Optimizing global liver function in radiation therapy treatment planning

Liver stereotactic body radiation therapy (SBRT) patients differ in both pre-treatment liver function (e.g. due to degree of cirrhosis and/or prior treatment) and radiosensitivity, leading to high variability in potential liver toxicity with similar doses. This work investigates three treatment plan...

Full description

Saved in:
Bibliographic Details
Published inPhysics in medicine & biology Vol. 61; no. 17; pp. 6465 - 6484
Main Authors Wu, Victor W, Epelman, Marina A, Wang, Hesheng, Edwin Romeijn, H, Feng, Mary, Cao, Yue, Ten Haken, Randall K, Matuszak, Martha M
Format Journal Article
LanguageEnglish
Published England IOP Publishing 07.09.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Liver stereotactic body radiation therapy (SBRT) patients differ in both pre-treatment liver function (e.g. due to degree of cirrhosis and/or prior treatment) and radiosensitivity, leading to high variability in potential liver toxicity with similar doses. This work investigates three treatment planning optimization models that minimize risk of toxicity: two consider both voxel-based pre-treatment liver function and local-function-based radiosensitivity with dose; one considers only dose. Each model optimizes different objective functions (varying in complexity of capturing the influence of dose on liver function) subject to the same dose constraints and are tested on 2D synthesized and 3D clinical cases. The normal-liver-based objective functions are the linearized equivalent uniform dose ( EUD) (conventional ' EUD model'), the so-called perfusion-weighted EUD (fEUD) (proposed 'fEUD model'), and post-treatment global liver function (GLF) (proposed 'GLF model'), predicted by a new liver-perfusion-based dose-response model. The resulting EUD, fEUD, and GLF plans delivering the same target EUD are compared with respect to their post-treatment function and various dose-based metrics. Voxel-based portal venous liver perfusion, used as a measure of local function, is computed using DCE-MRI. In cases used in our experiments, the GLF plan preserves up to 4.6%(7.5%) more liver function than the fEUD ( EUD) plan does in 2D cases, and up to 4.5%(5.6%) in 3D cases. The GLF and fEUD plans worsen in EUD of functional liver on average by 1.0 Gy and 0.5 Gy in 2D and 3D cases, respectively. Liver perfusion information can be used during treatment planning to minimize the risk of toxicity by improving expected GLF; the degree of benefit varies with perfusion pattern. Although fEUD model optimization is computationally inexpensive and often achieves better GLF than EUD model optimization does, the GLF model directly optimizes a more clinically relevant metric and can further improve fEUD plan quality.
AbstractList Liver stereotactic body radiation therapy (SBRT) patients differ in both pre-treatment liver function (e.g. due to degree of cirrhosis and/or prior treatment) and radiosensitivity, leading to high variability in potential liver toxicity with similar doses. This work investigates three treatment planning optimization models that minimize risk of toxicity: two consider both voxel-based pre-treatment liver function and local-function-based radiosensitivity with dose; one considers only dose. Each model optimizes different objective functions (varying in complexity of capturing the influence of dose on liver function) subject to the same dose constraints and are tested on 2D synthesized and 3D clinical cases. The normal-liver-based objective functions are the linearized equivalent uniform dose ([Formula: see text]) (conventional '[Formula: see text] model'), the so-called perfusion-weighted [Formula: see text] ([Formula: see text]) (proposed 'fEUD model'), and post-treatment global liver function (GLF) (proposed 'GLF model'), predicted by a new liver-perfusion-based dose-response model. The resulting [Formula: see text], fEUD, and GLF plans delivering the same target [Formula: see text] are compared with respect to their post-treatment function and various dose-based metrics. Voxel-based portal venous liver perfusion, used as a measure of local function, is computed using DCE-MRI. In cases used in our experiments, the GLF plan preserves up to [Formula: see text] more liver function than the fEUD ([Formula: see text]) plan does in 2D cases, and up to [Formula: see text] in 3D cases. The GLF and fEUD plans worsen in [Formula: see text] of functional liver on average by 1.0 Gy and 0.5 Gy in 2D and 3D cases, respectively. Liver perfusion information can be used during treatment planning to minimize the risk of toxicity by improving expected GLF; the degree of benefit varies with perfusion pattern. Although fEUD model optimization is computationally inexpensive and often achieves better GLF than [Formula: see text] model optimization does, the GLF model directly optimizes a more clinically relevant metric and can further improve fEUD plan quality.
Liver stereotactic body radiation therapy (SBRT) patients differ in both pre-treatment liver function (e.g. due to degree of cirrhosis and/or prior treatment) and radiosensitivity, leading to high variability in potential liver toxicity with similar doses. This work investigates three treatment planning optimization models that minimize risk of toxicity: two consider both voxel-based pre-treatment liver function and local-function-based radiosensitivity with dose; one considers only dose. Each model optimizes different objective functions (varying in complexity of capturing the influence of dose on liver function) subject to the same dose constraints and are tested on 2D synthesized and 3D clinical cases. The normal-liver-based objective functions are the linearized equivalent uniform dose ( EUD) (conventional ' EUD model'), the so-called perfusion-weighted EUD (fEUD) (proposed 'fEUD model'), and post-treatment global liver function (GLF) (proposed 'GLF model'), predicted by a new liver-perfusion-based dose-response model. The resulting EUD, fEUD, and GLF plans delivering the same target EUD are compared with respect to their post-treatment function and various dose-based metrics. Voxel-based portal venous liver perfusion, used as a measure of local function, is computed using DCE-MRI. In cases used in our experiments, the GLF plan preserves up to 4.6%(7.5%) more liver function than the fEUD ( EUD) plan does in 2D cases, and up to 4.5%(5.6%) in 3D cases. The GLF and fEUD plans worsen in EUD of functional liver on average by 1.0 Gy and 0.5 Gy in 2D and 3D cases, respectively. Liver perfusion information can be used during treatment planning to minimize the risk of toxicity by improving expected GLF; the degree of benefit varies with perfusion pattern. Although fEUD model optimization is computationally inexpensive and often achieves better GLF than EUD model optimization does, the GLF model directly optimizes a more clinically relevant metric and can further improve fEUD plan quality.
Liver stereotactic body radiation therapy (SBRT) patients differ in both pre-treatment liver function (e.g. due to degree of cirrhosis and/or prior treatment) and radiosensitivity, leading to high variability in potential liver toxicity with similar doses. This work investigates three treatment planning optimization models that minimize risk of toxicity: two consider both voxel-based pre-treatment liver function and local-function-based radiosensitivity with dose; one considers only dose. Each model optimizes different objective functions (varying in complexity of capturing the influence of dose on liver function) subject to the same dose constraints and are tested on 2D synthesized and 3D clinical cases. The normal-liver-based objective functions are the linearized equivalent uniform dose (ℓEUD) (conventional ‘ℓEUD model’), the so-called perfusion-weighted ℓEUD (fEUD) (proposed ‘fEUD model’), and post-treatment global liver function (GLF) (proposed ‘GLF model’), predicted by a new liver-perfusion-based dose-response model. The resulting ℓEUD, fEUD, and GLF plans delivering the same target ℓEUD are compared with respect to their post-treatment function and various dose-based metrics. Voxel-based portal venous liver perfusion, used as a measure of local function, is computed using DCE-MRI. In cases used in our experiments, the GLF plan preserves up to 4.6%(7.5%) more liver function than the fEUD (ℓEUD) plan does in 2D cases, and up to 4.5%(5.6%) in 3D cases. The GLF and fEUD plans worsen in ℓEUD of functional liver on average by 1.0 Gy and 0.5 Gy in 2D and 3D cases, respectively. Liver perfusion information can be used during treatment planning to minimize the risk of toxicity by improving expected GLF; the degree of benefit varies with perfusion pattern. Although fEUD model optimization is computationally inexpensive and often achieves better GLF than ℓEUD model optimization does, the GLF model directly optimizes a more clinically relevant metric and can further improve fEUD plan quality.
Author Matuszak, Martha M
Feng, Mary
Wang, Hesheng
Cao, Yue
Epelman, Marina A
Edwin Romeijn, H
Wu, Victor W
Ten Haken, Randall K
AuthorAffiliation 1 Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI 48109, USA
4 Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
2 Langone Medical Center, New York University, New York, NY 10016, USA
3 School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
AuthorAffiliation_xml – name: 4 Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
– name: 1 Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI 48109, USA
– name: 2 Langone Medical Center, New York University, New York, NY 10016, USA
– name: 3 School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
Author_xml – sequence: 1
  givenname: Victor W
  surname: Wu
  fullname: Wu, Victor W
  email: vwwu@umich.edu
  organization: University of Michigan Department of Industrial and Operations Engineering, Ann Arbor, MI 48109, USA
– sequence: 2
  givenname: Marina A
  surname: Epelman
  fullname: Epelman, Marina A
  organization: University of Michigan Department of Industrial and Operations Engineering, Ann Arbor, MI 48109, USA
– sequence: 3
  givenname: Hesheng
  surname: Wang
  fullname: Wang, Hesheng
  organization: New York University Langone Medical Center, New York, NY 10016, USA
– sequence: 4
  givenname: H
  surname: Edwin Romeijn
  fullname: Edwin Romeijn, H
  organization: Georgia Institute of Technology School of Industrial and Systems Engineering, Atlanta, GA 30332, USA
– sequence: 5
  givenname: Mary
  surname: Feng
  fullname: Feng, Mary
  organization: University of Michigan Department of Radiation Oncology, Ann Arbor, MI 48109, USA
– sequence: 6
  givenname: Yue
  surname: Cao
  fullname: Cao, Yue
  organization: University of Michigan Department of Radiation Oncology, Ann Arbor, MI 48109, USA
– sequence: 7
  givenname: Randall K
  surname: Ten Haken
  fullname: Ten Haken, Randall K
  organization: University of Michigan Department of Radiation Oncology, Ann Arbor, MI 48109, USA
– sequence: 8
  givenname: Martha M
  surname: Matuszak
  fullname: Matuszak, Martha M
  organization: University of Michigan Department of Radiation Oncology, Ann Arbor, MI 48109, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27518786$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAUhS1URKeFN0AoSzbp-PoncVggoQpapErddG85zvXUVWIHx6lUnh5Pp62ABawsy-c79_qcE3IUYkBC3gM9A6rUllIOdQdSbhvYQrttRCNfkQ3wBupGNvSIbF4kx-RkWe4oBVBMvCHHrJWgWtVsyOX1nP3kf_qwq3Zj7M1Yjf4eU-XWYLOPofKhSmbw5vGSbzGZ-aHKCU2eMORqHk0IhX5LXjszLvju6TwlN9--3pxf1lfXF9_Pv1zVVogu11bRjvKBsa7vpVCCOoWtQ-QDSI6cGQ5y6KBIup4KZBZVx5xwjrpB2I6fks8H23ntJxxsWSGZUc_JTyY96Gi8_vMl-Fu9i_daMt7yti0GH58MUvyx4pL15BeLY_kGxnXRoIApJRVlRfrh91kvQ57TK4JPB4FNcVkSOm19fgyqjPajBqr3Vel9D3rfg25AQ6v3VRVY_AU_-_8HowfMx1nfxTWFkva_kV-CyaZx
CODEN PHMBA7
CitedBy_id crossref_primary_10_3390_cancers14235860
crossref_primary_10_1016_j_adro_2022_100942
crossref_primary_10_1016_j_semradonc_2018_06_007
crossref_primary_10_1002_nbm_3913
crossref_primary_10_1088_1361_6560_acfa5f
crossref_primary_10_1016_j_ijrobp_2017_10_005
crossref_primary_10_1016_j_semradonc_2019_02_006
crossref_primary_10_1002_mp_14055
crossref_primary_10_1016_j_ijrobp_2022_09_077
crossref_primary_10_1016_j_mric_2017_01_001
crossref_primary_10_1080_02331934_2023_2178848
Cites_doi 10.1016/j.ijrobp.2015.09.044
10.1007/s11081-005-2066-2
10.1007/s10107-004-0559-y
10.1118/1.1750991
10.1118/1.2219773
10.1148/radiol.2343031362
10.1016/S0167-8140(02)00075-0
10.1080/028418602753669535
10.1016/j.radonc.2015.04.011
10.1118/1.2710948
10.1016/j.ijrobp.2007.05.078
10.1200/jco.2015.61.4925
10.1016/j.ijrobp.2008.10.054
10.1016/j.ijrobp.2006.12.068
10.1593/tlo.12448
10.1088/0031-9155/49/9/009
10.1016/j.ijrobp.2012.02.037
10.1016/0360-3016(94)00471-4
10.1118/1.3685447
10.1016/j.ijrobp.2009.02.005
ContentType Journal Article
Copyright 2016 Institute of Physics and Engineering in Medicine
Copyright_xml – notice: 2016 Institute of Physics and Engineering in Medicine
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1088/0031-9155/61/17/6465
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
Physics
DocumentTitleAlternate Optimizing global liver function in radiation therapy treatment planning
EISSN 1361-6560
EndPage 6484
ExternalDocumentID PMC5237377
27518786
10_1088_0031_9155_61_17_6465
pmbaa32b3
Genre Journal Article
GrantInformation_xml – fundername: University of Michigan
  grantid: MCubed Program
  funderid: http://dx.doi.org/10.13039/100007270
– fundername: National Institutes of Health
  grantid: P01-CA59827; R01-CA132834
  funderid: http://dx.doi.org/10.13039/100000002
– fundername: NCI NIH HHS
  grantid: P01 CA059827
– fundername: NCI NIH HHS
  grantid: R01 CA132834
GroupedDBID ---
-DZ
-~X
123
1JI
4.4
5B3
5RE
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABCXL
ABHWH
ABJNI
ABLJU
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
NT-
NT.
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TN5
UCJ
W28
XPP
AAYXX
ADEQX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
AEINN
ID FETCH-LOGICAL-c449t-c80903d229bb54840f8e7fee3d153e32a315d9103d9b04e2ce892f4ff0fd4c93
IEDL.DBID IOP
ISSN 0031-9155
IngestDate Thu Aug 21 18:36:53 EDT 2025
Fri Jul 11 03:01:00 EDT 2025
Mon Jul 21 06:04:46 EDT 2025
Tue Jul 01 00:25:14 EDT 2025
Thu Apr 24 23:11:43 EDT 2025
Wed Aug 21 03:40:41 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c449t-c80903d229bb54840f8e7fee3d153e32a315d9103d9b04e2ce892f4ff0fd4c93
Notes Institute of Physics and Engineering in Medicine
PMB-104031.R1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://doi.org/10.1088/0031-9155/61/17/6465
PMID 27518786
PQID 1812885802
PQPubID 23479
PageCount 20
ParticipantIDs crossref_citationtrail_10_1088_0031_9155_61_17_6465
proquest_miscellaneous_1812885802
pubmed_primary_27518786
crossref_primary_10_1088_0031_9155_61_17_6465
iop_journals_10_1088_0031_9155_61_17_6465
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5237377
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-09-07
PublicationDateYYYYMMDD 2016-09-07
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-09-07
  day: 07
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Physics in medicine & biology
PublicationTitleAbbrev PMB
PublicationTitleAlternate Phys. Med. Biol
PublicationYear 2016
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 11
22
23
13
14
Kim J (12) 1995
17
18
19
Niemierko A (16) 1999; 26
1
2
3
4
5
Miften M M (15) 2004; 49
6
7
9
HSL A (8) 2013
20
10
21
References_xml – ident: 22
  doi: 10.1016/j.ijrobp.2015.09.044
– ident: 11
  doi: 10.1007/s11081-005-2066-2
– ident: 20
  doi: 10.1007/s10107-004-0559-y
– ident: 6
  doi: 10.1118/1.1750991
– ident: 2
  doi: 10.1118/1.2219773
– ident: 17
  doi: 10.1148/radiol.2343031362
– ident: 18
  doi: 10.1016/S0167-8140(02)00075-0
– year: 2013
  ident: 8
– ident: 19
  doi: 10.1080/028418602753669535
– ident: 1
  doi: 10.1016/j.radonc.2015.04.011
– ident: 5
  doi: 10.1118/1.2710948
– ident: 3
  doi: 10.1016/j.ijrobp.2007.05.078
– ident: 21
  doi: 10.1200/jco.2015.61.4925
– volume: 26
  start-page: 1100
  issn: 0094-2405
  year: 1999
  ident: 16
  publication-title: Med. Phys.
– start-page: 417
  year: 1995
  ident: 12
  publication-title: Proc. of AVS
– ident: 7
  doi: 10.1016/j.ijrobp.2008.10.054
– ident: 9
  doi: 10.1016/j.ijrobp.2006.12.068
– ident: 14
  doi: 10.1593/tlo.12448
– volume: 49
  start-page: 1711
  issn: 0031-9155
  year: 2004
  ident: 15
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/49/9/009
– ident: 4
  doi: 10.1016/j.ijrobp.2012.02.037
– ident: 10
  doi: 10.1016/0360-3016(94)00471-4
– ident: 13
  doi: 10.1118/1.3685447
– ident: 23
  doi: 10.1016/j.ijrobp.2009.02.005
SSID ssj0011824
Score 2.2663796
Snippet Liver stereotactic body radiation therapy (SBRT) patients differ in both pre-treatment liver function (e.g. due to degree of cirrhosis and/or prior treatment)...
SourceID pubmedcentral
proquest
pubmed
crossref
iop
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6465
SubjectTerms dose-response
functional imaging
Humans
Liver - radiation effects
liver SBRT
Magnetic Resonance Imaging - methods
optimization
Perfusion Imaging - methods
Radiation Tolerance
Radiosurgery - methods
Radiotherapy Dosage
Radiotherapy Planning, Computer-Assisted - methods
treatment planning
Title Optimizing global liver function in radiation therapy treatment planning
URI https://iopscience.iop.org/article/10.1088/0031-9155/61/17/6465
https://www.ncbi.nlm.nih.gov/pubmed/27518786
https://www.proquest.com/docview/1812885802
https://pubmed.ncbi.nlm.nih.gov/PMC5237377
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIhAXHuXRhYKMxIWDdxPbsZ0jQq1WSKUcitRbiF9i1ZJdtbuH9td3HHsjtgJVVW95jN9jzyQz8w3Ap9p6HXSrKGOtoSIEQY10gVYRbNy32jETLbqH3-X0p_h2Up3kPKd9LMx8kY_-MV4moOA0hdkhTsf0YyWNsOYTWU5KNZFCVlvwkGusPkbwHf0YzAioPCcY5lxiHTv3n1o2ZNMWtv8vtfOm9-Rf4ujgGfxaDyR5oZyOV0sztlc3MB7vMdLn8DSrquRLIn8BD3y3A49S8srLHXh8mM3y-LD3I7UXL2F6hEfQn9kVCkSSsEbIWfT8IFF-Rh4gs46cRzyE_iZFf12Swd2dLHISpVdwfLB__HVKc7IGaoWol9Tq-MfHMVYbg19Bogjaq-A9d3imes5aXlYOdRPualMIz5BHahaQOYrghK35a9ju5p3fBWJbiyKytqV0teDMGIe1yiII5ZUWlo2Ar1epsRnIPObTOGt6g7rWPd5pE-etkWVTqibO2wjoUGqRgDxuof-My9LkHX1xC-3HNZs0uDujyaXt_HyFpVB_0rrSBfb6TWKboXUWLV5KyxGoDYYaCCLy9-abbva7RwCvGFdcqbd36OM7eIK6nuzd49QebC_PV_496lNL86HfM9colRKR
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB61RVS98CiPLk8jceGQ3cR2bOeICqst0MehSL1Z8UtdUbKrdvfQ_nrGcTZiK1CFuOXhSfwYe75kxt8AvK-sV0HVMqO0NhkPgWdGuJCVkWzc18pREz26h0di8p1_OSvPNmC_3wszm3dL_xAPE1Fw6sIuIE7F9GNFFmnNR6IYFXIkuChHcxc24V7JBIsE-gfHJ70rAQF0omLupFb75_7ypDX7tIl1-BP0vB1B-ZtJGj8Et2pMikT5MVwuzNDe3OJ5_M_WPoIHHWQlH5PIY9jwzS7cT0ksr3dh-7Bzz-PFNp7UXj2ByTEuRT-nN2gYSeIcIRcxAoREOxp1gUwbchl5EdqTtAvsmvRh72TeJVN6Cqfjz6f7k6xL2pBZzqtFZlX88-MorYzBryGeB-Vl8J45XFs9ozUrSocYhbnK5NxT1JWKBlSSPDhuK_YMtppZ4_eA2NqiqaxsIVzFGTXG4VNFHrj0UnFLB8BWI6VtR2ge82pc6NaxrlTLe6pj32lR6ELq2HcDyHqpeSL0uKP8Bxwa3c3sqzvKvlupisZZGl0vdeNnS5RCHKVUqXKs9fOkOv3bafR8SSUGINeUqi8QGcDX7zTT85YJvKRMMilf_EMd38L2yaex_nZw9PUl7CD8E23EnHwFW4vLpX-NEGth3rRT6BcdnRf1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+global+liver+function+in+radiation+therapy+treatment+planning&rft.jtitle=Physics+in+medicine+%26+biology&rft.au=Wu%2C+Victor+W&rft.au=Epelman%2C+Marina+A&rft.au=Wang%2C+Hesheng&rft.au=Romeijn%2C+H+Edwin&rft.date=2016-09-07&rft.issn=0031-9155&rft.eissn=1361-6560&rft.volume=61&rft.issue=17&rft.spage=6465&rft.epage=6484&rft_id=info:doi/10.1088%2F0031-9155%2F61%2F17%2F6465&rft_id=info%3Apmid%2F27518786&rft.externalDocID=PMC5237377
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9155&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9155&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9155&client=summon