The Immune Receptor NOD1 and Kinase RIP2 Interact with Bacterial Peptidoglycan on Early Endosomes to Promote Autophagy and Inflammatory Signaling

The intracellular innate immune receptor NOD1 detects Gram-negative bacterial peptidoglycan (PG) to induce autophagy and inflammatory responses in host cells. To date, the intracellular compartment in which PG is detected by NOD1 and whether NOD1 directly interacts with PG are two questions that rem...

Full description

Saved in:
Bibliographic Details
Published inCell host & microbe Vol. 15; no. 5; pp. 623 - 635
Main Authors Irving, Aaron T., Mimuro, Hitomi, Kufer, Thomas A., Lo, Camden, Wheeler, Richard, Turner, Lorinda J., Thomas, Belinda J., Malosse, Christian, Gantier, Michael P., Casillas, Linda N., Votta, Bartholomew J., Bertin, John, Boneca, Ivo G., Sasakawa, Chihiro, Philpott, Dana J., Ferrero, Richard L., Kaparakis-Liaskos, Maria
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 14.05.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The intracellular innate immune receptor NOD1 detects Gram-negative bacterial peptidoglycan (PG) to induce autophagy and inflammatory responses in host cells. To date, the intracellular compartment in which PG is detected by NOD1 and whether NOD1 directly interacts with PG are two questions that remain to be resolved. To address this, we used outer membrane vesicles (OMVs) from pathogenic bacteria as a physiological mechanism to deliver PG into the host cell cytosol. We report that OMVs induced autophagosome formation and inflammatory IL-8 responses in epithelial cells in a NOD1- and RIP2-dependent manner. PG contained within OMVs colocalized with both NOD1 and RIP2 in EEA1-positive early endosomes. Further, we provide evidence for direct interactions between NOD1 and PG. Collectively, these findings demonstrate that NOD1 detects PG within early endosomes, thereby promoting RIP2-dependent autophagy and inflammatory signaling in response to bacterial infection. [Display omitted] •Bacterial outer membrane vesicles (OMVs) induce autophagy in epithelial cells•NOD1 and RIP2 are essential for autophagy and inflammatory IL-8 responses to OMVs•NOD1 and RIP2 associate with OMV peptidoglycan (PG) in EEA1-positive early endosomes•NOD1 interacts directly with PG-OMVs and RIP2 at early endosomes The intracellular innate immune receptor NOD1 detects Gram-negative bacterial peptidoglycan; however, details regarding the mechanisms whereby this process occurs remain unknown. Irving et al. identify that NOD1 interacts with bacterial delivered peptidoglycan and RIP2 in early endosomes, facilitating the development of autophagy and IL-8 production in a RIP2-dependent manner.
AbstractList The intracellular innate immune receptor NOD1 detects Gram-negative bacterial peptidoglycan (PG) to induce autophagy and inflammatory responses in host cells. To date, the intracellular compartment in which PG is detected by NOD1 and whether NOD1 directly interacts with PG are two questions that remain to be resolved. To address this, we used outer membrane vesicles (OMVs) from pathogenic bacteria as a physiological mechanism to deliver PG into the host cell cytosol. We report that OMVs induced autophagosome formation and inflammatory IL-8 responses in epithelial cells in a NOD1- and RIP2-dependent manner. PG contained within OMVs colocalized with both NOD1 and RIP2 in EEA1-positive early endosomes. Further, we provide evidence for direct interactions between NOD1 and PG. Collectively, these findings demonstrate that NOD1 detects PG within early endosomes, thereby promoting RIP2-dependent autophagy and inflammatory signaling in response to bacterial infection.
The intracellular innate immune receptor NOD1 detects Gram-negative bacterial peptidoglycan (PG) to induce autophagy and inflammatory responses in host cells. To date, the intracellular compartment in which PG is detected by NOD1 and whether NOD1 directly interacts with PG are two questions that remain to be resolved. To address this, we used outer membrane vesicles (OMVs) from pathogenic bacteria as a physiological mechanism to deliver PG into the host cell cytosol. We report that OMVs induced autophagosome formation and inflammatory IL-8 responses in epithelial cells in a NOD1- and RIP2-dependent manner. PG contained within OMVs colocalized with both NOD1 and RIP2 in EEA1-positive early endosomes. Further, we provide evidence for direct interactions between NOD1 and PG. Collectively, these findings demonstrate that NOD1 detects PG within early endosomes, thereby promoting RIP2-dependent autophagy and inflammatory signaling in response to bacterial infection. [Display omitted] •Bacterial outer membrane vesicles (OMVs) induce autophagy in epithelial cells•NOD1 and RIP2 are essential for autophagy and inflammatory IL-8 responses to OMVs•NOD1 and RIP2 associate with OMV peptidoglycan (PG) in EEA1-positive early endosomes•NOD1 interacts directly with PG-OMVs and RIP2 at early endosomes The intracellular innate immune receptor NOD1 detects Gram-negative bacterial peptidoglycan; however, details regarding the mechanisms whereby this process occurs remain unknown. Irving et al. identify that NOD1 interacts with bacterial delivered peptidoglycan and RIP2 in early endosomes, facilitating the development of autophagy and IL-8 production in a RIP2-dependent manner.
Author Thomas, Belinda J.
Casillas, Linda N.
Gantier, Michael P.
Kaparakis-Liaskos, Maria
Lo, Camden
Votta, Bartholomew J.
Malosse, Christian
Bertin, John
Kufer, Thomas A.
Ferrero, Richard L.
Sasakawa, Chihiro
Turner, Lorinda J.
Boneca, Ivo G.
Philpott, Dana J.
Wheeler, Richard
Irving, Aaron T.
Mimuro, Hitomi
Author_xml – sequence: 1
  givenname: Aaron T.
  surname: Irving
  fullname: Irving, Aaron T.
  organization: Centre for Cancer Research, Monash Institute of Medical Research, Clayton, VIC 3168, Australia
– sequence: 2
  givenname: Hitomi
  surname: Mimuro
  fullname: Mimuro, Hitomi
  organization: Division of Bacteriology, Department of Infectious Diseases Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
– sequence: 3
  givenname: Thomas A.
  surname: Kufer
  fullname: Kufer, Thomas A.
  organization: Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Köln 50931, Germany
– sequence: 4
  givenname: Camden
  surname: Lo
  fullname: Lo, Camden
  organization: Monash Micro Imaging, Clayton, VIC 3168, Australia
– sequence: 5
  givenname: Richard
  surname: Wheeler
  fullname: Wheeler, Richard
  organization: Institut Pasteur, Unité Biologie et Génétique de la Paroi Bactérienne, Paris 75015, France
– sequence: 6
  givenname: Lorinda J.
  surname: Turner
  fullname: Turner, Lorinda J.
  organization: Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Clayton, VIC 3168, Australia
– sequence: 7
  givenname: Belinda J.
  surname: Thomas
  fullname: Thomas, Belinda J.
  organization: Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Clayton, VIC 3168, Australia
– sequence: 8
  givenname: Christian
  surname: Malosse
  fullname: Malosse, Christian
  organization: Institut Pasteur, Structural Mass Spectrometry and Proteomics Unit, Paris 75015, France
– sequence: 9
  givenname: Michael P.
  surname: Gantier
  fullname: Gantier, Michael P.
  organization: Centre for Cancer Research, Monash Institute of Medical Research, Clayton, VIC 3168, Australia
– sequence: 10
  givenname: Linda N.
  surname: Casillas
  fullname: Casillas, Linda N.
  organization: Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapy Area, GlaxoSmithKline, Collegeville, PA 19426-0989, USA
– sequence: 11
  givenname: Bartholomew J.
  surname: Votta
  fullname: Votta, Bartholomew J.
  organization: Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapy Area, GlaxoSmithKline, Collegeville, PA 19426-0989, USA
– sequence: 12
  givenname: John
  surname: Bertin
  fullname: Bertin, John
  organization: Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapy Area, GlaxoSmithKline, Collegeville, PA 19426-0989, USA
– sequence: 13
  givenname: Ivo G.
  surname: Boneca
  fullname: Boneca, Ivo G.
  organization: Institut Pasteur, Unité Biologie et Génétique de la Paroi Bactérienne, Paris 75015, France
– sequence: 14
  givenname: Chihiro
  surname: Sasakawa
  fullname: Sasakawa, Chihiro
  organization: Division of Bacterial Infection Biology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
– sequence: 15
  givenname: Dana J.
  surname: Philpott
  fullname: Philpott, Dana J.
  organization: Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
– sequence: 16
  givenname: Richard L.
  surname: Ferrero
  fullname: Ferrero, Richard L.
  organization: Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Clayton, VIC 3168, Australia
– sequence: 17
  givenname: Maria
  surname: Kaparakis-Liaskos
  fullname: Kaparakis-Liaskos, Maria
  email: maria.liaskos@monash.edu
  organization: Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Clayton, VIC 3168, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24746552$$D View this record in MEDLINE/PubMed
BookMark eNp9UU2P0zAQtdAi9gP-AAfkI5cU24mdRuKyLAUiVmwFy9ly7XHrKraLnYDyM_jHuNuFI9KTZqR5741m3iU6CzEAQi8pWVBCxZv9Qu-iXzBCmwUpIPQJuqBd3VSCiO7soadVTdnyHF3mvCeEc9LSZ-icNW0jOGcX6Pf9DnDv_RQAfwUNhzEm_OXuPcUqGPzZBZXLoF8z3IcRktIj_uXGHX5XOkhODXhdNM7E7TBrFXAMeKXSMONVMDFHDxmPEa9T9HEEfD2N8bBT2_nBvQ92UN6rsnLG39w2qMGF7XP01Kohw4vHeoW-f1jd33yqbu8-9jfXt5Vumm6szBI4Y3XTcmN12ykiqLItE9bwuhFGWSOWvO204a1lrNmwurMbY5eUKs2t4vUVen3yPaT4Y4I8Su-yhmFQAeKUJeWMt0J0pC5UdqLqFHNOYOUhOa_SLCmRxyjkXh6jkMcoJCkgtIhePfpPGw_mn-Tv7wvh7YkA5cqfDpLM2kHQYFwCPUoT3f_8_wB1e52S
CitedBy_id crossref_primary_10_1093_ibd_izac177
crossref_primary_10_3390_ijerph19010037
crossref_primary_10_1038_nri_2017_136
crossref_primary_10_1016_j_semcdb_2019_07_014
crossref_primary_10_1093_femsre_fuaa044
crossref_primary_10_1111_cmi_12826
crossref_primary_10_3389_fmicb_2023_1225513
crossref_primary_10_1038_ncomms9745
crossref_primary_10_1002_adbi_202000540
crossref_primary_10_1016_j_tim_2023_04_001
crossref_primary_10_3389_fimmu_2018_01466
crossref_primary_10_3389_fmicb_2019_01222
crossref_primary_10_3389_fmicb_2022_720308
crossref_primary_10_1016_j_fufo_2021_100043
crossref_primary_10_1016_j_tim_2021_04_003
crossref_primary_10_3389_fimmu_2022_970725
crossref_primary_10_1038_s41579_023_00875_5
crossref_primary_10_3390_pathogens10020110
crossref_primary_10_1007_s00011_018_1132_0
crossref_primary_10_1016_j_micinf_2017_01_003
crossref_primary_10_1128_spectrum_05179_22
crossref_primary_10_3390_ijms22031301
crossref_primary_10_1016_j_medmic_2020_100009
crossref_primary_10_1111_cmi_12658
crossref_primary_10_1016_j_nano_2021_102398
crossref_primary_10_1080_15548627_2015_1071759
crossref_primary_10_1165_rcmb_2016_0375TR
crossref_primary_10_1152_ajpgi_00163_2021
crossref_primary_10_1007_s13577_023_00996_2
crossref_primary_10_1016_j_febslet_2014_07_029
crossref_primary_10_1038_nri_2016_100
crossref_primary_10_3390_toxins15080502
crossref_primary_10_3389_fimmu_2024_1374368
crossref_primary_10_3389_fcell_2019_00208
crossref_primary_10_3390_ijms21010107
crossref_primary_10_1042_BST20180114
crossref_primary_10_1016_j_pharmthera_2023_108443
crossref_primary_10_1038_s41467_024_45961_1
crossref_primary_10_1158_0008_5472_CAN_14_2291
crossref_primary_10_1126_scisignal_aat7493
crossref_primary_10_1128_IAI_00051_20
crossref_primary_10_1002_pmic_202300087
crossref_primary_10_3748_wjg_v24_i16_1725
crossref_primary_10_1016_j_chom_2014_05_001
crossref_primary_10_1021_acs_chemrev_6b00716
crossref_primary_10_1111_hel_13031
crossref_primary_10_1186_s12864_019_5523_6
crossref_primary_10_1111_febs_16912
crossref_primary_10_1155_2019_6207563
crossref_primary_10_1111_apt_14157
crossref_primary_10_1016_j_cis_2023_102880
crossref_primary_10_1016_j_it_2019_08_001
crossref_primary_10_2174_1389201025666230912123849
crossref_primary_10_1002_advs_202301357
crossref_primary_10_1016_j_chom_2015_04_002
crossref_primary_10_1128_JB_00012_17
crossref_primary_10_1016_j_prp_2022_153880
crossref_primary_10_3389_fonc_2022_881829
crossref_primary_10_3390_microorganisms8091328
crossref_primary_10_1016_j_dci_2016_01_001
crossref_primary_10_1042_BSR20181709
crossref_primary_10_1093_femsle_fnw170
crossref_primary_10_1152_physiol_00025_2014
crossref_primary_10_1080_15548627_2017_1358343
crossref_primary_10_3389_fmicb_2023_1270158
crossref_primary_10_1002_path_5358
crossref_primary_10_1016_j_celrep_2020_108677
crossref_primary_10_3389_fcimb_2018_00403
crossref_primary_10_3390_ijms18061287
crossref_primary_10_1146_annurev_immunol_042617_053253
crossref_primary_10_3389_fphar_2020_00106
crossref_primary_10_1093_infdis_jiv506
crossref_primary_10_3389_fimmu_2018_02286
crossref_primary_10_1002_jev2_12080
crossref_primary_10_4049_jimmunol_1601583
crossref_primary_10_2183_pjab_93_037
crossref_primary_10_1021_acsami_3c00427
crossref_primary_10_3389_fmicb_2018_00498
crossref_primary_10_1111_cmi_12396
crossref_primary_10_1038_s41422_019_0190_3
crossref_primary_10_3390_life13040957
crossref_primary_10_1371_journal_pone_0177161
crossref_primary_10_15252_embj_201489055
crossref_primary_10_1080_19490976_2022_2108655
crossref_primary_10_1136_gutjnl_2016_312888
crossref_primary_10_1146_annurev_micro_052821_031444
crossref_primary_10_1002_jcp_30227
crossref_primary_10_1099_ijsem_0_000622
crossref_primary_10_3892_ol_2019_10976
crossref_primary_10_3390_genes11010107
crossref_primary_10_1016_j_semcdb_2017_08_012
crossref_primary_10_1128_Spectrum_01273_21
crossref_primary_10_3390_antibiotics13050421
crossref_primary_10_1128_mBio_01464_17
crossref_primary_10_3390_ijms231810941
crossref_primary_10_1124_pr_114_009928
crossref_primary_10_1016_j_immuni_2014_12_010
crossref_primary_10_1016_j_jmb_2017_10_003
crossref_primary_10_1017_S0022029921000649
crossref_primary_10_1007_s42770_021_00490_7
crossref_primary_10_3389_fphar_2023_1127722
crossref_primary_10_2217_fmb_2020_0125
crossref_primary_10_1111_imcb_12190
crossref_primary_10_1111_febs_16298
crossref_primary_10_1128_IAI_00898_19
crossref_primary_10_1016_j_cyto_2014_07_100
crossref_primary_10_1016_j_jcmgh_2022_01_022
crossref_primary_10_1080_21688370_2015_1008895
crossref_primary_10_3389_fmicb_2018_02128
crossref_primary_10_3389_fnut_2023_1111872
crossref_primary_10_1128_mBio_02030_16
crossref_primary_10_3390_nu12082189
crossref_primary_10_1007_s00011_018_1172_5
crossref_primary_10_1016_j_isci_2023_107335
crossref_primary_10_1126_science_aau6391
crossref_primary_10_3389_fimmu_2020_609456
crossref_primary_10_1016_j_molimm_2021_02_027
crossref_primary_10_1111_hel_12196
crossref_primary_10_1111_hel_13043
crossref_primary_10_3390_vaccines10091487
crossref_primary_10_3389_fimmu_2018_00726
crossref_primary_10_3390_ijms231810395
crossref_primary_10_1038_s41418_019_0481_8
crossref_primary_10_1038_s41598_017_03258_y
crossref_primary_10_1038_nri3837
crossref_primary_10_1016_j_ymthe_2017_01_010
crossref_primary_10_1016_j_neulet_2022_136743
crossref_primary_10_1002_jev2_12159
crossref_primary_10_1128_iai_00574_21
crossref_primary_10_1016_j_micpath_2024_106559
crossref_primary_10_1038_srep34656
crossref_primary_10_1128_microbiolspec_PSIB_0001_2018
crossref_primary_10_1016_j_coi_2015_10_007
crossref_primary_10_1016_j_intimp_2017_11_036
crossref_primary_10_1186_s10020_023_00648_z
crossref_primary_10_1097_IM9_0000000000000017
crossref_primary_10_1128_IAI_00920_19
crossref_primary_10_1128_MMBR_00033_18
crossref_primary_10_1016_j_addr_2022_114321
crossref_primary_10_1016_j_devcel_2016_09_026
crossref_primary_10_1038_s41577_023_00849_x
crossref_primary_10_1016_j_abb_2018_12_022
crossref_primary_10_1021_acsmedchemlett_9b00141
crossref_primary_10_1534_g3_114_014381
crossref_primary_10_1016_j_semcdb_2020_08_005
crossref_primary_10_3389_fimmu_2023_1242659
crossref_primary_10_15252_embj_201798089
crossref_primary_10_3389_fimmu_2022_930882
crossref_primary_10_1371_journal_pone_0160374
crossref_primary_10_1038_cdd_2014_126
crossref_primary_10_3390_ijms22031005
crossref_primary_10_1128_microbiolspec_MCHD_0021_2015
crossref_primary_10_3389_fmicb_2017_00594
crossref_primary_10_3390_ijms22083942
crossref_primary_10_1016_j_phymed_2024_155540
crossref_primary_10_3389_fimmu_2016_00240
crossref_primary_10_1038_nri_2017_25
crossref_primary_10_1038_s41598_017_07288_4
crossref_primary_10_26508_lsa_201900346
crossref_primary_10_1016_j_dld_2020_11_026
crossref_primary_10_1098_rsob_140178
crossref_primary_10_1111_imr_12902
crossref_primary_10_1093_infdis_jiad478
crossref_primary_10_1111_hel_12252
crossref_primary_10_1055_a_1827_3124
crossref_primary_10_3390_biomedicines11113018
crossref_primary_10_1002_jev2_12161
crossref_primary_10_3390_cells12232674
crossref_primary_10_1002_wsbm_1288
crossref_primary_10_1016_j_cyto_2015_02_018
crossref_primary_10_1146_annurev_immunol_032414_112240
crossref_primary_10_3389_fimmu_2023_1157813
crossref_primary_10_1002_jcp_26229
crossref_primary_10_1016_j_isci_2021_102192
crossref_primary_10_1038_ncomms15203
Cites_doi 10.1016/S0092-8674(03)00421-5
10.1016/j.coi.2010.04.010
10.1016/j.bbrc.2005.09.035
10.1111/j.1600-065X.2011.01039.x
10.1038/ni945
10.1074/jbc.M109.033670
10.4161/auto.5.3.7663
10.1128/mBio.00609-12
10.1111/j.1462-5822.2009.01404.x
10.1111/j.1462-5822.2009.01421.x
10.1126/science.1084677
10.1146/annurev.micro.091208.073413
10.1038/nri1747
10.1093/embo-reports/kve155
10.1038/sj.emboj.7601962
10.1074/jbc.274.21.14560
10.1111/j.1600-065X.2011.01047.x
10.1074/jbc.M003415200
10.4049/jimmunol.0900664
10.1128/JB.01270-06
10.1038/ni.1823
10.1128/IAI.00754-10
10.1074/jbc.M112.408302
10.1128/IAI.00299-10
10.1038/ni1131
ContentType Journal Article
Copyright 2014 Elsevier Inc.
Copyright © 2014 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2014 Elsevier Inc.
– notice: Copyright © 2014 Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1016/j.chom.2014.04.001
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1934-6069
EndPage 635
ExternalDocumentID 10_1016_j_chom_2014_04_001
24746552
S1931312814001358
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
0R~
1~5
29B
2WC
4.4
457
4G.
5GY
62-
6I.
6J9
7-5
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAKRW
AALRI
AAUCE
AAVLU
AAXJY
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGHFR
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
HVGLF
IHE
IXB
JIG
K97
M41
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
ROL
RPZ
SES
SSZ
TR2
UNMZH
WQ6
ZA5
0SF
AAMRU
ADVLN
AKAPO
AKRWK
CGR
CUY
CVF
ECM
EIF
NPM
53G
AAIKJ
AAYXX
CITATION
HZ~
OZT
ZBA
7X8
ID FETCH-LOGICAL-c449t-d8e5223475dfc79a061af726fd5346dafd68579cd57f224b239fbdf811ac5fa53
IEDL.DBID ABVKL
ISSN 1931-3128
IngestDate Fri Oct 25 23:24:12 EDT 2024
Thu Sep 26 16:46:02 EDT 2024
Sat Sep 28 07:54:10 EDT 2024
Fri Feb 23 02:30:37 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
Copyright © 2014 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c449t-d8e5223475dfc79a061af726fd5346dafd68579cd57f224b239fbdf811ac5fa53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1931312814001358
PMID 24746552
PQID 1525766903
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_1525766903
crossref_primary_10_1016_j_chom_2014_04_001
pubmed_primary_24746552
elsevier_sciencedirect_doi_10_1016_j_chom_2014_04_001
PublicationCentury 2000
PublicationDate 2014-05-14
PublicationDateYYYYMMDD 2014-05-14
PublicationDate_xml – month: 05
  year: 2014
  text: 2014-05-14
  day: 14
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell host & microbe
PublicationTitleAlternate Cell Host Microbe
PublicationYear 2014
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Strober, Murray, Kitani, Watanabe (bib22) 2006; 6
Hasegawa, Fujimoto, Lucas, Nakano, Fukase, Núñez, Inohara (bib11) 2008; 27
Girardin, Tournebize, Mavris, Page, Li, Stark, Bertin, DiStefano, Yaniv, Sansonetti, Philpott (bib8) 2001; 2
Chatterjee, Chaudhuri (bib5) 2013; 288
Allison, Kufer, Kremmer, Kaparakis, Ferrero (bib1) 2009; 183
Philpott, Girardin (bib19) 2010; 22
Girardin, Boneca, Carneiro, Antignac, Jéhanno, Viala, Tedin, Taha, Labigne, Zähringer (bib9) 2003; 300
Terebiznik, Raju, Vázquez, Torbricki, Kulkarni, Blanke, Yoshimori, Colombo, Jones (bib23) 2009; 5
Chamaillard, Hashimoto, Horie, Masumoto, Qiu, Saab, Ogura, Kawasaki, Fukase, Kusumoto (bib3) 2003; 4
Bielig, Rompikuntal, Dongre, Zurek, Lindmark, Ramstedt, Wai, Kufer (bib2) 2011; 79
Ricci, Chiozzi, Necchi, Oldani, Romano, Solcia, Ventura (bib20) 2005; 337
Travassos, Carneiro, Ramjeet, Hussey, Kim, Magalhães, Yuan, Soares, Chea, Le Bourhis (bib24) 2010; 11
Weiss, Forster, Irving, Tate, Ferrero, Hertzog, Frøkiær, Kaparakis-Liaskos (bib26) 2013; 4
Grubman, Kaparakis, Viala, Allison, Badea, Karrar, Boneca, Le Bourhis, Reeve, Smith (bib10) 2010; 12
Lee, Tattoli, Wojtal, Vavricka, Philpott, Girardin (bib17) 2009; 284
Viala, Chaput, Boneca, Cardona, Girardin, Moran, Athman, Mémet, Huerre, Coyle (bib25) 2004; 5
Inohara, Koseki, del Peso, Hu, Yee, Chen, Carrio, Merino, Liu, Ni, Núñez (bib12) 1999; 274
Daniel, Errington (bib7) 2003; 113
Inohara, Koseki, Lin, del Peso, Lucas, Chen, Ogura, Núñez (bib13) 2000; 275
Sorbara, Philpott (bib21) 2011; 243
Kulp, Kuehn (bib16) 2010; 64
Kaparakis, Turnbull, Carneiro, Firth, Coleman, Parkington, Le Bourhis, Karrar, Viala, Mak (bib14) 2010; 12
Parker, Chitcholtan, Hampton, Keenan (bib18) 2010; 78
Chaput, Labigne, Boneca (bib4) 2007; 189
Clarke, Weiser (bib6) 2011; 243
Kufer, Kremmer, Adam, Philpott, Sansonetti (bib15) 2008; 10
Bielig (10.1016/j.chom.2014.04.001_bib2) 2011; 79
Girardin (10.1016/j.chom.2014.04.001_bib8) 2001; 2
Chamaillard (10.1016/j.chom.2014.04.001_bib3) 2003; 4
Terebiznik (10.1016/j.chom.2014.04.001_bib23) 2009; 5
Chaput (10.1016/j.chom.2014.04.001_bib4) 2007; 189
Clarke (10.1016/j.chom.2014.04.001_bib6) 2011; 243
Girardin (10.1016/j.chom.2014.04.001_bib9) 2003; 300
Sorbara (10.1016/j.chom.2014.04.001_bib21) 2011; 243
Kaparakis (10.1016/j.chom.2014.04.001_bib14) 2010; 12
Weiss (10.1016/j.chom.2014.04.001_bib26) 2013; 4
Parker (10.1016/j.chom.2014.04.001_bib18) 2010; 78
Strober (10.1016/j.chom.2014.04.001_bib22) 2006; 6
Viala (10.1016/j.chom.2014.04.001_bib25) 2004; 5
Inohara (10.1016/j.chom.2014.04.001_bib13) 2000; 275
Kulp (10.1016/j.chom.2014.04.001_bib16) 2010; 64
Ricci (10.1016/j.chom.2014.04.001_bib20) 2005; 337
Travassos (10.1016/j.chom.2014.04.001_bib24) 2010; 11
Allison (10.1016/j.chom.2014.04.001_bib1) 2009; 183
Philpott (10.1016/j.chom.2014.04.001_bib19) 2010; 22
Hasegawa (10.1016/j.chom.2014.04.001_bib11) 2008; 27
Lee (10.1016/j.chom.2014.04.001_bib17) 2009; 284
Grubman (10.1016/j.chom.2014.04.001_bib10) 2010; 12
Inohara (10.1016/j.chom.2014.04.001_bib12) 1999; 274
Kufer (10.1016/j.chom.2014.04.001_bib15) 2008; 10
Chatterjee (10.1016/j.chom.2014.04.001_bib5) 2013; 288
Daniel (10.1016/j.chom.2014.04.001_bib7) 2003; 113
References_xml – volume: 243
  start-page: 9
  year: 2011
  end-page: 25
  ident: bib6
  article-title: Intracellular sensors of extracellular bacteria
  publication-title: Immunol. Rev.
  contributor:
    fullname: Weiser
– volume: 64
  start-page: 163
  year: 2010
  end-page: 184
  ident: bib16
  article-title: Biological functions and biogenesis of secreted bacterial outer membrane vesicles
  publication-title: Annu. Rev. Microbiol.
  contributor:
    fullname: Kuehn
– volume: 6
  start-page: 9
  year: 2006
  end-page: 20
  ident: bib22
  article-title: Signalling pathways and molecular interactions of NOD1 and NOD2
  publication-title: Nat. Rev. Immunol.
  contributor:
    fullname: Watanabe
– volume: 288
  start-page: 4299
  year: 2013
  end-page: 4309
  ident: bib5
  article-title: O395 outer membrane vesicles modulate intestinal epithelial cells in a NOD1 protein-dependent manner and induce dendritic cell-mediated Th2/Th17 cell responses
  publication-title: J. Biol. Chem.
  contributor:
    fullname: Chaudhuri
– volume: 27
  start-page: 373
  year: 2008
  end-page: 383
  ident: bib11
  article-title: A critical role of RICK/RIP2 polyubiquitination in Nod-induced NF-kappaB activation
  publication-title: EMBO J.
  contributor:
    fullname: Inohara
– volume: 12
  start-page: 372
  year: 2010
  end-page: 385
  ident: bib14
  article-title: Bacterial membrane vesicles deliver peptidoglycan to NOD1 in epithelial cells
  publication-title: Cell. Microbiol.
  contributor:
    fullname: Mak
– volume: 12
  start-page: 626
  year: 2010
  end-page: 639
  ident: bib10
  article-title: The innate immune molecule, NOD1, regulates direct killing of
  publication-title: Cell. Microbiol.
  contributor:
    fullname: Smith
– volume: 2
  start-page: 736
  year: 2001
  end-page: 742
  ident: bib8
  article-title: CARD4/Nod1 mediates NF-kappaB and JNK activation by invasive
  publication-title: EMBO Rep.
  contributor:
    fullname: Philpott
– volume: 4
  start-page: 702
  year: 2003
  end-page: 707
  ident: bib3
  article-title: An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid
  publication-title: Nat. Immunol.
  contributor:
    fullname: Kusumoto
– volume: 5
  start-page: 1166
  year: 2004
  end-page: 1174
  ident: bib25
  article-title: Nod1 responds to peptidoglycan delivered by the
  publication-title: Nat. Immunol.
  contributor:
    fullname: Coyle
– volume: 243
  start-page: 40
  year: 2011
  end-page: 60
  ident: bib21
  article-title: Peptidoglycan: a critical activator of the mammalian immune system during infection and homeostasis
  publication-title: Immunol. Rev.
  contributor:
    fullname: Philpott
– volume: 275
  start-page: 27823
  year: 2000
  end-page: 27831
  ident: bib13
  article-title: An induced proximity model for NF-kappa B activation in the Nod1/RICK and RIP signaling pathways
  publication-title: J. Biol. Chem.
  contributor:
    fullname: Núñez
– volume: 5
  start-page: 370
  year: 2009
  end-page: 379
  ident: bib23
  article-title: Effect of
  publication-title: Autophagy
  contributor:
    fullname: Jones
– volume: 337
  start-page: 173
  year: 2005
  end-page: 178
  ident: bib20
  article-title: Free-soluble and outer membrane vesicle-associated VacA from
  publication-title: Biochem. Biophys. Res. Commun.
  contributor:
    fullname: Ventura
– volume: 22
  start-page: 428
  year: 2010
  end-page: 434
  ident: bib19
  article-title: Nod-like receptors: sentinels at host membranes
  publication-title: Curr. Opin. Immunol.
  contributor:
    fullname: Girardin
– volume: 113
  start-page: 767
  year: 2003
  end-page: 776
  ident: bib7
  article-title: Control of cell morphogenesis in bacteria: two distinct ways to make a rod-shaped cell
  publication-title: Cell
  contributor:
    fullname: Errington
– volume: 300
  start-page: 1584
  year: 2003
  end-page: 1587
  ident: bib9
  article-title: Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan
  publication-title: Science
  contributor:
    fullname: Zähringer
– volume: 11
  start-page: 55
  year: 2010
  end-page: 62
  ident: bib24
  article-title: Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry
  publication-title: Nat. Immunol.
  contributor:
    fullname: Le Bourhis
– volume: 79
  start-page: 1418
  year: 2011
  end-page: 1427
  ident: bib2
  article-title: NOD-like receptor activation by outer membrane vesicles from
  publication-title: Infect. Immun.
  contributor:
    fullname: Kufer
– volume: 274
  start-page: 14560
  year: 1999
  end-page: 14567
  ident: bib12
  article-title: Nod1, an Apaf-1-like activator of caspase-9 and nuclear factor-kappaB
  publication-title: J. Biol. Chem.
  contributor:
    fullname: Núñez
– volume: 183
  start-page: 8099
  year: 2009
  end-page: 8109
  ident: bib1
  article-title: induces MAPK phosphorylation and AP-1 activation via a NOD1-dependent mechanism
  publication-title: J. Immunol.
  contributor:
    fullname: Ferrero
– volume: 189
  start-page: 422
  year: 2007
  end-page: 429
  ident: bib4
  article-title: Characterization of
  publication-title: J. Bacteriol.
  contributor:
    fullname: Boneca
– volume: 78
  start-page: 5054
  year: 2010
  end-page: 5061
  ident: bib18
  article-title: Uptake of
  publication-title: Infect. Immun.
  contributor:
    fullname: Keenan
– volume: 4
  start-page: e00609
  year: 2013
  end-page: e00612
  ident: bib26
  article-title: VacA suppresses
  publication-title: MBio
  contributor:
    fullname: Kaparakis-Liaskos
– volume: 10
  start-page: 477
  year: 2008
  end-page: 486
  ident: bib15
  article-title: The pattern-recognition molecule Nod1 is localized at the plasma membrane at sites of bacterial interaction
  publication-title: Cell. Microbiol.
  contributor:
    fullname: Sansonetti
– volume: 284
  start-page: 23818
  year: 2009
  end-page: 23829
  ident: bib17
  article-title: pH-dependent internalization of muramyl peptides from early endosomes enables Nod1 and Nod2 signaling
  publication-title: J. Biol. Chem.
  contributor:
    fullname: Girardin
– volume: 113
  start-page: 767
  year: 2003
  ident: 10.1016/j.chom.2014.04.001_bib7
  article-title: Control of cell morphogenesis in bacteria: two distinct ways to make a rod-shaped cell
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)00421-5
  contributor:
    fullname: Daniel
– volume: 22
  start-page: 428
  year: 2010
  ident: 10.1016/j.chom.2014.04.001_bib19
  article-title: Nod-like receptors: sentinels at host membranes
  publication-title: Curr. Opin. Immunol.
  doi: 10.1016/j.coi.2010.04.010
  contributor:
    fullname: Philpott
– volume: 10
  start-page: 477
  year: 2008
  ident: 10.1016/j.chom.2014.04.001_bib15
  article-title: The pattern-recognition molecule Nod1 is localized at the plasma membrane at sites of bacterial interaction
  publication-title: Cell. Microbiol.
  contributor:
    fullname: Kufer
– volume: 337
  start-page: 173
  year: 2005
  ident: 10.1016/j.chom.2014.04.001_bib20
  article-title: Free-soluble and outer membrane vesicle-associated VacA from Helicobacter pylori: Two forms of release, a different activity
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2005.09.035
  contributor:
    fullname: Ricci
– volume: 243
  start-page: 9
  year: 2011
  ident: 10.1016/j.chom.2014.04.001_bib6
  article-title: Intracellular sensors of extracellular bacteria
  publication-title: Immunol. Rev.
  doi: 10.1111/j.1600-065X.2011.01039.x
  contributor:
    fullname: Clarke
– volume: 4
  start-page: 702
  year: 2003
  ident: 10.1016/j.chom.2014.04.001_bib3
  article-title: An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid
  publication-title: Nat. Immunol.
  doi: 10.1038/ni945
  contributor:
    fullname: Chamaillard
– volume: 284
  start-page: 23818
  year: 2009
  ident: 10.1016/j.chom.2014.04.001_bib17
  article-title: pH-dependent internalization of muramyl peptides from early endosomes enables Nod1 and Nod2 signaling
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.033670
  contributor:
    fullname: Lee
– volume: 5
  start-page: 370
  year: 2009
  ident: 10.1016/j.chom.2014.04.001_bib23
  article-title: Effect of Helicobacter pylori’s vacuolating cytotoxin on the autophagy pathway in gastric epithelial cells
  publication-title: Autophagy
  doi: 10.4161/auto.5.3.7663
  contributor:
    fullname: Terebiznik
– volume: 4
  start-page: e00609
  year: 2013
  ident: 10.1016/j.chom.2014.04.001_bib26
  article-title: Helicobacter pylori VacA suppresses Lactobacillus acidophilus-induced interferon beta signaling in macrophages via alterations in the endocytic pathway
  publication-title: MBio
  doi: 10.1128/mBio.00609-12
  contributor:
    fullname: Weiss
– volume: 12
  start-page: 372
  year: 2010
  ident: 10.1016/j.chom.2014.04.001_bib14
  article-title: Bacterial membrane vesicles deliver peptidoglycan to NOD1 in epithelial cells
  publication-title: Cell. Microbiol.
  doi: 10.1111/j.1462-5822.2009.01404.x
  contributor:
    fullname: Kaparakis
– volume: 12
  start-page: 626
  year: 2010
  ident: 10.1016/j.chom.2014.04.001_bib10
  article-title: The innate immune molecule, NOD1, regulates direct killing of Helicobacter pylori by antimicrobial peptides
  publication-title: Cell. Microbiol.
  doi: 10.1111/j.1462-5822.2009.01421.x
  contributor:
    fullname: Grubman
– volume: 300
  start-page: 1584
  year: 2003
  ident: 10.1016/j.chom.2014.04.001_bib9
  article-title: Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan
  publication-title: Science
  doi: 10.1126/science.1084677
  contributor:
    fullname: Girardin
– volume: 64
  start-page: 163
  year: 2010
  ident: 10.1016/j.chom.2014.04.001_bib16
  article-title: Biological functions and biogenesis of secreted bacterial outer membrane vesicles
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev.micro.091208.073413
  contributor:
    fullname: Kulp
– volume: 6
  start-page: 9
  year: 2006
  ident: 10.1016/j.chom.2014.04.001_bib22
  article-title: Signalling pathways and molecular interactions of NOD1 and NOD2
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri1747
  contributor:
    fullname: Strober
– volume: 2
  start-page: 736
  year: 2001
  ident: 10.1016/j.chom.2014.04.001_bib8
  article-title: CARD4/Nod1 mediates NF-kappaB and JNK activation by invasive Shigella flexneri
  publication-title: EMBO Rep.
  doi: 10.1093/embo-reports/kve155
  contributor:
    fullname: Girardin
– volume: 27
  start-page: 373
  year: 2008
  ident: 10.1016/j.chom.2014.04.001_bib11
  article-title: A critical role of RICK/RIP2 polyubiquitination in Nod-induced NF-kappaB activation
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7601962
  contributor:
    fullname: Hasegawa
– volume: 274
  start-page: 14560
  year: 1999
  ident: 10.1016/j.chom.2014.04.001_bib12
  article-title: Nod1, an Apaf-1-like activator of caspase-9 and nuclear factor-kappaB
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.21.14560
  contributor:
    fullname: Inohara
– volume: 243
  start-page: 40
  year: 2011
  ident: 10.1016/j.chom.2014.04.001_bib21
  article-title: Peptidoglycan: a critical activator of the mammalian immune system during infection and homeostasis
  publication-title: Immunol. Rev.
  doi: 10.1111/j.1600-065X.2011.01047.x
  contributor:
    fullname: Sorbara
– volume: 275
  start-page: 27823
  year: 2000
  ident: 10.1016/j.chom.2014.04.001_bib13
  article-title: An induced proximity model for NF-kappa B activation in the Nod1/RICK and RIP signaling pathways
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M003415200
  contributor:
    fullname: Inohara
– volume: 183
  start-page: 8099
  year: 2009
  ident: 10.1016/j.chom.2014.04.001_bib1
  article-title: Helicobacter pylori induces MAPK phosphorylation and AP-1 activation via a NOD1-dependent mechanism
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.0900664
  contributor:
    fullname: Allison
– volume: 189
  start-page: 422
  year: 2007
  ident: 10.1016/j.chom.2014.04.001_bib4
  article-title: Characterization of Helicobacter pylori lytic transglycosylases Slt and MltD
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.01270-06
  contributor:
    fullname: Chaput
– volume: 11
  start-page: 55
  year: 2010
  ident: 10.1016/j.chom.2014.04.001_bib24
  article-title: Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.1823
  contributor:
    fullname: Travassos
– volume: 79
  start-page: 1418
  year: 2011
  ident: 10.1016/j.chom.2014.04.001_bib2
  article-title: NOD-like receptor activation by outer membrane vesicles from Vibrio cholerae non-O1 non-O139 strains is modulated by the quorum-sensing regulator HapR
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.00754-10
  contributor:
    fullname: Bielig
– volume: 288
  start-page: 4299
  year: 2013
  ident: 10.1016/j.chom.2014.04.001_bib5
  article-title: Vibrio cholerae O395 outer membrane vesicles modulate intestinal epithelial cells in a NOD1 protein-dependent manner and induce dendritic cell-mediated Th2/Th17 cell responses
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.408302
  contributor:
    fullname: Chatterjee
– volume: 78
  start-page: 5054
  year: 2010
  ident: 10.1016/j.chom.2014.04.001_bib18
  article-title: Uptake of Helicobacter pylori outer membrane vesicles by gastric epithelial cells
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.00299-10
  contributor:
    fullname: Parker
– volume: 5
  start-page: 1166
  year: 2004
  ident: 10.1016/j.chom.2014.04.001_bib25
  article-title: Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island
  publication-title: Nat. Immunol.
  doi: 10.1038/ni1131
  contributor:
    fullname: Viala
SSID ssj0055071
Score 2.5683587
Snippet The intracellular innate immune receptor NOD1 detects Gram-negative bacterial peptidoglycan (PG) to induce autophagy and inflammatory responses in host cells....
SourceID proquest
crossref
pubmed
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 623
SubjectTerms Animals
Autophagy
Cell Line
Endosomes - immunology
Endosomes - microbiology
Helicobacter Infections - enzymology
Helicobacter Infections - genetics
Helicobacter Infections - immunology
Helicobacter pylori - immunology
Helicobacter pylori - physiology
Humans
Mice
Nod1 Signaling Adaptor Protein - genetics
Nod1 Signaling Adaptor Protein - immunology
Peptidoglycan - immunology
Protein Binding
Pseudomonas aeruginosa - immunology
Pseudomonas aeruginosa - physiology
Pseudomonas Infections - enzymology
Pseudomonas Infections - genetics
Pseudomonas Infections - immunology
Receptor-Interacting Protein Serine-Threonine Kinase 2 - genetics
Receptor-Interacting Protein Serine-Threonine Kinase 2 - immunology
Receptors, Immunologic - genetics
Receptors, Immunologic - immunology
Signal Transduction
Title The Immune Receptor NOD1 and Kinase RIP2 Interact with Bacterial Peptidoglycan on Early Endosomes to Promote Autophagy and Inflammatory Signaling
URI https://dx.doi.org/10.1016/j.chom.2014.04.001
https://www.ncbi.nlm.nih.gov/pubmed/24746552
https://search.proquest.com/docview/1525766903
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELb2ISQuiPeWx8pI3FDUOn7Fx7bsastCt2JZVHGJnNiuilinoumhP4N_zEweSEjAgaOt2LE845nPnhchr2UW4HZsbVJwxuGCUvDEZk4kWhpRqgKOusF45w9zdXEj3i3l8oBM-1gYdKvsZH8r0xtp3fUMu90cbtbr4TVAD8bRECQQx8jskBxjLnNg7ePx5PPl-14gY8Yu1hqXWYIDutiZ1s0LS5Kgh5doMp52tWH-oJ_-hj8bPXR-n9zrACQdt2t8QA58fEjutCUl94_ID6A7nWHQh6cACf0G7tR0fvWWURsdvVxH0Fr042yR0uYt0JY1xadYOmmzNsPMC_RzcdXq2x52nVaRNjmQ6Vl01ba69VtaV3TROPF5Ot5hXgK72jezz2IA_rpt7Pb0er1CjB9Xj8nN-dmn6UXSlV1ISiFMnbjMAyjjQksXSm0saHwbdKqCk1woZ4NTmdSmdFIHAABFyk0oXMgYs6UMVvIn5ChW0Z8QqktVmsJoWSgsbQ0UgM8Ngw5vtUtHA_Km3-x802bXyHu3s685kiZH0uQjgb53AyJ7euS_8UgO4v-f4171xMvh8KBFxEZf7bY5Fn_SSpkRH5CnLVV_rSMVGnPLpc_-86_PyV1soacBEy_IUf19518CgKmL045BT8nhbDmB1ny6vPryE5v18Mk
link.rule.ids 314,780,784,3506,27569,27924,27925,45663,45874
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaWXSG4IN6Up5G4oah14kd87C67amm3VOwu2pvlxHZVxDoVTQ_9GfxjZvJAQgIOXJ3YiTzj8WfPNzOEvBN5gNOxtUmRsQwOKEWW2NzxRAnNS1nAUtcY73y-kJMr_vFaXB-Qkz4WBmmVne1vbXpjrbuWYTebw816PbwA6MEydARxxDEiv0WOAA1IUPaj8fGX2bw3yJixi7XOZZZghy52pqV5YUkSZHjxJuNpVxvmD_vT3_Bnsw-d3Sf3OgBJx-0_PiAHPj4kt9uSkvtH5AfInU4x6MNTgIR-A2dquvj0gVEbHZ2tI-xa9PN0mdLmLtCWNcWrWHrcZm2GkZfIc3HV6tseZp1WkTY5kOlpdNW2uvFbWld02ZD4PB3vMC-BXe2b0acxgH7dNH57erFeIcaPq8fk6uz08mSSdGUXkpJzXScu9wDKMq6EC6XSFnZ8G1QqgxMZl84GJ3OhdOmECgAAijTToXAhZ8yWIliRPSGHsYr-GaGqlKUutBKFxNLWIAF4XTNo8Fa5dDQg7_vJNps2u4bpaWdfDYrGoGjMiCP3bkBELw_zm44YMP__7Pe2F56BxYMeERt9tdsaLP6kpNSjbECetlL99R8pV5hbLn3-n199Q-5MLs_nZj5dzF6Qu_gEWQeMvySH9fedfwVgpi5ed8r6E8Fy8PU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+immune+receptor+NOD1+and+kinase+RIP2+interact+with+bacterial+peptidoglycan+on+early+endosomes+to+promote+autophagy+and+inflammatory+signaling&rft.jtitle=Cell+host+%26+microbe&rft.au=Irving%2C+Aaron+T&rft.au=Mimuro%2C+Hitomi&rft.au=Kufer%2C+Thomas+A&rft.au=Lo%2C+Camden&rft.date=2014-05-14&rft.eissn=1934-6069&rft.volume=15&rft.issue=5&rft.spage=623&rft_id=info:doi/10.1016%2Fj.chom.2014.04.001&rft_id=info%3Apmid%2F24746552&rft.externalDocID=24746552
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1931-3128&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1931-3128&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1931-3128&client=summon