Pneumatic rotary nozzle structure optimization design and airflow characteristics analysis

In this paper, the impact jet field between the pneumatic nozzle and the workpiece surface is simulated by the computational fluid dynamics method, and the influence law of the nozzle structure parameters on the jet performance is obtained by combining the response surface method (RSM), so as to imp...

Full description

Saved in:
Bibliographic Details
Published inAdvances in mechanical engineering Vol. 15; no. 9
Main Authors Wang, Pengyu, Yang, Wenlong
Format Journal Article
LanguageEnglish
Published London, England SAGE Publications 01.09.2023
Sage Publications Ltd
SAGE Publishing
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, the impact jet field between the pneumatic nozzle and the workpiece surface is simulated by the computational fluid dynamics method, and the influence law of the nozzle structure parameters on the jet performance is obtained by combining the response surface method (RSM), so as to improve the dust removal effect of the pneumatic nozzle. Firstly, the nozzle impact jet field calculation model was established, and the experimental platform of wind speed and volume measurement was built to verify the accuracy of the numerical calculation model and to simulate and analyze the jet field distribution characteristics of the nozzle under rotating working conditions. Then combined with the Box-Behnken Design (BBD) method, a response surface regression model with nozzle inlet radius (R1), cylindrical section length (L), and cone angle (A) as design variables and nozzle jet fixed point (20 mm) flow rate as the target variable was established to find the optimal combination of nozzle characteristics parameters. The results show that the optimized nozzle characteristics parameters using RSM can effectively improve the nozzle jet performance, the optimized jet flow rate increased by 8.38%, and can be more effective in dust removal; jet pressure on the workpiece surface decreases as the nozzle incidence angle increases; in the speed range of 400–1200 r/min, the pressure change caused by the jet on the wall surface is small, and the flow rate is relatively stable.
AbstractList In this paper, the impact jet field between the pneumatic nozzle and the workpiece surface is simulated by the computational fluid dynamics method, and the influence law of the nozzle structure parameters on the jet performance is obtained by combining the response surface method (RSM), so as to improve the dust removal effect of the pneumatic nozzle. Firstly, the nozzle impact jet field calculation model was established, and the experimental platform of wind speed and volume measurement was built to verify the accuracy of the numerical calculation model and to simulate and analyze the jet field distribution characteristics of the nozzle under rotating working conditions. Then combined with the Box-Behnken Design (BBD) method, a response surface regression model with nozzle inlet radius (R1), cylindrical section length (L), and cone angle (A) as design variables and nozzle jet fixed point (20 mm) flow rate as the target variable was established to find the optimal combination of nozzle characteristics parameters. The results show that the optimized nozzle characteristics parameters using RSM can effectively improve the nozzle jet performance, the optimized jet flow rate increased by 8.38%, and can be more effective in dust removal; jet pressure on the workpiece surface decreases as the nozzle incidence angle increases; in the speed range of 400–1200 r/min, the pressure change caused by the jet on the wall surface is small, and the flow rate is relatively stable.
In this paper, the impact jet field between the pneumatic nozzle and the workpiece surface is simulated by the computational fluid dynamics method, and the influence law of the nozzle structure parameters on the jet performance is obtained by combining the response surface method (RSM), so as to improve the dust removal effect of the pneumatic nozzle. Firstly, the nozzle impact jet field calculation model was established, and the experimental platform of wind speed and volume measurement was built to verify the accuracy of the numerical calculation model and to simulate and analyze the jet field distribution characteristics of the nozzle under rotating working conditions. Then combined with the Box-Behnken Design (BBD) method, a response surface regression model with nozzle inlet radius ( R 1), cylindrical section length ( L ), and cone angle ( A ) as design variables and nozzle jet fixed point (20 mm) flow rate as the target variable was established to find the optimal combination of nozzle characteristics parameters. The results show that the optimized nozzle characteristics parameters using RSM can effectively improve the nozzle jet performance, the optimized jet flow rate increased by 8.38%, and can be more effective in dust removal; jet pressure on the workpiece surface decreases as the nozzle incidence angle increases; in the speed range of 400–1200 r/min, the pressure change caused by the jet on the wall surface is small, and the flow rate is relatively stable.
Author Yang, Wenlong
Wang, Pengyu
Author_xml – sequence: 1
  givenname: Pengyu
  surname: Wang
  fullname: Wang, Pengyu
  email: pywang@mail.ustc.edu.cn
– sequence: 2
  givenname: Wenlong
  orcidid: 0009-0009-1613-9502
  surname: Yang
  fullname: Yang, Wenlong
BookMark eNp9kU9LXTEQxUOxULV-gO4uuH42k_9ZFlErCO2i3XQT5ubmvkbuu3lNchHfpzf62gqVupphcs6POZkjcjCnORDyAegZgNYfQRltgDPGAaykoN6Qw8fZyoCgB397zt6Rk1JiTyVVlCprD8mPr3NYNlij73KqmO-7Oe12U-hKzYuvSw5d2ta4ibumSXM3hBLXc4fz0GHM45TuOv8TM_oaciwNU9obTvcllvfk7YhTCSe_6zH5fnnx7fzz6ubL1fX5p5uVF8LWVS97UIAy6FGZFsEgHYK22lsuPTOil3QEKRijVlsahB-gNxRtz40R3Ct-TK733CHhrdvmuGkxXMLongYprx3mttkUXK8xGG41ZQ00qqFXwIJnImiGII1prNM9a5vTryWU6m7Tklug4phlFKzglr2qMtJKIaWmTaX3Kp9TKTmMzsf69Is1Y5wcUPd4Pffies0J_zj_pHrNc7b3FFyH533-b3gAuxCpcw
CitedBy_id crossref_primary_10_3390_app132212330
crossref_primary_10_1115_1_4065312
Cites_doi 10.3389/fbioe.2021.781614
10.1016/j.petsci.2022.05.016
10.1260/1756-8250.5.1.47
10.3390/jmse11030668
10.1115/1.4055247
10.1145/3190645
10.1016/j.ijrefrig.2023.01.002
10.3390/en16041687
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is licensed under the Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is licensed under the Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AFRWT
AAYXX
CITATION
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
H8D
HCIFZ
L6V
L7M
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PRINS
DOA
DOI 10.1177/16878132231195016
DatabaseName Sage Journals GOLD Open Access 2024
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
Engineering Research Database
Aerospace Database
SciTech Premium Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering collection
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central China
DatabaseTitleList Publicly Available Content Database

Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: AFRWT
  name: Sage Journals GOLD Open Access 2024
  url: http://journals.sagepub.com/
  sourceTypes: Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1687-8140
ExternalDocumentID oai_doaj_org_article_b7ae8397020e4f6db612ec24e72a1588
10_1177_16878132231195016
10.1177_16878132231195016
GrantInformation_xml – fundername: Open Fund of Anhui Key Laboratory of Mine Intelligent Equipment and Technology
  grantid: ZKSYS202103
– fundername: Mining intelligent technology and equipment research and innovation team
  grantid: 2022AH010052
– fundername: Open Fund of State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines
  grantid: SKLMRDPC20KF12
GroupedDBID .DC
0R~
188
23M
2UF
2WC
4.4
54M
5GY
5VS
8FE
8FG
8R4
8R5
AAJPV
AASGM
ABAWP
ABJCF
ABQXT
ACGFS
ACIWK
ACROE
ADBBV
ADOGD
AEDFJ
AENEX
AEUHG
AEWDL
AFCOW
AFKRA
AFKRG
AFRWT
AINHJ
AJUZI
ALMA_UNASSIGNED_HOLDINGS
AUTPY
AYAKG
BCNDV
BDDNI
BENPR
BGLVJ
C1A
CAHYU
CCPQU
CNMHZ
E3Z
EBS
EJD
GROUPED_DOAJ
H13
HCIFZ
IAO
IEA
IL9
ITC
J8X
K.F
KQ8
L6V
M7S
O9-
OK1
PHGZM
PHGZT
PIMPY
PTHSS
Q2X
RHU
ROL
SAUOL
SCDPB
SCNPE
SFC
TR2
UGNYK
AAYXX
ACHEB
CITATION
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
H8D
L7M
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c449t-b5b161a5e7f682238a0de797c935c284b50f1542209790e4cd1b80a9b38843c63
IEDL.DBID BENPR
ISSN 1687-8132
IngestDate Wed Aug 27 01:24:07 EDT 2025
Sat Aug 23 14:10:02 EDT 2025
Fri Jul 25 12:17:14 EDT 2025
Tue Jul 01 05:23:28 EDT 2025
Thu Apr 24 23:11:51 EDT 2025
Tue Jun 17 22:28:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords rotating jet
response surface method
parameter optimization
Pneumatic nozzle
Language English
License This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c449t-b5b161a5e7f682238a0de797c935c284b50f1542209790e4cd1b80a9b38843c63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0009-1613-9502
OpenAccessLink https://www.proquest.com/docview/2859545570?pq-origsite=%requestingapplication%
PQID 2859545570
PQPubID 237349
ParticipantIDs doaj_primary_oai_doaj_org_article_b7ae8397020e4f6db612ec24e72a1588
proquest_journals_2920194392
proquest_journals_2859545570
crossref_citationtrail_10_1177_16878132231195016
crossref_primary_10_1177_16878132231195016
sage_journals_10_1177_16878132231195016
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace London, England
PublicationPlace_xml – name: London, England
– name: New York
PublicationTitle Advances in mechanical engineering
PublicationYear 2023
Publisher SAGE Publications
Sage Publications Ltd
SAGE Publishing
Publisher_xml – name: SAGE Publications
– name: Sage Publications Ltd
– name: SAGE Publishing
References Li 2022
Miao 2021
Hu, Ai, Yu 2014; 42
Zhao 2018
Wu, Zhang, Tan 2022; 19
Li 2015
Zhang, Yao, Xi 2002
Demir, Demir, Lončar 2023; 16
Jiang, Ren, Zhao 2018; 16
Yang, Hu, Du 2022; 41
Xu, Jia, Li 2023; 11
Borikar, Borikar, Panchal 2023; 148
Zhang, Ding, Wang 2022; 144
Dong, Yang 2017; 38
Soemoto, Wakimoto, Katoh 2013; 5
Huang, Zhang, Yin 2022; 50
Xu, Cai 2008
Li, Liu, Guo 2021; 9
Chen, Zhao 2022; 51
Fang, Xie, Liu 2019; 47
Miao H (bibr4-16878132231195016) 2021
Xu W (bibr8-16878132231195016) 2008
Fang Y (bibr11-16878132231195016) 2019; 47
Li Y (bibr12-16878132231195016) 2015
bibr21-16878132231195016
Chen G (bibr2-16878132231195016) 2022; 51
Yang T (bibr3-16878132231195016) 2022; 41
bibr10-16878132231195016
bibr17-16878132231195016
bibr1-16878132231195016
Zhao J (bibr6-16878132231195016) 2018
bibr20-16878132231195016
Hu K (bibr18-16878132231195016) 2014; 42
Jiang D (bibr7-16878132231195016) 2018; 16
bibr14-16878132231195016
Huang D (bibr5-16878132231195016) 2022; 50
Zhang X (bibr9-16878132231195016) 2002
bibr13-16878132231195016
Dong J (bibr16-16878132231195016) 2017; 38
Li M (bibr15-16878132231195016) 2022
bibr19-16878132231195016
References_xml – year: 2021
  publication-title: Design and experimental study of integrated clean air knife
– year: 2015
  publication-title: Flow field simulation and structural optimization design of three-dimensional rotating jet gun nozzle
– volume: 42
  start-page: 27
  year: 2014
  end-page: 30
  article-title: Research on structural optimization of cylindrical nozzle based on response surface method
  publication-title: Mach Tool Hydraul
– volume: 50
  start-page: 144
  year: 2022
  end-page: 148
  article-title: Flow field simulation and structural optimization of negative pressure air knife system in film casting machine
  publication-title: Mach Tool Hydraul
– volume: 5
  start-page: 47
  year: 2013
  end-page: 58
  article-title: Removal of fine particles on a wall by high-frequency turbulence added air flow
  publication-title: Int J Flow Control
– volume: 144
  year: 2022
  article-title: Multiphase Flow field analysis and experimental study of pulsating air jet polishing
  publication-title: J Manuf Sci Eng
– start-page: 37
  year: 2008
  end-page: 40
  article-title: Research on energy-saving device of pneumatic nozzle
  publication-title: Hydraul Pneum
– volume: 19
  start-page: 2284
  year: 2022
  end-page: 2296
  article-title: Flow-visualization and numerical investigation on the optimum design of cavitating jet nozzle
  publication-title: Pet Sci
– start-page: 118
  year: 2002
  end-page: 121
  article-title: Relationship between dust removal efficiency of air gun nozzle and various factors
  publication-title: Eng Mech
– volume: 38
  start-page: 2537
  year: 2017
  end-page: 2541
  article-title: Blockage and critical parameters of flow with friction in spray pipe
  publication-title: J Eng Thermophys
– year: 2022
  publication-title: Research on structural optimization of right-angle elbow and nozzle of medium and high pressure well drilling rig
– volume: 16
  start-page: 27
  year: 2018
  end-page: 30
  article-title: Design of a measurement device for jet impact force of pneumatic nozzle
  publication-title: Exp Sci Technol
– volume: 16
  start-page: 1687
  year: 2023
  article-title: Optimization of caper drying using response surface methodology and artificial neural networks for energy efficiency characteristics
  publication-title: Energies
– year: 2018
  publication-title: Research on jet water removal characteristics and evaluation methods
– volume: 11
  start-page: 668
  year: 2023
  article-title: Optimization study of marine energy harvesting from vortex-induced vibration using a response-surface method
  publication-title: J Mar Sci Eng
– volume: 41
  start-page: 1894
  year: 2022
  end-page: 1899
  article-title: Numerical simulation of air knife blocking dust removal in laser die cutting station
  publication-title: Mech Sci Technol
– volume: 9
  start-page: 781614
  year: 2021
  article-title: Genetic algorithm-based optimization of curved-tube nozzle parameters for rotating spinning
  publication-title: Front Bioeng Biotechnol
– volume: 51
  start-page: 56
  year: 2022
  end-page: 61
  article-title: Design of diaphragm feeding mechanism
  publication-title: Spec Equip Electron Ind
– volume: 47
  year: 2019
  article-title: Structural optimization and arch-breaking test research of air jet nozzle
  publication-title: Mach Tool Hydraul
– volume: 148
  start-page: 75
  year: 2023
  end-page: 82
  article-title: An experimental case study on the effect of condenser geometry in a refrigerator: Sub-cooling and coefficient of performance issues
  publication-title: Int J Refrig
– ident: bibr13-16878132231195016
  doi: 10.3389/fbioe.2021.781614
– ident: bibr14-16878132231195016
  doi: 10.1016/j.petsci.2022.05.016
– volume: 38
  start-page: 2537
  year: 2017
  ident: bibr16-16878132231195016
  publication-title: J Eng Thermophys
– ident: bibr10-16878132231195016
  doi: 10.1260/1756-8250.5.1.47
– year: 2022
  ident: bibr15-16878132231195016
  publication-title: Research on structural optimization of right-angle elbow and nozzle of medium and high pressure well drilling rig
– ident: bibr19-16878132231195016
  doi: 10.3390/jmse11030668
– year: 2018
  ident: bibr6-16878132231195016
  publication-title: Research on jet water removal characteristics and evaluation methods
– start-page: 118
  year: 2002
  ident: bibr9-16878132231195016
  publication-title: Eng Mech
– year: 2015
  ident: bibr12-16878132231195016
  publication-title: Flow field simulation and structural optimization design of three-dimensional rotating jet gun nozzle
– volume: 41
  start-page: 1894
  year: 2022
  ident: bibr3-16878132231195016
  publication-title: Mech Sci Technol
– volume: 51
  start-page: 56
  year: 2022
  ident: bibr2-16878132231195016
  publication-title: Spec Equip Electron Ind
– ident: bibr17-16878132231195016
  doi: 10.1115/1.4055247
– volume: 50
  start-page: 144
  year: 2022
  ident: bibr5-16878132231195016
  publication-title: Mach Tool Hydraul
– year: 2021
  ident: bibr4-16878132231195016
  publication-title: Design and experimental study of integrated clean air knife
– volume: 42
  start-page: 27
  year: 2014
  ident: bibr18-16878132231195016
  publication-title: Mach Tool Hydraul
– volume: 47
  year: 2019
  ident: bibr11-16878132231195016
  publication-title: Mach Tool Hydraul
– volume: 16
  start-page: 27
  year: 2018
  ident: bibr7-16878132231195016
  publication-title: Exp Sci Technol
– ident: bibr1-16878132231195016
  doi: 10.1145/3190645
– ident: bibr21-16878132231195016
  doi: 10.1016/j.ijrefrig.2023.01.002
– start-page: 37
  year: 2008
  ident: bibr8-16878132231195016
  publication-title: Hydraul Pneum
– ident: bibr20-16878132231195016
  doi: 10.3390/en16041687
SSID ssib050600699
ssj0000395696
ssib044728254
ssib023771143
Score 2.2978323
Snippet In this paper, the impact jet field between the pneumatic nozzle and the workpiece surface is simulated by the computational fluid dynamics method, and the...
SourceID doaj
proquest
crossref
sage
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Air flow
Computational fluid dynamics
Design optimization
Dust control
Flow velocity
Incidence angle
Jet flow
Nozzles
Parameters
Regression models
Response surface methodology
Volume measurement
Wind speed
Workpieces
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3NS8MwGMaDeNKD-InVKTkIglBsmzQfRxXHEBQPDoaXkqQpCLOVuiHur_dN2s0Ovy5emxbCm7d5nrTJ70XoRHAOvjsyoaUSFiggMKHy3-B5oXKVCEU8juH2jg2G9GaUjjqlvtyesAYP3ATuXHNlQcQ52BpLC5ZrkGRrEmp5ouJU-GO-oHmdxZSfgwn4fsna35iOsBQzwYVbehFf-dTVN-8Ikef1L5nMzr4uLzX9TbTRekR80fRtC63Ychutd8iBO-jxvrRTT1vFdTVR9Tsuq9lsbHHDg53WFlcwGTy3pyxx7jdqYFXmWD3Vxbh6w2YZ1QxtDZ5kFw371w9Xg7AtkxAaSuUk1KkG26ZSywsGck-EinLLJTeSpAbUR6dRAUYpgTBxCUE0eaxFpKQmQlBiGNlDq2VV2n2EJeVMMxAomhOqZCJYEeUOaBMJxWA5G6BoHrPMtAxxV8pinMUtNvxLmAN0tnjkpQFo_HbzpRuIxY2Ofe0vQEZkbUZkf2VEgHrzYczaF_I1c5w-MIspj75vlmCEJJizJECnbuQ_m37s7MF_dPYQrbkC9s2utR5ahSSxR2BzJvrYZ_QHvebxwg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Sage Journals GOLD Open Access 2024
  dbid: AFRWT
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9QwEA_n3os-iJ-4ekoeBEGolyZpPp7kFJdDUEQ8PHwpSZqKsNtK3UXu_npn0nTdxVN8bVIYJpPMb5KZ3xDy1GgNuJuFIkoLAQo4mMKlO3jdusZx40SiY3j3Xp2eybfn1fkB6adamKzBHy8wrQokSoc17m68jT7Oj4zHpTLaYBwlUhvTUr3crFf1eN09ddXAL_g-vVnh03bAhMiLYipvu0YOuVYVn5HDk8XHz9stwAXIvsN4J6XG4s6tySIdH1MZwafDXkCAkbqAoUwFCpXfTq-Uc8_7pSYBe8h2J5ks-bfFLXIzA1N6MlrSbXIQuzvkxg5d4V3y5UMXN4nilQ792g0XtOsvL5eRjiS0myHSHk6gVS7tpE3KDqGua6j7NrTL_icN-_zQMDZyotwjZ4s3n16fFrk3QxGktOvCVx6woquibhVgDGEca6K2OlhRBXB5vmItoDPOmdWWRRma0hvmrBfGSBGUuE9mXd_FB4RaqZUHnTLZCOksN6plDbLoMOMUxNBzwiad1SETl2P_jGVdZq7yP9Q8J8-3v3wfWTv-NfkVLsR2IhJupw_98LXO-7f22kXAkhrQdZStajwgwxi4jJq7sjJmTo6mZawnG66RHBAQaqXZ1cMW0JcFRMjn5Bmu_O-hvwr78L9nPiLXOdjzmA93RGZgCfExAKi1f5KN_hc50gnL
  priority: 102
  providerName: SAGE Publications
Title Pneumatic rotary nozzle structure optimization design and airflow characteristics analysis
URI https://journals.sagepub.com/doi/full/10.1177/16878132231195016
https://www.proquest.com/docview/2859545570
https://www.proquest.com/docview/2920194392
https://doaj.org/article/b7ae8397020e4f6db612ec24e72a1588
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEB_s3Ys-iJ94th55EARhMbfJ5uNJWulZBEspLRZflnytFM7dur1S7F_vJJu7XlH7mmTZkJnM_CaZ_AbgrZIScTd1ReAaAxR0MIVJZ_CyMd6UyrBEx_D1UByc8i9n1Vk-cLvMaZUrm5gMte9cPCP_EInW0NtXkn68-FXEqlHxdjWX0NiCMZpgpUYw3ts_PDpeaVTJcCobBHacy_hWc62BkV2PigzIk-1mGC-kol4zgbtPYayWr0IjS1Nsi02IiWL11FgjfcOZJc7_O0B1Izcsuav5E3iccSbZHRTjKTwI7TN4tME--By-H7XhKjG2kr5bmv43abubm0UgA6fsVR9IhwblZ36pSXxK9iCm9cSc982iuybuLt0z9g0UJy_gdL5_8umgyKUWCse5Xha2sgj9TBVkIxAyMGWoD1JLp1nl0IPZijYItsqSaqlp4M7PrKJGW6YUZ06wlzBquza8AqK5FBbXlHLPuNGlEg31kRSHKiMwJJ4AXa1Z7TIPeSyHsahnmXr8r2WewPv1JxcDCcd9g_eiINYDI392auj6H3XejrWVJiA0lAiWA2-Etwj0git5kKWZVUpNYGclxjpv6sv6VgX_3a0RTGkEeOUE3kXJ33b9d7Kv7__PNjyM5e2HnLYdGKH4wxsEQUs7hS01_zyF8e78-NvJNOv9NB0p_AEr8Psc
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKfYUsAHEBJShNd2YvuAEK9lSx_i0EoVl2A7DkLaJiXdqmp_FL-RseNstwJ669XO0zOe-cb2fAPwXEmJuJu6zAuNAQo6mMzENXhZm8owZXikY9jeKaZ74st-vr8Cv4dcmHCscrCJ0VBXrQtr5K8D0Rp6-1zSt4e_slA1KuyuDiU0erXY9KcnGLIdvdn4iPJ9wdjk0-6HaZaqCmROCD3PbG4R5Zjcy7pA78iVoZWXWjrNc4fG2ua0RlzBGNVSUy9cNbaKGm25UoK7guNzr8F1wdGTh8z0yedBfxnHH1-iyxNChszQhb4HLj9aJPgfPQXH6CSWEBsXONcVRoZp4zVwQoW20IQILNRqDRXZl1xnrDBwARYvnUSLznFyB24nVEve9Wp4F1Z8cw9uLXEd3odvXxt_HPlhSdfOTXdKmvbsbOZJz2B73HnSovk6SHmhpIpHS4hpKmJ-dvWsPSHuIrk09vWEKg9g70pE8BBWm7bxj4BoIQuLY0pFxYXRTBU1rQIFD1WmwAB8BHQYs9Il1vNQfGNWjhPR-V_DPIJXi1sOe8qPyy5-HwSxuDCwdceGtvtRpslfWmk8AlGJ0NyLuqgswkrvmPCSmXGu1AjWBzGWyYQclecK_-9ujdBNI5xkI3gZJH_e9d-PXbv8Pc_gxnR3e6vc2tjZfAw3GSp0f5puHVZRFfwThF9z-zTqPIHvVz3J_gA2wjEj
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3daxQxEB_qFUQfxE962moeFEFYmstmN8mDSGt7tFaPQywUX9ZskhXh3K3bK6X90_zrnGSz1ytq3_qaZD_ITGZ-k0x-A_BSCoG4m5rEcYUBCjqYRIc9eFFpq5nUaaBj-DTJ9w75h6PsaAV-93dhfFplbxODobaN8Xvkm55oDb19JuhmFdMipjvjd8e_El9Byp-09uU0OhU5cOdnGL6dvN3fQVm_Ymy8--X9XhIrDCSGczVPyqxExKMzJ6ocPWUqNbVOKGFUmhk03GVGK8QYjFElFHXc2FEpqVZlKiVPTZ7ie2_BqvBR0QBWt3cn08-9NrMUp2GJPI9z4e-JLrTfM_vRPAYDwW-kGKuEgmKjHFe-xDgxHsN6hijf5psQj_nKrb4--5IjDfUGroDkpby04CrH9-FexLhkq1PKB7Di6odwd4n58BF8ndbuNLDFkraZ6_ac1M3FxcyRjs_2tHWkQWP2M94SJTYkmhBdW6J_tNWsOSPmKtU09nX0Ko_h8EaE8AQGdVO7NSCKi7zEOaXcplwrJvOKWk_IQ6XOMRwfAu3nrDCRA92X4pgVo0h7_tc0D-HN4pHjjgDkusHbXhCLgZ67OzQ07fcimoKiFNohLBUI1B2vclsiyHSGcSeYHmVSDmG9F2MRDcpJcan-_-5WCOQUgks2hNde8pdd__3Zp9d_5wXcxgVWfNyfHDyDOwz1uUutW4cBaoLbQCw2L59HpSfw7abX2R9wUDa1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pneumatic+rotary+nozzle+structure+optimization+design+and+airflow+characteristics+analysis&rft.jtitle=Advances+in+mechanical+engineering&rft.au=Wang%2C+Pengyu&rft.au=Yang%2C+Wenlong&rft.date=2023-09-01&rft.pub=Sage+Publications+Ltd&rft.issn=1687-8132&rft.eissn=1687-8140&rft.volume=15&rft.issue=8&rft_id=info:doi/10.1177%2F16878132231195016&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-8132&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-8132&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-8132&client=summon