_10_3389_fbioe_2022_964396
crossref_primary_10_3390_antiox11020284
crossref_primary_10_3390_ijms23020909
Cites_doi 10.1016/j.jchromb.2012.11.005
10.1001/jama.2009.1232
10.1021/ja034142f
10.1002/cctc.201402795
10.1016/j.molcatb.2016.10.014
10.1186/2191-0855-1-31
10.1186/2191-0855-3-5
10.1002/bit.27810
10.1007/978-3-319-16009-2_13
10.1021/acs.oprd.1c00116
10.1016/j.tet.2019.02.013
10.1039/C8CY02114G
10.1039/C9CY02332A
10.1124/dmd.109.029132
10.1093/eurheartj/ehs042
10.1124/dmd.110.032086
10.1016/j.jinorgbio.2018.03.011
10.1016/j.biotechadv.2021.107703
10.1056/NEJMoa0809171
10.1177/0091270009343005
10.1201/9780429353116-18
10.1007/978-3-030-29541-7_14
10.1128/AEM.70.8.4575-4581.2004
10.1038/nm.2436
10.1021/acs.chemrestox.5b00133
10.1021/tx2004085
10.1038/s41929-020-00507-8
10.1007/s00253-008-1778-6
10.1128/AEM.02899-19
10.1021/acs.joc.5b00632
10.1002/cbic.201500493
10.1021/acscatal.9b01454
10.1124/dmd.30.11.1288
10.1016/j.bmcl.2016.04.030
10.1124/dmd.106.014522
10.1160/TH10-09-0582
10.1021/tx400083b
10.1021/tx200519d
10.1021/tx8004828
10.1007/s00542-013-1928-3
10.1021/acscatal.8b01004
10.1021/cr020443g
10.1021/jo0202177
10.1160/TH05-03-0208
10.1186/s13568-020-01064-w
10.1016/j.tet.2014.04.037
10.1056/NEJMoa0706482
10.1124/jpet.112.201640
10.1016/j.biotechadv.2020.107615
10.2165/00003495-200060020-00012
10.1016/j.bmc.2015.06.035
10.1002/bit.24904
10.3389/fmicb.2017.01463
10.1002/cbic.201600677
10.1124/dmd.107.020248
10.1124/dmd.106.014530
10.1021/tx1001332
10.1021/ja962466g
10.1128/AEM.00026-07
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/jof7090752
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 2309-608X
ExternalDocumentID oai_doaj_org_article_8d4c1b107522450a94ee6d7faa5716bd
PMC8470877
10_3390_jof7090752
GeographicLocations United States--US
Germany
GeographicLocations_xml – name: United States--US
– name: Germany
GroupedDBID 53G
5VS
8FE
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
HYE
IAO
ITC
KQ8
LK8
M7P
MODMG
M~E
OK1
OZF
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
ABUWG
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c449t-e29e9cdd8c5a9236c77f67be97eb4e807a3233e06cd02ec1b22a0a836389d3243
IEDL.DBID DOA
ISSN 2309-608X
IngestDate Wed Aug 27 01:22:45 EDT 2025
Thu Aug 21 14:33:46 EDT 2025
Fri Jul 11 06:03:36 EDT 2025
Fri Jul 25 11:51:56 EDT 2025
Tue Jul 01 03:30:59 EDT 2025
Thu Apr 24 23:05:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c449t-e29e9cdd8c5a9236c77f67be97eb4e807a3233e06cd02ec1b22a0a836389d3243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5174-7604
0000-0002-9165-6341
OpenAccessLink https://doaj.org/article/8d4c1b107522450a94ee6d7faa5716bd
PMID 34575790
PQID 2576442618
PQPubID 2059559
ParticipantIDs doaj_primary_oai_doaj_org_article_8d4c1b107522450a94ee6d7faa5716bd
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8470877
proquest_miscellaneous_2577465684
proquest_journals_2576442618
crossref_citationtrail_10_3390_jof7090752
crossref_primary_10_3390_jof7090752
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210913
PublicationDateYYYYMMDD 2021-09-13
PublicationDate_xml – month: 9
  year: 2021
  text: 20210913
  day: 13
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Journal of fungi (Basel)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Dansette (ref_7) 2011; 17
Dansette (ref_9) 2009; 22
Kiebist (ref_30) 2015; 23
Rademacher (ref_44) 2012; 25
Anh (ref_36) 2007; 73
Zetterberg (ref_17) 2016; 26
ref_56
Dansette (ref_47) 2015; 28
Aranda (ref_58) 2021; 51
Hasegawa (ref_23) 2005; 94
Dansette (ref_8) 2012; 25
Aranda (ref_53) 2019; 9
Carro (ref_55) 2020; 10
Hofrichter (ref_50) 2021; 118
Tonin (ref_57) 2021; 25
Gong (ref_15) 2012; 33
Aranda (ref_41) 2009; 82
Carro (ref_54) 2019; 9
Williams (ref_6) 2008; 36
Hagihara (ref_11) 2010; 38
Hofrichter (ref_29) 2015; 851
Kiebist (ref_33) 2017; 18
Farid (ref_24) 2007; 35
ref_28
Bluet (ref_21) 2014; 70
Treiber (ref_43) 2002; 67
Karich (ref_46) 2016; 134
Karich (ref_40) 2013; 3
Kazui (ref_5) 2010; 38
Babot (ref_51) 2013; 110
Jarvis (ref_1) 2000; 60
Pereillo (ref_4) 2002; 30
Ullrich (ref_34) 2018; 183
Cervantes (ref_45) 2019; 75
Zhu (ref_16) 2013; 344
Danielak (ref_19) 2012; 911
Tieves (ref_32) 2018; 8
Hobisch (ref_27) 2020; 51
Meunier (ref_38) 2004; 104
Wiviott (ref_2) 2007; 357
Dansette (ref_10) 2010; 23
Sigmund (ref_25) 2020; 3
Dansette (ref_12) 2013; 26
Tuffal (ref_18) 2011; 105
Shuldiner (ref_14) 2009; 302
Mega (ref_13) 2009; 360
Wickremsinhe (ref_22) 2007; 35
Ullrich (ref_35) 2004; 70
Shaik (ref_39) 2003; 125
Steinbrecht (ref_31) 2020; 10
Shaw (ref_20) 2015; 80
Plou (ref_49) 2016; 17
Babot (ref_52) 2015; 7
Treiber (ref_42) 1997; 119
Ullrich (ref_37) 2011; 1
Kiebist (ref_26) 2019; Volume 5
Farid (ref_3) 2010; 50
Ma (ref_48) 2015; 73
Karich (ref_59) 2017; 8
References_xml – volume: 911
  start-page: 105
  year: 2012
  ident: ref_19
  article-title: HPLC–MS/MS Method for the Simultaneous Determination of Clopidogrel, Its Carboxylic Acid Metabolite and Derivatized Isomers of Thiol Metabolite in Clinical Samples
  publication-title: J. Chromatogr. B
  doi: 10.1016/j.jchromb.2012.11.005
– volume: 302
  start-page: 849
  year: 2009
  ident: ref_14
  article-title: Association of Cytochrome P450 2c19 Genotype with the Antiplatelet Effect and Clinical Efficacy of Clopidogrel Therapy
  publication-title: JAMA
  doi: 10.1001/jama.2009.1232
– volume: 125
  start-page: 7413
  year: 2003
  ident: ref_39
  article-title: A Proton-Shuttle Mechanism Mediated by the Porphyrin in Benzene Hydroxylation by Cytochrome P450 Enzymes
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja034142f
– volume: 7
  start-page: 283
  year: 2015
  ident: ref_52
  article-title: Regioselective Hydroxylation in the Production of 25-Hydroxyvitamin D by Coprinopsis Cinerea Peroxygenase
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201402795
– volume: 134
  start-page: 238
  year: 2016
  ident: ref_46
  article-title: Exploring the catalase activity of unspecific peroxygenases and the mechanism of peroxide-dependent heme destruction
  publication-title: J. Mol. Catal. B Enzym.
  doi: 10.1016/j.molcatb.2016.10.014
– volume: 1
  start-page: 31
  year: 2011
  ident: ref_37
  article-title: High-Yield Production of Aromatic Peroxygenase by the Agaric Fungus Marasmius Rotula
  publication-title: AMB Express
  doi: 10.1186/2191-0855-1-31
– volume: 3
  start-page: 1
  year: 2013
  ident: ref_40
  article-title: Benzene Oxygenation and Oxidation by the Peroxygenase of Agrocybe aegerita
  publication-title: AMB Express
  doi: 10.1186/2191-0855-3-5
– volume: 118
  start-page: 3002
  year: 2021
  ident: ref_50
  article-title: Directed Evolution of Unspecific Peroxygenase in Organic Solvents
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.27810
– volume: 851
  start-page: 341
  year: 2015
  ident: ref_29
  article-title: Fungal Unspecific Peroxygenases: Heme-Thiolate Proteins That Combine Peroxidase and Cytochrome P450 Properties
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-3-319-16009-2_13
– volume: 25
  start-page: 1414
  year: 2021
  ident: ref_57
  article-title: Pilot-Scale Production of Peroxygenase from Agrocybe aegerita
  publication-title: Org. Process Res. Dev.
  doi: 10.1021/acs.oprd.1c00116
– volume: 75
  start-page: 1827
  year: 2019
  ident: ref_45
  article-title: Benchmarking of Laboratory Evolved Unspecific Peroxygenases for the Synthesis of Human Drug Metabolites
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2019.02.013
– volume: 9
  start-page: 1398
  year: 2019
  ident: ref_53
  article-title: Selective Synthesis of 4-Hydroxyisophorone and 4-Ketoisophorone by Fungal Peroxygenases
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C8CY02114G
– volume: 10
  start-page: 717
  year: 2020
  ident: ref_55
  article-title: Fatty Acid Epoxidation by Collariella Virescens Peroxygenase and Heme-Channel Variants
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C9CY02332A
– volume: 38
  start-page: 92
  year: 2010
  ident: ref_5
  article-title: Identification of the Human Cytochrome P450 Enzymes Involved in the Two Oxidative Steps in the Bioactivation of Clopidogrel to Its Pharmacologically Active Metabolite
  publication-title: Drug Metab. Dispos.
  doi: 10.1124/dmd.109.029132
– volume: 33
  start-page: 2856
  year: 2012
  ident: ref_15
  article-title: Clarifying the Importance of Cyp2c19 and Pon1 in the Mechanism of Clopidogrel Bioactivation and in Vivo Antiplatelet Response
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehs042
– volume: 38
  start-page: 898
  year: 2010
  ident: ref_11
  article-title: Biotransformation of Prasugrel, a Novel Thienopyridine Antiplatelet Agent, to the Pharmacologically Active Metabolite
  publication-title: Drug Metab. Dispos.
  doi: 10.1124/dmd.110.032086
– volume: 183
  start-page: 84
  year: 2018
  ident: ref_34
  article-title: Side Chain Removal from Corticosteroids by Unspecific Peroxygenase
  publication-title: J. Inorg. Biochem.
  doi: 10.1016/j.jinorgbio.2018.03.011
– volume: 51
  start-page: 107703
  year: 2021
  ident: ref_58
  article-title: Advances in Enzymatic Oxyfunctionalization of Aliphatic Compounds
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2021.107703
– volume: 360
  start-page: 354
  year: 2009
  ident: ref_13
  article-title: Cytochrome P-450 Polymorphisms and Response to Clopidogrel
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa0809171
– volume: 50
  start-page: 126
  year: 2010
  ident: ref_3
  article-title: Metabolism and Disposition of the Thienopyridine Antiplatelet Drugs Ticlopidine, Clopidogrel, and Prasugrel in Humans
  publication-title: J. Clin. Pharmacol.
  doi: 10.1177/0091270009343005
– volume: Volume 5
  start-page: 643
  year: 2019
  ident: ref_26
  article-title: Oxyfunctionalization of Pharmaceuticals by Fungal Peroxygenases
  publication-title: Pharmaceutical Biocatalysis
  doi: 10.1201/9780429353116-18
– ident: ref_28
  doi: 10.1007/978-3-030-29541-7_14
– volume: 70
  start-page: 4575
  year: 2004
  ident: ref_35
  article-title: Novel Haloperoxidase from the Agaric Basidiomycete Agrocybe Aegerita Oxidizes Aryl Alcohols and Aldehydes
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.70.8.4575-4581.2004
– volume: 17
  start-page: 1040
  year: 2011
  ident: ref_7
  article-title: Paraoxonase-1 and Clopidogrel Efficacy
  publication-title: Nat. Med.
  doi: 10.1038/nm.2436
– volume: 28
  start-page: 1338
  year: 2015
  ident: ref_47
  article-title: Bioactivation of Clopidogrel and Prasugrel: Factors Determining the Stereochemistry of the Thiol Metabolite Double Bond
  publication-title: Chem. Res. Toxicol.
  doi: 10.1021/acs.chemrestox.5b00133
– volume: 25
  start-page: 348
  year: 2012
  ident: ref_8
  article-title: Cytochromes P450 Catalyze Both Steps of the Major Pathway of Clopidogrel Bioactivation, Whereas Paraoxonase Catalyzes the Formation of a Minor Thiol Metabolite Isomer
  publication-title: Chem. Res. Toxicol.
  doi: 10.1021/tx2004085
– volume: 3
  start-page: 690
  year: 2020
  ident: ref_25
  article-title: Current State and Future Perspectives of Engineered and Artificial Peroxygenases for the Oxyfunctionalization of Organic Molecules
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-020-00507-8
– volume: 82
  start-page: 1057
  year: 2009
  ident: ref_41
  article-title: Conversion of Dibenzothiophene by the Mushrooms Agrocybe Aegerita and Coprinellus Radians and Their Extracellular Peroxygenases
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-008-1778-6
– ident: ref_56
  doi: 10.1128/AEM.02899-19
– volume: 80
  start-page: 7019
  year: 2015
  ident: ref_20
  article-title: Synthesis of Biologically Active Piperidine Metabolites of Clopidogrel: Determination of Structure and Analyte Development
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.5b00632
– volume: 17
  start-page: 341
  year: 2016
  ident: ref_49
  article-title: Synthesis of 1-Naphthol by a Natural Peroxygenase Engineered by Directed Evolution
  publication-title: ChemBioChem
  doi: 10.1002/cbic.201500493
– volume: 9
  start-page: 6234
  year: 2019
  ident: ref_54
  article-title: Modulating Fatty Acid Epoxidation Vs Hydroxylation in a Fungal Peroxygenase
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b01454
– volume: 30
  start-page: 1288
  year: 2002
  ident: ref_4
  article-title: Structure and Stereochemistry of the Active Metabolite of Clopidogrel
  publication-title: Drug Metab. Dispos.
  doi: 10.1124/dmd.30.11.1288
– volume: 26
  start-page: 2739
  year: 2016
  ident: ref_17
  article-title: State of Affairs: Design and Structure–Activity Relationships of Reversible P2y12 Receptor Antagonists
  publication-title: Bioorg. Med. Chem. Lett.
  doi: 10.1016/j.bmcl.2016.04.030
– volume: 35
  start-page: 1096
  year: 2007
  ident: ref_24
  article-title: The Disposition of Prasugrel, a Novel Thienopyridine, in Humans
  publication-title: Drug Metab. Dispos.
  doi: 10.1124/dmd.106.014522
– volume: 105
  start-page: 696
  year: 2011
  ident: ref_18
  article-title: An Improved Method for Specific and Quantitative Determination of the Clopidogrel Active Metabolite Isomers in Human Plasma
  publication-title: Thromb. Haemost.
  doi: 10.1160/TH10-09-0582
– volume: 26
  start-page: 794
  year: 2013
  ident: ref_12
  article-title: Thiolactone Sulfoxides as New Reactive Metabolites Acting as Bis-Electrophiles: Implication in Clopidogrel and Prasugrel Bioactivation
  publication-title: Chem. Res. Toxicol.
  doi: 10.1021/tx400083b
– volume: 25
  start-page: 895
  year: 2012
  ident: ref_44
  article-title: Differential Oxidation of Two Thiophene-Containing Regioisomers to Reactive Metabolites by Cytochrome P450 2c9
  publication-title: Chem. Res. Toxicol.
  doi: 10.1021/tx200519d
– volume: 22
  start-page: 369
  year: 2009
  ident: ref_9
  article-title: Metabolic Oxidative Cleavage of Thioesters: Evidence for the Formation of Sulfenic Acid Intermediates in the Bioactivation of the Antithrombotic Prodrugs Ticlopidine and Clopidogrel
  publication-title: Chem. Res. Toxicol.
  doi: 10.1021/tx8004828
– volume: 73
  start-page: 29
  year: 2015
  ident: ref_48
  article-title: Tandem-Yeast Expression System for Engineering and Producing Unspecific Peroxygenase
  publication-title: Enzyme Microb. Technol.
  doi: 10.1007/s00542-013-1928-3
– volume: 8
  start-page: 4789
  year: 2018
  ident: ref_32
  article-title: Selective Synthesis of the Human Drug Metabolite 5′-Hydroxypropranolol by an Evolved Self-Sufficient Peroxygenase
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b01004
– volume: 104
  start-page: 3947
  year: 2004
  ident: ref_38
  article-title: Mechanism of Oxidation Reactions Catalyzed by Cytochrome P450 Enzymes
  publication-title: Chem. Rev.
  doi: 10.1021/cr020443g
– volume: 67
  start-page: 7261
  year: 2002
  ident: ref_43
  article-title: Mechanism of the Aromatic Hydroxylation of Thiophene by Acid-Catalyzed Peracid Oxidation
  publication-title: J. Org. Chem.
  doi: 10.1021/jo0202177
– volume: 94
  start-page: 593
  year: 2005
  ident: ref_23
  article-title: Stereoselective Inhibition of Human Platelet Aggregation by R-138727, the Active Metabolite of Cs-747 (Prasugrel, Ly640315), a Novel P2y12 Receptor Inhibitor
  publication-title: Thromb. Haemost.
  doi: 10.1160/TH05-03-0208
– volume: 10
  start-page: 1
  year: 2020
  ident: ref_31
  article-title: Synthesis of Cyclophosphamide Metabolites by a Peroxygenase from Marasmius Rotula for Toxicological Studies on Human Cancer Cells
  publication-title: AMB Express
  doi: 10.1186/s13568-020-01064-w
– volume: 70
  start-page: 3893
  year: 2014
  ident: ref_21
  article-title: Synthesis of the Stabilized Active Metabolite of Clopidogrel
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2014.04.037
– volume: 357
  start-page: 2001
  year: 2007
  ident: ref_2
  article-title: Prasugrel Versus Clopidogrel in Patients with Acute Coronary Syndromes
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa0706482
– volume: 344
  start-page: 665
  year: 2013
  ident: ref_16
  article-title: Carboxylesterase 1 as a Determinant of Clopidogrel Metabolism and Activation
  publication-title: J. Pharmacol. Exp. Ther.
  doi: 10.1124/jpet.112.201640
– volume: 51
  start-page: 107615
  year: 2020
  ident: ref_27
  article-title: Recent Developments in the Use of Peroxygenases–Exploring Their High Potential in Selective Oxyfunctionalisations
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2020.107615
– volume: 60
  start-page: 347
  year: 2000
  ident: ref_1
  article-title: Clopidogrel
  publication-title: Drugs
  doi: 10.2165/00003495-200060020-00012
– volume: 23
  start-page: 4324
  year: 2015
  ident: ref_30
  article-title: One-Pot Synthesis of Human Metabolites of SAR548304 by Fungal Peroxygenases
  publication-title: Bioorg. Med. Chem.
  doi: 10.1016/j.bmc.2015.06.035
– volume: 110
  start-page: 2323
  year: 2013
  ident: ref_51
  article-title: Oxyfunctionalization of Aliphatic Compounds by a Recombinant Peroxygenase from Coprinopsis cinerea
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.24904
– volume: 8
  start-page: 1463
  year: 2017
  ident: ref_59
  article-title: Fungal Unspecific Peroxygenases Oxidize the Majority of Organic EPA Priority Pollutants
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2017.01463
– volume: 18
  start-page: 563
  year: 2017
  ident: ref_33
  article-title: A Peroxygenase from Chaetomium Globosum Catalyzes the Selective Oxygenation of Testosterone
  publication-title: ChemBioChem
  doi: 10.1002/cbic.201600677
– volume: 36
  start-page: 1227
  year: 2008
  ident: ref_6
  article-title: The Biotransformation of Prasugrel, a New Thienopyridine Prodrug, by the Human Carboxylesterases 1 and 2
  publication-title: Drug Metab. Dispos.
  doi: 10.1124/dmd.107.020248
– volume: 35
  start-page: 917
  year: 2007
  ident: ref_22
  article-title: Stereoselective Metabolism of Prasugrel in Humans Using a Novel Chiral Liquid Chromatography-Tandem Mass Spectrometry Method
  publication-title: Drug Metab. Dispos.
  doi: 10.1124/dmd.106.014530
– volume: 23
  start-page: 1268
  year: 2010
  ident: ref_10
  article-title: Formation and Fate of a Sulfenic Acid Intermediate in the Metabolic Activation of the Antithrombotic Prodrug Prasugrel
  publication-title: Chem. Res. Toxicol.
  doi: 10.1021/tx1001332
– volume: 119
  start-page: 1565
  year: 1997
  ident: ref_42
  article-title: Chemical and Biological Oxidation of Thiophene: Preparation and Complete Characterization of Thiophene S-Oxide Dimers and Evidence for Thiophene S-Oxide as an Intermediate in Thiophene Metabolism in Vivo and in Vitro
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja962466g
– volume: 73
  start-page: 5477
  year: 2007
  ident: ref_36
  article-title: The Coprophilous Mushroom Coprinus Radians Secreted a Haloperoxidase That Catalyzes Aromatic Peroxgenation
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00026-07
SSID ssj0001586993
Score 2.1934526
Snippet Antithrombotic thienopyridines, such as clopidogrel and prasugrel, are prodrugs that undergo a metabolic two-step bioactivation for their pharmacological...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 752
SubjectTerms antiplatelet
Ascorbic acid
Chemicals
Chromatography
Clopidogrel
Cytochrome
Cytochrome P450
Enzymes
Esterase
human drug metabolites
Hydrogen peroxide
Magnetic resonance spectroscopy
Metabolism
Metabolites
NMR
Nuclear magnetic resonance
Oxidants
Oxidation
pH effects
prasugrel
thienopyridine
Thiolactone
unspecific peroxygenase
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZt0kMvoU_qJA0q7aUHEz9kST6VbMgSCglLm0BuRi83W4K1Xe8e9pLf3hmtdjeG0qOtMRYaSfPNaPQNIV8MgHhd5i04OTZLwR7bVNZGpRWSERpns1zjbeSra355y77fVXcx4NbHtMrNnhg2ausNxshPERgzxPvy2-xPilWj8HQ1ltB4TvZhC5bgfO2PLq4nP3ZRlkpysMBrXtIS_PvT374VGXiEVTGwRIGwf4AyhzmST4zO-BU5iGiRnq3V-5o8c90b8mLkAdGt3pLH0dSH8MsKmunPVQdgrnc99S096zBNEHAkqIVeuQWoGi8bhzaQojf3sKT9bDWfWsx7p-d4ccp6cL4fqOosncxVvwxPIaeAjmFPgI5MHGa9wJwD29e_I7fji5vzyzTWU0gNY_UidUXtamOtNJUCXMeNEC0X2tXCaeZkJlRZlKXLuLFZ4Uyui0JlSpYIaiwAr_I92et85z4Q6gCFOMfgU6GZqY3mWuSKca6QYFDnCfm6GdvGRLJxrHnx0IDTgXpodnpIyOet7GxNsfFPqRGqaCuBtNjhhZ__auIqa6Rl0O0c5QtWZaqGTnIrWqUq8Au1TcjxRsFNXKt9s5tZCfm0bYZVhkcnqnN-GWQEMstJlhAxmBiDDg1buul94OsGAICjcvj_nx-RlwXmy2B5ivKY7C3mS_cRAM9Cn8RZ_RcmQgZi
  priority: 102
  providerName: ProQuest
Title Biocatalytic Syntheses of Antiplatelet Metabolites of the Thienopyridines Clopidogrel and Prasugrel Using Fungal Peroxygenases
URI https://www.proquest.com/docview/2576442618
https://www.proquest.com/docview/2577465684
https://pubmed.ncbi.nlm.nih.gov/PMC8470877
https://doaj.org/article/8d4c1b107522450a94ee6d7faa5716bd
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYl6aGX0PRBnRcq7aUHEz9kyT6ukyyhkLC0CeRm9BiTDcEO693DXvrbMyM7mzUUeunJ2BobWTPSfGPPfGLsu0UQb9K4xiDHRSH6YxfmhdVhRmSEFlwUG6pGvrqWl7fi5112t7XVF-WE9fTA_cCd5k7Y2GCQgkBBZJEuBIB0qtY6Q6hvHK2-6PO2gqm-PjiX6Hl7PtIU4_rTh7ZWUUGPGXkgT9Q_Qpfj3MgtZzN9z_YGlMgnfe_22RtoPrC3ZYtIbv2R_Snnrf_sssZm_nvdIIjroONtzScNpQcifkR18CtYooqpyNi3oRS_ucep3D6tF3NH-e78jAqmXItB9yPXjeOzhe5W_sznEvAprgXYkRlQtgvaGvq87hO7nV7cnF2Gwz4KoRWiWIaQFFBY53KbacRz0ipVS2WgUGAE5JHSaZKmEEnrogRwtJNERzpPCcw4BFzpZ7bTtA18YRwQfQAIvFUZYQtrpFGxFlJqIhY0ccB-vIxtZQeScdrr4rHCYIP0UL3qIWDfNrJPPbXGX6VKUtFGguiw_QU0kmowkupfRhKwoxcFV8Mc7SoKtQRFkHnAvm6acXbRLxPdQLvyMooY5XIRMDUyjFGHxi3N_N7zdKPjp1E5-B9vcMjeJZRNQ5tXpEdsZ7lYwTHCoaU5YbuT8ryc4rG8uJ79OvEz4RmcpRCL
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VFAkuiKdIKbAIOHCw6sfaax8QakqjlDZRBKnUm7sv06DKTuNEKBd-Er-RGcdOsIS49Wjv2B7tzM58s56dAXinEcSrwMswyDGug_7YOHGipRNSMUJtjespOo08HEWDc_7lIrzYgd_NWRhKq2xsYmWoTaFpj_yAgDEnvB9_mt041DWK_q42LTTWanFqVz8xZCs_nnxG-b73_f7x5Gjg1F0FHM15snCsn9hEGxPrUCK6ibQQWSSUTYRV3MaukIEfBNaNtHF9qz3l-9KVcUCu3SD8CPC9d2CXBxjKdGC3dzwaf93u6oRxhB5_XQc1CBL34EeRCRcj0NBveb6qQUAL1bZzMv9ycv2H8KBGp-xwrU6PYMfmj-Fur0AEuXoCv3rTotruWeEw-7bKETyWtmRFxg5zSktE3IpqwIZ2gapFh5urMaRikys0IcVsNZ8ayrNnR3RQyxQY7F8zmRs2nstyWV1VOQysjzYIGRlbyrJBHUdfWz6F81uZ6WfQyYvcPgdmEfVYy_FRobhOtIqU8CSPIkkFDZXXhQ_N3Ka6Lm5OPTauUwxySA7pVg5deLuhna1LevyTqkci2lBQGe7qRjH_ntarOo0NR7Y9ovd56MoEmYyMyKQMMQ5Vpgv7jYDT2jaU6VaTu_BmM4yrmn7VyNwWy4pGUCW7mHdBtBSjxVB7JJ9eVfXBEXDQrOz9_-Ov4d5gMjxLz05Gpy_gvk-5OtQaI9iHzmK-tC8RbC3Uq1rDGVze9qL6A62yQxs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VFCEuiKdwKbAIOHCw4sfaax8QatpGLaVRBK3Um7sv06DKTuNEyBd-GL-OGcdJsIS49Wjv2B7tzM58s56dAXinEcSr0M8xyDGei_7YuEmqpRtRMUJtjecrOo18OoqPzvnni-hiC36vzsJQWuXKJjaG2pSa9sj7BIw54f2kn7dpEeOD4afpjUsdpOhP66qdxlJFTmz9E8O36uPxAcr6fRAMD8_2j9y2w4CrOU_nrg1Sm2pjEh1JRDqxFiKPhbKpsIrbxBMyDMLQerE2XmC1r4JAejIJyc0bhCIhvvcObAuMirwebA8OR-Ovmx2eKInR-y9rooZh6vV_lLnwMBqNgo4XbJoFdBBuNz_zL4c3fAgPWqTK9paq9Qi2bPEY7g5KRJP1E_g1mJTN1k-Nw-xbXSCQrGzFypztFZSiiBgWVYKd2jmqGR10bsaQip1doTkpp_VsYijnnu3ToS1TYuB_zWRh2Hgmq0Vz1eQzsCHaI2RkbCnjBvUd_W71FM5vZaafQa8oC_scmEUEZC3HR4XiOtUqVsKXPI4lFTdUvgMfVnOb6bbQOfXbuM4w4CE5ZBs5OPB2TTtdlvf4J9WARLSmoJLczY1y9j1rV3iWGI5s-0Qf8MiTKTIZG5FLGWFMqowDuysBZ62dqLKNVjvwZj2MK5x-28jClouGRlBVu4Q7IDqK0WGoO1JMrppa4Qg-aFZ2_v_x13APF1P25Xh08gLuB5S2Q10ywl3ozWcL-xJx11y9ahWcweVtr6k_UPdHUA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biocatalytic+Syntheses+of+Antiplatelet+Metabolites+of+the+Thienopyridines+Clopidogrel+and+Prasugrel+Using+Fungal+Peroxygenases&rft.jtitle=Journal+of+fungi+%28Basel%29&rft.au=Kiebist%2C+Jan&rft.au=Schmidtke%2C+Kai-Uwe&rft.au=Schramm%2C+Marina&rft.au=K%C3%B6nig%2C+Rosalie&rft.date=2021-09-13&rft.issn=2309-608X&rft.eissn=2309-608X&rft.volume=7&rft.issue=9&rft_id=info:doi/10.3390%2Fjof7090752&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2309-608X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2309-608X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2309-608X&client=summon