Leveraging Brain Modularity Prior for Interpretable Representation Learning of fMRI

Resting-state functional magnetic resonance imaging (rs-fMRI) can reflect spontaneous neural activities in the brain and is widely used for brain disorder analysis. Previous studies focus on extracting fMRI representations using machine/deep learning methods, but these features typically lack biolog...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 71; no. 8; pp. 2391 - 2401
Main Authors Wang, Qianqian, Wang, Wei, Fang, Yuqi, Yap, Pew-Thian, Zhu, Hongtu, Li, Hong-Jun, Qiao, Lishan, Liu, Mingxia
Format Journal Article
LanguageEnglish
Published United States IEEE 01.08.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Resting-state functional magnetic resonance imaging (rs-fMRI) can reflect spontaneous neural activities in the brain and is widely used for brain disorder analysis. Previous studies focus on extracting fMRI representations using machine/deep learning methods, but these features typically lack biological interpretability. The human brain exhibits a remarkable modular structure in spontaneous brain functional networks, with each module comprised of functionally interconnected brain regions-of-interest (ROIs). However, existing learning-based methods cannot adequately utilize such brain modularity prior. In this paper, we propose a brain modularity-constrained dynamic representation learning framework for interpretable fMRI analysis, consisting of dynamic graph construction, dynamic graph learning via a novel modularity-constrained graph neural network (MGNN), and prediction and biomarker detection. The designed MGNN is constrained by three core neurocognitive modules (i.e., salience network, central executive network, and default mode network), encouraging ROIs within the same module to share similar representations. To further enhance discriminative ability of learned features, we encourage the MGNN to preserve network topology of input graphs via a graph topology reconstruction constraint. Experimental results on 534 subjects with rs-fMRI scans from two datasets validate the effectiveness of the proposed method. The identified discriminative brain ROIs and functional connectivities can be regarded as potential fMRI biomarkers to aid in clinical diagnosis.
AbstractList Resting-state functional magnetic resonance imaging (rs-fMRI) can reflect spontaneous neural activities in the brain and is widely used for brain disorder analysis. Previous studies focus on extracting fMRI representations using machine/deep learning methods, but these features typically lack biological interpretability. The human brain exhibits a remarkable modular structure in spontaneous brain functional networks, with each module comprised of functionally interconnected brain regions-of-interest (ROIs). However, existing learning-based methods cannot adequately utilize such brain modularity prior. In this paper, we propose a brain modularity-constrained dynamic representation learning framework for interpretable fMRI analysis, consisting of dynamic graph construction, dynamic graph learning via a novel modularity-constrained graph neural network (MGNN), and prediction and biomarker detection. The designed MGNN is constrained by three core neurocognitive modules ( i.e. , salience network, central executive network, and default mode network), encouraging ROIs within the same module to share similar representations. To further enhance discriminative ability of learned features, we encourage the MGNN to preserve network topology of input graphs via a graph topology reconstruction constraint. Experimental results on 534 subjects with rs-fMRI scans from two datasets validate the effectiveness of the proposed method. The identified discriminative brain ROIs and functional connectivities can be regarded as potential fMRI biomarkers to aid in clinical diagnosis.
Resting-state functional magnetic resonance imaging (rs-fMRI) can reflect spontaneous neural activities in the brain and is widely used for brain disorder analysis. Previous studies focus on extracting fMRI representations using machine/deep learning methods, but these features typically lack biological interpretability. The human brain exhibits a remarkable modular structure in spontaneous brain functional networks, with each module comprised of functionally interconnected brain regions-of-interest (ROIs). However, existing learning-based methods cannot adequately utilize such brain modularity prior. In this paper, we propose a brain modularity-constrained dynamic representation learning framework for interpretable fMRI analysis, consisting of dynamic graph construction, dynamic graph learning via a novel modularity-constrained graph neural network (MGNN), and prediction and biomarker detection. The designed MGNN is constrained by three core neurocognitive modules (i.e., salience network, central executive network, and default mode network), encouraging ROIs within the same module to share similar representations. To further enhance discriminative ability of learned features, we encourage the MGNN to preserve network topology of input graphs via a graph topology reconstruction constraint. Experimental results on 534 subjects with rs-fMRI scans from two datasets validate the effectiveness of the proposed method. The identified discriminative brain ROIs and functional connectivities can be regarded as potential fMRI biomarkers to aid in clinical diagnosis.
Resting-state functional magnetic resonance imaging (rs-fMRI) can reflect spontaneous neural activities in the brain and is widely used for brain disorder analysis. Previous studies focus on extracting fMRI representations using machine/deep learning methods, but these features typically lack biological interpretability. The human brain exhibits a remarkable modular structure in spontaneous brain functional networks, with each module comprised of functionally interconnected brain regions-of-interest (ROIs). However, existing learning-based methods cannot adequately utilize such brain modularity prior. In this paper, we propose a brain modularity-constrained dynamic representation learning framework for interpretable fMRI analysis, consisting of dynamic graph construction, dynamic graph learning via a novel modularity-constrained graph neural network (MGNN), and prediction and biomarker detection. The designed MGNN is constrained by three core neurocognitive modules (i.e., salience network, central executive network, and default mode network), encouraging ROIs within the same module to share similar representations. To further enhance discriminative ability of learned features, we encourage the MGNN to preserve network topology of input graphs via a graph topology reconstruction constraint. Experimental results on 534 subjects with rs-fMRI scans from two datasets validate the effectiveness of the proposed method. The identified discriminative brain ROIs and functional connectivities can be regarded as potential fMRI biomarkers to aid in clinical diagnosis.Resting-state functional magnetic resonance imaging (rs-fMRI) can reflect spontaneous neural activities in the brain and is widely used for brain disorder analysis. Previous studies focus on extracting fMRI representations using machine/deep learning methods, but these features typically lack biological interpretability. The human brain exhibits a remarkable modular structure in spontaneous brain functional networks, with each module comprised of functionally interconnected brain regions-of-interest (ROIs). However, existing learning-based methods cannot adequately utilize such brain modularity prior. In this paper, we propose a brain modularity-constrained dynamic representation learning framework for interpretable fMRI analysis, consisting of dynamic graph construction, dynamic graph learning via a novel modularity-constrained graph neural network (MGNN), and prediction and biomarker detection. The designed MGNN is constrained by three core neurocognitive modules (i.e., salience network, central executive network, and default mode network), encouraging ROIs within the same module to share similar representations. To further enhance discriminative ability of learned features, we encourage the MGNN to preserve network topology of input graphs via a graph topology reconstruction constraint. Experimental results on 534 subjects with rs-fMRI scans from two datasets validate the effectiveness of the proposed method. The identified discriminative brain ROIs and functional connectivities can be regarded as potential fMRI biomarkers to aid in clinical diagnosis.
Author Wang, Qianqian
Liu, Mingxia
Li, Hong-Jun
Qiao, Lishan
Wang, Wei
Fang, Yuqi
Yap, Pew-Thian
Zhu, Hongtu
Author_xml – sequence: 1
  givenname: Qianqian
  orcidid: 0000-0002-0221-3320
  surname: Wang
  fullname: Wang, Qianqian
  organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, USA
– sequence: 2
  givenname: Wei
  orcidid: 0000-0001-6183-0559
  surname: Wang
  fullname: Wang, Wei
  organization: Department of Radiology, Beijing Youan Hospital, Capital Medical University, China
– sequence: 3
  givenname: Yuqi
  orcidid: 0000-0003-4417-9199
  surname: Fang
  fullname: Fang, Yuqi
  organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, USA
– sequence: 4
  givenname: Pew-Thian
  orcidid: 0000-0003-1489-2102
  surname: Yap
  fullname: Yap, Pew-Thian
  organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, USA
– sequence: 5
  givenname: Hongtu
  orcidid: 0000-0002-6781-2690
  surname: Zhu
  fullname: Zhu, Hongtu
  organization: Department of Biostatistics and BRIC, University of North Carolina at Chapel Hill, USA
– sequence: 6
  givenname: Hong-Jun
  orcidid: 0000-0002-6994-4160
  surname: Li
  fullname: Li, Hong-Jun
  email: lihongjun00113@ccmu.edu.cn
  organization: Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
– sequence: 7
  givenname: Lishan
  orcidid: 0000-0003-3012-9553
  surname: Qiao
  fullname: Qiao, Lishan
  organization: School of Computer Science and Technology, Shandong Jianzhu University, China
– sequence: 8
  givenname: Mingxia
  orcidid: 0000-0002-0166-0807
  surname: Liu
  fullname: Liu, Mingxia
  email: mingxia_liu@med.unc.edu
  organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38412079$$D View this record in MEDLINE/PubMed
BookMark eNp9UV1rFDEUDVKx2-oPEEQG-uLLrPme5ElsqXZhF6XW55BN7qwps8mamSn03zfDrqXtg5CQG3LOybn3nKCjmCIg9J7gOSFYf745X13OKaZ8zliDORGv0IwIoWoqGDlCM4yJqjXV_Bid9P1tuXLF5Rt0zBQnFDd6hn4t4Q6y3YS4qc6zDbFaJT92NofhvvqZQ8pVW_YiDpB3GQa77qC6hlL2EAc7hBSrJdgcJ4HUVu3qevEWvW5t18O7w3mKfn-7vLm4qpc_vi8uvi5rx7keas8Fdhqo99Jpb7HCVFKJgdLGW8-1IoxyTb0gnKyJ40ryxmGxdpaCkxKzU_Rlr7sb11vwrhjKtjO7HLY235tkg3n-EsMfs0l3hhAqGkVEUfh0UMjp7wj9YLahd9B1NkIae0M1K6thTVOgZy-gt2nMsfRnGFZUKsnIZOnjU0uPXv4NvADIHuBy6vsM7SOEYDOFaqZQzRSqOYRaOM0Ljgv70ZeuQvdf5oc9MwDAk5_K_Lmg7AGOL64y
CODEN IEBEAX
CitedBy_id crossref_primary_10_1109_TMI_2024_3448214
crossref_primary_10_1016_j_media_2024_103403
Cites_doi 10.1016/j.tics.2019.01.014
10.1016/j.neuroimage.2009.04.069
10.1016/j.neuroimage.2014.11.021
10.1016/j.neuroimage.2014.05.052
10.1016/j.neucom.2020.05.113
10.1016/j.media.2021.102233
10.1001/jamapsychiatry.2015.0484
10.1109/TNNLS.2022.3158654
10.1016/j.media.2021.102057
10.1016/j.media.2023.102841
10.1109/TMI.2022.3203899
10.3389/fnsys.2010.00013
10.1016/j.neuroimage.2017.02.066
10.1145/3503161.3548339
10.3389/fnins.2020.00630
10.1016/j.media.2022.102471
10.1016/j.media.2023.102932
10.1016/j.media.2021.102279
10.1146/annurev-psych-122414-033634
10.1016/j.mri.2019.06.001
10.1038/s41380-021-01247-2
10.1212/WNL.0000000000001476
10.1016/j.media.2022.102366
10.1038/nn.4478
10.1109/jbhi.2024.3351177
10.1016/j.tins.2021.08.005
10.1093/scan/nsp017
10.1109/TPAMI.2022.3203630
10.1016/j.neuroimage.2017.12.052
10.1016/j.compbiomed.2020.104096
10.1038/s41746-022-00699-2
10.1007/978-3-030-59728-3_52
10.1016/j.mri.2019.05.031
10.3389/fnins.2010.00200
10.1109/TMI.2022.3218745
10.1126/sciadv.abq7547
10.1109/CVPR.2018.00745
10.1038/mp.2013.78
10.1002/hbm.25529
10.1007/978-3-642-33418-4_27
10.1038/s41593-022-01118-1
10.1109/TPAMI.2022.3209686
10.24963/ijcai.2020/411
10.1016/j.media.2022.102707
10.1038/s42256-020-00257-z
10.1038/nbt1206-1565
10.1016/S0140-6736(14)60328-7
10.1016/j.neuroimage.2008.09.062
10.1097/AUD.0000000000001186
10.1016/j.compbiomed.2019.01.006
10.1109/TNNLS.2015.2424995
10.1109/TMI.2022.3219260
10.1145/2939672.2939785
10.1016/j.tics.2011.08.003
10.1007/s00234-017-1912-1
10.1007/s00330-017-4836-6
10.1007/s11749-016-0481-7
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
5PM
DOI 10.1109/TBME.2024.3370415
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 2401
ExternalDocumentID PMC11257815
38412079
10_1109_TBME_2024_3370415
10449452
Genre orig-research
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH
  grantid: AG073297; EB035160; RF1AG082938
– fundername: NIA NIH HHS
  grantid: RF1 AG082938
– fundername: NIA NIH HHS
  grantid: RF1 AG073297
– fundername: NIBIB NIH HHS
  grantid: R01 EB035160
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
5PM
ID FETCH-LOGICAL-c449t-d450c9e2dd6c9da08026260e227dad498132492d5141b1c48647c05bca2ec6603
IEDL.DBID RIE
ISSN 0018-9294
1558-2531
IngestDate Thu Aug 21 18:33:56 EDT 2025
Fri Jul 11 05:34:41 EDT 2025
Mon Jun 30 08:30:53 EDT 2025
Wed Feb 19 02:03:44 EST 2025
Thu Apr 24 22:55:49 EDT 2025
Tue Jul 01 03:28:40 EDT 2025
Wed Aug 27 02:02:08 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c449t-d450c9e2dd6c9da08026260e227dad498132492d5141b1c48647c05bca2ec6603
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1489-2102
0000-0002-6994-4160
0000-0002-6781-2690
0000-0002-0166-0807
0000-0003-4417-9199
0000-0002-0221-3320
0000-0001-6183-0559
0000-0003-3012-9553
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/11257815
PMID 38412079
PQID 3082686310
PQPubID 85474
PageCount 11
ParticipantIDs proquest_journals_3082686310
pubmed_primary_38412079
crossref_primary_10_1109_TBME_2024_3370415
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11257815
crossref_citationtrail_10_1109_TBME_2024_3370415
proquest_miscellaneous_2932937377
ieee_primary_10449452
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
Velikovi (ref50) 2017
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
Kipf (ref48)
ref17
ref16
ref19
ref18
ref51
Kim (ref38) 2021
ref46
ref45
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref24
ref23
ref26
ref25
ref20
ref22
ref21
Kipf (ref39) 2016
ref28
ref27
ref29
ref60
ref61
References_xml – ident: ref30
  doi: 10.1016/j.tics.2019.01.014
– ident: ref55
  doi: 10.1016/j.neuroimage.2009.04.069
– ident: ref22
  doi: 10.1016/j.neuroimage.2014.11.021
– ident: ref16
  doi: 10.1016/j.neuroimage.2014.05.052
– ident: ref24
  doi: 10.1016/j.neucom.2020.05.113
– ident: ref4
  doi: 10.1016/j.media.2021.102233
– ident: ref34
  doi: 10.1001/jamapsychiatry.2015.0484
– ident: ref40
  doi: 10.1109/TNNLS.2022.3158654
– ident: ref23
  doi: 10.1016/j.media.2021.102057
– ident: ref51
  doi: 10.1016/j.media.2023.102841
– ident: ref5
  doi: 10.1109/TMI.2022.3203899
– ident: ref33
  doi: 10.3389/fnsys.2010.00013
– ident: ref13
  doi: 10.1016/j.neuroimage.2017.02.066
– ident: ref27
  doi: 10.1145/3503161.3548339
– year: 2016
  ident: ref39
  article-title: Variational graph auto-encoders
– ident: ref49
  doi: 10.3389/fnins.2020.00630
– ident: ref8
  doi: 10.1016/j.media.2022.102471
– ident: ref37
  doi: 10.1016/j.media.2023.102932
– ident: ref7
  doi: 10.1016/j.media.2021.102279
– ident: ref14
  doi: 10.1146/annurev-psych-122414-033634
– ident: ref6
  doi: 10.1016/j.mri.2019.06.001
– ident: ref36
  doi: 10.1038/s41380-021-01247-2
– ident: ref29
  doi: 10.1212/WNL.0000000000001476
– ident: ref2
  doi: 10.1016/j.media.2022.102366
– ident: ref35
  doi: 10.1038/nn.4478
– ident: ref42
  doi: 10.1109/jbhi.2024.3351177
– ident: ref56
  doi: 10.1016/j.tins.2021.08.005
– ident: ref54
  doi: 10.1093/scan/nsp017
– ident: ref61
  doi: 10.1109/TPAMI.2022.3203630
– ident: ref25
  doi: 10.1016/j.neuroimage.2017.12.052
– ident: ref26
  doi: 10.1016/j.compbiomed.2020.104096
– ident: ref12
  doi: 10.1038/s41746-022-00699-2
– year: 2017
  ident: ref50
  article-title: Graph attention networks
– ident: ref18
  doi: 10.1007/978-3-030-59728-3_52
– ident: ref20
  doi: 10.1016/j.mri.2019.05.031
– volume-title: IEEE J. Biomed. Health Inform.
  ident: ref48
  article-title: Semi-supervised classification with graph convolutional networks
– ident: ref15
  doi: 10.3389/fnins.2010.00200
– ident: ref53
  doi: 10.1109/TMI.2022.3218745
– ident: ref3
  doi: 10.1126/sciadv.abq7547
– ident: ref43
  doi: 10.1109/CVPR.2018.00745
– ident: ref19
  doi: 10.1038/mp.2013.78
– ident: ref17
  doi: 10.1002/hbm.25529
– ident: ref21
  doi: 10.1007/978-3-642-33418-4_27
– ident: ref1
  doi: 10.1038/s41593-022-01118-1
– ident: ref9
  doi: 10.1109/TPAMI.2022.3209686
– start-page: 4314
  volume-title: Proc. Int. Conf. Adv. Neural Inf. Process. Syst.
  year: 2021
  ident: ref38
  article-title: Learning dynamic graph representation of brain connectome with spatio-temporal attention
– ident: ref41
  doi: 10.24963/ijcai.2020/411
– ident: ref10
  doi: 10.1016/j.media.2022.102707
– ident: ref11
  doi: 10.1038/s42256-020-00257-z
– ident: ref44
  doi: 10.1038/nbt1206-1565
– ident: ref32
  doi: 10.1016/S0140-6736(14)60328-7
– ident: ref28
  doi: 10.1016/j.neuroimage.2008.09.062
– ident: ref58
  doi: 10.1097/AUD.0000000000001186
– ident: ref60
  doi: 10.1016/j.compbiomed.2019.01.006
– ident: ref47
  doi: 10.1109/TNNLS.2015.2424995
– ident: ref52
  doi: 10.1109/TMI.2022.3219260
– ident: ref45
  doi: 10.1145/2939672.2939785
– ident: ref31
  doi: 10.1016/j.tics.2011.08.003
– ident: ref57
  doi: 10.1007/s00234-017-1912-1
– ident: ref59
  doi: 10.1007/s00330-017-4836-6
– ident: ref46
  doi: 10.1007/s11749-016-0481-7
SSID ssj0014846
Score 2.515102
Snippet Resting-state functional magnetic resonance imaging (rs-fMRI) can reflect spontaneous neural activities in the brain and is widely used for brain disorder...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2391
SubjectTerms Adult
Algorithms
Autism
Biomarker
Biomarkers
Biomedical engineering
Brain
Brain - diagnostic imaging
Brain - physiology
brain disorder
Brain mapping
Brain Mapping - methods
Brain modeling
brain modularity
Cognition
Constraints
Deep learning
Female
Functional magnetic resonance imaging
functional MRI
Graph neural networks
Graphical representations
Humans
Image Processing, Computer-Assisted - methods
Machine Learning
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Male
Modular structures
Modularity
Modules
Network topologies
Network topology
Neural networks
Neural Networks, Computer
Neuroimaging
Representation learning
Topology
Title Leveraging Brain Modularity Prior for Interpretable Representation Learning of fMRI
URI https://ieeexplore.ieee.org/document/10449452
https://www.ncbi.nlm.nih.gov/pubmed/38412079
https://www.proquest.com/docview/3082686310
https://www.proquest.com/docview/2932937377
https://pubmed.ncbi.nlm.nih.gov/PMC11257815
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BD1U5FCgFAgUZiRNSlsSZOPaRolYFkQqVVuotih8pFVVSbXcv_HrGjjdsK0BIOUSy49iZGfubzAvgLW2ABvNOpbozIkXeyVRbiak0lS2qLJcqRHjXx-LoDD-fl-cxWD3EwjjngvOZm_nbYMu3g1n6X2Uk4YgKS9px75PmNgZrTSYDlGNUDo2f0pmP0YSZZ-r96X59QKogx1lB76cjaws2C4k5z7wH19p5FAqs_Alr3nWZXDuDDh_C8Wr2o-vJj9lyoWfm553Ejv-9vEewHdEo-zCyz2O45_odeLCWo3AHNutofX8C3744YvxQ1ojt-9ISrB6sd2MlJM--zi-HOSMIzH77Meorx06Cq22McOpZzOd6wYaOdfXJp104Ozw4_XiUxqIMqaHZLVKLZWaU49YKo2zrQ3W9TuQ4r2xrUUlSb1FxS0As17lBKbAyWalNy50RIiuewkY_9O45MG1zx1ssW40V2o6rTGmCowJtK0VV8ASyFWkaEzOW-8IZV03QXDLVeMI2nrBNJGwC76ZHrsd0Hf_qvOuJsNZx_P4J7K0YoIkSfdP4tD5CCkLDCbyZmkkWvYGl7d2wvGkIOtFVFVWVwLORX6bBV_yWgLzFSVMHn-f7dkt_-T3k-yZITPtqXr74y3xfwpZf1uiWuAcbi_nSvSKotNCvg4j8AqyMDC0
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3LbtQwFL0qRSplwaMUCBQwEmyQMiSO49gLFhRazdBJhUordZfGj0BFlaB5CMG_8Ct8G9eJJ0wrYFcJKYtIcazYPrbPjc-9F-AZLoCaxZUMVaV5yGglQmUEC4XOTJJFsZCth3e-z4dH7N1xerwCP3pfGGttKz6zA3fbnuWbRs_drzKc4YxJllKvodyz376ihTZ9NXqLw_mc0t2dwzfD0CcRCDUWnoWGpZGWlhrDtTSlcy11HN5SmpnSMCnQHGOSGiQOsYo1E5xlOkqVLqnVnEcJ1nsFriLRSGnnHtYfUjDR-QFhi0JkGcwfmsaRfHm4ne-g8UnZIMEW4ya5DmuJYDGNnGZsaQdsU7r8id1eFGku7Xq7N-Hnor86scvnwXymBvr7hVCS_22H3oIbnm-T190EuQ0rtt6A60tRGDdgLff6gjvwYWxxareJm8i2S55B8sY4oS7aKuT95LSZECT55LdSU51ZctCKib0PV018xNqPpKlIlR-MNuHoUhp4F1brprb3gSgTW1qytFQsY6aiMpIKCTdnphQ8S2gA0QIKhfYx2V1qkLOitc0iWTggFQ5IhQdSAC_6V750AUn-VXjTDfpSwW68A9haAK7wa9a0cIGLuODI9wN42j_G1cYdIZW1bebTAskhXlmSZQHc6_DZV77AdwDiHHL7Ai6S-fkn9emnNqI5kn7cOeL0wV--9wlcGx7m42I82t97COuuiZ0IcwtWZ5O5fYTEcKYet9OTwMllw_cXKH5neA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Leveraging+Brain+Modularity+Prior+for+Interpretable+Representation+Learning+of+fMRI&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Wang%2C+Qianqian&rft.au=Wang%2C+Wei&rft.au=Fang%2C+Yuqi&rft.au=Yap%2C+Pew-Thian&rft.date=2024-08-01&rft.pub=IEEE&rft.issn=0018-9294&rft.volume=71&rft.issue=8&rft.spage=2391&rft.epage=2401&rft_id=info:doi/10.1109%2FTBME.2024.3370415&rft_id=info%3Apmid%2F38412079&rft.externalDocID=10449452
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon