Merging Back-propagation and Hebbian Learning Rules for Robust Classifications
By imposing saturation requirements on hidden-layer neural activations, a new learning algorithm is developed to improve robustness on classification performance of a multi-layer Perceptron. Derivatives of the sigmoid functions at hidden-layers are added to the standard output error with relative si...
Saved in:
Published in | Neural networks Vol. 9; no. 7; pp. 1213 - 1222 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.10.1996
Elsevier Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | By imposing saturation requirements on hidden-layer neural activations, a new learning algorithm is developed to improve robustness on classification performance of a multi-layer Perceptron. Derivatives of the sigmoid functions at hidden-layers are added to the standard output error with relative significance factors, and the total error is minimized by the steepest-descent method. The additional gradient-descent terms become Hebbian, and this new algorithm merges two popular learning algorithms, i.e., error back-propagation and Hebbian learning rules. Only slight modifications are needed for the standard back-propagation algorithm, and additional computational requirements are negligible. This saturation requirement effectively reduces output sensitivity to the input, which results in improved robustness and better generalization for classifier networks. Also distributed representations at hidden-layers are successfully suppressed to accomplish efficient utilization of hidden neurons. Computer simulations demonstrates much faster learning convergence as well as improved robustness for classifications and hetero-associations of binary patterns. Copyright © 1996 Elsevier Science Ltd |
---|---|
AbstractList | By imposing saturation requirements on hidden-layer neural activations, a new learning algorithm is developed to improve robustness on classification performance of a multi-layer Perceptron. Derivatives of the sigmoid functions at hidden-layers are added to the standard output error with relative significance factors, and the total error is minimized by the steepest-descent method. The additional gradient-descent terms become Hebbian, and this new algorithm merges two popular learning algorithms, i.e., error back-propagation and Hebbian learning rules. Only slight modifications are needed for the standard back-propagation algorithm, and additional computational requirements are negligible. This saturation requirement effectively reduces output sensitivity to the input, which results in improved robustness and better generalization for classifier networks. Also distributed representations at hidden-layers are successfully suppressed to accomplish efficient utilization of hidden neurons. Computer simulations demonstrates much faster learning convergence as well as improved robustness for classifications and hetero-associations of binary patterns. Copyright 1996 Elsevier Science Ltd By imposing saturation requirements on hidden-layer neural activations, a new learning algorithm is developed to improve robustness on classification performance of a multi-layer Perceptron. Derivatives of the sigmoid functions at hidden-layers are added to the standard output error with relative significance factors, and the total error is minimized by the steepest-descent method. The additional gradient-descent terms become Hebbian, and this new algorithm merges two popular learning algorithms, i.e., error back-propagation and Hebbian learning rules. Only slight modifications are needed for the standard back-propagation algorithm, and additional computational requirements are negligible. This saturation requirement effectively reduces output sensitivity to the input, which results in improved robustness and better generalization for classifier networks. Also distributed representations at hidden-layers are successfully suppressed to accomplish efficient utilization of hidden neurons. Computer simulations demonstrates much faster learning convergence as well as improved robustness for classifications and hetero-associations of binary patterns. By imposing saturation requirements on hidden-layer neural activations, a new learning algorithm is developed to improve robustness on classification performance of a multi-layer Perceptron. Derivatives of the sigmoid functions at hidden-layers are added to the standard output error with relative significance factors, and the total error is minimized by the steepest-descent method. The additional gradient-descent terms become Hebbian, and this new algorithm merges two popular learning algorithms, i.e., error back-propagation and Hebbian learning rules. Only slight modifications are needed for the standard back-propagation algorithm, and additional computational requirements are negligible. This saturation requirement effectively reduces output sensitivity to the input, which results in improved robustness and better generalization for classifier networks. Also distributed representations at hidden-layers are successfully suppressed to accomplish efficient utilization of hidden neurons. Computer simulations demonstrates much faster learning convergence as well as improved robustness for classifications and hetero-associations of binary patterns. Copyright © 1996 Elsevier Science Ltd |
Author | Soo-Young, Lee Dong-Gyu, Jeong |
Author_xml | – sequence: 1 givenname: D.-G surname: JEONG fullname: JEONG, D.-G organization: Korea Advanced Institute of Science and Technology, Korea, Republic of – sequence: 2 givenname: S.-Y surname: LEE fullname: LEE, S.-Y organization: Korea Advanced Institute of Science and Technology, Korea, Republic of |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3258192$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/12662594$$D View this record in MEDLINE/PubMed |
BookMark | eNp90E9rFDEYBvAgFbutfgOROUiph9H8n-Qi1KW2wqpQ9BySzJslOptZk5mC374Zd6m3nkLg9yTv-5yhkzQmQOg1we8JJvIDVpq1Eit8qeU7jDGnLXmGVkR1uqWdoido9UhO0VkpvyqSirMX6JRQKanQfIW-fYW8jWnbfLL-d7vP495u7RTH1NjUN7fgXLSp2YDNaVF38wClCWNu7kY3l6lZD7aUGKL_Fyov0fNghwKvjuc5-vn5-sf6tt18v_myvtq0nnM9tS50mPSqw9x7EBJsp4jutAXdyxAEF5RroURHiYfgWE-D7bCV2jEnKXGBnaOLw7t14j8zlMnsYvEwDDbBOBdDJcUdU6LCyychUUIzrRjFlfID9XksJUMw-xx3Nv81BJulcrP0aZY-ja6XpXJDauzN8YfZ7aD_Hzp2XMHbI7DF2yFkm3wsj45RUZenlX08MKi93UfIpvgIyUMfM_jJ9GN8epAHBKudxw |
CitedBy_id | crossref_primary_10_1016_S1364_6613_98_01241_8 crossref_primary_10_1016_j_eswa_2021_115508 crossref_primary_10_1109_72_572117 crossref_primary_10_1007_s00521_007_0135_5 crossref_primary_10_1016_j_neucom_2006_10_143 crossref_primary_10_1623_hysj_50_2_299_61794 crossref_primary_10_1007_s00521_009_0274_y crossref_primary_10_4316_aece_2011_03003 crossref_primary_10_1016_j_patrec_2020_01_013 crossref_primary_10_1016_S0167_8655_02_00081_8 crossref_primary_10_1016_j_amc_2008_05_025 crossref_primary_10_1016_j_ins_2007_09_008 |
Cites_doi | 10.1109/72.80236 10.1162/neco.1989.1.1.151 10.1109/72.165600 10.1016/0893-6080(91)90005-P 10.1109/72.248452 10.1109/72.248466 10.1109/72.392264 10.1162/neco.1989.1.4.541 10.1162/neco.1992.4.4.473 10.1109/72.80206 10.1109/29.21701 10.1016/0893-6080(91)90033-2 10.1016/0893-6080(88)90014-7 10.1162/neco.1990.2.2.210 10.1109/ICNN.1988.23865 10.1109/IJCNN.1993.714126 |
ContentType | Journal Article |
Copyright | 1996 Elsevier Science Ltd 1996 INIST-CNRS |
Copyright_xml | – notice: 1996 Elsevier Science Ltd – notice: 1996 INIST-CNRS |
DBID | IQODW NPM AAYXX CITATION 7X8 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/0893-6080(96)00042-1 |
DatabaseName | Pascal-Francis PubMed CrossRef MEDLINE - Academic Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | PubMed Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science Applied Sciences |
EISSN | 1879-2782 |
EndPage | 1222 |
ExternalDocumentID | 10_1016_0893_6080_96_00042_1 12662594 3258192 0893608096000421 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .DC .~1 0R~ 123 186 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXLA AAXUO AAYFN ABAOU ABBOA ABCQJ ABEFU ABFNM ABFRF ABHFT ABIVO ABJNI ABLJU ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACIUM ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADRHT AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HMQ HVGLF HZ~ IHE J1W JJJVA K-O KOM KZ1 LG9 LMP M2V M41 MHUIS MO0 MOBAO MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCC SDF SDG SDP SES SEW SNS SPC SPCBC SSN SST SSV SSW SSZ T5K TAE UAP UNMZH VOH WUQ XPP ZMT ~G- 08R ABPIF ABPTK IQODW AAXKI AFJKZ AKRWK NPM AAYXX CITATION 7X8 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c449t-bf701d8704cce56ea781979ae9d6ff545249585721cefb3d2fa70a69b3b621bf3 |
IEDL.DBID | .~1 |
ISSN | 0893-6080 |
IngestDate | Thu Oct 24 23:21:34 EDT 2024 Fri Oct 25 06:22:52 EDT 2024 Thu Sep 26 15:22:27 EDT 2024 Sat Sep 28 07:46:21 EDT 2024 Sun Oct 29 17:07:42 EDT 2023 Fri Feb 23 02:29:01 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Generalization Learning Backpropagation Classification Robustness Neural network Performance Algorithm |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c449t-bf701d8704cce56ea781979ae9d6ff545249585721cefb3d2fa70a69b3b621bf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 12662594 |
PQID | 1859398320 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_26207385 proquest_miscellaneous_1859398320 crossref_primary_10_1016_0893_6080_96_00042_1 pubmed_primary_12662594 pascalfrancis_primary_3258192 elsevier_sciencedirect_doi_10_1016_0893_6080_96_00042_1 |
PublicationCentury | 1900 |
PublicationDate | 1996-10-01 |
PublicationDateYYYYMMDD | 1996-10-01 |
PublicationDate_xml | – month: 10 year: 1996 text: 1996-10-01 day: 01 |
PublicationDecade | 1990 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford – name: United States |
PublicationTitle | Neural networks |
PublicationTitleAlternate | Neural Netw |
PublicationYear | 1996 |
Publisher | Elsevier Ltd Elsevier Science |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science |
References | Stevenson, Winter, Widrow (BIB22) 1990; 1 Hanson, S. J., & Pratt, L. Y. (1989). Comparing biases for minimal network construction with back-propagation. In D. Touretzky (Ed.) Weigend, A. S., Rumelhart, D. E., & Huberman, B. A. (1990). Back-propagation, weight elimination and time-series prediction. Mozer, M. C., & Smolensky, P. (1989). Skeletonization: a technique for trimming the fat from a network via relevance assessment. In D. Touretzky (Ed.) (pp. 598–605). San Mateo, CA: Morgan Kaufmann. (pp. 65–80). San Mateo, CA: Morgan Kaufmann. Drucker, Le Cun (BIB3) 1992; 3 Ishikawa, M. (1994). Structural learning in neural networks. (III, pp. 325–330). San Diego, CA. (pp. 107–115). San Mateo, CA: Morgan Kaufmann. LeCun, Y., Denker, J. S., & Solla, S. A. (1990). Optimal brain damage, In D. Touretzky (Ed.) Waibel, Hanazawa, Hinton, Shikano, Lang (BIB24) 1989; 37 (pp. 950–957). San Mateo, CA: Morgan Kaufmann. Karnin (BIB10) 1990; 1 (pp. 177–185). San Matero, CA: Morgan Kaufmann. (I, pp. 647–650). Washington DC., USA. Krogh, A., & Hertz, J. A. (1992). A simple weight decay can improve generalization. In D. Touretzky (Ed.) Sietsma, Dow (BIB21) 1991; 4 (ETL Report TR-90-7), Electrotechnical Laboratory, Tsukuba, Japan. 6 1005-1007 (1995) Koh, S. H., Lee, S. Y., Jang, J. S., & Shin, S. Y. (1990). Merging Hebbian learning rule and least-mean-square error algorithm for two layer neural networks. LeCun, Boser, Denker, Henderson, Howard, Hubbard, Jackel (BIB13) 1989; 1 Von Lehmann, A. et al. (1988). Factors influencing learning by back propagation. Fukushima, K. (1993). Improved generalization ability using constrained neural network architecture. Reed (BIB20) 1993; 4 (pp. 335–341). San Diego, CA. (pp. 37–44). Iizuka, Japan. Lee, S. Y., & Jeong, D. G. (1994). Error minimization, generalization, and hardware implementability of supervised learning. Oh, S.H., Lee, Y. Sensitivity analysis of single hidden-layer neural networks with threshold functions. Bishop (BIB2) 1993; 4 Baum, Haussler (BIB1) 1989; 1 Lee, Kil (BIB15) 1991; 4 (pp. 2049–2054). Nagoya, Japan. Fukushima (BIB4) 1989; 1 Ishikawa, M. (1990). Nowlan, Hinton (BIB18) 1992; 4 Hartman, Keeler, Kowalski (BIB7) 1990; 2 Fukushima (10.1016/0893-6080(96)00042-1_BIB4) 1989; 1 10.1016/0893-6080(96)00042-1_BIB19 10.1016/0893-6080(96)00042-1_BIB9 Nowlan (10.1016/0893-6080(96)00042-1_BIB18) 1992; 4 Drucker (10.1016/0893-6080(96)00042-1_BIB3) 1992; 3 Reed (10.1016/0893-6080(96)00042-1_BIB20) 1993; 4 10.1016/0893-6080(96)00042-1_BIB12 10.1016/0893-6080(96)00042-1_BIB8 10.1016/0893-6080(96)00042-1_BIB5 10.1016/0893-6080(96)00042-1_BIB6 10.1016/0893-6080(96)00042-1_BIB11 Lee (10.1016/0893-6080(96)00042-1_BIB15) 1991; 4 10.1016/0893-6080(96)00042-1_BIB16 10.1016/0893-6080(96)00042-1_BIB17 10.1016/0893-6080(96)00042-1_BIB14 Stevenson (10.1016/0893-6080(96)00042-1_BIB22) 1990; 1 Sietsma (10.1016/0893-6080(96)00042-1_BIB21) 1991; 4 Hartman (10.1016/0893-6080(96)00042-1_BIB7) 1990; 2 Waibel (10.1016/0893-6080(96)00042-1_BIB24) 1989; 37 Baum (10.1016/0893-6080(96)00042-1_BIB1) 1989; 1 10.1016/0893-6080(96)00042-1_BIB23 LeCun (10.1016/0893-6080(96)00042-1_BIB13) 1989; 1 Bishop (10.1016/0893-6080(96)00042-1_BIB2) 1993; 4 Karnin (10.1016/0893-6080(96)00042-1_BIB10) 1990; 1 10.1016/0893-6080(96)00042-1_BIB25 |
References_xml | – volume: 4 start-page: 473 year: 1992 end-page: 493 ident: BIB18 article-title: Simplifying neural networks by soft weight sharing publication-title: Neural Computation contributor: fullname: Hinton – volume: 1 start-page: 119 year: 1989 end-page: 130 ident: BIB4 article-title: Neocognitron: A hierarchical neural network capable of visual pattern recognition publication-title: Neural Networks contributor: fullname: Fukushima – volume: 37 start-page: 328 year: 1989 end-page: 339 ident: BIB24 article-title: Phoneme recognition using time-delay neural networks publication-title: IEEE Transactions on Acoustics, Speech, Signal Processing contributor: fullname: Lang – volume: 4 start-page: 67 year: 1991 end-page: 79 ident: BIB21 article-title: Creating artificial neural networks that generalize publication-title: Neural Networks contributor: fullname: Dow – volume: 1 start-page: 239 year: 1990 end-page: 242 ident: BIB10 article-title: A simple procedure for pruning back-propagation trained neural networks publication-title: IEEE Transactions on Neural Networks contributor: fullname: Karnin – volume: 4 start-page: 882 year: 1993 end-page: 884 ident: BIB2 article-title: Curvature-driven smoothing: a learning algorithm for feedforward networks publication-title: IEEE Transactions on Neural Networks contributor: fullname: Bishop – volume: 1 start-page: 151 year: 1989 end-page: 160 ident: BIB1 article-title: What size net gives valid generalization? publication-title: Neural Computation contributor: fullname: Haussler – volume: 1 start-page: 541 year: 1989 end-page: 551 ident: BIB13 article-title: Back propagation applied to handwritten zip code recognition publication-title: Neural Computation contributor: fullname: Jackel – volume: 1 start-page: 71 year: 1990 end-page: 80 ident: BIB22 article-title: Sensitivity of feedforward neural networks to weight errors publication-title: IEEE Transactions on Neural Networks contributor: fullname: Widrow – volume: 4 start-page: 740 year: 1993 end-page: 747 ident: BIB20 article-title: Pruning algorithms—a survey publication-title: IEEE Transactions on Neural Networks contributor: fullname: Reed – volume: 2 start-page: 210 year: 1990 end-page: 215 ident: BIB7 article-title: Layered neural networks with Gaussian hidden units with universal approximations publication-title: Neural Computation contributor: fullname: Kowalski – volume: 3 start-page: 991 year: 1992 end-page: 997 ident: BIB3 article-title: Improving generalization performance using double backpropagation publication-title: IEEE Transactions on Neural Networks contributor: fullname: Le Cun – volume: 4 start-page: 207 year: 1991 end-page: 224 ident: BIB15 article-title: A Gaussian potential function network with hierarchically self-organizing learning publication-title: Neural Networks contributor: fullname: Kil – volume: 1 start-page: 239 year: 1990 ident: 10.1016/0893-6080(96)00042-1_BIB10 article-title: A simple procedure for pruning back-propagation trained neural networks publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.80236 contributor: fullname: Karnin – volume: 1 start-page: 151 year: 1989 ident: 10.1016/0893-6080(96)00042-1_BIB1 article-title: What size net gives valid generalization? publication-title: Neural Computation doi: 10.1162/neco.1989.1.1.151 contributor: fullname: Baum – volume: 3 start-page: 991 year: 1992 ident: 10.1016/0893-6080(96)00042-1_BIB3 article-title: Improving generalization performance using double backpropagation publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.165600 contributor: fullname: Drucker – ident: 10.1016/0893-6080(96)00042-1_BIB11 – volume: 4 start-page: 207 year: 1991 ident: 10.1016/0893-6080(96)00042-1_BIB15 article-title: A Gaussian potential function network with hierarchically self-organizing learning publication-title: Neural Networks doi: 10.1016/0893-6080(91)90005-P contributor: fullname: Lee – volume: 4 start-page: 740 year: 1993 ident: 10.1016/0893-6080(96)00042-1_BIB20 article-title: Pruning algorithms—a survey publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.248452 contributor: fullname: Reed – ident: 10.1016/0893-6080(96)00042-1_BIB8 – ident: 10.1016/0893-6080(96)00042-1_BIB25 – volume: 4 start-page: 882 year: 1993 ident: 10.1016/0893-6080(96)00042-1_BIB2 article-title: Curvature-driven smoothing: a learning algorithm for feedforward networks publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.248466 contributor: fullname: Bishop – ident: 10.1016/0893-6080(96)00042-1_BIB19 doi: 10.1109/72.392264 – volume: 1 start-page: 541 year: 1989 ident: 10.1016/0893-6080(96)00042-1_BIB13 article-title: Back propagation applied to handwritten zip code recognition publication-title: Neural Computation doi: 10.1162/neco.1989.1.4.541 contributor: fullname: LeCun – ident: 10.1016/0893-6080(96)00042-1_BIB16 – ident: 10.1016/0893-6080(96)00042-1_BIB6 – volume: 4 start-page: 473 year: 1992 ident: 10.1016/0893-6080(96)00042-1_BIB18 article-title: Simplifying neural networks by soft weight sharing publication-title: Neural Computation doi: 10.1162/neco.1992.4.4.473 contributor: fullname: Nowlan – volume: 1 start-page: 71 year: 1990 ident: 10.1016/0893-6080(96)00042-1_BIB22 article-title: Sensitivity of feedforward neural networks to weight errors publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.80206 contributor: fullname: Stevenson – ident: 10.1016/0893-6080(96)00042-1_BIB12 – ident: 10.1016/0893-6080(96)00042-1_BIB14 – volume: 37 start-page: 328 year: 1989 ident: 10.1016/0893-6080(96)00042-1_BIB24 article-title: Phoneme recognition using time-delay neural networks publication-title: IEEE Transactions on Acoustics, Speech, Signal Processing doi: 10.1109/29.21701 contributor: fullname: Waibel – volume: 4 start-page: 67 year: 1991 ident: 10.1016/0893-6080(96)00042-1_BIB21 article-title: Creating artificial neural networks that generalize publication-title: Neural Networks doi: 10.1016/0893-6080(91)90033-2 contributor: fullname: Sietsma – ident: 10.1016/0893-6080(96)00042-1_BIB9 – volume: 1 start-page: 119 year: 1989 ident: 10.1016/0893-6080(96)00042-1_BIB4 article-title: Neocognitron: A hierarchical neural network capable of visual pattern recognition publication-title: Neural Networks doi: 10.1016/0893-6080(88)90014-7 contributor: fullname: Fukushima – volume: 2 start-page: 210 year: 1990 ident: 10.1016/0893-6080(96)00042-1_BIB7 article-title: Layered neural networks with Gaussian hidden units with universal approximations publication-title: Neural Computation doi: 10.1162/neco.1990.2.2.210 contributor: fullname: Hartman – ident: 10.1016/0893-6080(96)00042-1_BIB17 – ident: 10.1016/0893-6080(96)00042-1_BIB23 doi: 10.1109/ICNN.1988.23865 – ident: 10.1016/0893-6080(96)00042-1_BIB5 doi: 10.1109/IJCNN.1993.714126 |
SSID | ssj0006843 |
Score | 1.6580989 |
Snippet | By imposing saturation requirements on hidden-layer neural activations, a new learning algorithm is developed to improve robustness on classification... |
SourceID | proquest crossref pubmed pascalfrancis elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1213 |
SubjectTerms | Applied sciences Artificial intelligence Computer science; control theory; systems Connectionism. Neural networks Exact sciences and technology Generalization Robustness – Mapping sensitivity – Hidden-neuron saturation – Error back-propagation – Hebbian – Hybrid learning – Classifier networks |
Title | Merging Back-propagation and Hebbian Learning Rules for Robust Classifications |
URI | https://dx.doi.org/10.1016/0893-6080(96)00042-1 https://www.ncbi.nlm.nih.gov/pubmed/12662594 https://search.proquest.com/docview/1859398320 https://search.proquest.com/docview/26207385 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1BT9swFH6a4II0AQPGMigYiQM7eG0Sx66PMIG6TfSAQOJm2Yk9oU1pRdsrv33vOUmBQ4XENXJs5z37-bPz-XsAp9rizicNGQ-hUFwoW3GNG2cutXWVyEiekM47rsdydCd-3Rf3L-7CEK2yjf1NTI_Run3Sb63Znz489Ae40krEOwjBaeTFC-xFnJvfn55ZHnLYEOeG1D6W7m7PpbK_fHam5bdYB09XrU4fp3aGNgtNsovVaDSuSlfbsNnCSXbe9PgTfPD1Dmx1qRpYO3N3YXztHykdEbuw5V-O1WIciT5htq7YyDuSHmet2OofdrP452cM8Sy7mbjFbM5i7kxiFTUHfHtwd3V5-2PE21QKvBRCz7kLapBWODdFWfpCeqsQCSgS5q4kekkUlIJ6WOB2sPTB5VUWrBpYqV3uZJa6kH-GtXpS-y_A0Iu5qtSw1IRdiCYlvAs2z1OHAcOFBHhnQjNtFDNMRyUjkxsyudHEpkOTmzQB1dnZvPK8waD-xpu9V25ZNpdnBem8JXDSucngpKE_Ibb2k8XMpKTypjGYDRI4XlGGlPpJ6ieB_cbDz1-DoAZ3jeLru3t-ABuR_R1JgYewNn9c-B6Cm7k7isP3CNbPf_4ejf8DQg_yhQ |
link.rule.ids | 315,783,787,4511,24130,27938,27939,45599,45693 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4heqBSRYHSkvJYV-qhHMxuEsdeH6HqannsHhBI3Cw7sdGqKLtid6_89s7kAeWwQuJqOYkzY4-_cb58A_BTW8x84pDwEDLFhbIF15g4c6mtK0RC8oR03jEay-GtuLjL7v77F4ZolU3sr2N6Fa2blm5jze5sMun2cKeViHcQgtPMwwzogyD5LJzTJ08vNA_Zr5lzfRoAdm9_n4tl97ntl5bH1U14vGp7-jSzczRaqKtdrIaj1bY02ILNBk-y03rI27Dmyx343NZqYM3S_QLjkX-kekTszOZ_Od4WA0nlFGbLgg29I-1x1qit3rPr5YOfMwS07HrqlvMFq4pnEq2oPuHbhdvBn5vfQ97UUuC5EHrBXVC9uMDFKfLcZ9JbhVBAkTJ3IdFNIqMa1P0M88HcB5cWSbCqZ6V2qZNJ7EL6FdbLaen3gKEbU1Wofq4JvBBPSngXbJrGDiOGCxHw1oRmVktmmJZLRiY3ZHKjiU6HJjdxBKq1s3nleoNR_Y0rD1-55flxaZKR0FsEP1o3GVw19CnEln66nJuYZN40RrNeBJ0VfUiqn7R-IvhWe_jlbRDVYNoovr975B3YGN6MrszV-fhyHz5WVPCKIXgA64vHpT9EpLNwR9VU_gcJ3_Qn |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Merging+back-propagation+and+Hebbian+learning+rules+for+robust+classifications&rft.jtitle=Neural+networks&rft.au=Jeong%2C+Dong-Gyu&rft.au=Lee%2C+Soo-Young&rft.date=1996-10-01&rft.issn=0893-6080&rft.volume=9&rft.issue=7&rft.spage=1213&rft.epage=1222&rft_id=info:doi/10.1016%2F0893-6080%2896%2900042-1&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon |