Leveraging Brain Modularity Prior for Interpretable Representation Learning of fMRI
Resting-state functional magnetic resonance imaging (rs-fMRI) can reflect spontaneous neural activities in the brain and is widely used for brain disorder analysis. Previous studies focus on extracting fMRI representations using machine/deep learning methods, but these features typically lack biolog...
Saved in:
Published in | IEEE transactions on biomedical engineering Vol. 71; no. 8; pp. 2391 - 2401 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.08.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Resting-state functional magnetic resonance imaging (rs-fMRI) can reflect spontaneous neural activities in the brain and is widely used for brain disorder analysis. Previous studies focus on extracting fMRI representations using machine/deep learning methods, but these features typically lack biological interpretability. The human brain exhibits a remarkable modular structure in spontaneous brain functional networks, with each module comprised of functionally interconnected brain regions-of-interest (ROIs). However, existing learning-based methods cannot adequately utilize such brain modularity prior. In this paper, we propose a brain modularity-constrained dynamic representation learning framework for interpretable fMRI analysis, consisting of dynamic graph construction, dynamic graph learning via a novel modularity-constrained graph neural network (MGNN), and prediction and biomarker detection. The designed MGNN is constrained by three core neurocognitive modules (i.e., salience network, central executive network, and default mode network), encouraging ROIs within the same module to share similar representations. To further enhance discriminative ability of learned features, we encourage the MGNN to preserve network topology of input graphs via a graph topology reconstruction constraint. Experimental results on 534 subjects with rs-fMRI scans from two datasets validate the effectiveness of the proposed method. The identified discriminative brain ROIs and functional connectivities can be regarded as potential fMRI biomarkers to aid in clinical diagnosis. |
---|---|
AbstractList | Resting-state functional magnetic resonance imaging (rs-fMRI) can reflect spontaneous neural activities in the brain and is widely used for brain disorder analysis. Previous studies focus on extracting fMRI representations using machine/deep learning methods, but these features typically lack biological interpretability. The human brain exhibits a remarkable modular structure in spontaneous brain functional networks, with each module comprised of functionally interconnected brain regions-of-interest (ROIs). However, existing learning-based methods cannot adequately utilize such brain modularity prior. In this paper, we propose a brain modularity-constrained dynamic representation learning framework for interpretable fMRI analysis, consisting of dynamic graph construction, dynamic graph learning via a novel modularity-constrained graph neural network (MGNN), and prediction and biomarker detection. The designed MGNN is constrained by three core neurocognitive modules (
i.e.
, salience network, central executive network, and default mode network), encouraging ROIs within the same module to share similar representations. To further enhance discriminative ability of learned features, we encourage the MGNN to preserve network topology of input graphs via a graph topology reconstruction constraint. Experimental results on 534 subjects with rs-fMRI scans from two datasets validate the effectiveness of the proposed method. The identified discriminative brain ROIs and functional connectivities can be regarded as potential fMRI biomarkers to aid in clinical diagnosis. Resting-state functional magnetic resonance imaging (rs-fMRI) can reflect spontaneous neural activities in the brain and is widely used for brain disorder analysis. Previous studies focus on extracting fMRI representations using machine/deep learning methods, but these features typically lack biological interpretability. The human brain exhibits a remarkable modular structure in spontaneous brain functional networks, with each module comprised of functionally interconnected brain regions-of-interest (ROIs). However, existing learning-based methods cannot adequately utilize such brain modularity prior. In this paper, we propose a brain modularity-constrained dynamic representation learning framework for interpretable fMRI analysis, consisting of dynamic graph construction, dynamic graph learning via a novel modularity-constrained graph neural network (MGNN), and prediction and biomarker detection. The designed MGNN is constrained by three core neurocognitive modules (i.e., salience network, central executive network, and default mode network), encouraging ROIs within the same module to share similar representations. To further enhance discriminative ability of learned features, we encourage the MGNN to preserve network topology of input graphs via a graph topology reconstruction constraint. Experimental results on 534 subjects with rs-fMRI scans from two datasets validate the effectiveness of the proposed method. The identified discriminative brain ROIs and functional connectivities can be regarded as potential fMRI biomarkers to aid in clinical diagnosis. Resting-state functional magnetic resonance imaging (rs-fMRI) can reflect spontaneous neural activities in the brain and is widely used for brain disorder analysis. Previous studies focus on extracting fMRI representations using machine/deep learning methods, but these features typically lack biological interpretability. The human brain exhibits a remarkable modular structure in spontaneous brain functional networks, with each module comprised of functionally interconnected brain regions-of-interest (ROIs). However, existing learning-based methods cannot adequately utilize such brain modularity prior. In this paper, we propose a brain modularity-constrained dynamic representation learning framework for interpretable fMRI analysis, consisting of dynamic graph construction, dynamic graph learning via a novel modularity-constrained graph neural network (MGNN), and prediction and biomarker detection. The designed MGNN is constrained by three core neurocognitive modules (i.e., salience network, central executive network, and default mode network), encouraging ROIs within the same module to share similar representations. To further enhance discriminative ability of learned features, we encourage the MGNN to preserve network topology of input graphs via a graph topology reconstruction constraint. Experimental results on 534 subjects with rs-fMRI scans from two datasets validate the effectiveness of the proposed method. The identified discriminative brain ROIs and functional connectivities can be regarded as potential fMRI biomarkers to aid in clinical diagnosis.Resting-state functional magnetic resonance imaging (rs-fMRI) can reflect spontaneous neural activities in the brain and is widely used for brain disorder analysis. Previous studies focus on extracting fMRI representations using machine/deep learning methods, but these features typically lack biological interpretability. The human brain exhibits a remarkable modular structure in spontaneous brain functional networks, with each module comprised of functionally interconnected brain regions-of-interest (ROIs). However, existing learning-based methods cannot adequately utilize such brain modularity prior. In this paper, we propose a brain modularity-constrained dynamic representation learning framework for interpretable fMRI analysis, consisting of dynamic graph construction, dynamic graph learning via a novel modularity-constrained graph neural network (MGNN), and prediction and biomarker detection. The designed MGNN is constrained by three core neurocognitive modules (i.e., salience network, central executive network, and default mode network), encouraging ROIs within the same module to share similar representations. To further enhance discriminative ability of learned features, we encourage the MGNN to preserve network topology of input graphs via a graph topology reconstruction constraint. Experimental results on 534 subjects with rs-fMRI scans from two datasets validate the effectiveness of the proposed method. The identified discriminative brain ROIs and functional connectivities can be regarded as potential fMRI biomarkers to aid in clinical diagnosis. |
Author | Wang, Qianqian Liu, Mingxia Li, Hong-Jun Qiao, Lishan Wang, Wei Fang, Yuqi Yap, Pew-Thian Zhu, Hongtu |
Author_xml | – sequence: 1 givenname: Qianqian orcidid: 0000-0002-0221-3320 surname: Wang fullname: Wang, Qianqian organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, USA – sequence: 2 givenname: Wei orcidid: 0000-0001-6183-0559 surname: Wang fullname: Wang, Wei organization: Department of Radiology, Beijing Youan Hospital, Capital Medical University, China – sequence: 3 givenname: Yuqi orcidid: 0000-0003-4417-9199 surname: Fang fullname: Fang, Yuqi organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, USA – sequence: 4 givenname: Pew-Thian orcidid: 0000-0003-1489-2102 surname: Yap fullname: Yap, Pew-Thian organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, USA – sequence: 5 givenname: Hongtu orcidid: 0000-0002-6781-2690 surname: Zhu fullname: Zhu, Hongtu organization: Department of Biostatistics and BRIC, University of North Carolina at Chapel Hill, USA – sequence: 6 givenname: Hong-Jun orcidid: 0000-0002-6994-4160 surname: Li fullname: Li, Hong-Jun email: lihongjun00113@ccmu.edu.cn organization: Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China – sequence: 7 givenname: Lishan orcidid: 0000-0003-3012-9553 surname: Qiao fullname: Qiao, Lishan organization: School of Computer Science and Technology, Shandong Jianzhu University, China – sequence: 8 givenname: Mingxia orcidid: 0000-0002-0166-0807 surname: Liu fullname: Liu, Mingxia email: mingxia_liu@med.unc.edu organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38412079$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UV1rFDEUDVKx2-oPEEQG-uLLrPme5ElsqXZhF6XW55BN7qwps8mamSn03zfDrqXtg5CQG3LOybn3nKCjmCIg9J7gOSFYf745X13OKaZ8zliDORGv0IwIoWoqGDlCM4yJqjXV_Bid9P1tuXLF5Rt0zBQnFDd6hn4t4Q6y3YS4qc6zDbFaJT92NofhvvqZQ8pVW_YiDpB3GQa77qC6hlL2EAc7hBSrJdgcJ4HUVu3qevEWvW5t18O7w3mKfn-7vLm4qpc_vi8uvi5rx7keas8Fdhqo99Jpb7HCVFKJgdLGW8-1IoxyTb0gnKyJ40ryxmGxdpaCkxKzU_Rlr7sb11vwrhjKtjO7HLY235tkg3n-EsMfs0l3hhAqGkVEUfh0UMjp7wj9YLahd9B1NkIae0M1K6thTVOgZy-gt2nMsfRnGFZUKsnIZOnjU0uPXv4NvADIHuBy6vsM7SOEYDOFaqZQzRSqOYRaOM0Ljgv70ZeuQvdf5oc9MwDAk5_K_Lmg7AGOL64y |
CODEN | IEBEAX |
CitedBy_id | crossref_primary_10_1109_TMI_2024_3448214 crossref_primary_10_1016_j_media_2024_103403 |
Cites_doi | 10.1016/j.tics.2019.01.014 10.1016/j.neuroimage.2009.04.069 10.1016/j.neuroimage.2014.11.021 10.1016/j.neuroimage.2014.05.052 10.1016/j.neucom.2020.05.113 10.1016/j.media.2021.102233 10.1001/jamapsychiatry.2015.0484 10.1109/TNNLS.2022.3158654 10.1016/j.media.2021.102057 10.1016/j.media.2023.102841 10.1109/TMI.2022.3203899 10.3389/fnsys.2010.00013 10.1016/j.neuroimage.2017.02.066 10.1145/3503161.3548339 10.3389/fnins.2020.00630 10.1016/j.media.2022.102471 10.1016/j.media.2023.102932 10.1016/j.media.2021.102279 10.1146/annurev-psych-122414-033634 10.1016/j.mri.2019.06.001 10.1038/s41380-021-01247-2 10.1212/WNL.0000000000001476 10.1016/j.media.2022.102366 10.1038/nn.4478 10.1109/jbhi.2024.3351177 10.1016/j.tins.2021.08.005 10.1093/scan/nsp017 10.1109/TPAMI.2022.3203630 10.1016/j.neuroimage.2017.12.052 10.1016/j.compbiomed.2020.104096 10.1038/s41746-022-00699-2 10.1007/978-3-030-59728-3_52 10.1016/j.mri.2019.05.031 10.3389/fnins.2010.00200 10.1109/TMI.2022.3218745 10.1126/sciadv.abq7547 10.1109/CVPR.2018.00745 10.1038/mp.2013.78 10.1002/hbm.25529 10.1007/978-3-642-33418-4_27 10.1038/s41593-022-01118-1 10.1109/TPAMI.2022.3209686 10.24963/ijcai.2020/411 10.1016/j.media.2022.102707 10.1038/s42256-020-00257-z 10.1038/nbt1206-1565 10.1016/S0140-6736(14)60328-7 10.1016/j.neuroimage.2008.09.062 10.1097/AUD.0000000000001186 10.1016/j.compbiomed.2019.01.006 10.1109/TNNLS.2015.2424995 10.1109/TMI.2022.3219260 10.1145/2939672.2939785 10.1016/j.tics.2011.08.003 10.1007/s00234-017-1912-1 10.1007/s00330-017-4836-6 10.1007/s11749-016-0481-7 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 5PM |
DOI | 10.1109/TBME.2024.3370415 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-2531 |
EndPage | 2401 |
ExternalDocumentID | PMC11257815 38412079 10_1109_TBME_2024_3370415 10449452 |
Genre | orig-research Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIH grantid: AG073297; EB035160; RF1AG082938 – fundername: NIA NIH HHS grantid: RF1 AG082938 – fundername: NIA NIH HHS grantid: RF1 AG073297 – fundername: NIBIB NIH HHS grantid: R01 EB035160 |
GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM PKN 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 5PM |
ID | FETCH-LOGICAL-c449t-d450c9e2dd6c9da08026260e227dad498132492d5141b1c48647c05bca2ec6603 |
IEDL.DBID | RIE |
ISSN | 0018-9294 1558-2531 |
IngestDate | Thu Aug 21 18:33:56 EDT 2025 Fri Jul 11 05:34:41 EDT 2025 Mon Jun 30 08:30:53 EDT 2025 Wed Feb 19 02:03:44 EST 2025 Thu Apr 24 22:55:49 EDT 2025 Tue Jul 01 03:28:40 EDT 2025 Wed Aug 27 02:02:08 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c449t-d450c9e2dd6c9da08026260e227dad498132492d5141b1c48647c05bca2ec6603 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1489-2102 0000-0002-6994-4160 0000-0002-6781-2690 0000-0002-0166-0807 0000-0003-4417-9199 0000-0002-0221-3320 0000-0001-6183-0559 0000-0003-3012-9553 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/11257815 |
PMID | 38412079 |
PQID | 3082686310 |
PQPubID | 85474 |
PageCount | 11 |
ParticipantIDs | proquest_journals_3082686310 pubmed_primary_38412079 crossref_primary_10_1109_TBME_2024_3370415 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11257815 crossref_citationtrail_10_1109_TBME_2024_3370415 proquest_miscellaneous_2932937377 ieee_primary_10449452 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-08-01 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on biomedical engineering |
PublicationTitleAbbrev | TBME |
PublicationTitleAlternate | IEEE Trans Biomed Eng |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 Velikovi (ref50) 2017 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 Kipf (ref48) ref17 ref16 ref19 ref18 ref51 Kim (ref38) 2021 ref46 ref45 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref24 ref23 ref26 ref25 ref20 ref22 ref21 Kipf (ref39) 2016 ref28 ref27 ref29 ref60 ref61 |
References_xml | – ident: ref30 doi: 10.1016/j.tics.2019.01.014 – ident: ref55 doi: 10.1016/j.neuroimage.2009.04.069 – ident: ref22 doi: 10.1016/j.neuroimage.2014.11.021 – ident: ref16 doi: 10.1016/j.neuroimage.2014.05.052 – ident: ref24 doi: 10.1016/j.neucom.2020.05.113 – ident: ref4 doi: 10.1016/j.media.2021.102233 – ident: ref34 doi: 10.1001/jamapsychiatry.2015.0484 – ident: ref40 doi: 10.1109/TNNLS.2022.3158654 – ident: ref23 doi: 10.1016/j.media.2021.102057 – ident: ref51 doi: 10.1016/j.media.2023.102841 – ident: ref5 doi: 10.1109/TMI.2022.3203899 – ident: ref33 doi: 10.3389/fnsys.2010.00013 – ident: ref13 doi: 10.1016/j.neuroimage.2017.02.066 – ident: ref27 doi: 10.1145/3503161.3548339 – year: 2016 ident: ref39 article-title: Variational graph auto-encoders – ident: ref49 doi: 10.3389/fnins.2020.00630 – ident: ref8 doi: 10.1016/j.media.2022.102471 – ident: ref37 doi: 10.1016/j.media.2023.102932 – ident: ref7 doi: 10.1016/j.media.2021.102279 – ident: ref14 doi: 10.1146/annurev-psych-122414-033634 – ident: ref6 doi: 10.1016/j.mri.2019.06.001 – ident: ref36 doi: 10.1038/s41380-021-01247-2 – ident: ref29 doi: 10.1212/WNL.0000000000001476 – ident: ref2 doi: 10.1016/j.media.2022.102366 – ident: ref35 doi: 10.1038/nn.4478 – ident: ref42 doi: 10.1109/jbhi.2024.3351177 – ident: ref56 doi: 10.1016/j.tins.2021.08.005 – ident: ref54 doi: 10.1093/scan/nsp017 – ident: ref61 doi: 10.1109/TPAMI.2022.3203630 – ident: ref25 doi: 10.1016/j.neuroimage.2017.12.052 – ident: ref26 doi: 10.1016/j.compbiomed.2020.104096 – ident: ref12 doi: 10.1038/s41746-022-00699-2 – year: 2017 ident: ref50 article-title: Graph attention networks – ident: ref18 doi: 10.1007/978-3-030-59728-3_52 – ident: ref20 doi: 10.1016/j.mri.2019.05.031 – volume-title: IEEE J. Biomed. Health Inform. ident: ref48 article-title: Semi-supervised classification with graph convolutional networks – ident: ref15 doi: 10.3389/fnins.2010.00200 – ident: ref53 doi: 10.1109/TMI.2022.3218745 – ident: ref3 doi: 10.1126/sciadv.abq7547 – ident: ref43 doi: 10.1109/CVPR.2018.00745 – ident: ref19 doi: 10.1038/mp.2013.78 – ident: ref17 doi: 10.1002/hbm.25529 – ident: ref21 doi: 10.1007/978-3-642-33418-4_27 – ident: ref1 doi: 10.1038/s41593-022-01118-1 – ident: ref9 doi: 10.1109/TPAMI.2022.3209686 – start-page: 4314 volume-title: Proc. Int. Conf. Adv. Neural Inf. Process. Syst. year: 2021 ident: ref38 article-title: Learning dynamic graph representation of brain connectome with spatio-temporal attention – ident: ref41 doi: 10.24963/ijcai.2020/411 – ident: ref10 doi: 10.1016/j.media.2022.102707 – ident: ref11 doi: 10.1038/s42256-020-00257-z – ident: ref44 doi: 10.1038/nbt1206-1565 – ident: ref32 doi: 10.1016/S0140-6736(14)60328-7 – ident: ref28 doi: 10.1016/j.neuroimage.2008.09.062 – ident: ref58 doi: 10.1097/AUD.0000000000001186 – ident: ref60 doi: 10.1016/j.compbiomed.2019.01.006 – ident: ref47 doi: 10.1109/TNNLS.2015.2424995 – ident: ref52 doi: 10.1109/TMI.2022.3219260 – ident: ref45 doi: 10.1145/2939672.2939785 – ident: ref31 doi: 10.1016/j.tics.2011.08.003 – ident: ref57 doi: 10.1007/s00234-017-1912-1 – ident: ref59 doi: 10.1007/s00330-017-4836-6 – ident: ref46 doi: 10.1007/s11749-016-0481-7 |
SSID | ssj0014846 |
Score | 2.515102 |
Snippet | Resting-state functional magnetic resonance imaging (rs-fMRI) can reflect spontaneous neural activities in the brain and is widely used for brain disorder... |
SourceID | pubmedcentral proquest pubmed crossref ieee |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2391 |
SubjectTerms | Adult Algorithms Autism Biomarker Biomarkers Biomedical engineering Brain Brain - diagnostic imaging Brain - physiology brain disorder Brain mapping Brain Mapping - methods Brain modeling brain modularity Cognition Constraints Deep learning Female Functional magnetic resonance imaging functional MRI Graph neural networks Graphical representations Humans Image Processing, Computer-Assisted - methods Machine Learning Magnetic resonance imaging Magnetic Resonance Imaging - methods Male Modular structures Modularity Modules Network topologies Network topology Neural networks Neural Networks, Computer Neuroimaging Representation learning Topology |
Title | Leveraging Brain Modularity Prior for Interpretable Representation Learning of fMRI |
URI | https://ieeexplore.ieee.org/document/10449452 https://www.ncbi.nlm.nih.gov/pubmed/38412079 https://www.proquest.com/docview/3082686310 https://www.proquest.com/docview/2932937377 https://pubmed.ncbi.nlm.nih.gov/PMC11257815 |
Volume | 71 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BD1U5FCgFAgUZiRNSlsSZOPaRolYFkQqVVuotih8pFVVSbXcv_HrGjjdsK0BIOUSy49iZGfubzAvgLW2ABvNOpbozIkXeyVRbiak0lS2qLJcqRHjXx-LoDD-fl-cxWD3EwjjngvOZm_nbYMu3g1n6X2Uk4YgKS9px75PmNgZrTSYDlGNUDo2f0pmP0YSZZ-r96X59QKogx1lB76cjaws2C4k5z7wH19p5FAqs_Alr3nWZXDuDDh_C8Wr2o-vJj9lyoWfm553Ejv-9vEewHdEo-zCyz2O45_odeLCWo3AHNutofX8C3744YvxQ1ojt-9ISrB6sd2MlJM--zi-HOSMIzH77Meorx06Cq22McOpZzOd6wYaOdfXJp104Ozw4_XiUxqIMqaHZLVKLZWaU49YKo2zrQ3W9TuQ4r2xrUUlSb1FxS0As17lBKbAyWalNy50RIiuewkY_9O45MG1zx1ssW40V2o6rTGmCowJtK0VV8ASyFWkaEzOW-8IZV03QXDLVeMI2nrBNJGwC76ZHrsd0Hf_qvOuJsNZx_P4J7K0YoIkSfdP4tD5CCkLDCbyZmkkWvYGl7d2wvGkIOtFVFVWVwLORX6bBV_yWgLzFSVMHn-f7dkt_-T3k-yZITPtqXr74y3xfwpZf1uiWuAcbi_nSvSKotNCvg4j8AqyMDC0 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3LbtQwFL0qRSplwaMUCBQwEmyQMiSO49gLFhRazdBJhUordZfGj0BFlaB5CMG_8Ct8G9eJJ0wrYFcJKYtIcazYPrbPjc-9F-AZLoCaxZUMVaV5yGglQmUEC4XOTJJFsZCth3e-z4dH7N1xerwCP3pfGGttKz6zA3fbnuWbRs_drzKc4YxJllKvodyz376ihTZ9NXqLw_mc0t2dwzfD0CcRCDUWnoWGpZGWlhrDtTSlcy11HN5SmpnSMCnQHGOSGiQOsYo1E5xlOkqVLqnVnEcJ1nsFriLRSGnnHtYfUjDR-QFhi0JkGcwfmsaRfHm4ne-g8UnZIMEW4ya5DmuJYDGNnGZsaQdsU7r8id1eFGku7Xq7N-Hnor86scvnwXymBvr7hVCS_22H3oIbnm-T190EuQ0rtt6A60tRGDdgLff6gjvwYWxxareJm8i2S55B8sY4oS7aKuT95LSZECT55LdSU51ZctCKib0PV018xNqPpKlIlR-MNuHoUhp4F1brprb3gSgTW1qytFQsY6aiMpIKCTdnphQ8S2gA0QIKhfYx2V1qkLOitc0iWTggFQ5IhQdSAC_6V750AUn-VXjTDfpSwW68A9haAK7wa9a0cIGLuODI9wN42j_G1cYdIZW1bebTAskhXlmSZQHc6_DZV77AdwDiHHL7Ai6S-fkn9emnNqI5kn7cOeL0wV--9wlcGx7m42I82t97COuuiZ0IcwtWZ5O5fYTEcKYet9OTwMllw_cXKH5neA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Leveraging+Brain+Modularity+Prior+for+Interpretable+Representation+Learning+of+fMRI&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Wang%2C+Qianqian&rft.au=Wang%2C+Wei&rft.au=Fang%2C+Yuqi&rft.au=Yap%2C+Pew-Thian&rft.date=2024-08-01&rft.pub=IEEE&rft.issn=0018-9294&rft.volume=71&rft.issue=8&rft.spage=2391&rft.epage=2401&rft_id=info:doi/10.1109%2FTBME.2024.3370415&rft_id=info%3Apmid%2F38412079&rft.externalDocID=10449452 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |