A 20-channel magnetoencephalography system based on optically pumped magnetometers

We describe a multichannel magnetoencephalography (MEG) system that uses optically pumped magnetometers (OPMs) to sense the magnetic fields of the human brain. The system consists of an array of 20 OPM channels conforming to the human subject's head, a person-sized magnetic shield containing th...

Full description

Saved in:
Bibliographic Details
Published inPhysics in medicine & biology Vol. 62; no. 23; pp. 8909 - 8923
Main Authors Borna, Amir, Carter, Tony R, Goldberg, Josh D, Colombo, Anthony P, Jau, Yuan-Yu, Berry, Christopher, McKay, Jim, Stephen, Julia, Weisend, Michael, Schwindt, Peter D D
Format Journal Article
LanguageEnglish
Published England IOP Publishing 10.11.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We describe a multichannel magnetoencephalography (MEG) system that uses optically pumped magnetometers (OPMs) to sense the magnetic fields of the human brain. The system consists of an array of 20 OPM channels conforming to the human subject's head, a person-sized magnetic shield containing the array and the human subject, a laser system to drive the OPM array, and various control and data acquisition systems. We conducted two MEG experiments: auditory evoked magnetic field and somatosensory evoked magnetic field, on three healthy male subjects, using both our OPM array and a 306-channel Elekta-Neuromag superconducting quantum interference device (SQUID) MEG system. The described OPM array measures the tangential components of the magnetic field as opposed to the radial component measured by most SQUID-based MEG systems. Herein, we compare the results of the OPM- and SQUID-based MEG systems on the auditory and somatosensory data recorded in the same individuals on both systems.
AbstractList We describe a multichannel magnetoencephalography (MEG) system that uses optically pumped magnetometers (OPMs) to sense the magnetic fields of the human brain. The system consists of an array of 20 OPM channels conforming to the human subject’s head, a person-sized magnetic shield containing the array and the human subject, a laser system to drive the OPM array, and various control and data acquisitions systems. We conducted two MEG experiments: auditory evoked magnetic field (AEF) and somatosensory evoked magnetic field (SEF), on three healthy male subjects, using both our OPM array and a 306-channel Elekta-Neuromag superconducting quantum interference device (SQUID) MEG system. The described OPM array measures the tangential components of the magnetic field as opposed to the radial component measured by most SQUID-based MEG systems. Herein, we compare the results of the OPM- and SQUID-based MEG systems on the auditory and somatosensory data recorded in the same individuals on both systems.
We describe a multichannel magnetoencephalography (MEG) system that uses optically pumped magnetometers (OPMs) to sense the magnetic fields of the human brain. The system consists of an array of 20 OPM channels conforming to the human subject's head, a person-sized magnetic shield containing the array and the human subject, a laser system to drive the OPM array, and various control and data acquisition systems. We conducted two MEG experiments: auditory evoked magnetic field and somatosensory evoked magnetic field, on three healthy male subjects, using both our OPM array and a 306-channel Elekta-Neuromag superconducting quantum interference device (SQUID) MEG system. The described OPM array measures the tangential components of the magnetic field as opposed to the radial component measured by most SQUID-based MEG systems. Herein, we compare the results of the OPM- and SQUID-based MEG systems on the auditory and somatosensory data recorded in the same individuals on both systems.
In this paper, we describe a multichannel magnetoencephalography (MEG) system that uses optically pumped magnetometers (OPMs) to sense the magnetic fields of the human brain. The system consists of an array of 20 OPM channels conforming to the human subject's head, a person-sized magnetic shield containing the array and the human subject, a laser system to drive the OPM array, and various control and data acquisition systems. We conducted two MEG experiments: auditory evoked magnetic field and somatosensory evoked magnetic field, on three healthy male subjects, using both our OPM array and a 306-channel Elekta-Neuromag superconducting quantum interference device (SQUID) MEG system. The described OPM array measures the tangential components of the magnetic field as opposed to the radial component measured by most SQUID-based MEG systems. Finally, herein, we compare the results of the OPM- and SQUID-based MEG systems on the auditory and somatosensory data recorded in the same individuals on both systems.
We describe a multichannel magnetoencephalography (MEG) system that uses optically pumped magnetometers (OPMs) to sense the magnetic fields of the human brain. The system consists of an array of 20 OPM channels conforming to the human subject's head, a person-sized magnetic shield containing the array and the human subject, a laser system to drive the OPM array, and various control and data acquisition systems. We conducted two MEG experiments: auditory evoked magnetic field and somatosensory evoked magnetic field, on three healthy male subjects, using both our OPM array and a 306-channel Elekta-Neuromag superconducting quantum interference device (SQUID) MEG system. The described OPM array measures the tangential components of the magnetic field as opposed to the radial component measured by most SQUID-based MEG systems. Herein, we compare the results of the OPM- and SQUID-based MEG systems on the auditory and somatosensory data recorded in the same individuals on both systems.We describe a multichannel magnetoencephalography (MEG) system that uses optically pumped magnetometers (OPMs) to sense the magnetic fields of the human brain. The system consists of an array of 20 OPM channels conforming to the human subject's head, a person-sized magnetic shield containing the array and the human subject, a laser system to drive the OPM array, and various control and data acquisition systems. We conducted two MEG experiments: auditory evoked magnetic field and somatosensory evoked magnetic field, on three healthy male subjects, using both our OPM array and a 306-channel Elekta-Neuromag superconducting quantum interference device (SQUID) MEG system. The described OPM array measures the tangential components of the magnetic field as opposed to the radial component measured by most SQUID-based MEG systems. Herein, we compare the results of the OPM- and SQUID-based MEG systems on the auditory and somatosensory data recorded in the same individuals on both systems.
Author Colombo, Anthony P
Berry, Christopher
McKay, Jim
Schwindt, Peter D D
Jau, Yuan-Yu
Goldberg, Josh D
Stephen, Julia
Carter, Tony R
Weisend, Michael
Borna, Amir
AuthorAffiliation 6 Rio Grande Neurosciences, Inc., 6401 Richards Avenue, Santa Fe, NM 87508
3 Currently with the Infinera Corporation,140 Caspian Ct., Sunnyvale, CA 94089
5 The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM 87106
1 Sandia National Laboratories, PO Box 5800, Albuquerque, NM 87185-1082, USA
7 Department of Neurosurgery, University of New Mexico, Albuquerque, NM 87131
2 Aegis Technologies Group Inc, Albuquerque, NM 87110
4 Candoo Systems Inc., 2991 Thacker Avenue, Coquitlam BC Canada V3C 4N6
AuthorAffiliation_xml – name: 2 Aegis Technologies Group Inc, Albuquerque, NM 87110
– name: 7 Department of Neurosurgery, University of New Mexico, Albuquerque, NM 87131
– name: 1 Sandia National Laboratories, PO Box 5800, Albuquerque, NM 87185-1082, USA
– name: 5 The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM 87106
– name: 3 Currently with the Infinera Corporation,140 Caspian Ct., Sunnyvale, CA 94089
– name: 4 Candoo Systems Inc., 2991 Thacker Avenue, Coquitlam BC Canada V3C 4N6
– name: 6 Rio Grande Neurosciences, Inc., 6401 Richards Avenue, Santa Fe, NM 87508
Author_xml – sequence: 1
  givenname: Amir
  surname: Borna
  fullname: Borna, Amir
  email: aborna@sandia.gov
  organization: Sandia National Laboratories , PO Box 5800, Albuquerque, NM 87185-1082, United States of America
– sequence: 2
  givenname: Tony R
  surname: Carter
  fullname: Carter, Tony R
  organization: Sandia National Laboratories , PO Box 5800, Albuquerque, NM 87185-1082, United States of America
– sequence: 3
  givenname: Josh D
  surname: Goldberg
  fullname: Goldberg, Josh D
  organization: Aegis Technologies Group Inc , Albuquerque, NM 87110, United States of America
– sequence: 4
  givenname: Anthony P
  surname: Colombo
  fullname: Colombo, Anthony P
  organization: Sandia National Laboratories , PO Box 5800, Albuquerque, NM 87185-1082, United States of America
– sequence: 5
  givenname: Yuan-Yu
  surname: Jau
  fullname: Jau, Yuan-Yu
  organization: Sandia National Laboratories , PO Box 5800, Albuquerque, NM 87185-1082, United States of America
– sequence: 6
  givenname: Christopher
  surname: Berry
  fullname: Berry, Christopher
  organization: Currently with the Infinera Corporation , 140 Caspian Ct., Sunnyvale, CA 94089, United States of America
– sequence: 7
  givenname: Jim
  surname: McKay
  fullname: McKay, Jim
  organization: Candoo Systems Inc. , 2991 Thacker Avenue, Coquitlam, BC V3C 4N6, Canada
– sequence: 8
  givenname: Julia
  surname: Stephen
  fullname: Stephen, Julia
  organization: The Mind Research Network and Lovelace Biomedical and Environmental Research Institute , Albuquerque, NM 87106, United States of America
– sequence: 9
  givenname: Michael
  surname: Weisend
  fullname: Weisend, Michael
  organization: University of New Mexico Department of Neurosurgery, Albuquerque, NM 87131, United States of America
– sequence: 10
  givenname: Peter D D
  surname: Schwindt
  fullname: Schwindt, Peter D D
  organization: Sandia National Laboratories , PO Box 5800, Albuquerque, NM 87185-1082, United States of America
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29035875$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1429765$$D View this record in Osti.gov
BookMark eNp9Ud9r1TAYDTJxd9N3n6T4IHuwLj-atHkZjOFUGAiizx9pkt5mtEltUuH-96b0bqjIngJfzjnf-c45Qyc-eIvQa4I_ENw0l4QJUgou8KVSkhnyDO0eRydohzEjpSScn6KzGO8xJqSh1Qt0SiVmvKn5Dn27Liguda-8t0Mxqr23KViv7dSrIexnNfWHIh5ismPRqmhNEXwRpuS0GoZDMS3jlGdH3miTneNL9LxTQ7Svju85-nH78fvN5_Lu66cvN9d3pa4qmUrdUl7VUti6oayxbVMRyTomcNe0raCGtspQXMt8p66VkVgYLgw2llPeGsnYObradKelHa3R1qdZDTDNblTzAYJy8PePdz3swy_gjcSc8CzwdhMIMTmI2iWrex1yEjoBqaisxQq6OG6Zw8_FxgSji9oOg_I2LBGI5JRgTEWdoW_-NPTo5CHtDBAbQM8hxtl2kHeq5MLqzw1AMKy1wtohrB3CVmsm4n-ID9pPUN5vFBcmuA_L7HMXT8Hf_Qc-jS0ICpRBjkzCZDr2G4GbwDQ
CODEN PHMBA7
CitedBy_id crossref_primary_10_1063_5_0050371
crossref_primary_10_1109_TIM_2023_3244249
crossref_primary_10_1111_epi_17806
crossref_primary_10_1109_TIM_2018_2851458
crossref_primary_10_7554_eLife_94561
crossref_primary_10_1103_PhysRevApplied_20_024001
crossref_primary_10_1088_1361_6560_ace306
crossref_primary_10_1108_COMPEL_09_2018_0372
crossref_primary_10_1364_OL_465832
crossref_primary_10_14326_abe_9_217
crossref_primary_10_1109_JSEN_2022_3156814
crossref_primary_10_1002_mop_33497
crossref_primary_10_1371_journal_pone_0312589
crossref_primary_10_3389_fphy_2023_1212368
crossref_primary_10_1016_j_neuroimage_2022_119084
crossref_primary_10_1016_j_measurement_2024_115149
crossref_primary_10_1103_PhysRevApplied_18_014036
crossref_primary_10_1109_TBME_2019_2938688
crossref_primary_10_1016_j_neuroimage_2019_05_063
crossref_primary_10_1103_PhysRevApplied_11_034040
crossref_primary_10_1016_j_neuroimage_2021_118604
crossref_primary_10_3390_s21165675
crossref_primary_10_1038_s41598_024_69829_y
crossref_primary_10_1088_1367_2630_acb840
crossref_primary_10_1162_imag_a_00495
crossref_primary_10_1103_PhysRevApplied_14_064067
crossref_primary_10_1364_OL_45_000105
crossref_primary_10_1038_s41598_022_21870_5
crossref_primary_10_1016_j_neuroimage_2022_119420
crossref_primary_10_3389_fnins_2018_00909
crossref_primary_10_1016_j_sna_2021_113195
crossref_primary_10_1088_1741_2552_acfcd9
crossref_primary_10_1109_TIM_2023_3265089
crossref_primary_10_1016_j_neuroimage_2020_116995
crossref_primary_10_1098_rstb_2019_0633
crossref_primary_10_1116_5_0025186
crossref_primary_10_1002_qute_202400226
crossref_primary_10_1016_j_jmr_2024_107634
crossref_primary_10_1016_j_sna_2024_115456
crossref_primary_10_1016_j_jmmm_2018_10_067
crossref_primary_10_1016_j_neuroimage_2019_116099
crossref_primary_10_1063_5_0186023
crossref_primary_10_1038_nature26147
crossref_primary_10_1088_1361_6560_adc0df
crossref_primary_10_1140_epjqt_s40507_020_00086_4
crossref_primary_10_1093_cercor_bhad173
crossref_primary_10_1016_j_sna_2023_114591
crossref_primary_10_1016_j_physrep_2021_03_002
crossref_primary_10_1016_j_neuroimage_2021_118818
crossref_primary_10_1016_j_clinph_2020_03_041
crossref_primary_10_1016_j_neuroimage_2021_117969
crossref_primary_10_1109_JSEN_2023_3270325
crossref_primary_10_1109_TIM_2023_3265750
crossref_primary_10_1364_OE_420031
crossref_primary_10_1364_OE_447456
crossref_primary_10_3389_fnins_2021_619591
crossref_primary_10_3389_fnins_2023_1190310
crossref_primary_10_1109_TIM_2023_3311064
crossref_primary_10_1364_OE_450571
crossref_primary_10_1016_j_neuroimage_2021_118025
crossref_primary_10_1038_s41598_018_34535_z
crossref_primary_10_1007_s13320_019_0539_8
crossref_primary_10_3788_COL202523_021201
crossref_primary_10_1103_PhysRevA_105_043109
crossref_primary_10_1063_1_5066250
crossref_primary_10_3390_s23031092
crossref_primary_10_1016_j_neuroimage_2023_120157
crossref_primary_10_1016_j_neuroimage_2019_03_022
crossref_primary_10_1103_PhysRevApplied_20_024042
crossref_primary_10_1103_PhysRevA_105_063509
crossref_primary_10_1002_hbm_25582
crossref_primary_10_1080_00107514_2023_2182950
crossref_primary_10_1088_1748_0221_16_06_P06001
crossref_primary_10_1109_TIM_2022_3188525
crossref_primary_10_1134_S1063785020090126
crossref_primary_10_1364_BOE_474862
crossref_primary_10_1088_2058_9565_ad3d81
crossref_primary_10_1109_TIM_2023_3341108
crossref_primary_10_1016_j_clinph_2018_03_042
crossref_primary_10_1016_j_neuroimage_2020_117497
crossref_primary_10_3390_s22031021
crossref_primary_10_1063_5_0062791
crossref_primary_10_1016_j_neuroimage_2020_116686
crossref_primary_10_1103_PhysRevApplied_22_054033
crossref_primary_10_31083_j_jin2305093
crossref_primary_10_3390_s23094256
crossref_primary_10_1162_imag_a_00179
crossref_primary_10_3788_CJL240503
crossref_primary_10_3389_fnins_2022_984036
crossref_primary_10_1103_PhysRevApplied_16_014045
crossref_primary_10_48084_etasr_6954
crossref_primary_10_1016_j_ijleo_2020_165510
crossref_primary_10_3390_bios12121098
crossref_primary_10_1109_JSEN_2021_3075445
crossref_primary_10_1016_j_neuroimage_2018_07_028
crossref_primary_10_1038_s41598_023_49347_z
crossref_primary_10_3390_s22083059
crossref_primary_10_3389_fnins_2018_00273
crossref_primary_10_1016_j_bios_2025_117321
crossref_primary_10_1109_TIM_2022_3192287
crossref_primary_10_1016_j_neuroimage_2019_06_010
crossref_primary_10_1109_TIM_2023_3331425
crossref_primary_10_1109_JSEN_2024_3521412
crossref_primary_10_1002_hbm_24795
crossref_primary_10_1103_PhysRevA_99_013420
crossref_primary_10_1016_j_neuroimage_2020_116817
crossref_primary_10_1161_JAHA_119_013436
crossref_primary_10_1038_s41598_019_50697_w
crossref_primary_10_1364_OE_517961
crossref_primary_10_7554_eLife_94561_3
crossref_primary_10_1109_TMI_2023_3263167
crossref_primary_10_1111_nyas_14890
crossref_primary_10_3390_jcm12093078
crossref_primary_10_1364_OE_27_033027
crossref_primary_10_1371_journal_pone_0227684
crossref_primary_10_3390_s24113503
crossref_primary_10_1109_TBME_2024_3465654
crossref_primary_10_1088_1361_6560_accc06
crossref_primary_10_3389_fphy_2022_969129
crossref_primary_10_1016_j_jneumeth_2020_108948
Cites_doi 10.1103/RevModPhys.65.413
10.1119/1.17629
10.1063/1.2709532
10.1016/j.neuroimage.2017.01.034
10.1063/1.3698152
10.1063/1.2392722
10.1063/1.4770361
10.1016/S0304-3940(02)01294-6
10.1016/S1388-2457(99)00141-8
10.1364/BOE.3.000981
10.1016/j.neuroimage.2013.10.040
10.1155/2011/156869
10.1016/0306-4522(89)90299-6
10.1103/PhysRevA.80.013416
10.1109/10.841330
10.1016/S0168-5597(98)00006-9
10.1088/0031-9155/58/17/6065
10.1103/PhysRevA.5.968
10.1063/1.1141016
10.1109/TMAG.1970.1066714
10.1088/0031-9155/58/22/8153
10.1364/OE.25.007849
10.1126/science.161.3843.784
10.1063/1.4880097
10.1109/TBME.2007.894968
10.1371/journal.pone.0157655
10.1016/j.neuroimage.2016.12.048
10.1063/1.4962020
10.1364/OE.24.015403
10.1038/nature01484
10.1109/FREQ.2009.5168385
10.1063/1.2370597
ContentType Journal Article
Copyright 2017 Institute of Physics and Engineering in Medicine
Copyright_xml – notice: 2017 Institute of Physics and Engineering in Medicine
CorporateAuthor Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
CorporateAuthor_xml – name: Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
OIOZB
OTOTI
5PM
DOI 10.1088/1361-6560/aa93d1
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
Physics
DocumentTitleAlternate A 20-channel magnetoencephalography system based on optically pumped magnetometers
EISSN 1361-6560
EndPage 8923
ExternalDocumentID PMC5890515
1429765
29035875
10_1088_1361_6560_aa93d1
pmbaa93d1
Genre Journal Article
GrantInformation_xml – fundername: Laboratory Directed Research and Development
  grantid: DE-AC04-94AL85000
  funderid: https://doi.org/10.13039/100007000
– fundername: National Institute of Biomedical Imaging and Bioengineering
  grantid: R01EB013302
  funderid: https://doi.org/10.13039/100000070
– fundername: NIBIB NIH HHS
  grantid: R56 EB013302
– fundername: NIBIB NIH HHS
  grantid: R01 EB013302
GroupedDBID ---
-DZ
-~X
123
1JI
4.4
5B3
5RE
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABCXL
ABHWH
ABJNI
ABLJU
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
NT-
NT.
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TN5
UCJ
W28
XPP
AAYXX
ADEQX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AEINN
AAPBV
ABPTK
KNG
OIOZB
OTOTI
RW3
ZA5
5PM
ID FETCH-LOGICAL-c449t-cb254796e78238eb84193f360f8bb62d2bad2079088c7ad906d56d0de525bd933
IEDL.DBID IOP
ISSN 0031-9155
1361-6560
IngestDate Thu Aug 21 17:58:49 EDT 2025
Mon Jul 03 03:58:30 EDT 2023
Tue Aug 05 11:13:11 EDT 2025
Thu Jan 02 23:02:33 EST 2025
Tue Jul 01 00:25:18 EDT 2025
Thu Apr 24 22:59:41 EDT 2025
Wed Aug 21 03:40:41 EDT 2024
Thu Jan 07 13:50:37 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c449t-cb254796e78238eb84193f360f8bb62d2bad2079088c7ad906d56d0de525bd933
Notes Institute of Physics and Engineering in Medicine
PMB-105698.R2
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
National Inst. of Health (NIH) (United States)
NA0003525; R01EB013302
USDOE National Nuclear Security Administration (NNSA)
SAND2017-4181J
OpenAccessLink https://www.osti.gov/servlets/purl/1429765
PMID 29035875
PQID 1952100267
PQPubID 23479
PageCount 15
ParticipantIDs iop_journals_10_1088_1361_6560_aa93d1
proquest_miscellaneous_1952100267
pubmed_primary_29035875
crossref_citationtrail_10_1088_1361_6560_aa93d1
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5890515
osti_scitechconnect_1429765
crossref_primary_10_1088_1361_6560_aa93d1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-11-10
PublicationDateYYYYMMDD 2017-11-10
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-10
  day: 10
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: United States
PublicationTitle Physics in medicine & biology
PublicationTitleAbbrev PMB
PublicationTitleAlternate Phys. Med. Biol
PublicationYear 2017
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Kameda K (13) 2015; 54
22
23
24
25
26
28
29
Johnson C N (12) 2013; 58
30
31
10
32
11
33
14
15
16
17
18
19
1
2
3
4
5
6
Shah V K (27) 2013; 58
7
8
9
20
21
References_xml – ident: 9
  doi: 10.1103/RevModPhys.65.413
– ident: 25
  doi: 10.1119/1.17629
– ident: 24
  doi: 10.1063/1.2709532
– ident: 3
  doi: 10.1016/j.neuroimage.2017.01.034
– ident: 18
  doi: 10.1063/1.3698152
– ident: 32
  doi: 10.1063/1.2392722
– ident: 17
  doi: 10.1063/1.4770361
– ident: 33
  doi: 10.1016/S0304-3940(02)01294-6
– ident: 21
  doi: 10.1016/S1388-2457(99)00141-8
– ident: 23
  doi: 10.1364/BOE.3.000981
– ident: 14
  doi: 10.1016/j.neuroimage.2013.10.040
– ident: 20
  doi: 10.1155/2011/156869
– ident: 29
  doi: 10.1016/0306-4522(89)90299-6
– ident: 26
  doi: 10.1103/PhysRevA.80.013416
– ident: 30
  doi: 10.1109/10.841330
– ident: 31
  doi: 10.1016/S0168-5597(98)00006-9
– volume: 58
  start-page: 6065
  issn: 0031-9155
  year: 2013
  ident: 12
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/58/17/6065
– ident: 5
  doi: 10.1103/PhysRevA.5.968
– volume: 54
  issn: 0021-4922
  year: 2015
  ident: 13
  publication-title: Japan. J. Appl. Phys.
– ident: 28
  doi: 10.1063/1.1141016
– ident: 16
  doi: 10.1109/TMAG.1970.1066714
– volume: 58
  start-page: 8153
  issn: 0031-9155
  year: 2013
  ident: 27
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/58/22/8153
– ident: 1
  doi: 10.1364/OE.25.007849
– ident: 4
  doi: 10.1126/science.161.3843.784
– ident: 7
  doi: 10.1063/1.4880097
– ident: 8
  doi: 10.1109/TBME.2007.894968
– ident: 2
  doi: 10.1371/journal.pone.0157655
– ident: 11
  doi: 10.1016/j.neuroimage.2016.12.048
– ident: 19
  doi: 10.1063/1.4962020
– ident: 6
  doi: 10.1364/OE.24.015403
– ident: 15
  doi: 10.1038/nature01484
– ident: 22
  doi: 10.1109/FREQ.2009.5168385
– ident: 10
  doi: 10.1063/1.2370597
SSID ssj0011824
Score 2.5814161
Snippet We describe a multichannel magnetoencephalography (MEG) system that uses optically pumped magnetometers (OPMs) to sense the magnetic fields of the human brain....
In this paper, we describe a multichannel magnetoencephalography (MEG) system that uses optically pumped magnetometers (OPMs) to sense the magnetic fields of...
SourceID pubmedcentral
osti
proquest
pubmed
crossref
iop
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8909
SubjectTerms 60 APPLIED LIFE SCIENCES
Adult
auditory evoked magnetic field (AEF)
Brain - physiology
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
diffractive optical element (DOE)
Humans
Magnetic Fields
magnetoencephalography
Magnetoencephalography - instrumentation
Magnetometry - instrumentation
Male
Optical Phenomena
optically pumped magnetometer (OPM)
OTHER INSTRUMENTATION
somatosensory evoked magnetic field (SEF)
spin-exchange relaxation-free (SERF)
superconducting quantum interference device (SQUID)
Title A 20-channel magnetoencephalography system based on optically pumped magnetometers
URI https://iopscience.iop.org/article/10.1088/1361-6560/aa93d1
https://www.ncbi.nlm.nih.gov/pubmed/29035875
https://www.proquest.com/docview/1952100267
https://www.osti.gov/servlets/purl/1429765
https://pubmed.ncbi.nlm.nih.gov/PMC5890515
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIhAXHuUVyiNIcOCQ3WwcO7Y4VYiqQiogRKUekCy_QhG7ScRmD-XXMxNnV2xVVYhb5Izj2B5nvsmMPwO8Ko1wrlI-I_OWlcKZzHIvMrRFxheVK-tAEd3jj-LopPxwyk934O1mL0zbjZ_-CV5GouA4hGNCnJzOmJhlxBkzNUYxj67PdSbRcNLuvU-fNyEEBM6RgpnNMiJBH2OUlz1hyyZdw3bx-9ziCrsMdV5MnvzLGh3egW_rfsQklJ-TVW8n7vcFisf_7OhduD2i1PQgit6DndDswY14buX5Htw8HiPyWDikkLrlffhykKKPSBuJmzBPF-Z7E_qWWu7OzJoYO43E0SnZTp-2Tdp2w7_0-XnaoV5h2VhvQVk6ywdwcvj-67ujbDyxIXNlqfrMWfQ3KyUC4g4mg5Ul4sOaibyW1orCFxYVIK8ot8pVxqtceC587gMvuPWKsYew27RNeAyp8qgydcVLVlelkN7wwqKrqJg0UtS5SmC6njPtRjpzOlVjroewupSahk_T8Ok4fAm82dToIpXHFbKvcVb0uJ6XV8i92JLrFlaLQhdMS5Ur3fk6gX1SJY2TTay8jtKXXI8eV4FAkCfwcq1hGtc1BWtME9oVtqgQWJGHXCXwKGrc5q0LlTOOjmYC1ZYubgSIM3z7TvPjbOAO55II2fiTf-zfPtwqCMcMeY9PYbf_tQrPEIX19vmw2v4ApxEonQ
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKERUXHuUVCjRI9MAhu1knduwDh4qyaiktFaJSb65foVV3k4jNCi1_ir_CT2Imya7Yqqq49MAtSmzFjxnPjOfzZ0LepJpbm0kXoXmLUm51ZJjjEdgi7Whm09xjRvfgkO8epx9P2MkK-bU4C1NW3dLfg8eWKLgdwg4QJ_qDhA8i5Izpay0TN-hXLu9Qlft-9gNitsm7vR2Y4C1Khx--vt-NumsFIpumso6sgaAok9yDcUyENyIFJyZPeJwLYzh11EAr4wwBQDbTTsbcMe5i5xllxkncAYU1_zZLwFbjicHPR4u0BTjrLe1zMoiQeL3Li17V6iU7eAv6CjahBK2-ytO9DNj8ywIO75Pf87FrgS8XvWltevbnJVrJ_2hwH5B7nTcebrfNe0hWfLFO7rT3c87WydpBhzyAlw1U1k4ekS_bIcTCeGC68KNwrL8Vvi6xt9WZnhOAhy1Bdog-ggvLIiyrJmcwmoUV6A-86-qNEY00eUyOb6SXT8hqURb-GQmlA9XIM5YmeZZy4TSjBkJimQgteB7LgPTncqJsR9uOt4eMVAMfEELhlCmcMtVOWUDeLmpULWXJNWW3QBJUt25Nrim3uVSuGhvFqaKJEjKWCoQkIBsovgoEDNmHLcK0bA2RJQWHlwXk9VyqFaxfmJTShS-n8EcJDiTuBGQBedpK-aLVVMYJg4A6INmS_C8KIDf68pfi_KzhSGcCiefY83_s3yZZO9oZqk97h_sb5C5F162Ber4gq_X3qX8JjmdtXjXKHpLTm1aAP5_bhwc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+20-channel+magnetoencephalography+system+based+on+optically+pumped+magnetometers&rft.jtitle=Physics+in+medicine+%26+biology&rft.au=Borna%2C+Amir&rft.au=Carter%2C+Tony+R&rft.au=Goldberg%2C+Josh+D&rft.au=Colombo%2C+Anthony+P&rft.date=2017-11-10&rft.eissn=1361-6560&rft.volume=62&rft.issue=23&rft.spage=8909&rft_id=info:doi/10.1088%2F1361-6560%2Faa93d1&rft_id=info%3Apmid%2F29035875&rft.externalDocID=29035875
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9155&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9155&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9155&client=summon