Pyrogenic carbon from tropical savanna burning: production and stable isotope composition
Widespread burning of mixed tree–grass ecosystems represents the major natural locus of pyrogenic carbon (PyC) production. PyC is a significant, pervasive and yet poorly understood "slow-cycling" form of carbon present in the atmosphere, hydrosphere, soils and sediments. We conducted 16 ex...
Saved in:
Published in | Biogeosciences Vol. 12; no. 6; pp. 1849 - 1863 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Copernicus GmbH
20.03.2015
Copernicus Publications |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Widespread burning of mixed tree–grass ecosystems represents the major natural locus of pyrogenic carbon (PyC) production. PyC is a significant, pervasive and yet poorly understood "slow-cycling" form of carbon present in the atmosphere, hydrosphere, soils and sediments. We conducted 16 experimental burns on a rainfall transect through northern Australian savannas with C4 grasses ranging from 35 to 99% of total biomass. Residues from each fire were partitioned into PyC and further into recalcitrant (HyPyC) components, with each of these fluxes also partitioned into proximal components (>125 μm), likely to remain close to the site of burning, and distal components (<125 μm), likely to be transported from the site of burning. The median (range) PyC production across all burns was 16.0 (11.5) % of total carbon exposed (TCE), with HyPyC accounting for 2.5 (4.9) % of TCE. Both PyC and HyPyC were dominantly partitioned into the proximal flux. Production of HyPyC was strongly related to fire residence time, with shorter duration fires resulting in higher HyPyC yields. The carbon isotope (δ13C) compositions of PyC and HyPyC were generally lower by 1–3‰ relative to the original biomass, with marked depletion up to 7‰ for grasslands dominated by C4 biomass. δ13C values of CO2 produced by combustion were computed by mass balance and ranged from ~0.4 to 1.3‰. The depletion of 13C in PyC and HyPyC relative to the original biomass has significant implications for the interpretation of δ13C values of savanna soil organic carbon and of ancient PyC preserved in the geologic record, as well as for global 13C isotopic disequilibria calculations. |
---|---|
AbstractList | Widespread burning of mixed tree–grass ecosystems represents the major natural locus of pyrogenic carbon (PyC) production. PyC is a significant, pervasive and yet poorly understood "slow-cycling" form of carbon present in the atmosphere, hydrosphere, soils and sediments. We conducted 16 experimental burns on a rainfall transect through northern Australian savannas with C4 grasses ranging from 35 to 99% of total biomass. Residues from each fire were partitioned into PyC and further into recalcitrant (HyPyC) components, with each of these fluxes also partitioned into proximal components (>125 μm), likely to remain close to the site of burning, and distal components (<125 μm), likely to be transported from the site of burning. The median (range) PyC production across all burns was 16.0 (11.5) % of total carbon exposed (TCE), with HyPyC accounting for 2.5 (4.9) % of TCE. Both PyC and HyPyC were dominantly partitioned into the proximal flux. Production of HyPyC was strongly related to fire residence time, with shorter duration fires resulting in higher HyPyC yields. The carbon isotope (δ13C) compositions of PyC and HyPyC were generally lower by 1–3‰ relative to the original biomass, with marked depletion up to 7‰ for grasslands dominated by C4 biomass. δ13C values of CO2 produced by combustion were computed by mass balance and ranged from ~0.4 to 1.3‰. The depletion of 13C in PyC and HyPyC relative to the original biomass has significant implications for the interpretation of δ13C values of savanna soil organic carbon and of ancient PyC preserved in the geologic record, as well as for global 13C isotopic disequilibria calculations. Widespread burning of mixed tree-grass ecosystems represents the major natural locus of pyrogenic carbon (PyC) production. PyC is a significant, pervasive and yet poorly understood "slow-cycling" form of carbon present in the atmosphere, hydrosphere, soils and sediments. We conducted 16 experimental burns on a rainfall transect through northern Australian savannas with C.sub.4 grasses ranging from 35 to 99% of total biomass. Residues from each fire were partitioned into PyC and further into recalcitrant (HyPyC) components, with each of these fluxes also partitioned into proximal components (>125 μm), likely to remain close to the site of burning, and distal components (<125 μm), likely to be transported from the site of burning. The median (range) PyC production across all burns was 16.0 (11.5) % of total carbon exposed (TCE), with HyPyC accounting for 2.5 (4.9) % of TCE. Both PyC and HyPyC were dominantly partitioned into the proximal flux. Production of HyPyC was strongly related to fire residence time, with shorter duration fires resulting in higher HyPyC yields. The carbon isotope ([delta].sup.13 C) compositions of PyC and HyPyC were generally lower by 1-3‰ relative to the original biomass, with marked depletion up to 7‰ for grasslands dominated by C.sub.4 biomass. [delta].sup.13 C values of CO.sub.2 produced by combustion were computed by mass balance and ranged from ~0.4 to 1.3‰. The depletion of .sup.13 C in PyC and HyPyC relative to the original biomass has significant implications for the interpretation of [delta].sup.13 C values of savanna soil organic carbon and of ancient PyC preserved in the geologic record, as well as for global .sup.13 C isotopic disequilibria calculations. |
Audience | Academic |
Author | Nelson, P. N Wurster, C. M Wynn, J. G Bird, M. I Goodrick, I Saiz, G |
Author_xml | – sequence: 1 fullname: Saiz, G – sequence: 2 fullname: Wynn, J. G – sequence: 3 fullname: Wurster, C. M – sequence: 4 fullname: Goodrick, I – sequence: 5 fullname: Nelson, P. N – sequence: 6 fullname: Bird, M. I |
BookMark | eNptkctrHSEUxqWk0CTtuluhqy4mUcdxnO5C6ONCoKWPRVdyfA2GOzqotzT_fZ3eUHKhuFCOv-_jnPNdoLOYokPoNSVXA534tZ47yjoq-dQxQodn6JyOTHScyunsyfsFuijlnpBeEjmco59fHnKaXQwGG8g6RexzWnDNaQ0G9rjAL4gRsD7kGOL8Dq852YOpoZEQLS4V9N7hUFJNq8MmLWsqYft-iZ572Bf36vG-RD8-vP9--6m7-_xxd3tz1xnOp9qZXojegiHMMG-skdBToEQPA-l7Qp2QYnCUCNlrauWoGSVWaxigoROMor9Eu6OvTXCv1hwWyA8qQVB_CynPCnINZu-UJmzSnnJGGePCWxi3zWnuOfBRaGheb45eMzQ8RJ9qBrOEYtQNl03IRsIadfUfqh3rlmBaKj60-ong7YmgMdX9rjMcSlG7b19P2esja3IqJTv_byRK1Nau0rOiTG1Bqy3o_g_T7Zv3 |
CitedBy_id | crossref_primary_10_1071_SR19314 crossref_primary_10_3389_feart_2017_00115 crossref_primary_10_1029_2018JG004490 crossref_primary_10_1017_qua_2020_50 crossref_primary_10_1038_ncomms11536 crossref_primary_10_1029_2020GB006560 crossref_primary_10_2139_ssrn_4107069 crossref_primary_10_1007_s11356_024_33498_1 crossref_primary_10_1002_eap_2192 crossref_primary_10_3389_fevo_2021_771700 crossref_primary_10_1029_2020GB006647 crossref_primary_10_1655_HERPETOLOGICA_D_21_00023 crossref_primary_10_1016_j_foreco_2016_03_003 crossref_primary_10_1016_j_geomorph_2021_108046 crossref_primary_10_1016_j_foreco_2022_120083 crossref_primary_10_1007_s11368_017_1825_y crossref_primary_10_1016_j_tree_2021_09_006 crossref_primary_10_1016_j_jaap_2018_02_006 crossref_primary_10_1016_j_scitotenv_2023_162917 crossref_primary_10_5194_bg_12_5041_2015 crossref_primary_10_1016_j_atmosenv_2018_03_026 crossref_primary_10_1093_forestry_cpac029 crossref_primary_10_1655_0733_1347_38_1_53 crossref_primary_10_5194_bg_16_409_2019 crossref_primary_10_3389_feart_2018_00041 crossref_primary_10_1088_1755_1315_48_1_012029 crossref_primary_10_3389_fevo_2022_1046076 crossref_primary_10_1007_s00334_021_00836_z crossref_primary_10_1016_j_gca_2020_08_024 crossref_primary_10_1029_2020PA004106 crossref_primary_10_1038_s41561_024_01388_3 crossref_primary_10_1016_j_quascirev_2018_11_002 crossref_primary_10_1016_j_gca_2021_12_003 crossref_primary_10_1111_gcb_15287 crossref_primary_10_1088_2515_7620_ad4e0f crossref_primary_10_1016_j_geoderma_2016_03_022 |
Cites_doi | 10.1038/29507 10.1016/j.orggeochem.2013.06.009 10.1016/B978-012088447-6/50014-3 10.2307/1310735 10.1016/j.orggeochem.2009.11.001 10.1029/2003JD003697 10.1016/j.marchem.2004.06.043 10.1038/ngeo1541 10.1111/j.1600-0889.2008.00361.x 10.1016/j.gca.2012.08.037 10.1021/es903140c 10.1016/j.quascirev.2008.11.005 10.1016/j.orggeochem.2010.09.005 10.1016/j.scitotenv.2006.06.007 10.1111/j.1365-2486.2012.02657.x 10.1071/WF9920139 10.1016/S0146-6380(97)00087-9 10.1029/95JD02199 10.1016/S0031-0182(00)00173-5 10.1002/rcm.6397 10.1007/BF00137988 10.1111/gcb.12800 10.5194/bg-1-123-2004 10.1038/ngeo358 10.1111/j.1365-2486.2012.02796.x 10.1017/S0266467400007367 10.1029/2001GB001807 10.1111/j.1365-2486.2007.01435.x 10.1016/0033-5894(88)90088-9 10.1016/j.geoderma.2005.01.007 10.1029/98GB00072 10.1111/j.1600-0889.2010.00481.x 10.1038/283647a0 10.1007/BF00627732 10.1038/nature10306 10.1016/j.soilbio.2012.06.018 10.1071/WF12190 10.1016/j.yqres.2005.08.013 10.1111/j.1365-3040.2010.02119.x 10.1016/j.gloplacha.2010.01.014 10.1177/0309133308101383 10.1016/j.orggeochem.2008.01.015 10.1111/j.1365-2486.2009.02044.x 10.1029/2004GB002366 10.5194/acp-10-11707-2010 10.1016/S0016-7037(97)00157-9 10.1029/97GB01197 10.1146/annurev-earth-060614-105038 10.1016/S0168-1923(97)00059-2 10.1034/j.1600-0889.47.issue1.5.x 10.1029/2006GB002914 10.1038/38229 10.1016/j.quageo.2008.11.001 10.1016/j.geoderma.2013.12.019 10.1016/S0146-6380(03)00100-1 10.1007/978-3-642-69805-7_7 10.1029/2000GB001382 10.1126/science.280.5371.1911 10.1002/2013EO450001 10.1029/1999GB900067 10.1080/17550874.2012.762812 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2015 Copernicus GmbH |
Copyright_xml | – notice: COPYRIGHT 2015 Copernicus GmbH |
DBID | AAYXX CITATION ISR DOA |
DOI | 10.5194/bg-12-1849-2015 |
DatabaseName | CrossRef Gale In Context: Science DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1726-4189 |
EndPage | 1863 |
ExternalDocumentID | oai_doaj_org_article_b029bf14212246fda75194b4f4a476ba A481422702 10_5194_bg_12_1849_2015 |
GroupedDBID | 23N 2WC 2XV 3V. 4P2 5GY 5VS 7XC 8FE 8FG 8FH 8R4 8R5 AAFWJ AAYXX ABJCF ABUWG ADBBV AENEX AFKRA AHGZY ALMA_UNASSIGNED_HOLDINGS ATCPS BBNVY BBORY BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ CCPQU CITATION E3Z EBD EBS EDH EJD GROUPED_DOAJ H13 HCIFZ HH5 IAO IEA IPNFZ ISR ITC KQ8 L6V L8X LK5 LK8 M7P M7R M7S MM- M~E OK1 P2P PATMY PCBAR PIMPY PQQKQ PROAC PTHSS PYCSY Q2X RIG RKB RNS TR2 XSB ~02 AFPKN |
ID | FETCH-LOGICAL-c449t-c3663dac02c2fcdc8a31a10b5503301e6865e10683b1d87b210dbba5adc89a763 |
IEDL.DBID | DOA |
ISSN | 1726-4189 1726-4170 |
IngestDate | Tue Oct 22 15:13:34 EDT 2024 Tue Nov 19 21:00:51 EST 2024 Tue Nov 12 22:49:48 EST 2024 Thu Aug 01 20:11:37 EDT 2024 Fri Dec 06 04:45:16 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://creativecommons.org/licenses/by/3.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c449t-c3663dac02c2fcdc8a31a10b5503301e6865e10683b1d87b210dbba5adc89a763 |
ORCID | 0000-0003-1801-8703 0000-0001-7794-4403 0000-0002-0615-6407 |
OpenAccessLink | https://doaj.org/article/b029bf14212246fda75194b4f4a476ba |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b029bf14212246fda75194b4f4a476ba gale_infotracmisc_A481422702 gale_infotracacademiconefile_A481422702 gale_incontextgauss_ISR_A481422702 crossref_primary_10_5194_bg_12_1849_2015 |
PublicationCentury | 2000 |
PublicationDate | 2015-03-20 |
PublicationDateYYYYMMDD | 2015-03-20 |
PublicationDate_xml | – month: 03 year: 2015 text: 2015-03-20 day: 20 |
PublicationDecade | 2010 |
PublicationTitle | Biogeosciences |
PublicationYear | 2015 |
Publisher | Copernicus GmbH Copernicus Publications |
Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref64 ref63 ref22 ref21 ref28 ref27 ref29 ref60 ref62 ref61 |
References_xml | – ident: ref62 – ident: ref5 doi: 10.1038/29507 – ident: ref59 doi: 10.1016/j.orggeochem.2013.06.009 – ident: ref16 doi: 10.1016/B978-012088447-6/50014-3 – ident: ref42 doi: 10.2307/1310735 – ident: ref20 doi: 10.1016/j.orggeochem.2009.11.001 – ident: ref11 doi: 10.1029/2003JD003697 – ident: ref38 doi: 10.1016/j.marchem.2004.06.043 – ident: ref22 doi: 10.1038/ngeo1541 – ident: ref61 doi: 10.1111/j.1600-0889.2008.00361.x – ident: ref40 doi: 10.1016/j.gca.2012.08.037 – ident: ref63 doi: 10.1021/es903140c – ident: ref18 doi: 10.1016/j.quascirev.2008.11.005 – ident: ref57 – ident: ref4 doi: 10.1016/j.orggeochem.2010.09.005 – ident: ref26 doi: 10.1016/j.scitotenv.2006.06.007 – ident: ref46 doi: 10.1111/j.1365-2486.2012.02657.x – ident: ref30 doi: 10.1071/WF9920139 – ident: ref36 – ident: ref43 doi: 10.1016/S0146-6380(97)00087-9 – ident: ref33 doi: 10.1029/95JD02199 – ident: ref10 doi: 10.1016/S0031-0182(00)00173-5 – ident: ref58 doi: 10.1002/rcm.6397 – ident: ref50 doi: 10.1007/BF00137988 – ident: ref49 doi: 10.1111/gcb.12800 – ident: ref31 doi: 10.5194/bg-1-123-2004 – ident: ref34 doi: 10.1038/ngeo358 – ident: ref64 doi: 10.1111/j.1365-2486.2012.02796.x – ident: ref41 doi: 10.1017/S0266467400007367 – ident: ref51 doi: 10.1029/2001GB001807 – ident: ref60 doi: 10.1111/j.1365-2486.2007.01435.x – ident: ref17 doi: 10.1016/0033-5894(88)90088-9 – ident: ref45 doi: 10.1016/j.geoderma.2005.01.007 – ident: ref15 doi: 10.1029/98GB00072 – ident: ref1 doi: 10.1111/j.1600-0889.2010.00481.x – ident: ref19 doi: 10.1038/283647a0 – ident: ref35 doi: 10.1007/BF00627732 – ident: ref14 doi: 10.1038/nature10306 – ident: ref24 doi: 10.1016/j.soilbio.2012.06.018 – ident: ref48 doi: 10.1071/WF12190 – ident: ref28 doi: 10.1016/j.yqres.2005.08.013 – ident: ref23 doi: 10.1111/j.1365-3040.2010.02119.x – ident: ref52 doi: 10.1016/j.gloplacha.2010.01.014 – ident: ref27 doi: 10.1177/0309133308101383 – ident: ref21 doi: 10.1016/j.orggeochem.2008.01.015 – ident: ref37 doi: 10.1111/j.1365-2486.2009.02044.x – ident: ref44 doi: 10.1029/2004GB002366 – ident: ref55 doi: 10.5194/acp-10-11707-2010 – ident: ref6 doi: 10.1016/S0016-7037(97)00157-9 – ident: ref7 doi: 10.1029/97GB01197 – ident: ref9 doi: 10.1146/annurev-earth-060614-105038 – ident: ref12 doi: 10.1016/S0168-1923(97)00059-2 – ident: ref25 doi: 10.1034/j.1600-0889.47.issue1.5.x – ident: ref29 doi: 10.1029/2006GB002914 – ident: ref13 doi: 10.1038/38229 – ident: ref3 doi: 10.1016/j.quageo.2008.11.001 – ident: ref47 doi: 10.1016/j.geoderma.2013.12.019 – ident: ref32 doi: 10.1016/S0146-6380(03)00100-1 – ident: ref54 doi: 10.1007/978-3-642-69805-7_7 – ident: ref2 doi: 10.1029/2000GB001382 – ident: ref39 doi: 10.1126/science.280.5371.1911 – ident: ref56 doi: 10.1002/2013EO450001 – ident: ref8 doi: 10.1029/1999GB900067 – ident: ref53 doi: 10.1080/17550874.2012.762812 |
SSID | ssj0038085 |
Score | 2.3483565 |
Snippet | Widespread burning of mixed tree–grass ecosystems represents the major natural locus of pyrogenic carbon (PyC) production. PyC is a significant, pervasive and... Widespread burning of mixed tree-grass ecosystems represents the major natural locus of pyrogenic carbon (PyC) production. PyC is a significant, pervasive and... |
SourceID | doaj gale crossref |
SourceType | Open Website Aggregation Database |
StartPage | 1849 |
SubjectTerms | Combustion Soil carbon |
Title | Pyrogenic carbon from tropical savanna burning: production and stable isotope composition |
URI | https://doaj.org/article/b029bf14212246fda75194b4f4a476ba |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS-UwEA6LIOxFVt3Ft6sSRFgvxbQvTVtvKooKuyy7K7inMJMfD2FpH3314H_vzEuV58mL13QKyTdp8k0z-UaIQ2OoOVYxczqETGOpM6ywzIxriCTRFPKRLwr_-GmubvXNXXm3UuqLc8KSPHAC7hhV0WDM-eCy0CZ6qIhzaNRRg64MJmqkiudgKq3B01oti3HS7mwynVcqifrwm8c442wECmwamiFcDXdlP1rK9o-L88o2c_lJbIz8UJ6mfm2KD6HdEuupYuTjtvj367HvyOf3TjrosWsl3w-RQ9_NGW25AGLGLUiCin94nMh5UnQl9CW0XhIXxP9B3i-6oZsHyQnlY9bWZ3F7efH3_CobqyMQrLoZMjclsuDBqcIV0XlXwzSHXGHJB5MqD6Y2ZaCAr55i7usKCSWPCCWQaQO0rHwRa23Xhh0hAxjFOnIQKdjzNfm1CgoNEHUhPudhIo6eMbLzJIJhKXhgOC3ObF5YhtMynBNxxhi-mLF69bKBfGpHn9q3fDoRB-wBy_oULSfAzOBhsbDXf37bU13zX6tKFRPxfTSK3dCDg_E-AQ2JJa1eWe6-sqQPyK08_voeXf4mPvLwOTutULtibegfwh7RlQH3lzNzn7eM8glUg-Z1 |
link.rule.ids | 314,780,784,864,2102,27924,27925 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pyrogenic+carbon+from+tropical+savanna+burning%3A+production+and+stable+isotope+composition&rft.jtitle=Biogeosciences&rft.au=Saiz%2C+G&rft.au=Wynn%2C+J.+G&rft.au=Wurster%2C+C.+M&rft.au=Goodrick%2C+I&rft.date=2015-03-20&rft.pub=Copernicus+GmbH&rft.issn=1726-4170&rft.volume=12&rft.issue=6&rft.spage=1849&rft_id=info:doi/10.5194%2Fbg-12-1849-2015&rft.externalDocID=A481422702 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1726-4189&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1726-4189&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1726-4189&client=summon |