Pyrogenic carbon from tropical savanna burning: production and stable isotope composition

Widespread burning of mixed tree–grass ecosystems represents the major natural locus of pyrogenic carbon (PyC) production. PyC is a significant, pervasive and yet poorly understood "slow-cycling" form of carbon present in the atmosphere, hydrosphere, soils and sediments. We conducted 16 ex...

Full description

Saved in:
Bibliographic Details
Published inBiogeosciences Vol. 12; no. 6; pp. 1849 - 1863
Main Authors Saiz, G, Wynn, J. G, Wurster, C. M, Goodrick, I, Nelson, P. N, Bird, M. I
Format Journal Article
LanguageEnglish
Published Copernicus GmbH 20.03.2015
Copernicus Publications
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Widespread burning of mixed tree–grass ecosystems represents the major natural locus of pyrogenic carbon (PyC) production. PyC is a significant, pervasive and yet poorly understood "slow-cycling" form of carbon present in the atmosphere, hydrosphere, soils and sediments. We conducted 16 experimental burns on a rainfall transect through northern Australian savannas with C4 grasses ranging from 35 to 99% of total biomass. Residues from each fire were partitioned into PyC and further into recalcitrant (HyPyC) components, with each of these fluxes also partitioned into proximal components (>125 μm), likely to remain close to the site of burning, and distal components (<125 μm), likely to be transported from the site of burning. The median (range) PyC production across all burns was 16.0 (11.5) % of total carbon exposed (TCE), with HyPyC accounting for 2.5 (4.9) % of TCE. Both PyC and HyPyC were dominantly partitioned into the proximal flux. Production of HyPyC was strongly related to fire residence time, with shorter duration fires resulting in higher HyPyC yields. The carbon isotope (δ13C) compositions of PyC and HyPyC were generally lower by 1–3‰ relative to the original biomass, with marked depletion up to 7‰ for grasslands dominated by C4 biomass. δ13C values of CO2 produced by combustion were computed by mass balance and ranged from ~0.4 to 1.3‰. The depletion of 13C in PyC and HyPyC relative to the original biomass has significant implications for the interpretation of δ13C values of savanna soil organic carbon and of ancient PyC preserved in the geologic record, as well as for global 13C isotopic disequilibria calculations.
AbstractList Widespread burning of mixed tree–grass ecosystems represents the major natural locus of pyrogenic carbon (PyC) production. PyC is a significant, pervasive and yet poorly understood "slow-cycling" form of carbon present in the atmosphere, hydrosphere, soils and sediments. We conducted 16 experimental burns on a rainfall transect through northern Australian savannas with C4 grasses ranging from 35 to 99% of total biomass. Residues from each fire were partitioned into PyC and further into recalcitrant (HyPyC) components, with each of these fluxes also partitioned into proximal components (>125 μm), likely to remain close to the site of burning, and distal components (<125 μm), likely to be transported from the site of burning. The median (range) PyC production across all burns was 16.0 (11.5) % of total carbon exposed (TCE), with HyPyC accounting for 2.5 (4.9) % of TCE. Both PyC and HyPyC were dominantly partitioned into the proximal flux. Production of HyPyC was strongly related to fire residence time, with shorter duration fires resulting in higher HyPyC yields. The carbon isotope (δ13C) compositions of PyC and HyPyC were generally lower by 1–3‰ relative to the original biomass, with marked depletion up to 7‰ for grasslands dominated by C4 biomass. δ13C values of CO2 produced by combustion were computed by mass balance and ranged from ~0.4 to 1.3‰. The depletion of 13C in PyC and HyPyC relative to the original biomass has significant implications for the interpretation of δ13C values of savanna soil organic carbon and of ancient PyC preserved in the geologic record, as well as for global 13C isotopic disequilibria calculations.
Widespread burning of mixed tree-grass ecosystems represents the major natural locus of pyrogenic carbon (PyC) production. PyC is a significant, pervasive and yet poorly understood "slow-cycling" form of carbon present in the atmosphere, hydrosphere, soils and sediments. We conducted 16 experimental burns on a rainfall transect through northern Australian savannas with C.sub.4 grasses ranging from 35 to 99% of total biomass. Residues from each fire were partitioned into PyC and further into recalcitrant (HyPyC) components, with each of these fluxes also partitioned into proximal components (>125 μm), likely to remain close to the site of burning, and distal components (<125 μm), likely to be transported from the site of burning. The median (range) PyC production across all burns was 16.0 (11.5) % of total carbon exposed (TCE), with HyPyC accounting for 2.5 (4.9) % of TCE. Both PyC and HyPyC were dominantly partitioned into the proximal flux. Production of HyPyC was strongly related to fire residence time, with shorter duration fires resulting in higher HyPyC yields. The carbon isotope ([delta].sup.13 C) compositions of PyC and HyPyC were generally lower by 1-3‰ relative to the original biomass, with marked depletion up to 7‰ for grasslands dominated by C.sub.4 biomass. [delta].sup.13 C values of CO.sub.2 produced by combustion were computed by mass balance and ranged from ~0.4 to 1.3‰. The depletion of .sup.13 C in PyC and HyPyC relative to the original biomass has significant implications for the interpretation of [delta].sup.13 C values of savanna soil organic carbon and of ancient PyC preserved in the geologic record, as well as for global .sup.13 C isotopic disequilibria calculations.
Audience Academic
Author Nelson, P. N
Wurster, C. M
Wynn, J. G
Bird, M. I
Goodrick, I
Saiz, G
Author_xml – sequence: 1
  fullname: Saiz, G
– sequence: 2
  fullname: Wynn, J. G
– sequence: 3
  fullname: Wurster, C. M
– sequence: 4
  fullname: Goodrick, I
– sequence: 5
  fullname: Nelson, P. N
– sequence: 6
  fullname: Bird, M. I
BookMark eNptkctrHSEUxqWk0CTtuluhqy4mUcdxnO5C6ONCoKWPRVdyfA2GOzqotzT_fZ3eUHKhuFCOv-_jnPNdoLOYokPoNSVXA534tZ47yjoq-dQxQodn6JyOTHScyunsyfsFuijlnpBeEjmco59fHnKaXQwGG8g6RexzWnDNaQ0G9rjAL4gRsD7kGOL8Dq852YOpoZEQLS4V9N7hUFJNq8MmLWsqYft-iZ572Bf36vG-RD8-vP9--6m7-_xxd3tz1xnOp9qZXojegiHMMG-skdBToEQPA-l7Qp2QYnCUCNlrauWoGSVWaxigoROMor9Eu6OvTXCv1hwWyA8qQVB_CynPCnINZu-UJmzSnnJGGePCWxi3zWnuOfBRaGheb45eMzQ8RJ9qBrOEYtQNl03IRsIadfUfqh3rlmBaKj60-ong7YmgMdX9rjMcSlG7b19P2esja3IqJTv_byRK1Nau0rOiTG1Bqy3o_g_T7Zv3
CitedBy_id crossref_primary_10_1071_SR19314
crossref_primary_10_3389_feart_2017_00115
crossref_primary_10_1029_2018JG004490
crossref_primary_10_1017_qua_2020_50
crossref_primary_10_1038_ncomms11536
crossref_primary_10_1029_2020GB006560
crossref_primary_10_2139_ssrn_4107069
crossref_primary_10_1007_s11356_024_33498_1
crossref_primary_10_1002_eap_2192
crossref_primary_10_3389_fevo_2021_771700
crossref_primary_10_1029_2020GB006647
crossref_primary_10_1655_HERPETOLOGICA_D_21_00023
crossref_primary_10_1016_j_foreco_2016_03_003
crossref_primary_10_1016_j_geomorph_2021_108046
crossref_primary_10_1016_j_foreco_2022_120083
crossref_primary_10_1007_s11368_017_1825_y
crossref_primary_10_1016_j_tree_2021_09_006
crossref_primary_10_1016_j_jaap_2018_02_006
crossref_primary_10_1016_j_scitotenv_2023_162917
crossref_primary_10_5194_bg_12_5041_2015
crossref_primary_10_1016_j_atmosenv_2018_03_026
crossref_primary_10_1093_forestry_cpac029
crossref_primary_10_1655_0733_1347_38_1_53
crossref_primary_10_5194_bg_16_409_2019
crossref_primary_10_3389_feart_2018_00041
crossref_primary_10_1088_1755_1315_48_1_012029
crossref_primary_10_3389_fevo_2022_1046076
crossref_primary_10_1007_s00334_021_00836_z
crossref_primary_10_1016_j_gca_2020_08_024
crossref_primary_10_1029_2020PA004106
crossref_primary_10_1038_s41561_024_01388_3
crossref_primary_10_1016_j_quascirev_2018_11_002
crossref_primary_10_1016_j_gca_2021_12_003
crossref_primary_10_1111_gcb_15287
crossref_primary_10_1088_2515_7620_ad4e0f
crossref_primary_10_1016_j_geoderma_2016_03_022
Cites_doi 10.1038/29507
10.1016/j.orggeochem.2013.06.009
10.1016/B978-012088447-6/50014-3
10.2307/1310735
10.1016/j.orggeochem.2009.11.001
10.1029/2003JD003697
10.1016/j.marchem.2004.06.043
10.1038/ngeo1541
10.1111/j.1600-0889.2008.00361.x
10.1016/j.gca.2012.08.037
10.1021/es903140c
10.1016/j.quascirev.2008.11.005
10.1016/j.orggeochem.2010.09.005
10.1016/j.scitotenv.2006.06.007
10.1111/j.1365-2486.2012.02657.x
10.1071/WF9920139
10.1016/S0146-6380(97)00087-9
10.1029/95JD02199
10.1016/S0031-0182(00)00173-5
10.1002/rcm.6397
10.1007/BF00137988
10.1111/gcb.12800
10.5194/bg-1-123-2004
10.1038/ngeo358
10.1111/j.1365-2486.2012.02796.x
10.1017/S0266467400007367
10.1029/2001GB001807
10.1111/j.1365-2486.2007.01435.x
10.1016/0033-5894(88)90088-9
10.1016/j.geoderma.2005.01.007
10.1029/98GB00072
10.1111/j.1600-0889.2010.00481.x
10.1038/283647a0
10.1007/BF00627732
10.1038/nature10306
10.1016/j.soilbio.2012.06.018
10.1071/WF12190
10.1016/j.yqres.2005.08.013
10.1111/j.1365-3040.2010.02119.x
10.1016/j.gloplacha.2010.01.014
10.1177/0309133308101383
10.1016/j.orggeochem.2008.01.015
10.1111/j.1365-2486.2009.02044.x
10.1029/2004GB002366
10.5194/acp-10-11707-2010
10.1016/S0016-7037(97)00157-9
10.1029/97GB01197
10.1146/annurev-earth-060614-105038
10.1016/S0168-1923(97)00059-2
10.1034/j.1600-0889.47.issue1.5.x
10.1029/2006GB002914
10.1038/38229
10.1016/j.quageo.2008.11.001
10.1016/j.geoderma.2013.12.019
10.1016/S0146-6380(03)00100-1
10.1007/978-3-642-69805-7_7
10.1029/2000GB001382
10.1126/science.280.5371.1911
10.1002/2013EO450001
10.1029/1999GB900067
10.1080/17550874.2012.762812
ContentType Journal Article
Copyright COPYRIGHT 2015 Copernicus GmbH
Copyright_xml – notice: COPYRIGHT 2015 Copernicus GmbH
DBID AAYXX
CITATION
ISR
DOA
DOI 10.5194/bg-12-1849-2015
DatabaseName CrossRef
Gale In Context: Science
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1726-4189
EndPage 1863
ExternalDocumentID oai_doaj_org_article_b029bf14212246fda75194b4f4a476ba
A481422702
10_5194_bg_12_1849_2015
GroupedDBID 23N
2WC
2XV
3V.
4P2
5GY
5VS
7XC
8FE
8FG
8FH
8R4
8R5
AAFWJ
AAYXX
ABJCF
ABUWG
ADBBV
AENEX
AFKRA
AHGZY
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BBNVY
BBORY
BCNDV
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
E3Z
EBD
EBS
EDH
EJD
GROUPED_DOAJ
H13
HCIFZ
HH5
IAO
IEA
IPNFZ
ISR
ITC
KQ8
L6V
L8X
LK5
LK8
M7P
M7R
M7S
MM-
M~E
OK1
P2P
PATMY
PCBAR
PIMPY
PQQKQ
PROAC
PTHSS
PYCSY
Q2X
RIG
RKB
RNS
TR2
XSB
~02
AFPKN
ID FETCH-LOGICAL-c449t-c3663dac02c2fcdc8a31a10b5503301e6865e10683b1d87b210dbba5adc89a763
IEDL.DBID DOA
ISSN 1726-4189
1726-4170
IngestDate Tue Oct 22 15:13:34 EDT 2024
Tue Nov 19 21:00:51 EST 2024
Tue Nov 12 22:49:48 EST 2024
Thu Aug 01 20:11:37 EDT 2024
Fri Dec 06 04:45:16 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://creativecommons.org/licenses/by/3.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c449t-c3663dac02c2fcdc8a31a10b5503301e6865e10683b1d87b210dbba5adc89a763
ORCID 0000-0003-1801-8703
0000-0001-7794-4403
0000-0002-0615-6407
OpenAccessLink https://doaj.org/article/b029bf14212246fda75194b4f4a476ba
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_b029bf14212246fda75194b4f4a476ba
gale_infotracmisc_A481422702
gale_infotracacademiconefile_A481422702
gale_incontextgauss_ISR_A481422702
crossref_primary_10_5194_bg_12_1849_2015
PublicationCentury 2000
PublicationDate 2015-03-20
PublicationDateYYYYMMDD 2015-03-20
PublicationDate_xml – month: 03
  year: 2015
  text: 2015-03-20
  day: 20
PublicationDecade 2010
PublicationTitle Biogeosciences
PublicationYear 2015
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref64
ref63
ref22
ref21
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref62
– ident: ref5
  doi: 10.1038/29507
– ident: ref59
  doi: 10.1016/j.orggeochem.2013.06.009
– ident: ref16
  doi: 10.1016/B978-012088447-6/50014-3
– ident: ref42
  doi: 10.2307/1310735
– ident: ref20
  doi: 10.1016/j.orggeochem.2009.11.001
– ident: ref11
  doi: 10.1029/2003JD003697
– ident: ref38
  doi: 10.1016/j.marchem.2004.06.043
– ident: ref22
  doi: 10.1038/ngeo1541
– ident: ref61
  doi: 10.1111/j.1600-0889.2008.00361.x
– ident: ref40
  doi: 10.1016/j.gca.2012.08.037
– ident: ref63
  doi: 10.1021/es903140c
– ident: ref18
  doi: 10.1016/j.quascirev.2008.11.005
– ident: ref57
– ident: ref4
  doi: 10.1016/j.orggeochem.2010.09.005
– ident: ref26
  doi: 10.1016/j.scitotenv.2006.06.007
– ident: ref46
  doi: 10.1111/j.1365-2486.2012.02657.x
– ident: ref30
  doi: 10.1071/WF9920139
– ident: ref36
– ident: ref43
  doi: 10.1016/S0146-6380(97)00087-9
– ident: ref33
  doi: 10.1029/95JD02199
– ident: ref10
  doi: 10.1016/S0031-0182(00)00173-5
– ident: ref58
  doi: 10.1002/rcm.6397
– ident: ref50
  doi: 10.1007/BF00137988
– ident: ref49
  doi: 10.1111/gcb.12800
– ident: ref31
  doi: 10.5194/bg-1-123-2004
– ident: ref34
  doi: 10.1038/ngeo358
– ident: ref64
  doi: 10.1111/j.1365-2486.2012.02796.x
– ident: ref41
  doi: 10.1017/S0266467400007367
– ident: ref51
  doi: 10.1029/2001GB001807
– ident: ref60
  doi: 10.1111/j.1365-2486.2007.01435.x
– ident: ref17
  doi: 10.1016/0033-5894(88)90088-9
– ident: ref45
  doi: 10.1016/j.geoderma.2005.01.007
– ident: ref15
  doi: 10.1029/98GB00072
– ident: ref1
  doi: 10.1111/j.1600-0889.2010.00481.x
– ident: ref19
  doi: 10.1038/283647a0
– ident: ref35
  doi: 10.1007/BF00627732
– ident: ref14
  doi: 10.1038/nature10306
– ident: ref24
  doi: 10.1016/j.soilbio.2012.06.018
– ident: ref48
  doi: 10.1071/WF12190
– ident: ref28
  doi: 10.1016/j.yqres.2005.08.013
– ident: ref23
  doi: 10.1111/j.1365-3040.2010.02119.x
– ident: ref52
  doi: 10.1016/j.gloplacha.2010.01.014
– ident: ref27
  doi: 10.1177/0309133308101383
– ident: ref21
  doi: 10.1016/j.orggeochem.2008.01.015
– ident: ref37
  doi: 10.1111/j.1365-2486.2009.02044.x
– ident: ref44
  doi: 10.1029/2004GB002366
– ident: ref55
  doi: 10.5194/acp-10-11707-2010
– ident: ref6
  doi: 10.1016/S0016-7037(97)00157-9
– ident: ref7
  doi: 10.1029/97GB01197
– ident: ref9
  doi: 10.1146/annurev-earth-060614-105038
– ident: ref12
  doi: 10.1016/S0168-1923(97)00059-2
– ident: ref25
  doi: 10.1034/j.1600-0889.47.issue1.5.x
– ident: ref29
  doi: 10.1029/2006GB002914
– ident: ref13
  doi: 10.1038/38229
– ident: ref3
  doi: 10.1016/j.quageo.2008.11.001
– ident: ref47
  doi: 10.1016/j.geoderma.2013.12.019
– ident: ref32
  doi: 10.1016/S0146-6380(03)00100-1
– ident: ref54
  doi: 10.1007/978-3-642-69805-7_7
– ident: ref2
  doi: 10.1029/2000GB001382
– ident: ref39
  doi: 10.1126/science.280.5371.1911
– ident: ref56
  doi: 10.1002/2013EO450001
– ident: ref8
  doi: 10.1029/1999GB900067
– ident: ref53
  doi: 10.1080/17550874.2012.762812
SSID ssj0038085
Score 2.3483565
Snippet Widespread burning of mixed tree–grass ecosystems represents the major natural locus of pyrogenic carbon (PyC) production. PyC is a significant, pervasive and...
Widespread burning of mixed tree-grass ecosystems represents the major natural locus of pyrogenic carbon (PyC) production. PyC is a significant, pervasive and...
SourceID doaj
gale
crossref
SourceType Open Website
Aggregation Database
StartPage 1849
SubjectTerms Combustion
Soil carbon
Title Pyrogenic carbon from tropical savanna burning: production and stable isotope composition
URI https://doaj.org/article/b029bf14212246fda75194b4f4a476ba
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS-UwEA6LIOxFVt3Ft6sSRFgvxbQvTVtvKooKuyy7K7inMJMfD2FpH3314H_vzEuV58mL13QKyTdp8k0z-UaIQ2OoOVYxczqETGOpM6ywzIxriCTRFPKRLwr_-GmubvXNXXm3UuqLc8KSPHAC7hhV0WDM-eCy0CZ6qIhzaNRRg64MJmqkiudgKq3B01oti3HS7mwynVcqifrwm8c442wECmwamiFcDXdlP1rK9o-L88o2c_lJbIz8UJ6mfm2KD6HdEuupYuTjtvj367HvyOf3TjrosWsl3w-RQ9_NGW25AGLGLUiCin94nMh5UnQl9CW0XhIXxP9B3i-6oZsHyQnlY9bWZ3F7efH3_CobqyMQrLoZMjclsuDBqcIV0XlXwzSHXGHJB5MqD6Y2ZaCAr55i7usKCSWPCCWQaQO0rHwRa23Xhh0hAxjFOnIQKdjzNfm1CgoNEHUhPudhIo6eMbLzJIJhKXhgOC3ObF5YhtMynBNxxhi-mLF69bKBfGpHn9q3fDoRB-wBy_oULSfAzOBhsbDXf37bU13zX6tKFRPxfTSK3dCDg_E-AQ2JJa1eWe6-sqQPyK08_voeXf4mPvLwOTutULtibegfwh7RlQH3lzNzn7eM8glUg-Z1
link.rule.ids 314,780,784,864,2102,27924,27925
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pyrogenic+carbon+from+tropical+savanna+burning%3A+production+and+stable+isotope+composition&rft.jtitle=Biogeosciences&rft.au=Saiz%2C+G&rft.au=Wynn%2C+J.+G&rft.au=Wurster%2C+C.+M&rft.au=Goodrick%2C+I&rft.date=2015-03-20&rft.pub=Copernicus+GmbH&rft.issn=1726-4170&rft.volume=12&rft.issue=6&rft.spage=1849&rft_id=info:doi/10.5194%2Fbg-12-1849-2015&rft.externalDocID=A481422702
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1726-4189&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1726-4189&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1726-4189&client=summon