Fluoroalkyl-substituted fullerene/perovskite heterojunction for efficient and ambient stable perovskite solar cells

In this paper, we investigate the feasibility of using a fluoroalkyl-substituted fullerene/perovskite heterojunction (f-FPHJ) to realize efficient and ambient stable perovskite solar cells (PVSCs). The hybrid fluoroalkyl-substituted fullerene, DF-C60, is proven to effectively passivate the defects a...

Full description

Saved in:
Bibliographic Details
Published inNano energy Vol. 30; no. C; pp. 417 - 425
Main Authors Liu, Xiao, Lin, Francis, Chueh, Chu-Chen, Chen, Qi, Zhao, Ting, Liang, Po-Wei, Zhu, Zonglong, Sun, Ye, Jen, Alex K.-Y.
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.12.2016
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we investigate the feasibility of using a fluoroalkyl-substituted fullerene/perovskite heterojunction (f-FPHJ) to realize efficient and ambient stable perovskite solar cells (PVSCs). The hybrid fluoroalkyl-substituted fullerene, DF-C60, is proven to effectively passivate the defects and grain boundaries in the perovskite film to facilitate charge transport/collection in the derived PVSC. Consequently, the f-FPHJ device yielded an enhanced PCE of 18.11%, outperforming that of the pristine CH3NH3PbI3 device (15.67%). More interestingly, the f-FPHJ PVSC showed a decent PCE of 15.14% (under reverse scan) with small hysteresis even without employing a discrete PCBM electron-transporting layer (ETL), in contrast to the pristine PVSC showing a lower PCE of 14.78% (under reverse scan) accompanied with severe hysteresis. This might arise from the preferential distribution of DF-C60 nearby the surface region of the f-FPHJ film due to its low surface energy, which serves the similar function of the PCBM ETL in device to reduce hysteresis. More importantly, benefitting from the hydrophobic nature of DF-C60, the f-FPHJ PVSC shows respectable ambient stability without encapsulation, which can maintain 83% of its initial PCE after being stored in ambient (with a relative humidity of 60±5%) for 1 month. Fluoroalkyl-substituted fullerene/perovskite heterojunction (f-FPHJ) was developed in this study. The fluoroalkyl-substituted fullerene, DF-C60, not only can effectively passivate the defects/grain boundaries of perovskite but also increase its hydrophobicity. Consequently, a high power conversion efficiency (PCE) of 18.11% can be realized with respectable ambient stability. Interestingly, the f-FPHJ device can still deliver a decent PCE of 15.14% with small hysteresis even without employing a discrete PCBM electron-transporting layer (ETL), which might results from the preferential distribution of DF-C60 nearby the surface region of the f-FPHJ film to partially mimic the PCBM ETL to reduce the hysteresis. [Display omitted] •We describe a fluoroalkyl-substituted fullerence/perovskite heterojunction (f-FPHJ) perovskite solar cell (PVSC) and realize an enhanced power conversion efficiency (PCE) from 15.67% (pristine of MAPbI3 PVSC) to 18.11%.•The f-FPHJ PVSC can also deliver a decent PCE of 15.14% with small hysteresis even without employing a discrete PCBM electron-transporting layer (ETL), in contrast to the pristine PVSC showing a lower PCE of 14.78% accompanied with severe hysteresis.•Benefitting from the hydrophobicity nature of DF-C60, the f-FPHJ PVSC shows a much enhanced ambient stability than the pristine CH3NH3PbI3 PVSC, which can maintain 83% of initial PCE after being stored in the ambient condition with a relative humidity of 60±5% for 1 month without encapsulation.
AbstractList In this study, we investigate the feasibility of using a fluoroalkyl-substituted fullerene/perovskite heterojunction (f-FPHJ) to realize efficient and ambient stable perovskite solar cells (PVSCs). The hybrid fluoroalkyl-substituted fullerene, DF-C60, is proven to effectively passivate the defects and grain boundaries in the perovskite film to facilitate charge transport/collection in the derived PVSC. Consequently, the f-FPHJ device yielded an enhanced PCE of 18.11%, outperforming that of the pristine CH3NH3PbI3 device (15.67%). More interestingly, the f-FPHJ PVSC showed a decent PCE of 15.14% (under reverse scan) with small hysteresis even without employing a discrete PCBM electron-transporting layer (ETL), in contrast to the pristine PVSC showing a lower PCE of 14.78% (under reverse scan) accompanied with severe hysteresis. This might arise from the preferential distribution of DF-C60 nearby the surface region of the f-FPHJ film due to its low surface energy, which serves the similar function of the PCBM ETL in device to reduce hysteresis. More importantly, benefitting from the hydrophobic nature of DF-C60, the f-FPHJ PVSC shows respectable ambient stability without encapsulation, which can maintain 83% of its initial PCE after being stored in ambient (with a relative humidity of 60 ± 5%) for 1 month.
In this paper, we investigate the feasibility of using a fluoroalkyl-substituted fullerene/perovskite heterojunction (f-FPHJ) to realize efficient and ambient stable perovskite solar cells (PVSCs). The hybrid fluoroalkyl-substituted fullerene, DF-C60, is proven to effectively passivate the defects and grain boundaries in the perovskite film to facilitate charge transport/collection in the derived PVSC. Consequently, the f-FPHJ device yielded an enhanced PCE of 18.11%, outperforming that of the pristine CH3NH3PbI3 device (15.67%). More interestingly, the f-FPHJ PVSC showed a decent PCE of 15.14% (under reverse scan) with small hysteresis even without employing a discrete PCBM electron-transporting layer (ETL), in contrast to the pristine PVSC showing a lower PCE of 14.78% (under reverse scan) accompanied with severe hysteresis. This might arise from the preferential distribution of DF-C60 nearby the surface region of the f-FPHJ film due to its low surface energy, which serves the similar function of the PCBM ETL in device to reduce hysteresis. More importantly, benefitting from the hydrophobic nature of DF-C60, the f-FPHJ PVSC shows respectable ambient stability without encapsulation, which can maintain 83% of its initial PCE after being stored in ambient (with a relative humidity of 60±5%) for 1 month. Fluoroalkyl-substituted fullerene/perovskite heterojunction (f-FPHJ) was developed in this study. The fluoroalkyl-substituted fullerene, DF-C60, not only can effectively passivate the defects/grain boundaries of perovskite but also increase its hydrophobicity. Consequently, a high power conversion efficiency (PCE) of 18.11% can be realized with respectable ambient stability. Interestingly, the f-FPHJ device can still deliver a decent PCE of 15.14% with small hysteresis even without employing a discrete PCBM electron-transporting layer (ETL), which might results from the preferential distribution of DF-C60 nearby the surface region of the f-FPHJ film to partially mimic the PCBM ETL to reduce the hysteresis. [Display omitted] •We describe a fluoroalkyl-substituted fullerence/perovskite heterojunction (f-FPHJ) perovskite solar cell (PVSC) and realize an enhanced power conversion efficiency (PCE) from 15.67% (pristine of MAPbI3 PVSC) to 18.11%.•The f-FPHJ PVSC can also deliver a decent PCE of 15.14% with small hysteresis even without employing a discrete PCBM electron-transporting layer (ETL), in contrast to the pristine PVSC showing a lower PCE of 14.78% accompanied with severe hysteresis.•Benefitting from the hydrophobicity nature of DF-C60, the f-FPHJ PVSC shows a much enhanced ambient stability than the pristine CH3NH3PbI3 PVSC, which can maintain 83% of initial PCE after being stored in the ambient condition with a relative humidity of 60±5% for 1 month without encapsulation.
Author Sun, Ye
Jen, Alex K.-Y.
Lin, Francis
Chen, Qi
Zhao, Ting
Zhu, Zonglong
Liu, Xiao
Liang, Po-Wei
Chueh, Chu-Chen
Author_xml – sequence: 1
  givenname: Xiao
  surname: Liu
  fullname: Liu, Xiao
  organization: Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195-2120, USA
– sequence: 2
  givenname: Francis
  surname: Lin
  fullname: Lin, Francis
  organization: Department of Chemistry, University of Washington, Seattle, WA 98195-2120, USA
– sequence: 3
  givenname: Chu-Chen
  surname: Chueh
  fullname: Chueh, Chu-Chen
  email: ccchueh@uw.edu
  organization: Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195-2120, USA
– sequence: 4
  givenname: Qi
  surname: Chen
  fullname: Chen, Qi
  organization: Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195-2120, USA
– sequence: 5
  givenname: Ting
  surname: Zhao
  fullname: Zhao, Ting
  organization: Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195-2120, USA
– sequence: 6
  givenname: Po-Wei
  surname: Liang
  fullname: Liang, Po-Wei
  organization: Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195-2120, USA
– sequence: 7
  givenname: Zonglong
  surname: Zhu
  fullname: Zhu, Zonglong
  organization: Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195-2120, USA
– sequence: 8
  givenname: Ye
  surname: Sun
  fullname: Sun, Ye
  organization: Condensed Matter Science and Technology Institute, School of Science, Harbin Institute of Technology, Harbin 150080, China
– sequence: 9
  givenname: Alex K.-Y.
  surname: Jen
  fullname: Jen, Alex K.-Y.
  email: ajen@uw.edu
  organization: Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195-2120, USA
BackLink https://www.osti.gov/servlets/purl/1343588$$D View this record in Osti.gov
BookMark eNqFUMtOwzAQ9KFIlNI_4BBxT-vNqwkHJFTxkipxgXPk2GvVrWtXtlOpf49DOCAOsJd9aGY1M1dkYqxBQm6ALoBCtdwtDDMWzSKLWzwtaF5NyDTLANKsLstLMvd-R2NVJawgmxL_pHvrLNP7s0593_mgQh9QJLLXGh0aXB7R2ZPfq4DJFkNcdr3hQVmTSOsSlFJxhSYkzIiEHbqv2QfWaUx-UL3VzCUctfbX5EIy7XH-3Wfk4-nxff2Sbt6eX9cPm5QXRRNSLiTUDXJRAcU8pwIBKsw7ShEaFFAKKToqmqYoIS-LApqOFbWkGZarVcVZPiO3418bXbWeRxl8y60xyEMLeZGXdR1BdyOIO-u9Q9lGHBvsBceUboG2Q7Ttrh2jbYdoh2uMNpKLX-SjUwfmzv_R7kcaRvcnhW4Qh4ajUG7QJqz6-8En1TqdFQ
CitedBy_id crossref_primary_10_1039_C7TA07939G
crossref_primary_10_1016_j_apmate_2025_100275
crossref_primary_10_1021_acsenergylett_2c01854
crossref_primary_10_1039_C9TA02488C
crossref_primary_10_1039_C7TC04302C
crossref_primary_10_1088_1742_6596_2529_1_012015
crossref_primary_10_1002_aenm_201902579
crossref_primary_10_1016_j_jechem_2021_06_011
crossref_primary_10_1002_aenm_202200877
crossref_primary_10_1016_j_orgel_2019_105492
crossref_primary_10_1039_C7RA11286F
crossref_primary_10_1016_j_jechem_2021_01_037
crossref_primary_10_1038_s41467_019_13909_5
crossref_primary_10_1039_C7TA00362E
crossref_primary_10_1002_adfm_201804419
crossref_primary_10_1002_sstr_202200012
crossref_primary_10_1002_solr_201900369
crossref_primary_10_1039_C7CP05290A
crossref_primary_10_1039_D2TC03985K
crossref_primary_10_1016_j_carbon_2023_118067
crossref_primary_10_1016_j_joule_2023_05_017
crossref_primary_10_1088_1674_1056_ac3067
crossref_primary_10_1002_smll_201907531
crossref_primary_10_1016_j_jechem_2018_11_011
crossref_primary_10_1002_admi_201801253
crossref_primary_10_1002_aenm_201900248
crossref_primary_10_1016_j_dyepig_2021_110029
crossref_primary_10_1021_acsami_9b20988
crossref_primary_10_1007_s40843_022_2365_3
crossref_primary_10_1007_s12274_022_4322_6
crossref_primary_10_1016_j_scib_2020_08_041
crossref_primary_10_1021_acs_jpcc_2c06499
crossref_primary_10_1039_C8TA11524A
crossref_primary_10_1002_adma_201800455
crossref_primary_10_1016_j_nanoen_2021_106141
crossref_primary_10_1002_adma_201901519
crossref_primary_10_1039_C7TA04995A
crossref_primary_10_1088_2058_8585_ab56b4
crossref_primary_10_1088_1674_4926_42_12_120201
crossref_primary_10_1002_admi_202201438
crossref_primary_10_1002_aenm_201901341
crossref_primary_10_1016_j_solener_2025_113261
crossref_primary_10_1002_adfm_201808801
crossref_primary_10_1039_D1TC04038C
crossref_primary_10_1021_acsaelm_9b00528
crossref_primary_10_1002_aelm_201700435
crossref_primary_10_1039_D1CS00841B
crossref_primary_10_1039_C9SE00438F
crossref_primary_10_1016_j_cej_2022_136936
crossref_primary_10_1016_j_jechem_2022_07_003
crossref_primary_10_1016_j_nantod_2021_101164
crossref_primary_10_1021_acs_jpcc_8b10070
crossref_primary_10_1016_j_nanoen_2017_03_048
crossref_primary_10_1088_1361_6528_aac293
crossref_primary_10_1002_adfm_202103121
crossref_primary_10_1021_acs_chemmater_0c04906
crossref_primary_10_1002_ente_202300228
crossref_primary_10_1021_acsenergylett_7b00847
crossref_primary_10_3390_molecules29092104
crossref_primary_10_1039_C6TA10305G
crossref_primary_10_1002_adfm_201909755
crossref_primary_10_1016_j_rser_2021_111689
crossref_primary_10_1002_admi_202200042
crossref_primary_10_1016_j_mtener_2018_01_004
crossref_primary_10_1002_adma_201802490
crossref_primary_10_1039_C8TA12206G
crossref_primary_10_1016_j_carbon_2020_05_079
crossref_primary_10_1039_D0QM00295J
crossref_primary_10_1002_adfm_201703546
crossref_primary_10_1021_acs_jpclett_2c01301
crossref_primary_10_1021_acs_jpclett_8b00968
crossref_primary_10_1007_s10854_021_06327_1
crossref_primary_10_1021_acsaem_2c03127
Cites_doi 10.1126/science.aad5845
10.1002/adma.201505255
10.1016/j.nantod.2015.04.009
10.1021/acsenergylett.6b00060
10.1021/acs.jpclett.6b00215
10.1002/smll.201403651
10.1021/acs.jpcc.6b00335
10.1021/ja508758k
10.1002/aenm.201501534
10.1126/science.aaa5333
10.1126/sciadv.1501170
10.1021/acsenergylett.6b00327
10.1002/smll.201402767
10.1021/cm502468k
10.1038/ncomms8081
10.1038/ncomms6784
10.1002/adma.201404189
10.1039/C6RA03485C
10.1039/C6EE00413J
10.1038/ncomms7700
10.1039/C5EE03703D
10.1002/adfm.201503559
10.1126/science.aad1015
10.1002/adma.201103006
10.1002/admi.201600122
10.1039/C5EE03522H
10.1038/ncomms8745
10.1038/nphoton.2016.3
10.1002/aenm.201501453
10.1016/j.nanoen.2016.04.057
10.1021/acs.jpclett.5b02651
10.1002/adma.201300580
10.1039/C5EE00222B
10.1002/aenm.201500328
10.1002/aenm.201402321
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright_xml – notice: 2016 Elsevier Ltd
CorporateAuthor Univ. of Washington, Seattle, WA (United States)
CorporateAuthor_xml – name: Univ. of Washington, Seattle, WA (United States)
DBID AAYXX
CITATION
OIOZB
OTOTI
DOI 10.1016/j.nanoen.2016.10.036
DatabaseName CrossRef
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 425
ExternalDocumentID 1343588
10_1016_j_nanoen_2016_10_036
S2211285516304554
GroupedDBID --K
--M
.~1
0R~
1~.
1~5
4.4
457
4G.
5VS
7-5
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FNPLU
FYGXN
GBLVA
HZ~
JARJE
KOM
M41
MAGPM
MO0
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SPC
SPCBC
SSM
SSR
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ABPIF
OIOZB
OTOTI
ID FETCH-LOGICAL-c449t-cdf189ecd610e330de116e3b00e19ed15dfdb0d99451354419ba48f02e5776ca3
IEDL.DBID .~1
ISSN 2211-2855
IngestDate Wed Nov 29 06:10:24 EST 2023
Thu Apr 24 23:02:19 EDT 2025
Tue Jul 01 01:55:53 EDT 2025
Fri Feb 23 02:30:20 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords Perovskite
Stability
Fluoroalkyl-substituted fullerene
Grain boundary
Heterojunction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c449t-cdf189ecd610e330de116e3b00e19ed15dfdb0d99451354419ba48f02e5776ca3
Notes China Scholarship Council
EE0006710; N00014-14-1-0246; FA2386-15-1-4106
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
US Department of the Navy, Office of Naval Research (ONR)
Boeing-Johnson Foundation
National Science Foundation (NSF)
DOE-UW-Jen-22
US Air Force Office of Scientific Research (AFOSR)
OpenAccessLink https://www.osti.gov/servlets/purl/1343588
PageCount 9
ParticipantIDs osti_scitechconnect_1343588
crossref_citationtrail_10_1016_j_nanoen_2016_10_036
crossref_primary_10_1016_j_nanoen_2016_10_036
elsevier_sciencedirect_doi_10_1016_j_nanoen_2016_10_036
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-12-01
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Nano energy
PublicationYear 2016
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Chiang, Wu (bib22) 2016; 10
Shao, Xiao, Bi, Yuan, Huang (bib25) 2014; 5
Chen, Yang, Priya, Zhu (bib12) 2016; 7
Zhao, Williams, Chueh, deQuilettes, Liang, Ginger, Jen (bib24) 2016; 6
Chen, Marco, Yang, Song, Chen, Zhao, Hong, Zhou, Yang (bib7) 2015; 10
Wang, Liu, Du, Zheng, Gong (bib21) 2015; 8
Tsai, Nie, Blancon, Stoumpos, Asadpour, Harutyunyan, Neukirch, Verduzco, Crochet, Tretiak, Pedesseau, Even, Alam, Gupta, Lou, Ajayan, Bedzyk, Kanatzidis, Mohite (bib16) 2016
Bastiani, Dell’Erba, Gandini, D’Innocenzo, Neutzner, Kandada, Grancini, Binda, Prato, Ball, Caironi, Petrozza (bib27) 2016; 6
Ke, Fang, Wan, Tao, Liu, Xiong, Qin, Wang, Lei, Yang, Qin, Zhao, Yan (bib37) 2015; 6
Williams, Rajagopal, Chueh, Jen (bib5) 2016; 7
Bi, Tress, Dar, Gao, Luo, Renevier, Schenk, Abate, Giordano, Baena, Decoppet, Zakeeruddin, Nazeeruddin, Grätzel, Hagfeldt (bib1) 2016; 2
(access on June, 2016).
Gong, Li, Shi, Ma, Wang, Liao (bib15) 2015; 25
Li, Zhang, Reenen, Sutton, Fan, Haghighirad, Johnston, Wang, Snaith (bib14) 2016; 9
Zhu, Chueh, Lin, Jen (bib32) 2016
McMeekin, Sadoughi, Rehman, Eperon, Saliba, Hörantner, Haghirad, Sakai, Korte, Rech, Johnston, Herz, Snaith (bib3) 2016; 351
Li, Bi, Yi, Décoppet, Luo, Zajeeruddin, Hagfeldt, Grätzel (bib11) 2016
Xing, Sun, Yip, Bazan, Huang, Cao (bib29) 2016; 26
Shao, Fang, Li, Wang, Dong, Deng, Yuan, Wei, Wang, Gruverman, Shield, Huang (bib19) 2016; 9
Zhao, Chueh, Chen, Rajagopal, Jen (bib35) 2016; 1
Bi, Gao, Scopelliti, Oveisi, Luo, Grätzel, Hagfeldt, Nazeeruddin (bib31) 2016; 28
Yang, Chueh, Zuo, Kim, Liang, Jen (bib4) 2015; 5
deQuilettes, Vorpahl, Stranks, Nagaoka, Eperon, Ziffer, Snaith, Ginger (bib17) 2015; 348
Sun, Wu, Yip, Zhang, Jiang, Xue, Hu, Hu, Shen, Wang, Huang, Cao (bib30) 2015; 6
Jung, Park (bib8) 2015; 11
Williams, Chueh, Jen (bib6) 2015; 11
Liu, Tsai, Zhu, Sun, Chueh, Jen (bib38) 2016; 3
Kim, Liang, Williams, Cho, Chueh, Glaz, Ginger, Jen (bib39) 2015; 27
Li, Chueh, Ding, Yip, Liang, Li, Jen (bib28) 2013; 25
Qiu, Merckx, Jaysankar, Masse de la Huerta, Rakocevic, Zhang, Paetzold, Gehlhaar, Froyen, Poortmans, Cheyns, Snaith, Heremans (bib2) 2016; 9
Li, Bretshneider, Bergmann, Hermes, Mars, Klasen, Lu, Tremel, Mezger, Butt, Weber, Berger (bib18) 2016; 120
He, Zhong, Huang, Wong, Wu, Chen, Su, Cao (bib33) 2011; 23
Dualeh, Gao, Seok, Nazeeruddin, Grätzel (bib13) 2014; 26
NREL Efficiency Chart
Xu, Buin, lp, Li, Voznyy, Comin, Yuan, Jeon, Ning, McDowell, Kanjanaboos, Sun, Lan, Quan, Kim, Hill, Maksymovych, Sargent (bib20) 2016; 6
Liu, Yang, Kelly (bib36) 2014; 136
Liang, Chueh, Williams, Jen (bib26) 2015; 5
Zhao, Zhou, Ma, Meng, Li, Wei, Fu, Liu, Yu, Zhao (bib23) 2016; 1
Chen, Wu, Yue, Liu, Zhang, Yang, Chen, Bi, Ashraful, Grätzel, Han (bib9) 2015; 350
Chen, Mao, Li, Kong, Wu, Ma, Bai, Jin, Wu, Lu, Wang, Chen (bib34) 2015; 6
Li (10.1016/j.nanoen.2016.10.036_bib28) 2013; 25
Jung (10.1016/j.nanoen.2016.10.036_bib8) 2015; 11
Chen (10.1016/j.nanoen.2016.10.036_bib12) 2016; 7
Li (10.1016/j.nanoen.2016.10.036_bib14) 2016; 9
Zhao (10.1016/j.nanoen.2016.10.036_bib35) 2016; 1
Liang (10.1016/j.nanoen.2016.10.036_bib26) 2015; 5
Williams (10.1016/j.nanoen.2016.10.036_bib6) 2015; 11
He (10.1016/j.nanoen.2016.10.036_bib33) 2011; 23
Qiu (10.1016/j.nanoen.2016.10.036_bib2) 2016; 9
Chen (10.1016/j.nanoen.2016.10.036_bib9) 2015; 350
Zhao (10.1016/j.nanoen.2016.10.036_bib23) 2016; 1
Zhao (10.1016/j.nanoen.2016.10.036_bib24) 2016; 6
Sun (10.1016/j.nanoen.2016.10.036_bib30) 2015; 6
Bi (10.1016/j.nanoen.2016.10.036_bib1) 2016; 2
Zhu (10.1016/j.nanoen.2016.10.036_bib32) 2016
Bi (10.1016/j.nanoen.2016.10.036_bib31) 2016; 28
Williams (10.1016/j.nanoen.2016.10.036_bib5) 2016; 7
Bastiani (10.1016/j.nanoen.2016.10.036_bib27) 2016; 6
McMeekin (10.1016/j.nanoen.2016.10.036_bib3) 2016; 351
Chen (10.1016/j.nanoen.2016.10.036_bib7) 2015; 10
Kim (10.1016/j.nanoen.2016.10.036_bib39) 2015; 27
Shao (10.1016/j.nanoen.2016.10.036_bib19) 2016; 9
10.1016/j.nanoen.2016.10.036_bib10
Chiang (10.1016/j.nanoen.2016.10.036_bib22) 2016; 10
Gong (10.1016/j.nanoen.2016.10.036_bib15) 2015; 25
Dualeh (10.1016/j.nanoen.2016.10.036_bib13) 2014; 26
Li (10.1016/j.nanoen.2016.10.036_bib18) 2016; 120
Xu (10.1016/j.nanoen.2016.10.036_bib20) 2016; 6
Wang (10.1016/j.nanoen.2016.10.036_bib21) 2015; 8
Liu (10.1016/j.nanoen.2016.10.036_bib38) 2016; 3
Ke (10.1016/j.nanoen.2016.10.036_bib37) 2015; 6
Liu (10.1016/j.nanoen.2016.10.036_bib36) 2014; 136
Li (10.1016/j.nanoen.2016.10.036_bib11) 2016
Chen (10.1016/j.nanoen.2016.10.036_bib34) 2015; 6
Yang (10.1016/j.nanoen.2016.10.036_bib4) 2015; 5
deQuilettes (10.1016/j.nanoen.2016.10.036_bib17) 2015; 348
Shao (10.1016/j.nanoen.2016.10.036_bib25) 2014; 5
Xing (10.1016/j.nanoen.2016.10.036_bib29) 2016; 26
Tsai (10.1016/j.nanoen.2016.10.036_bib16) 2016
References_xml – volume: 2
  start-page: e1501170
  year: 2016
  ident: bib1
  publication-title: Sci. Adv.
– volume: 120
  start-page: 6363
  year: 2016
  end-page: 6368
  ident: bib18
  publication-title: J. Phys. Chem. C
– volume: 6
  start-page: 1501453
  year: 2016
  ident: bib27
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 490
  year: 2016
  end-page: 498
  ident: bib14
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 6700
  year: 2015
  ident: bib37
  publication-title: Nat. Commun.
– volume: 7
  start-page: 811
  year: 2016
  end-page: 819
  ident: bib5
  publication-title: J. Phys. Chem. Lett.
– volume: 25
  start-page: 6671
  year: 2015
  end-page: 6678
  ident: bib15
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: 1245
  year: 2015
  end-page: 1255
  ident: bib21
  publication-title: Energy Environ. Sci.
– volume: 26
  start-page: 7
  year: 2016
  end-page: 15
  ident: bib29
  publication-title: Nano Energy
– volume: 136
  start-page: 17116
  year: 2014
  end-page: 17122
  ident: bib36
  publication-title: J. Am. Chem. Soc.
– volume: 25
  start-page: 4425
  year: 2013
  end-page: 4430
  ident: bib28
  publication-title: Adv. Mater.
– volume: 27
  start-page: 695
  year: 2015
  end-page: 701
  ident: bib39
  publication-title: Adv. Mater.
– volume: 6
  start-page: 7081
  year: 2016
  ident: bib20
  publication-title: Nat. Commun.
– volume: 10
  start-page: 196
  year: 2016
  end-page: 200
  ident: bib22
  publication-title: Nat. Photonics
– year: 2016
  ident: bib11
  publication-title: Science
– volume: 3
  start-page: 1600122
  year: 2016
  ident: bib38
  publication-title: Adv. Mater. Interfaces
– volume: 6
  start-page: 1501534
  year: 2015
  ident: bib30
  publication-title: Adv. Energy Mater.
– volume: 23
  start-page: 4636
  year: 2011
  end-page: 4643
  ident: bib33
  publication-title: Adv. Mater.
– reference: 〉 (access on June, 2016).
– volume: 1
  start-page: 266
  year: 2016
  end-page: 272
  ident: bib23
  publication-title: ACS Energy Lett.
– volume: 6
  start-page: 7745
  year: 2015
  ident: bib34
  publication-title: Nat. Commun.
– volume: 348
  start-page: 683
  year: 2015
  end-page: 686
  ident: bib17
  publication-title: Science
– volume: 11
  start-page: 10
  year: 2015
  end-page: 25
  ident: bib8
  publication-title: Small
– volume: 350
  start-page: 944
  year: 2015
  end-page: 948
  ident: bib9
  publication-title: Science
– reference: NREL Efficiency Chart, 〈
– year: 2016
  ident: bib16
  publication-title: Nature
– volume: 28
  start-page: 2910
  year: 2016
  end-page: 2915
  ident: bib31
  publication-title: Adv. Mater.
– volume: 351
  start-page: 151
  year: 2016
  end-page: 155
  ident: bib3
  publication-title: Science
– volume: 26
  start-page: 6160
  year: 2014
  end-page: 6164
  ident: bib13
  publication-title: Chem. Mater.
– volume: 5
  start-page: 1402321
  year: 2015
  ident: bib26
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 5784
  year: 2014
  ident: bib25
  publication-title: Nat. Commun.
– year: 2016
  ident: bib32
  publication-title: Adv. Sci.
– volume: 5
  start-page: 1500328
  year: 2015
  ident: bib4
  publication-title: Adv. Energy Mater.
– volume: 1
  start-page: 757
  year: 2016
  end-page: 763
  ident: bib35
  publication-title: ACS Energy Lett.
– volume: 10
  start-page: 355
  year: 2015
  end-page: 396
  ident: bib7
  publication-title: Nano Today
– volume: 6
  start-page: 27475
  year: 2016
  end-page: 27484
  ident: bib24
  publication-title: RSC Adv.
– volume: 7
  start-page: 905
  year: 2016
  end-page: 917
  ident: bib12
  publication-title: J. Phys. Chem. Lett.
– volume: 9
  start-page: 484
  year: 2016
  end-page: 489
  ident: bib2
  publication-title: Energy Environ. Sci.
– volume: 11
  start-page: 3088
  year: 2015
  end-page: 3096
  ident: bib6
  publication-title: Small
– volume: 9
  start-page: 1752
  year: 2016
  end-page: 1759
  ident: bib19
  publication-title: Energy Environ. Sci.
– volume: 351
  start-page: 151
  year: 2016
  ident: 10.1016/j.nanoen.2016.10.036_bib3
  publication-title: Science
  doi: 10.1126/science.aad5845
– volume: 28
  start-page: 2910
  year: 2016
  ident: 10.1016/j.nanoen.2016.10.036_bib31
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201505255
– volume: 10
  start-page: 355
  year: 2015
  ident: 10.1016/j.nanoen.2016.10.036_bib7
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2015.04.009
– volume: 1
  start-page: 266
  year: 2016
  ident: 10.1016/j.nanoen.2016.10.036_bib23
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.6b00060
– volume: 7
  start-page: 905
  year: 2016
  ident: 10.1016/j.nanoen.2016.10.036_bib12
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b00215
– volume: 11
  start-page: 3088
  year: 2015
  ident: 10.1016/j.nanoen.2016.10.036_bib6
  publication-title: Small
  doi: 10.1002/smll.201403651
– volume: 120
  start-page: 6363
  year: 2016
  ident: 10.1016/j.nanoen.2016.10.036_bib18
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b00335
– volume: 136
  start-page: 17116
  year: 2014
  ident: 10.1016/j.nanoen.2016.10.036_bib36
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja508758k
– volume: 6
  start-page: 1501534
  year: 2015
  ident: 10.1016/j.nanoen.2016.10.036_bib30
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201501534
– volume: 348
  start-page: 683
  year: 2015
  ident: 10.1016/j.nanoen.2016.10.036_bib17
  publication-title: Science
  doi: 10.1126/science.aaa5333
– volume: 2
  start-page: e1501170
  year: 2016
  ident: 10.1016/j.nanoen.2016.10.036_bib1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1501170
– volume: 1
  start-page: 757
  year: 2016
  ident: 10.1016/j.nanoen.2016.10.036_bib35
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.6b00327
– volume: 11
  start-page: 10
  year: 2015
  ident: 10.1016/j.nanoen.2016.10.036_bib8
  publication-title: Small
  doi: 10.1002/smll.201402767
– volume: 26
  start-page: 6160
  year: 2014
  ident: 10.1016/j.nanoen.2016.10.036_bib13
  publication-title: Chem. Mater.
  doi: 10.1021/cm502468k
– volume: 6
  start-page: 7081
  year: 2016
  ident: 10.1016/j.nanoen.2016.10.036_bib20
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8081
– volume: 5
  start-page: 5784
  year: 2014
  ident: 10.1016/j.nanoen.2016.10.036_bib25
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6784
– volume: 27
  start-page: 695
  year: 2015
  ident: 10.1016/j.nanoen.2016.10.036_bib39
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201404189
– volume: 6
  start-page: 27475
  year: 2016
  ident: 10.1016/j.nanoen.2016.10.036_bib24
  publication-title: RSC Adv.
  doi: 10.1039/C6RA03485C
– volume: 9
  start-page: 1752
  year: 2016
  ident: 10.1016/j.nanoen.2016.10.036_bib19
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE00413J
– volume: 6
  start-page: 6700
  year: 2015
  ident: 10.1016/j.nanoen.2016.10.036_bib37
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7700
– volume: 9
  start-page: 484
  year: 2016
  ident: 10.1016/j.nanoen.2016.10.036_bib2
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE03703D
– volume: 25
  start-page: 6671
  year: 2015
  ident: 10.1016/j.nanoen.2016.10.036_bib15
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201503559
– volume: 350
  start-page: 944
  year: 2015
  ident: 10.1016/j.nanoen.2016.10.036_bib9
  publication-title: Science
  doi: 10.1126/science.aad1015
– year: 2016
  ident: 10.1016/j.nanoen.2016.10.036_bib32
  publication-title: Adv. Sci.
– volume: 23
  start-page: 4636
  year: 2011
  ident: 10.1016/j.nanoen.2016.10.036_bib33
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201103006
– volume: 3
  start-page: 1600122
  year: 2016
  ident: 10.1016/j.nanoen.2016.10.036_bib38
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201600122
– volume: 9
  start-page: 490
  year: 2016
  ident: 10.1016/j.nanoen.2016.10.036_bib14
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE03522H
– volume: 6
  start-page: 7745
  year: 2015
  ident: 10.1016/j.nanoen.2016.10.036_bib34
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8745
– volume: 10
  start-page: 196
  year: 2016
  ident: 10.1016/j.nanoen.2016.10.036_bib22
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2016.3
– volume: 6
  start-page: 1501453
  year: 2016
  ident: 10.1016/j.nanoen.2016.10.036_bib27
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201501453
– volume: 26
  start-page: 7
  year: 2016
  ident: 10.1016/j.nanoen.2016.10.036_bib29
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.04.057
– volume: 7
  start-page: 811
  year: 2016
  ident: 10.1016/j.nanoen.2016.10.036_bib5
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b02651
– volume: 25
  start-page: 4425
  year: 2013
  ident: 10.1016/j.nanoen.2016.10.036_bib28
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201300580
– ident: 10.1016/j.nanoen.2016.10.036_bib10
– year: 2016
  ident: 10.1016/j.nanoen.2016.10.036_bib16
  publication-title: Nature
– year: 2016
  ident: 10.1016/j.nanoen.2016.10.036_bib11
  publication-title: Science
– volume: 8
  start-page: 1245
  year: 2015
  ident: 10.1016/j.nanoen.2016.10.036_bib21
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE00222B
– volume: 5
  start-page: 1500328
  year: 2015
  ident: 10.1016/j.nanoen.2016.10.036_bib4
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201500328
– volume: 5
  start-page: 1402321
  year: 2015
  ident: 10.1016/j.nanoen.2016.10.036_bib26
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201402321
SSID ssj0000651712
Score 2.4291794
Snippet In this paper, we investigate the feasibility of using a fluoroalkyl-substituted fullerene/perovskite heterojunction (f-FPHJ) to realize efficient and ambient...
In this study, we investigate the feasibility of using a fluoroalkyl-substituted fullerene/perovskite heterojunction (f-FPHJ) to realize efficient and ambient...
SourceID osti
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 417
SubjectTerms Fluoroalkyl-substituted fullerene
Grain boundary
Heterojunction
MATERIALS SCIENCE
Perovskite
SOLAR ENERGY
Stability
Title Fluoroalkyl-substituted fullerene/perovskite heterojunction for efficient and ambient stable perovskite solar cells
URI https://dx.doi.org/10.1016/j.nanoen.2016.10.036
https://www.osti.gov/servlets/purl/1343588
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6yXvQgPvFNDl7jNpv0kaOIy6roRQVvJWmm-KjtYlfBi7_dmT5kBUHw1oZMKZNkZjL58g1jRzYMfKCcFdaEILSXTtjYgUDnZqwEA7mm28hX19HkTl_ch_cL7LS_C0Owys72tza9sdZdy7DT5nD6-Di8GeHeZZTQQQ-d9oXECap1TLP8-FN-51nQxcq4OfSk_oIE-ht0DcyrtGUFRIQqo2OCeTVczb96qEGFi27O-YxX2UoXNfKT9sfW2AKU62x5jktwg9Xj4q16rWzx_FGIGs1BiwHwnBLsTQmUIXGCv9eUruUPhIKpntCp0cBwjFw5NGQS6IO4LT23L655xuDRFcDnRGvaDHNK-Neb7G58dns6EV1FBZFpbWYi87lMDGQegyZQKvAgZQQKlx5IA16GPvcu8MboUCqqTmac1UkejCCM4yizaosNyqqEbcY9oF-zHs2DktpGIwOgcxk67OcTLf0OU70W06yjG6eqF0Xa48qe0lb3KemeWlH3O0x8S01buo0_-sf9AKU_pk2KHuEPyT0aT5IittyMYEUoJhXGj0my--_v7rElemsRL_tsMHt9gwOMW2busJmYh2zx5Pxycv0FVCXwgw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QE4IMpDfQD1AY7urhPn4QMHBKy2zwut1Fuw44n6CEnVbIt64U_1D3Ymj2qRkCoh9RY5Hssaj2fGns8zAB9tNPGT0FlpTYRSe-WkTRxKMm7GKjRYaH6NvH8Qz470znF0vAS3w1sYhlX2ur_T6a227lvGPTfHF6en4x8BnV2ClAM9HO2LdI-s3MWb33Ruaz5vf6NF_hQE0--HX2eyLy0gc63NXOa-UKnB3JP3gHSk96hUjCHJICqDXkW-8G7ijdGRCrlMl3FWp8UkwChJ4tyGNO4TWNakLrhswtYfdX-xQzZdJW2UlScoeYbDk70WV1bZqkbOvKriLcaVtcmh_2kSRzXt8gVrN30JL3o3VXzpOLECS1i9gucLyQtfQzMtr-rL2pbnN6VsSP90oAMv-Ea_rbky5iTk1w3fD4sTht3UZ2RFWRIEucoC2-wVZPSErbywv1z7Td6qK1EskDZ8-hYcYWjewNGj8PktjKq6wlUQHsmQWk_6KFTaxoFB1IWKHPXzqVZ-DcKBi1ne5zfnMhtlNgDZzrKO9xnznluJ92sg76kuuvweD_RPhgXK_pLTjEzQA5QbvJ5Mxel5c8YxEZkKyWFN0_X_HncTns4O9_eyve2D3Q14xn86uM07GM0vr_A9OU1z96EVUgE_H3tX3AFHeSxK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fluoroalkyl-substituted+fullerene%2Fperovskite+heterojunction+for+efficient+and+ambient+stable+perovskite+solar+cells&rft.jtitle=Nano+energy&rft.au=Liu%2C+Xiao&rft.au=Lin%2C+Francis&rft.au=Chueh%2C+Chu+-Chen&rft.au=Chen%2C+Qi&rft.date=2016-12-01&rft.pub=Elsevier&rft.issn=2211-2855&rft.volume=30&rft.issue=C&rft_id=info:doi/10.1016%2Fj.nanoen.2016.10.036&rft.externalDocID=1343588
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-2855&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-2855&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-2855&client=summon