Fluoroalkyl-substituted fullerene/perovskite heterojunction for efficient and ambient stable perovskite solar cells
In this paper, we investigate the feasibility of using a fluoroalkyl-substituted fullerene/perovskite heterojunction (f-FPHJ) to realize efficient and ambient stable perovskite solar cells (PVSCs). The hybrid fluoroalkyl-substituted fullerene, DF-C60, is proven to effectively passivate the defects a...
Saved in:
Published in | Nano energy Vol. 30; no. C; pp. 417 - 425 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.12.2016
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we investigate the feasibility of using a fluoroalkyl-substituted fullerene/perovskite heterojunction (f-FPHJ) to realize efficient and ambient stable perovskite solar cells (PVSCs). The hybrid fluoroalkyl-substituted fullerene, DF-C60, is proven to effectively passivate the defects and grain boundaries in the perovskite film to facilitate charge transport/collection in the derived PVSC. Consequently, the f-FPHJ device yielded an enhanced PCE of 18.11%, outperforming that of the pristine CH3NH3PbI3 device (15.67%). More interestingly, the f-FPHJ PVSC showed a decent PCE of 15.14% (under reverse scan) with small hysteresis even without employing a discrete PCBM electron-transporting layer (ETL), in contrast to the pristine PVSC showing a lower PCE of 14.78% (under reverse scan) accompanied with severe hysteresis. This might arise from the preferential distribution of DF-C60 nearby the surface region of the f-FPHJ film due to its low surface energy, which serves the similar function of the PCBM ETL in device to reduce hysteresis. More importantly, benefitting from the hydrophobic nature of DF-C60, the f-FPHJ PVSC shows respectable ambient stability without encapsulation, which can maintain 83% of its initial PCE after being stored in ambient (with a relative humidity of 60±5%) for 1 month.
Fluoroalkyl-substituted fullerene/perovskite heterojunction (f-FPHJ) was developed in this study. The fluoroalkyl-substituted fullerene, DF-C60, not only can effectively passivate the defects/grain boundaries of perovskite but also increase its hydrophobicity. Consequently, a high power conversion efficiency (PCE) of 18.11% can be realized with respectable ambient stability. Interestingly, the f-FPHJ device can still deliver a decent PCE of 15.14% with small hysteresis even without employing a discrete PCBM electron-transporting layer (ETL), which might results from the preferential distribution of DF-C60 nearby the surface region of the f-FPHJ film to partially mimic the PCBM ETL to reduce the hysteresis. [Display omitted]
•We describe a fluoroalkyl-substituted fullerence/perovskite heterojunction (f-FPHJ) perovskite solar cell (PVSC) and realize an enhanced power conversion efficiency (PCE) from 15.67% (pristine of MAPbI3 PVSC) to 18.11%.•The f-FPHJ PVSC can also deliver a decent PCE of 15.14% with small hysteresis even without employing a discrete PCBM electron-transporting layer (ETL), in contrast to the pristine PVSC showing a lower PCE of 14.78% accompanied with severe hysteresis.•Benefitting from the hydrophobicity nature of DF-C60, the f-FPHJ PVSC shows a much enhanced ambient stability than the pristine CH3NH3PbI3 PVSC, which can maintain 83% of initial PCE after being stored in the ambient condition with a relative humidity of 60±5% for 1 month without encapsulation. |
---|---|
AbstractList | In this study, we investigate the feasibility of using a fluoroalkyl-substituted fullerene/perovskite heterojunction (f-FPHJ) to realize efficient and ambient stable perovskite solar cells (PVSCs). The hybrid fluoroalkyl-substituted fullerene, DF-C60, is proven to effectively passivate the defects and grain boundaries in the perovskite film to facilitate charge transport/collection in the derived PVSC. Consequently, the f-FPHJ device yielded an enhanced PCE of 18.11%, outperforming that of the pristine CH3NH3PbI3 device (15.67%). More interestingly, the f-FPHJ PVSC showed a decent PCE of 15.14% (under reverse scan) with small hysteresis even without employing a discrete PCBM electron-transporting layer (ETL), in contrast to the pristine PVSC showing a lower PCE of 14.78% (under reverse scan) accompanied with severe hysteresis. This might arise from the preferential distribution of DF-C60 nearby the surface region of the f-FPHJ film due to its low surface energy, which serves the similar function of the PCBM ETL in device to reduce hysteresis. More importantly, benefitting from the hydrophobic nature of DF-C60, the f-FPHJ PVSC shows respectable ambient stability without encapsulation, which can maintain 83% of its initial PCE after being stored in ambient (with a relative humidity of 60 ± 5%) for 1 month. In this paper, we investigate the feasibility of using a fluoroalkyl-substituted fullerene/perovskite heterojunction (f-FPHJ) to realize efficient and ambient stable perovskite solar cells (PVSCs). The hybrid fluoroalkyl-substituted fullerene, DF-C60, is proven to effectively passivate the defects and grain boundaries in the perovskite film to facilitate charge transport/collection in the derived PVSC. Consequently, the f-FPHJ device yielded an enhanced PCE of 18.11%, outperforming that of the pristine CH3NH3PbI3 device (15.67%). More interestingly, the f-FPHJ PVSC showed a decent PCE of 15.14% (under reverse scan) with small hysteresis even without employing a discrete PCBM electron-transporting layer (ETL), in contrast to the pristine PVSC showing a lower PCE of 14.78% (under reverse scan) accompanied with severe hysteresis. This might arise from the preferential distribution of DF-C60 nearby the surface region of the f-FPHJ film due to its low surface energy, which serves the similar function of the PCBM ETL in device to reduce hysteresis. More importantly, benefitting from the hydrophobic nature of DF-C60, the f-FPHJ PVSC shows respectable ambient stability without encapsulation, which can maintain 83% of its initial PCE after being stored in ambient (with a relative humidity of 60±5%) for 1 month. Fluoroalkyl-substituted fullerene/perovskite heterojunction (f-FPHJ) was developed in this study. The fluoroalkyl-substituted fullerene, DF-C60, not only can effectively passivate the defects/grain boundaries of perovskite but also increase its hydrophobicity. Consequently, a high power conversion efficiency (PCE) of 18.11% can be realized with respectable ambient stability. Interestingly, the f-FPHJ device can still deliver a decent PCE of 15.14% with small hysteresis even without employing a discrete PCBM electron-transporting layer (ETL), which might results from the preferential distribution of DF-C60 nearby the surface region of the f-FPHJ film to partially mimic the PCBM ETL to reduce the hysteresis. [Display omitted] •We describe a fluoroalkyl-substituted fullerence/perovskite heterojunction (f-FPHJ) perovskite solar cell (PVSC) and realize an enhanced power conversion efficiency (PCE) from 15.67% (pristine of MAPbI3 PVSC) to 18.11%.•The f-FPHJ PVSC can also deliver a decent PCE of 15.14% with small hysteresis even without employing a discrete PCBM electron-transporting layer (ETL), in contrast to the pristine PVSC showing a lower PCE of 14.78% accompanied with severe hysteresis.•Benefitting from the hydrophobicity nature of DF-C60, the f-FPHJ PVSC shows a much enhanced ambient stability than the pristine CH3NH3PbI3 PVSC, which can maintain 83% of initial PCE after being stored in the ambient condition with a relative humidity of 60±5% for 1 month without encapsulation. |
Author | Sun, Ye Jen, Alex K.-Y. Lin, Francis Chen, Qi Zhao, Ting Zhu, Zonglong Liu, Xiao Liang, Po-Wei Chueh, Chu-Chen |
Author_xml | – sequence: 1 givenname: Xiao surname: Liu fullname: Liu, Xiao organization: Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195-2120, USA – sequence: 2 givenname: Francis surname: Lin fullname: Lin, Francis organization: Department of Chemistry, University of Washington, Seattle, WA 98195-2120, USA – sequence: 3 givenname: Chu-Chen surname: Chueh fullname: Chueh, Chu-Chen email: ccchueh@uw.edu organization: Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195-2120, USA – sequence: 4 givenname: Qi surname: Chen fullname: Chen, Qi organization: Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195-2120, USA – sequence: 5 givenname: Ting surname: Zhao fullname: Zhao, Ting organization: Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195-2120, USA – sequence: 6 givenname: Po-Wei surname: Liang fullname: Liang, Po-Wei organization: Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195-2120, USA – sequence: 7 givenname: Zonglong surname: Zhu fullname: Zhu, Zonglong organization: Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195-2120, USA – sequence: 8 givenname: Ye surname: Sun fullname: Sun, Ye organization: Condensed Matter Science and Technology Institute, School of Science, Harbin Institute of Technology, Harbin 150080, China – sequence: 9 givenname: Alex K.-Y. surname: Jen fullname: Jen, Alex K.-Y. email: ajen@uw.edu organization: Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195-2120, USA |
BackLink | https://www.osti.gov/servlets/purl/1343588$$D View this record in Osti.gov |
BookMark | eNqFUMtOwzAQ9KFIlNI_4BBxT-vNqwkHJFTxkipxgXPk2GvVrWtXtlOpf49DOCAOsJd9aGY1M1dkYqxBQm6ALoBCtdwtDDMWzSKLWzwtaF5NyDTLANKsLstLMvd-R2NVJawgmxL_pHvrLNP7s0593_mgQh9QJLLXGh0aXB7R2ZPfq4DJFkNcdr3hQVmTSOsSlFJxhSYkzIiEHbqv2QfWaUx-UL3VzCUctfbX5EIy7XH-3Wfk4-nxff2Sbt6eX9cPm5QXRRNSLiTUDXJRAcU8pwIBKsw7ShEaFFAKKToqmqYoIS-LApqOFbWkGZarVcVZPiO3418bXbWeRxl8y60xyEMLeZGXdR1BdyOIO-u9Q9lGHBvsBceUboG2Q7Ttrh2jbYdoh2uMNpKLX-SjUwfmzv_R7kcaRvcnhW4Qh4ajUG7QJqz6-8En1TqdFQ |
CitedBy_id | crossref_primary_10_1039_C7TA07939G crossref_primary_10_1016_j_apmate_2025_100275 crossref_primary_10_1021_acsenergylett_2c01854 crossref_primary_10_1039_C9TA02488C crossref_primary_10_1039_C7TC04302C crossref_primary_10_1088_1742_6596_2529_1_012015 crossref_primary_10_1002_aenm_201902579 crossref_primary_10_1016_j_jechem_2021_06_011 crossref_primary_10_1002_aenm_202200877 crossref_primary_10_1016_j_orgel_2019_105492 crossref_primary_10_1039_C7RA11286F crossref_primary_10_1016_j_jechem_2021_01_037 crossref_primary_10_1038_s41467_019_13909_5 crossref_primary_10_1039_C7TA00362E crossref_primary_10_1002_adfm_201804419 crossref_primary_10_1002_sstr_202200012 crossref_primary_10_1002_solr_201900369 crossref_primary_10_1039_C7CP05290A crossref_primary_10_1039_D2TC03985K crossref_primary_10_1016_j_carbon_2023_118067 crossref_primary_10_1016_j_joule_2023_05_017 crossref_primary_10_1088_1674_1056_ac3067 crossref_primary_10_1002_smll_201907531 crossref_primary_10_1016_j_jechem_2018_11_011 crossref_primary_10_1002_admi_201801253 crossref_primary_10_1002_aenm_201900248 crossref_primary_10_1016_j_dyepig_2021_110029 crossref_primary_10_1021_acsami_9b20988 crossref_primary_10_1007_s40843_022_2365_3 crossref_primary_10_1007_s12274_022_4322_6 crossref_primary_10_1016_j_scib_2020_08_041 crossref_primary_10_1021_acs_jpcc_2c06499 crossref_primary_10_1039_C8TA11524A crossref_primary_10_1002_adma_201800455 crossref_primary_10_1016_j_nanoen_2021_106141 crossref_primary_10_1002_adma_201901519 crossref_primary_10_1039_C7TA04995A crossref_primary_10_1088_2058_8585_ab56b4 crossref_primary_10_1088_1674_4926_42_12_120201 crossref_primary_10_1002_admi_202201438 crossref_primary_10_1002_aenm_201901341 crossref_primary_10_1016_j_solener_2025_113261 crossref_primary_10_1002_adfm_201808801 crossref_primary_10_1039_D1TC04038C crossref_primary_10_1021_acsaelm_9b00528 crossref_primary_10_1002_aelm_201700435 crossref_primary_10_1039_D1CS00841B crossref_primary_10_1039_C9SE00438F crossref_primary_10_1016_j_cej_2022_136936 crossref_primary_10_1016_j_jechem_2022_07_003 crossref_primary_10_1016_j_nantod_2021_101164 crossref_primary_10_1021_acs_jpcc_8b10070 crossref_primary_10_1016_j_nanoen_2017_03_048 crossref_primary_10_1088_1361_6528_aac293 crossref_primary_10_1002_adfm_202103121 crossref_primary_10_1021_acs_chemmater_0c04906 crossref_primary_10_1002_ente_202300228 crossref_primary_10_1021_acsenergylett_7b00847 crossref_primary_10_3390_molecules29092104 crossref_primary_10_1039_C6TA10305G crossref_primary_10_1002_adfm_201909755 crossref_primary_10_1016_j_rser_2021_111689 crossref_primary_10_1002_admi_202200042 crossref_primary_10_1016_j_mtener_2018_01_004 crossref_primary_10_1002_adma_201802490 crossref_primary_10_1039_C8TA12206G crossref_primary_10_1016_j_carbon_2020_05_079 crossref_primary_10_1039_D0QM00295J crossref_primary_10_1002_adfm_201703546 crossref_primary_10_1021_acs_jpclett_2c01301 crossref_primary_10_1021_acs_jpclett_8b00968 crossref_primary_10_1007_s10854_021_06327_1 crossref_primary_10_1021_acsaem_2c03127 |
Cites_doi | 10.1126/science.aad5845 10.1002/adma.201505255 10.1016/j.nantod.2015.04.009 10.1021/acsenergylett.6b00060 10.1021/acs.jpclett.6b00215 10.1002/smll.201403651 10.1021/acs.jpcc.6b00335 10.1021/ja508758k 10.1002/aenm.201501534 10.1126/science.aaa5333 10.1126/sciadv.1501170 10.1021/acsenergylett.6b00327 10.1002/smll.201402767 10.1021/cm502468k 10.1038/ncomms8081 10.1038/ncomms6784 10.1002/adma.201404189 10.1039/C6RA03485C 10.1039/C6EE00413J 10.1038/ncomms7700 10.1039/C5EE03703D 10.1002/adfm.201503559 10.1126/science.aad1015 10.1002/adma.201103006 10.1002/admi.201600122 10.1039/C5EE03522H 10.1038/ncomms8745 10.1038/nphoton.2016.3 10.1002/aenm.201501453 10.1016/j.nanoen.2016.04.057 10.1021/acs.jpclett.5b02651 10.1002/adma.201300580 10.1039/C5EE00222B 10.1002/aenm.201500328 10.1002/aenm.201402321 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Ltd |
Copyright_xml | – notice: 2016 Elsevier Ltd |
CorporateAuthor | Univ. of Washington, Seattle, WA (United States) |
CorporateAuthor_xml | – name: Univ. of Washington, Seattle, WA (United States) |
DBID | AAYXX CITATION OIOZB OTOTI |
DOI | 10.1016/j.nanoen.2016.10.036 |
DatabaseName | CrossRef OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 425 |
ExternalDocumentID | 1343588 10_1016_j_nanoen_2016_10_036 S2211285516304554 |
GroupedDBID | --K --M .~1 0R~ 1~. 1~5 4.4 457 4G. 5VS 7-5 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FNPLU FYGXN GBLVA HZ~ JARJE KOM M41 MAGPM MO0 O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SPC SPCBC SSM SSR SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH ABPIF OIOZB OTOTI |
ID | FETCH-LOGICAL-c449t-cdf189ecd610e330de116e3b00e19ed15dfdb0d99451354419ba48f02e5776ca3 |
IEDL.DBID | .~1 |
ISSN | 2211-2855 |
IngestDate | Wed Nov 29 06:10:24 EST 2023 Thu Apr 24 23:02:19 EDT 2025 Tue Jul 01 01:55:53 EDT 2025 Fri Feb 23 02:30:20 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | C |
Keywords | Perovskite Stability Fluoroalkyl-substituted fullerene Grain boundary Heterojunction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c449t-cdf189ecd610e330de116e3b00e19ed15dfdb0d99451354419ba48f02e5776ca3 |
Notes | China Scholarship Council EE0006710; N00014-14-1-0246; FA2386-15-1-4106 USDOE Office of Energy Efficiency and Renewable Energy (EERE) US Department of the Navy, Office of Naval Research (ONR) Boeing-Johnson Foundation National Science Foundation (NSF) DOE-UW-Jen-22 US Air Force Office of Scientific Research (AFOSR) |
OpenAccessLink | https://www.osti.gov/servlets/purl/1343588 |
PageCount | 9 |
ParticipantIDs | osti_scitechconnect_1343588 crossref_citationtrail_10_1016_j_nanoen_2016_10_036 crossref_primary_10_1016_j_nanoen_2016_10_036 elsevier_sciencedirect_doi_10_1016_j_nanoen_2016_10_036 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-12-01 |
PublicationDateYYYYMMDD | 2016-12-01 |
PublicationDate_xml | – month: 12 year: 2016 text: 2016-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Nano energy |
PublicationYear | 2016 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Chiang, Wu (bib22) 2016; 10 Shao, Xiao, Bi, Yuan, Huang (bib25) 2014; 5 Chen, Yang, Priya, Zhu (bib12) 2016; 7 Zhao, Williams, Chueh, deQuilettes, Liang, Ginger, Jen (bib24) 2016; 6 Chen, Marco, Yang, Song, Chen, Zhao, Hong, Zhou, Yang (bib7) 2015; 10 Wang, Liu, Du, Zheng, Gong (bib21) 2015; 8 Tsai, Nie, Blancon, Stoumpos, Asadpour, Harutyunyan, Neukirch, Verduzco, Crochet, Tretiak, Pedesseau, Even, Alam, Gupta, Lou, Ajayan, Bedzyk, Kanatzidis, Mohite (bib16) 2016 Bastiani, Dell’Erba, Gandini, D’Innocenzo, Neutzner, Kandada, Grancini, Binda, Prato, Ball, Caironi, Petrozza (bib27) 2016; 6 Ke, Fang, Wan, Tao, Liu, Xiong, Qin, Wang, Lei, Yang, Qin, Zhao, Yan (bib37) 2015; 6 Williams, Rajagopal, Chueh, Jen (bib5) 2016; 7 Bi, Tress, Dar, Gao, Luo, Renevier, Schenk, Abate, Giordano, Baena, Decoppet, Zakeeruddin, Nazeeruddin, Grätzel, Hagfeldt (bib1) 2016; 2 (access on June, 2016). Gong, Li, Shi, Ma, Wang, Liao (bib15) 2015; 25 Li, Zhang, Reenen, Sutton, Fan, Haghighirad, Johnston, Wang, Snaith (bib14) 2016; 9 Zhu, Chueh, Lin, Jen (bib32) 2016 McMeekin, Sadoughi, Rehman, Eperon, Saliba, Hörantner, Haghirad, Sakai, Korte, Rech, Johnston, Herz, Snaith (bib3) 2016; 351 Li, Bi, Yi, Décoppet, Luo, Zajeeruddin, Hagfeldt, Grätzel (bib11) 2016 Xing, Sun, Yip, Bazan, Huang, Cao (bib29) 2016; 26 Shao, Fang, Li, Wang, Dong, Deng, Yuan, Wei, Wang, Gruverman, Shield, Huang (bib19) 2016; 9 Zhao, Chueh, Chen, Rajagopal, Jen (bib35) 2016; 1 Bi, Gao, Scopelliti, Oveisi, Luo, Grätzel, Hagfeldt, Nazeeruddin (bib31) 2016; 28 Yang, Chueh, Zuo, Kim, Liang, Jen (bib4) 2015; 5 deQuilettes, Vorpahl, Stranks, Nagaoka, Eperon, Ziffer, Snaith, Ginger (bib17) 2015; 348 Sun, Wu, Yip, Zhang, Jiang, Xue, Hu, Hu, Shen, Wang, Huang, Cao (bib30) 2015; 6 Jung, Park (bib8) 2015; 11 Williams, Chueh, Jen (bib6) 2015; 11 Liu, Tsai, Zhu, Sun, Chueh, Jen (bib38) 2016; 3 Kim, Liang, Williams, Cho, Chueh, Glaz, Ginger, Jen (bib39) 2015; 27 Li, Chueh, Ding, Yip, Liang, Li, Jen (bib28) 2013; 25 Qiu, Merckx, Jaysankar, Masse de la Huerta, Rakocevic, Zhang, Paetzold, Gehlhaar, Froyen, Poortmans, Cheyns, Snaith, Heremans (bib2) 2016; 9 Li, Bretshneider, Bergmann, Hermes, Mars, Klasen, Lu, Tremel, Mezger, Butt, Weber, Berger (bib18) 2016; 120 He, Zhong, Huang, Wong, Wu, Chen, Su, Cao (bib33) 2011; 23 Dualeh, Gao, Seok, Nazeeruddin, Grätzel (bib13) 2014; 26 NREL Efficiency Chart Xu, Buin, lp, Li, Voznyy, Comin, Yuan, Jeon, Ning, McDowell, Kanjanaboos, Sun, Lan, Quan, Kim, Hill, Maksymovych, Sargent (bib20) 2016; 6 Liu, Yang, Kelly (bib36) 2014; 136 Liang, Chueh, Williams, Jen (bib26) 2015; 5 Zhao, Zhou, Ma, Meng, Li, Wei, Fu, Liu, Yu, Zhao (bib23) 2016; 1 Chen, Wu, Yue, Liu, Zhang, Yang, Chen, Bi, Ashraful, Grätzel, Han (bib9) 2015; 350 Chen, Mao, Li, Kong, Wu, Ma, Bai, Jin, Wu, Lu, Wang, Chen (bib34) 2015; 6 Li (10.1016/j.nanoen.2016.10.036_bib28) 2013; 25 Jung (10.1016/j.nanoen.2016.10.036_bib8) 2015; 11 Chen (10.1016/j.nanoen.2016.10.036_bib12) 2016; 7 Li (10.1016/j.nanoen.2016.10.036_bib14) 2016; 9 Zhao (10.1016/j.nanoen.2016.10.036_bib35) 2016; 1 Liang (10.1016/j.nanoen.2016.10.036_bib26) 2015; 5 Williams (10.1016/j.nanoen.2016.10.036_bib6) 2015; 11 He (10.1016/j.nanoen.2016.10.036_bib33) 2011; 23 Qiu (10.1016/j.nanoen.2016.10.036_bib2) 2016; 9 Chen (10.1016/j.nanoen.2016.10.036_bib9) 2015; 350 Zhao (10.1016/j.nanoen.2016.10.036_bib23) 2016; 1 Zhao (10.1016/j.nanoen.2016.10.036_bib24) 2016; 6 Sun (10.1016/j.nanoen.2016.10.036_bib30) 2015; 6 Bi (10.1016/j.nanoen.2016.10.036_bib1) 2016; 2 Zhu (10.1016/j.nanoen.2016.10.036_bib32) 2016 Bi (10.1016/j.nanoen.2016.10.036_bib31) 2016; 28 Williams (10.1016/j.nanoen.2016.10.036_bib5) 2016; 7 Bastiani (10.1016/j.nanoen.2016.10.036_bib27) 2016; 6 McMeekin (10.1016/j.nanoen.2016.10.036_bib3) 2016; 351 Chen (10.1016/j.nanoen.2016.10.036_bib7) 2015; 10 Kim (10.1016/j.nanoen.2016.10.036_bib39) 2015; 27 Shao (10.1016/j.nanoen.2016.10.036_bib19) 2016; 9 10.1016/j.nanoen.2016.10.036_bib10 Chiang (10.1016/j.nanoen.2016.10.036_bib22) 2016; 10 Gong (10.1016/j.nanoen.2016.10.036_bib15) 2015; 25 Dualeh (10.1016/j.nanoen.2016.10.036_bib13) 2014; 26 Li (10.1016/j.nanoen.2016.10.036_bib18) 2016; 120 Xu (10.1016/j.nanoen.2016.10.036_bib20) 2016; 6 Wang (10.1016/j.nanoen.2016.10.036_bib21) 2015; 8 Liu (10.1016/j.nanoen.2016.10.036_bib38) 2016; 3 Ke (10.1016/j.nanoen.2016.10.036_bib37) 2015; 6 Liu (10.1016/j.nanoen.2016.10.036_bib36) 2014; 136 Li (10.1016/j.nanoen.2016.10.036_bib11) 2016 Chen (10.1016/j.nanoen.2016.10.036_bib34) 2015; 6 Yang (10.1016/j.nanoen.2016.10.036_bib4) 2015; 5 deQuilettes (10.1016/j.nanoen.2016.10.036_bib17) 2015; 348 Shao (10.1016/j.nanoen.2016.10.036_bib25) 2014; 5 Xing (10.1016/j.nanoen.2016.10.036_bib29) 2016; 26 Tsai (10.1016/j.nanoen.2016.10.036_bib16) 2016 |
References_xml | – volume: 2 start-page: e1501170 year: 2016 ident: bib1 publication-title: Sci. Adv. – volume: 120 start-page: 6363 year: 2016 end-page: 6368 ident: bib18 publication-title: J. Phys. Chem. C – volume: 6 start-page: 1501453 year: 2016 ident: bib27 publication-title: Adv. Energy Mater. – volume: 9 start-page: 490 year: 2016 end-page: 498 ident: bib14 publication-title: Energy Environ. Sci. – volume: 6 start-page: 6700 year: 2015 ident: bib37 publication-title: Nat. Commun. – volume: 7 start-page: 811 year: 2016 end-page: 819 ident: bib5 publication-title: J. Phys. Chem. Lett. – volume: 25 start-page: 6671 year: 2015 end-page: 6678 ident: bib15 publication-title: Adv. Funct. Mater. – volume: 8 start-page: 1245 year: 2015 end-page: 1255 ident: bib21 publication-title: Energy Environ. Sci. – volume: 26 start-page: 7 year: 2016 end-page: 15 ident: bib29 publication-title: Nano Energy – volume: 136 start-page: 17116 year: 2014 end-page: 17122 ident: bib36 publication-title: J. Am. Chem. Soc. – volume: 25 start-page: 4425 year: 2013 end-page: 4430 ident: bib28 publication-title: Adv. Mater. – volume: 27 start-page: 695 year: 2015 end-page: 701 ident: bib39 publication-title: Adv. Mater. – volume: 6 start-page: 7081 year: 2016 ident: bib20 publication-title: Nat. Commun. – volume: 10 start-page: 196 year: 2016 end-page: 200 ident: bib22 publication-title: Nat. Photonics – year: 2016 ident: bib11 publication-title: Science – volume: 3 start-page: 1600122 year: 2016 ident: bib38 publication-title: Adv. Mater. Interfaces – volume: 6 start-page: 1501534 year: 2015 ident: bib30 publication-title: Adv. Energy Mater. – volume: 23 start-page: 4636 year: 2011 end-page: 4643 ident: bib33 publication-title: Adv. Mater. – reference: 〉 (access on June, 2016). – volume: 1 start-page: 266 year: 2016 end-page: 272 ident: bib23 publication-title: ACS Energy Lett. – volume: 6 start-page: 7745 year: 2015 ident: bib34 publication-title: Nat. Commun. – volume: 348 start-page: 683 year: 2015 end-page: 686 ident: bib17 publication-title: Science – volume: 11 start-page: 10 year: 2015 end-page: 25 ident: bib8 publication-title: Small – volume: 350 start-page: 944 year: 2015 end-page: 948 ident: bib9 publication-title: Science – reference: NREL Efficiency Chart, 〈 – year: 2016 ident: bib16 publication-title: Nature – volume: 28 start-page: 2910 year: 2016 end-page: 2915 ident: bib31 publication-title: Adv. Mater. – volume: 351 start-page: 151 year: 2016 end-page: 155 ident: bib3 publication-title: Science – volume: 26 start-page: 6160 year: 2014 end-page: 6164 ident: bib13 publication-title: Chem. Mater. – volume: 5 start-page: 1402321 year: 2015 ident: bib26 publication-title: Adv. Energy Mater. – volume: 5 start-page: 5784 year: 2014 ident: bib25 publication-title: Nat. Commun. – year: 2016 ident: bib32 publication-title: Adv. Sci. – volume: 5 start-page: 1500328 year: 2015 ident: bib4 publication-title: Adv. Energy Mater. – volume: 1 start-page: 757 year: 2016 end-page: 763 ident: bib35 publication-title: ACS Energy Lett. – volume: 10 start-page: 355 year: 2015 end-page: 396 ident: bib7 publication-title: Nano Today – volume: 6 start-page: 27475 year: 2016 end-page: 27484 ident: bib24 publication-title: RSC Adv. – volume: 7 start-page: 905 year: 2016 end-page: 917 ident: bib12 publication-title: J. Phys. Chem. Lett. – volume: 9 start-page: 484 year: 2016 end-page: 489 ident: bib2 publication-title: Energy Environ. Sci. – volume: 11 start-page: 3088 year: 2015 end-page: 3096 ident: bib6 publication-title: Small – volume: 9 start-page: 1752 year: 2016 end-page: 1759 ident: bib19 publication-title: Energy Environ. Sci. – volume: 351 start-page: 151 year: 2016 ident: 10.1016/j.nanoen.2016.10.036_bib3 publication-title: Science doi: 10.1126/science.aad5845 – volume: 28 start-page: 2910 year: 2016 ident: 10.1016/j.nanoen.2016.10.036_bib31 publication-title: Adv. Mater. doi: 10.1002/adma.201505255 – volume: 10 start-page: 355 year: 2015 ident: 10.1016/j.nanoen.2016.10.036_bib7 publication-title: Nano Today doi: 10.1016/j.nantod.2015.04.009 – volume: 1 start-page: 266 year: 2016 ident: 10.1016/j.nanoen.2016.10.036_bib23 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.6b00060 – volume: 7 start-page: 905 year: 2016 ident: 10.1016/j.nanoen.2016.10.036_bib12 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b00215 – volume: 11 start-page: 3088 year: 2015 ident: 10.1016/j.nanoen.2016.10.036_bib6 publication-title: Small doi: 10.1002/smll.201403651 – volume: 120 start-page: 6363 year: 2016 ident: 10.1016/j.nanoen.2016.10.036_bib18 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b00335 – volume: 136 start-page: 17116 year: 2014 ident: 10.1016/j.nanoen.2016.10.036_bib36 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja508758k – volume: 6 start-page: 1501534 year: 2015 ident: 10.1016/j.nanoen.2016.10.036_bib30 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201501534 – volume: 348 start-page: 683 year: 2015 ident: 10.1016/j.nanoen.2016.10.036_bib17 publication-title: Science doi: 10.1126/science.aaa5333 – volume: 2 start-page: e1501170 year: 2016 ident: 10.1016/j.nanoen.2016.10.036_bib1 publication-title: Sci. Adv. doi: 10.1126/sciadv.1501170 – volume: 1 start-page: 757 year: 2016 ident: 10.1016/j.nanoen.2016.10.036_bib35 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.6b00327 – volume: 11 start-page: 10 year: 2015 ident: 10.1016/j.nanoen.2016.10.036_bib8 publication-title: Small doi: 10.1002/smll.201402767 – volume: 26 start-page: 6160 year: 2014 ident: 10.1016/j.nanoen.2016.10.036_bib13 publication-title: Chem. Mater. doi: 10.1021/cm502468k – volume: 6 start-page: 7081 year: 2016 ident: 10.1016/j.nanoen.2016.10.036_bib20 publication-title: Nat. Commun. doi: 10.1038/ncomms8081 – volume: 5 start-page: 5784 year: 2014 ident: 10.1016/j.nanoen.2016.10.036_bib25 publication-title: Nat. Commun. doi: 10.1038/ncomms6784 – volume: 27 start-page: 695 year: 2015 ident: 10.1016/j.nanoen.2016.10.036_bib39 publication-title: Adv. Mater. doi: 10.1002/adma.201404189 – volume: 6 start-page: 27475 year: 2016 ident: 10.1016/j.nanoen.2016.10.036_bib24 publication-title: RSC Adv. doi: 10.1039/C6RA03485C – volume: 9 start-page: 1752 year: 2016 ident: 10.1016/j.nanoen.2016.10.036_bib19 publication-title: Energy Environ. Sci. doi: 10.1039/C6EE00413J – volume: 6 start-page: 6700 year: 2015 ident: 10.1016/j.nanoen.2016.10.036_bib37 publication-title: Nat. Commun. doi: 10.1038/ncomms7700 – volume: 9 start-page: 484 year: 2016 ident: 10.1016/j.nanoen.2016.10.036_bib2 publication-title: Energy Environ. Sci. doi: 10.1039/C5EE03703D – volume: 25 start-page: 6671 year: 2015 ident: 10.1016/j.nanoen.2016.10.036_bib15 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201503559 – volume: 350 start-page: 944 year: 2015 ident: 10.1016/j.nanoen.2016.10.036_bib9 publication-title: Science doi: 10.1126/science.aad1015 – year: 2016 ident: 10.1016/j.nanoen.2016.10.036_bib32 publication-title: Adv. Sci. – volume: 23 start-page: 4636 year: 2011 ident: 10.1016/j.nanoen.2016.10.036_bib33 publication-title: Adv. Mater. doi: 10.1002/adma.201103006 – volume: 3 start-page: 1600122 year: 2016 ident: 10.1016/j.nanoen.2016.10.036_bib38 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201600122 – volume: 9 start-page: 490 year: 2016 ident: 10.1016/j.nanoen.2016.10.036_bib14 publication-title: Energy Environ. Sci. doi: 10.1039/C5EE03522H – volume: 6 start-page: 7745 year: 2015 ident: 10.1016/j.nanoen.2016.10.036_bib34 publication-title: Nat. Commun. doi: 10.1038/ncomms8745 – volume: 10 start-page: 196 year: 2016 ident: 10.1016/j.nanoen.2016.10.036_bib22 publication-title: Nat. Photonics doi: 10.1038/nphoton.2016.3 – volume: 6 start-page: 1501453 year: 2016 ident: 10.1016/j.nanoen.2016.10.036_bib27 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201501453 – volume: 26 start-page: 7 year: 2016 ident: 10.1016/j.nanoen.2016.10.036_bib29 publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.04.057 – volume: 7 start-page: 811 year: 2016 ident: 10.1016/j.nanoen.2016.10.036_bib5 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b02651 – volume: 25 start-page: 4425 year: 2013 ident: 10.1016/j.nanoen.2016.10.036_bib28 publication-title: Adv. Mater. doi: 10.1002/adma.201300580 – ident: 10.1016/j.nanoen.2016.10.036_bib10 – year: 2016 ident: 10.1016/j.nanoen.2016.10.036_bib16 publication-title: Nature – year: 2016 ident: 10.1016/j.nanoen.2016.10.036_bib11 publication-title: Science – volume: 8 start-page: 1245 year: 2015 ident: 10.1016/j.nanoen.2016.10.036_bib21 publication-title: Energy Environ. Sci. doi: 10.1039/C5EE00222B – volume: 5 start-page: 1500328 year: 2015 ident: 10.1016/j.nanoen.2016.10.036_bib4 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201500328 – volume: 5 start-page: 1402321 year: 2015 ident: 10.1016/j.nanoen.2016.10.036_bib26 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201402321 |
SSID | ssj0000651712 |
Score | 2.4291794 |
Snippet | In this paper, we investigate the feasibility of using a fluoroalkyl-substituted fullerene/perovskite heterojunction (f-FPHJ) to realize efficient and ambient... In this study, we investigate the feasibility of using a fluoroalkyl-substituted fullerene/perovskite heterojunction (f-FPHJ) to realize efficient and ambient... |
SourceID | osti crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 417 |
SubjectTerms | Fluoroalkyl-substituted fullerene Grain boundary Heterojunction MATERIALS SCIENCE Perovskite SOLAR ENERGY Stability |
Title | Fluoroalkyl-substituted fullerene/perovskite heterojunction for efficient and ambient stable perovskite solar cells |
URI | https://dx.doi.org/10.1016/j.nanoen.2016.10.036 https://www.osti.gov/servlets/purl/1343588 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6yXvQgPvFNDl7jNpv0kaOIy6roRQVvJWmm-KjtYlfBi7_dmT5kBUHw1oZMKZNkZjL58g1jRzYMfKCcFdaEILSXTtjYgUDnZqwEA7mm28hX19HkTl_ch_cL7LS_C0Owys72tza9sdZdy7DT5nD6-Di8GeHeZZTQQQ-d9oXECap1TLP8-FN-51nQxcq4OfSk_oIE-ht0DcyrtGUFRIQqo2OCeTVczb96qEGFi27O-YxX2UoXNfKT9sfW2AKU62x5jktwg9Xj4q16rWzx_FGIGs1BiwHwnBLsTQmUIXGCv9eUruUPhIKpntCp0cBwjFw5NGQS6IO4LT23L655xuDRFcDnRGvaDHNK-Neb7G58dns6EV1FBZFpbWYi87lMDGQegyZQKvAgZQQKlx5IA16GPvcu8MboUCqqTmac1UkejCCM4yizaosNyqqEbcY9oF-zHs2DktpGIwOgcxk67OcTLf0OU70W06yjG6eqF0Xa48qe0lb3KemeWlH3O0x8S01buo0_-sf9AKU_pk2KHuEPyT0aT5IittyMYEUoJhXGj0my--_v7rElemsRL_tsMHt9gwOMW2busJmYh2zx5Pxycv0FVCXwgw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QE4IMpDfQD1AY7urhPn4QMHBKy2zwut1Fuw44n6CEnVbIt64U_1D3Ymj2qRkCoh9RY5Hssaj2fGns8zAB9tNPGT0FlpTYRSe-WkTRxKMm7GKjRYaH6NvH8Qz470znF0vAS3w1sYhlX2ur_T6a227lvGPTfHF6en4x8BnV2ClAM9HO2LdI-s3MWb33Ruaz5vf6NF_hQE0--HX2eyLy0gc63NXOa-UKnB3JP3gHSk96hUjCHJICqDXkW-8G7ijdGRCrlMl3FWp8UkwChJ4tyGNO4TWNakLrhswtYfdX-xQzZdJW2UlScoeYbDk70WV1bZqkbOvKriLcaVtcmh_2kSRzXt8gVrN30JL3o3VXzpOLECS1i9gucLyQtfQzMtr-rL2pbnN6VsSP90oAMv-Ea_rbky5iTk1w3fD4sTht3UZ2RFWRIEucoC2-wVZPSErbywv1z7Td6qK1EskDZ8-hYcYWjewNGj8PktjKq6wlUQHsmQWk_6KFTaxoFB1IWKHPXzqVZ-DcKBi1ne5zfnMhtlNgDZzrKO9xnznluJ92sg76kuuvweD_RPhgXK_pLTjEzQA5QbvJ5Mxel5c8YxEZkKyWFN0_X_HncTns4O9_eyve2D3Q14xn86uM07GM0vr_A9OU1z96EVUgE_H3tX3AFHeSxK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fluoroalkyl-substituted+fullerene%2Fperovskite+heterojunction+for+efficient+and+ambient+stable+perovskite+solar+cells&rft.jtitle=Nano+energy&rft.au=Liu%2C+Xiao&rft.au=Lin%2C+Francis&rft.au=Chueh%2C+Chu+-Chen&rft.au=Chen%2C+Qi&rft.date=2016-12-01&rft.pub=Elsevier&rft.issn=2211-2855&rft.volume=30&rft.issue=C&rft_id=info:doi/10.1016%2Fj.nanoen.2016.10.036&rft.externalDocID=1343588 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-2855&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-2855&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-2855&client=summon |