Effect of Structure and Composition of Non-Stoichiometry Magnesium Aluminate Spinel on Water Adsorption

MgAl2O4 is used in humidity sensing and measurement, and as a catalyst or catalyst support in a wide variety of applications. For such applications, a detailed understanding of the surface properties and defect structure of the spinel, and, in particular, of the gas interactions at the spinel surfac...

Full description

Saved in:
Bibliographic Details
Published inMaterials Vol. 13; no. 14; p. 3195
Main Authors Mordekovitz, Yuval, Shoval, Yael, Froumin, Natali, Hayun, Shmuel
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 17.07.2020
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract MgAl2O4 is used in humidity sensing and measurement, and as a catalyst or catalyst support in a wide variety of applications. For such applications, a detailed understanding of the surface properties and defect structure of the spinel, and, in particular, of the gas interactions at the spinel surface is essential. However, to the best of our knowledge, very limited experimental data regarding this subject is currently available. In this work, four spinel samples with an Al2O3 to MgO ratio (n) between 0.95 and 2.45 were synthesized and analyzed using X-ray photoelectron spectroscopy and water adsorption micro-calorimetry. The results showed that the spinel composition and its consequent defect structure do indeed have a distinct effect on the spinel-water vapor surface interactions. The adsorption behavior at the spinel-water interface showed changes that resulted from alterations in types and energetic diversity of adsorption sites, affecting both H2O uptake and overall energetics. Furthermore, changes in composition following appropriate thermal treatment were shown to have a major effect on the reducibility of the spinel which enabled increased water uptake at the surface. In addition to non-stoichiometry, the impact of intrinsic anti-site defects on the water-surface interaction was investigated. These defects were also shown to promote water uptake. Our results show that by composition modification and subsequent thermal treatments, the defect structure can be modified and controlled, allowing for the possibility of specifically designed spinels for water interactions.
AbstractList MgAl 2 O 4 is used in humidity sensing and measurement, and as a catalyst or catalyst support in a wide variety of applications. For such applications, a detailed understanding of the surface properties and defect structure of the spinel, and, in particular, of the gas interactions at the spinel surface is essential. However, to the best of our knowledge, very limited experimental data regarding this subject is currently available. In this work, four spinel samples with an Al 2 O 3 to MgO ratio ( n ) between 0.95 and 2.45 were synthesized and analyzed using X-ray photoelectron spectroscopy and water adsorption micro-calorimetry. The results showed that the spinel composition and its consequent defect structure do indeed have a distinct effect on the spinel-water vapor surface interactions. The adsorption behavior at the spinel-water interface showed changes that resulted from alterations in types and energetic diversity of adsorption sites, affecting both H 2 O uptake and overall energetics. Furthermore, changes in composition following appropriate thermal treatment were shown to have a major effect on the reducibility of the spinel which enabled increased water uptake at the surface. In addition to non-stoichiometry, the impact of intrinsic anti-site defects on the water-surface interaction was investigated. These defects were also shown to promote water uptake. Our results show that by composition modification and subsequent thermal treatments, the defect structure can be modified and controlled, allowing for the possibility of specifically designed spinels for water interactions.
MgAl2O4 is used in humidity sensing and measurement, and as a catalyst or catalyst support in a wide variety of applications. For such applications, a detailed understanding of the surface properties and defect structure of the spinel, and, in particular, of the gas interactions at the spinel surface is essential. However, to the best of our knowledge, very limited experimental data regarding this subject is currently available. In this work, four spinel samples with an Al2O3 to MgO ratio (n) between 0.95 and 2.45 were synthesized and analyzed using X-ray photoelectron spectroscopy and water adsorption micro-calorimetry. The results showed that the spinel composition and its consequent defect structure do indeed have a distinct effect on the spinel-water vapor surface interactions. The adsorption behavior at the spinel-water interface showed changes that resulted from alterations in types and energetic diversity of adsorption sites, affecting both H2O uptake and overall energetics. Furthermore, changes in composition following appropriate thermal treatment were shown to have a major effect on the reducibility of the spinel which enabled increased water uptake at the surface. In addition to non-stoichiometry, the impact of intrinsic anti-site defects on the water-surface interaction was investigated. These defects were also shown to promote water uptake. Our results show that by composition modification and subsequent thermal treatments, the defect structure can be modified and controlled, allowing for the possibility of specifically designed spinels for water interactions.
MgAl2O4 is used in humidity sensing and measurement, and as a catalyst or catalyst support in a wide variety of applications. For such applications, a detailed understanding of the surface properties and defect structure of the spinel, and, in particular, of the gas interactions at the spinel surface is essential. However, to the best of our knowledge, very limited experimental data regarding this subject is currently available. In this work, four spinel samples with an Al2O3 to MgO ratio (n) between 0.95 and 2.45 were synthesized and analyzed using X-ray photoelectron spectroscopy and water adsorption micro-calorimetry. The results showed that the spinel composition and its consequent defect structure do indeed have a distinct effect on the spinel-water vapor surface interactions. The adsorption behavior at the spinel-water interface showed changes that resulted from alterations in types and energetic diversity of adsorption sites, affecting both H2O uptake and overall energetics. Furthermore, changes in composition following appropriate thermal treatment were shown to have a major effect on the reducibility of the spinel which enabled increased water uptake at the surface. In addition to non-stoichiometry, the impact of intrinsic anti-site defects on the water-surface interaction was investigated. These defects were also shown to promote water uptake. Our results show that by composition modification and subsequent thermal treatments, the defect structure can be modified and controlled, allowing for the possibility of specifically designed spinels for water interactions.MgAl2O4 is used in humidity sensing and measurement, and as a catalyst or catalyst support in a wide variety of applications. For such applications, a detailed understanding of the surface properties and defect structure of the spinel, and, in particular, of the gas interactions at the spinel surface is essential. However, to the best of our knowledge, very limited experimental data regarding this subject is currently available. In this work, four spinel samples with an Al2O3 to MgO ratio (n) between 0.95 and 2.45 were synthesized and analyzed using X-ray photoelectron spectroscopy and water adsorption micro-calorimetry. The results showed that the spinel composition and its consequent defect structure do indeed have a distinct effect on the spinel-water vapor surface interactions. The adsorption behavior at the spinel-water interface showed changes that resulted from alterations in types and energetic diversity of adsorption sites, affecting both H2O uptake and overall energetics. Furthermore, changes in composition following appropriate thermal treatment were shown to have a major effect on the reducibility of the spinel which enabled increased water uptake at the surface. In addition to non-stoichiometry, the impact of intrinsic anti-site defects on the water-surface interaction was investigated. These defects were also shown to promote water uptake. Our results show that by composition modification and subsequent thermal treatments, the defect structure can be modified and controlled, allowing for the possibility of specifically designed spinels for water interactions.
Author Mordekovitz, Yuval
Shoval, Yael
Hayun, Shmuel
Froumin, Natali
AuthorAffiliation 1 Department of Materials Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel; yuvalmor@post.bgu.ac.il (Y.M.); yaelsh5@gmail.com (Y.S.); nfrum@bgu.ac.il (N.F.)
2 Ilsa katz Institute for Nanoscience and Technology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
AuthorAffiliation_xml – name: 2 Ilsa katz Institute for Nanoscience and Technology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
– name: 1 Department of Materials Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel; yuvalmor@post.bgu.ac.il (Y.M.); yaelsh5@gmail.com (Y.S.); nfrum@bgu.ac.il (N.F.)
Author_xml – sequence: 1
  givenname: Yuval
  surname: Mordekovitz
  fullname: Mordekovitz, Yuval
– sequence: 2
  givenname: Yael
  surname: Shoval
  fullname: Shoval, Yael
– sequence: 3
  givenname: Natali
  surname: Froumin
  fullname: Froumin, Natali
– sequence: 4
  givenname: Shmuel
  orcidid: 0000-0003-2179-5984
  surname: Hayun
  fullname: Hayun, Shmuel
BookMark eNptkV1LHTEQhoNYqlVv_AWB3oiwbb72Y24Kh4P9ANteHEsvQ5LNHiO7yZpkBf99s2hpK52bzDDP-06SeYMOffAWoXNK3nEO5P2kKKeCU6gP0DEFaCoKQhz-lR-hs5TuSAnOacfgNTrirCUd1PUx2l8NgzUZhwHvclxMXqLFyvd4G6Y5JJdd8GvzW_DVLgdnbl2YbI6P-Kvae5vcMuHNuEzOq2zxbnbejrhIfpYy4k2fQpxXj1P0alBjsmfP5wn68fHqZvu5uv7-6ct2c10ZISBXpjdaEGZ0o7sBQFNQDdeqpbqhrQbbUNbrljIjOOGMadL10MBQC942jCvgJ-jDk--86Mn2xvoc1Sjn6CYVH2VQTv7b8e5W7sODbAVlhIticPFsEMP9YlOWk0vGjqPyNixJMsFaBh2wrqBvX6B3YYm-PG-lGkK7um4LRZ4oE0NK0Q7SuKzWPynz3Sgpkesi5Z9FFsnlC8nv-_8H_gXOMZ8j
CitedBy_id crossref_primary_10_1016_j_conbuildmat_2022_127567
crossref_primary_10_1016_j_xcrp_2024_101889
crossref_primary_10_1093_chemle_upad020
crossref_primary_10_3390_ma13194421
crossref_primary_10_3390_ma14174923
crossref_primary_10_1166_sam_2021_4145
crossref_primary_10_1088_2053_1591_ad1774
crossref_primary_10_3390_catal12111476
crossref_primary_10_1016_j_apcata_2021_118238
crossref_primary_10_1016_j_chemosphere_2022_135939
crossref_primary_10_1016_j_chemosphere_2024_143540
crossref_primary_10_1002_cnma_202300158
crossref_primary_10_1016_j_molliq_2022_118899
crossref_primary_10_3390_ma16041707
crossref_primary_10_1016_j_jenvman_2024_123584
crossref_primary_10_1016_j_jpcs_2025_112631
crossref_primary_10_35848_1347_4065_ac5e49
crossref_primary_10_1016_j_molliq_2022_119144
crossref_primary_10_1021_acsnano_4c18846
crossref_primary_10_1039_D1NJ05807J
crossref_primary_10_3390_ma18051033
crossref_primary_10_1002_pssb_202100473
crossref_primary_10_1021_acsami_2c22757
crossref_primary_10_3390_pr11010111
crossref_primary_10_1016_j_jece_2022_108144
crossref_primary_10_1016_j_jallcom_2023_171953
crossref_primary_10_1016_j_apsusc_2023_156814
crossref_primary_10_1039_D2NR01258H
crossref_primary_10_1016_j_jcou_2022_101983
Cites_doi 10.1021/la4014812
10.1021/acscatal.5b01666
10.1111/jace.12637
10.1016/j.jcat.2010.07.022
10.1111/j.1151-2916.2001.tb00876.x
10.1111/j.1551-2916.2011.04648.x
10.1021/acs.chemmater.8b03894
10.1021/cm702388g
10.1111/j.1151-2916.1999.tb01844.x
10.1111/j.1151-2916.1989.tb06113.x
10.1021/jp2087434
10.1016/j.materresbull.2008.02.003
10.1111/j.1151-2916.1986.tb04772.x
10.1016/j.solidstatesciences.2007.04.005
10.1103/PhysRevLett.107.036102
10.1021/ja01269a023
10.2138/am-2015-5266
10.1016/S0022-3115(01)00749-8
10.1557/JMR.1999.0344
10.1111/jace.14610
10.1016/0168-583X(96)00015-8
10.1023/A:1006774318019
10.1016/j.jcat.2014.04.021
10.1111/j.1151-2916.1992.tb04216.x
10.1021/j100153a045
10.2138/am-2004-0708
10.1111/j.1551-2916.2011.04798.x
10.1021/cs4000427
10.1111/jace.14244
10.1111/j.1151-2916.1993.tb03669.x
10.1111/j.1551-2916.2009.03108.x
10.1038/ncomms3481
10.1016/0169-4332(94)90009-4
10.1063/1.2108113
10.1021/acssuschemeng.9b00481
10.1021/acs.jpcc.0c02440
10.1021/acs.jpcc.6b02998
10.1016/j.tca.2005.01.058
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 by the authors. 2020
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
7SR
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.3390/ma13143195
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Research Database
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1944
ExternalDocumentID PMC7412034
10_3390_ma13143195
GeographicLocations St Louis Missouri
United States--US
GeographicLocations_xml – name: St Louis Missouri
– name: United States--US
GroupedDBID 29M
2WC
53G
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CZ9
D1I
E3Z
EBS
ESX
FRP
GX1
HCIFZ
HH5
HYE
I-F
KB.
KC.
KQ8
MK~
MODMG
M~E
OK1
OVT
P2P
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
TR2
TUS
7SR
8FD
ABUWG
AZQEC
DWQXO
JG9
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c449t-cdcb402cb6b8f99b19a63ba71b617b9e612db712c430322b08d969f5437623a93
IEDL.DBID BENPR
ISSN 1996-1944
IngestDate Thu Aug 21 13:50:19 EDT 2025
Fri Jul 11 15:39:07 EDT 2025
Fri Jul 25 12:00:20 EDT 2025
Tue Jul 01 03:56:30 EDT 2025
Thu Apr 24 23:04:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c449t-cdcb402cb6b8f99b19a63ba71b617b9e612db712c430322b08d969f5437623a93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2179-5984
OpenAccessLink https://www.proquest.com/docview/2426018557?pq-origsite=%requestingapplication%
PMID 32708955
PQID 2426018557
PQPubID 2032366
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7412034
proquest_miscellaneous_2427298928
proquest_journals_2426018557
crossref_citationtrail_10_3390_ma13143195
crossref_primary_10_3390_ma13143195
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200717
PublicationDateYYYYMMDD 2020-07-17
PublicationDate_xml – month: 7
  year: 2020
  text: 20200717
  day: 17
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Materials
PublicationYear 2020
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Mordekovitz (ref_11) 2016; 99
Uner (ref_39) 2005; 434
Navrotsky (ref_21) 1983; 68
Grigorova (ref_36) 2013; 45
Villa (ref_4) 2010; 275
Erukhimovitch (ref_10) 2015; 100
Hilklin (ref_12) 2008; 20
Redfern (ref_19) 2004; 89
Shelly (ref_37) 2018; 30
Hinnen (ref_34) 1994; 78
Ushakov (ref_30) 2005; 87
He (ref_35) 1993; 97
Ting (ref_23) 1999; 82
Gusmano (ref_1) 1993; 76
Ball (ref_16) 2008; 10
Fang (ref_8) 2001; 84
Hallstedt (ref_9) 1992; 75
Li (ref_7) 2013; 4
Mei (ref_5) 2014; 316
Reimanis (ref_15) 2009; 92
Sickafus (ref_22) 1996; 116
Brunauer (ref_29) 1938; 60
Jing (ref_31) 2000; 19
Jia (ref_42) 2013; 29
Halabi (ref_13) 2017; 100
Hayun (ref_38) 2011; 94
ref_24
Mei (ref_3) 2016; 6
Chiang (ref_25) 1989; 72
Navrotsky (ref_32) 1986; 69
Simeone (ref_18) 2002; 300
Sutorik (ref_26) 2012; 95
Kleebe (ref_14) 2013; 96
Barvinschi (ref_28) 2008; 43
Wood (ref_20) 1986; 71
ref_27
Cai (ref_43) 2016; 120
Hayun (ref_41) 2011; 115
Govindaraj (ref_2) 1999; 14
Rasmussen (ref_17) 2011; 107
Mei (ref_6) 2013; 3
Sapag (ref_40) 2008; 2008
Corsi (ref_33) 2019; 7
References_xml – volume: 29
  start-page: 7025
  year: 2013
  ident: ref_42
  article-title: A theoretical study of water adsorption and decomposition on low-index spinel ZnGa2O4 surfaces: Correlation between surface structure and photocatalytic properties
  publication-title: Langmuir
  doi: 10.1021/la4014812
– volume: 6
  start-page: 315
  year: 2016
  ident: ref_3
  article-title: Steam reforming of ethylene glycol over MgAl2O4 supported Rh, Ni, and Co Catalysts
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b01666
– volume: 96
  start-page: 3341
  year: 2013
  ident: ref_14
  article-title: Fifty years of research and development coming to fruition; Unraveling the complex interactions during processing of transparent magnesium aluminate (MgAl2O4) spinel
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.12637
– volume: 275
  start-page: 108
  year: 2010
  ident: ref_4
  article-title: Au on MgAl2O4 spinels: The effect of support surface properties in glycerol oxidation
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2010.07.022
– volume: 84
  start-page: 1553
  year: 2001
  ident: ref_8
  article-title: Computer simulation of dissociative adsorption of water on the surfaces of spinel MgAl2O4
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.2001.tb00876.x
– volume: 68
  start-page: 181
  year: 1983
  ident: ref_21
  article-title: Simple spinels: Crystallographic parameters, cation radii, lattice energies, and cation distribution
  publication-title: Am. Mineral.
– ident: ref_24
– volume: 94
  start-page: 3992
  year: 2011
  ident: ref_38
  article-title: Nanoceria—Energetics of surfaces, interfaces and water adsorption
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2011.04648.x
– volume: 30
  start-page: 8650
  year: 2018
  ident: ref_37
  article-title: Effect of U content on the activation of H2O on Ce1-xUxO2+δ surfaces
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b03894
– volume: 20
  start-page: 553
  year: 2008
  ident: ref_12
  article-title: Synthesis of metastable phases in the magnesium spinel− alumina system
  publication-title: Chem. Mater.
  doi: 10.1021/cm702388g
– volume: 82
  start-page: 841
  year: 1999
  ident: ref_23
  article-title: Defect reactions and the controlling mechanism in the sintering of magnesium aluminate spinel
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1999.tb01844.x
– volume: 72
  start-page: 271
  year: 1989
  ident: ref_25
  article-title: Grain-boundary migration in nonstoichiometric solid solutions of magnesium aluminate spinel: I, grain growth studies
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1989.tb06113.x
– volume: 115
  start-page: 23929
  year: 2011
  ident: ref_41
  article-title: Experimental methodologies for assessing the surface energy of highly hygroscopic materials: The case of nanocrystalline magnesia
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp2087434
– volume: 43
  start-page: 3408
  year: 2008
  ident: ref_28
  article-title: Solution combustion synthesis of MgAl2O4 using fuel mixtures
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2008.02.003
– volume: 69
  start-page: 418
  year: 1986
  ident: ref_32
  article-title: Thermochemistry of MgAl2O4-Al8/3O4 defect spinels
  publication-title: J. Am. Cerum. Soc
  doi: 10.1111/j.1151-2916.1986.tb04772.x
– volume: 10
  start-page: 717
  year: 2008
  ident: ref_16
  article-title: Defect processes in MgAl2O4 spinel
  publication-title: Solid State Sci.
  doi: 10.1016/j.solidstatesciences.2007.04.005
– volume: 107
  start-page: 2
  year: 2011
  ident: ref_17
  article-title: Stable cation inversion at the MgAl2O4(100) surface
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.036102
– volume: 60
  start-page: 309
  year: 1938
  ident: ref_29
  article-title: Adsorption of gases in multimolecular layers
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01269a023
– volume: 100
  start-page: 1744
  year: 2015
  ident: ref_10
  article-title: Spectroscopic study of ordering in non-stoichiometric magnesium aluminate spinel
  publication-title: Am. Mineral.
  doi: 10.2138/am-2015-5266
– volume: 300
  start-page: 151
  year: 2002
  ident: ref_18
  article-title: Comment—Disorder phase transition induced by swift ions in MgAl2O4 and ZnAl2O4 spinels
  publication-title: J. Nucl. Mater.
  doi: 10.1016/S0022-3115(01)00749-8
– volume: 14
  start-page: 2567
  year: 1999
  ident: ref_2
  article-title: An investigation of carbon nanotubes obtained from the decomposition of methane over reduced Mg1−xMxAl2O4 spinel catalysts
  publication-title: J. Mater. Res.
  doi: 10.1557/JMR.1999.0344
– volume: 100
  start-page: 800
  year: 2017
  ident: ref_13
  article-title: Charge distribution in nano-scale grains of magnesium aluminate spinel
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.14610
– volume: 116
  start-page: 85
  year: 1996
  ident: ref_22
  article-title: Radiation resistance of the oxide spinel: The role of stoichiometry on damage response
  publication-title: Nucl. Imstrum. Meth. B
  doi: 10.1016/0168-583X(96)00015-8
– volume: 19
  start-page: 225
  year: 2000
  ident: ref_31
  article-title: Investigation on lattice constants of Mg-Al spinels
  publication-title: J. Mater. Sci. Lett.
  doi: 10.1023/A:1006774318019
– volume: 316
  start-page: 11
  year: 2014
  ident: ref_5
  article-title: Highly active and stable MgAl2O4-supported Rh and Ir catalysts for methane steam reforming: A combined experimental and theoretical study
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2014.04.021
– volume: 75
  start-page: 1497
  year: 1992
  ident: ref_9
  article-title: Thermodynamic assessment of the system MgO-Al2O3
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1992.tb04216.x
– volume: 97
  start-page: 13703
  year: 1993
  ident: ref_35
  article-title: ESCA studies of aluminophosphate molecular sieves
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100153a045
– volume: 89
  start-page: 981
  year: 2004
  ident: ref_19
  article-title: Study of cation order-disorder in MgAl2O4 spinel by in situ neutron diffraction up to 1600 K and 3.2 GPa
  publication-title: Am. Mineral.
  doi: 10.2138/am-2004-0708
– volume: 95
  start-page: 636
  year: 2012
  ident: ref_26
  article-title: Transparent solid solution magnesium aluminate spinel polycrystalline ceramic with the alumina-rich composition MgO·1.2 Al2O3
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2011.04798.x
– volume: 71
  start-page: 999
  year: 1986
  ident: ref_20
  article-title: Order-disorder phenomena in MgAl2O4 spinel
  publication-title: Am. Mineral.
– volume: 3
  start-page: 1133
  year: 2013
  ident: ref_6
  article-title: Comparative investigation of benzene steam reforming over spinel supported Rh and Ir catalysts
  publication-title: ACS Catal.
  doi: 10.1021/cs4000427
– volume: 99
  start-page: 1
  year: 2016
  ident: ref_11
  article-title: On the effect of lithium on the energetics and thermal stability of nano-sized nonstoichiometric magnesium aluminate spinel
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.14244
– volume: 76
  start-page: 743
  year: 1993
  ident: ref_1
  article-title: Microstructure and electrical properties of MgAl2O4 thin films for humidity sensing
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1993.tb03669.x
– volume: 92
  start-page: 1472
  year: 2009
  ident: ref_15
  article-title: A review on the sintering and microstructure development of transparent spinel (MgAl2O4)
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2009.03108.x
– volume: 4
  start-page: 1
  year: 2013
  ident: ref_7
  article-title: Stable platinum nanoparticles on specific MgAl2O4 spinel facets at high temperatures in oxidizing atmospheres
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3481
– volume: 78
  start-page: 219
  year: 1994
  ident: ref_34
  article-title: An in situ XPS study of sputter-deposited aluminium thin films on graphite
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/0169-4332(94)90009-4
– volume: 87
  start-page: 1
  year: 2005
  ident: ref_30
  article-title: Direct measurements of water adsorption enthalpy on hafnia and zirconia
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2108113
– volume: 7
  start-page: 11194
  year: 2019
  ident: ref_33
  article-title: Hierarchical bulk nanoporous aluminum for on-site generation of hydrogen by hydrolysis in pure water and combustion of solid fuels
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b00481
– volume: 45
  start-page: 280
  year: 2013
  ident: ref_36
  article-title: Hydrogen sorption properties of a MgH2–V2O5 composite prepared by ball milling
  publication-title: Bulg. Chem. Commun.
– ident: ref_27
  doi: 10.1021/acs.jpcc.0c02440
– volume: 120
  start-page: 19087
  year: 2016
  ident: ref_43
  article-title: First-principles hermodynamics study of spinel MgAl2O4 surface stability
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b02998
– volume: 434
  start-page: 107
  year: 2005
  ident: ref_39
  article-title: Adsorption calorimetry in supported catalyst characterization: Adsorption structure sensitivity on Pt/γ-Al2O3
  publication-title: Thermochim. Acta
  doi: 10.1016/j.tca.2005.01.058
– volume: 2008
  start-page: 127328
  year: 2008
  ident: ref_40
  article-title: Determination of differential enthalpy and isotherm by adsorption calorimetry
  publication-title: Res. Lett. Phys. Chem.
SSID ssj0000331829
Score 2.4014585
Snippet MgAl2O4 is used in humidity sensing and measurement, and as a catalyst or catalyst support in a wide variety of applications. For such applications, a detailed...
MgAl 2 O 4 is used in humidity sensing and measurement, and as a catalyst or catalyst support in a wide variety of applications. For such applications, a...
SourceID pubmedcentral
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 3195
SubjectTerms Adsorbed water
Adsorption
Aluminum oxide
Catalysts
Composition effects
Defects
Electric fields
Heat treatment
Magnesium
Magnesium aluminate
Nitrates
Photoelectrons
Software
Spectrum analysis
Spinel
Stoichiometry
Surface chemistry
Surface properties
Water vapor
Title Effect of Structure and Composition of Non-Stoichiometry Magnesium Aluminate Spinel on Water Adsorption
URI https://www.proquest.com/docview/2426018557
https://www.proquest.com/docview/2427298928
https://pubmed.ncbi.nlm.nih.gov/PMC7412034
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxEB4VuMChaguIAI1clQsHi7XX-_CpSqsEVIkIERC5rdYviAS7aR4H_n3HG-clVT1a9q4lj_3NN358A3DhIuFMnFkqkiShwjlGFcY71CJgYvQRpUr718i3_fTmUfweJsOw4TYN1yqXmNgAtam13yO_8q4kQueSZD_Gf6jPGuVPV0MKjR3YQwjOMfja-9nt392vdlmiGOcslwtd0hjj-6u3ksXIEZhPKLHpidb0cvty5Ia36X2Cj4Emks7Crp_hg62-wMGGeOAhPC-Eh0ntyKARgZ1PLCkrQ_wSD1exfGW_ruhgVo_0i39pP5u8k9vyGQFuNH8jHYSmUYV0kwzG-OdXgp88YXFCOmZaTxo4OYLHXvfh1w0NaROoFkLOqDZaYVSoVapyJ6ViskxjVWZMIVtR0iKnMSpjXAt0X5yrKDcylS4RiDU8LmV8DLtVXdkTIKnTeeLQ6RtrRMpVGSVGOme4ZNpkOWvB5XIICx00xX1qi9cCYws_3MV6uFvwfdV2vFDS-Ger86UlirCapsXa9i34tqrGdeAPN8rK1vOmTebV5HnegmzLgqvevJL2dk01emkUtZFW8SgWp__v_Az2uY-2G1nNc9hF29qvSElmqg07ee-6HWYflq6H7C8tjObO
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V5QAcUHmJLaUYAQcOURPHefiAqhWwbGl3L9uK3kL8aldqk-0-hPqn-hs7k8c-JMStx2icWPLMfDMT298AfHK-cCZMrCeiKPKEc4GnsN7xLAImVh9-rDTdRh4M4_6Z-HUenW_BXXsXho5VtphYAbUpNf0jP6BQ4mNwiZLDyY1HXaNod7VtoVGbxbG9_Ysl2-zr0XfU72fOez9Ov_W9pquAp4WQc08brbBo0ipWqZNSBTKPQ5UngcJgrqTFkG9UEnAtEN05V35qZCxdJNAVeZgT-RJC_iMRhpI8Ku39XP7T8UP0EC5rFlSU-wfXeRBiRhJQ-4r1uLdKZjePYq7Ftt4OPGuSUtatreg5bNniBTxdoyp8CRc1zTErHRtVlLOLqWV5YRgBSnPwi4TDsvBG83KsL-le_3x6ywb5BcLpeHHNugiE4wKTWzaa4JevGL7yGx-nrGtm5bQCr1dw9iDL-Rq2i7Kwb4DFTqeRwxTDWCNirnI_MtI5w2WgTZIGHfjSLmGmGwZzaqRxlWElQ8udrZa7Ax-XYyc1b8c_R-21msga351lK0vrwIelGL2OtlLywpaLakxC3PU87UCyocHlbMTbvSkpxpcVfzcmcdwPxe7_J38Pj_ung5Ps5Gh4_BaecKrzK0LPPdhGPdt3mAzN1X5lgQz-PLTJ3wONCB-I
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB5VWwnBA6IcYqFQI-CBB6uO4xx-QGh7rFpKVxVLRd_S-GpXapNlD6H-NX4d4xx7SIi3PkZ2Yskz881MPP4G4INjwpkwsVREUUSFcwFVmO9Qi4CJ2QeLlfa3kU8H8dG5-HoRXWzAn_YujC-rbDGxAmpTav-PfNe7EobOBRN415RFnB30v4x_Ud9Byp-0tu00ahU5sXe_MX2bfj4-QFl_5Lx_-GP_iDYdBqgWQs6oNlphAqVVrFInpQpkHocqTwKFjl1Ji-7fqCTgWiDSc65YamQsXSTQLHmYeyImhP_NBLMi1oHNvcPB2ffFHx4Wor1wWXOihqFku7d5EGJ8EvhmFqtecBnarhdmrni6_hN43ISopFfr1BZs2OIpPFohLnwGVzXpMSkdGVYEtPOJJXlhiIeXpgzMDw7Kgg5n5Uhf-1v-s8kdOc2vEFxH81vSQ1gcFRjqkuEYv3xD8JWf-DghPTMtJxWUPYfze9nQF9ApysK-BBI7nUYOAw5jjYi5yllkpHOGy0CbJA268Kndwkw3fOa-rcZNhnmN3-5sud1deL-YO65ZPP45a7uVRNZY8jRb6l0X3i2G0Qb9wUpe2HJezUk8kz1Pu5CsSXCxmmfxXh8pRtcVmzeGdJyF4tX_F9-BB6ju2bfjwclreMh90l-xe25DB8Vs32BkNFNvGxUkcHnfWv8XaQslGg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Structure+and+Composition+of+Non-Stoichiometry+Magnesium+Aluminate+Spinel+on+Water+Adsorption&rft.jtitle=Materials&rft.au=Mordekovitz%2C+Yuval&rft.au=Shoval%2C+Yael&rft.au=Froumin%2C+Natali&rft.au=Hayun%2C+Shmuel&rft.date=2020-07-17&rft.pub=MDPI&rft.eissn=1996-1944&rft.volume=13&rft.issue=14&rft_id=info:doi/10.3390%2Fma13143195&rft_id=info%3Apmid%2F32708955&rft.externalDocID=PMC7412034
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon