Pneumatic rotary nozzle structure optimization design and airflow characteristics analysis
In this paper, the impact jet field between the pneumatic nozzle and the workpiece surface is simulated by the computational fluid dynamics method, and the influence law of the nozzle structure parameters on the jet performance is obtained by combining the response surface method (RSM), so as to imp...
Saved in:
Published in | Advances in mechanical engineering Vol. 15; no. 9 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London, England
SAGE Publications
01.09.2023
Sage Publications Ltd SAGE Publishing |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, the impact jet field between the pneumatic nozzle and the workpiece surface is simulated by the computational fluid dynamics method, and the influence law of the nozzle structure parameters on the jet performance is obtained by combining the response surface method (RSM), so as to improve the dust removal effect of the pneumatic nozzle. Firstly, the nozzle impact jet field calculation model was established, and the experimental platform of wind speed and volume measurement was built to verify the accuracy of the numerical calculation model and to simulate and analyze the jet field distribution characteristics of the nozzle under rotating working conditions. Then combined with the Box-Behnken Design (BBD) method, a response surface regression model with nozzle inlet radius (R1), cylindrical section length (L), and cone angle (A) as design variables and nozzle jet fixed point (20 mm) flow rate as the target variable was established to find the optimal combination of nozzle characteristics parameters. The results show that the optimized nozzle characteristics parameters using RSM can effectively improve the nozzle jet performance, the optimized jet flow rate increased by 8.38%, and can be more effective in dust removal; jet pressure on the workpiece surface decreases as the nozzle incidence angle increases; in the speed range of 400–1200 r/min, the pressure change caused by the jet on the wall surface is small, and the flow rate is relatively stable. |
---|---|
AbstractList | In this paper, the impact jet field between the pneumatic nozzle and the workpiece surface is simulated by the computational fluid dynamics method, and the influence law of the nozzle structure parameters on the jet performance is obtained by combining the response surface method (RSM), so as to improve the dust removal effect of the pneumatic nozzle. Firstly, the nozzle impact jet field calculation model was established, and the experimental platform of wind speed and volume measurement was built to verify the accuracy of the numerical calculation model and to simulate and analyze the jet field distribution characteristics of the nozzle under rotating working conditions. Then combined with the Box-Behnken Design (BBD) method, a response surface regression model with nozzle inlet radius (R1), cylindrical section length (L), and cone angle (A) as design variables and nozzle jet fixed point (20 mm) flow rate as the target variable was established to find the optimal combination of nozzle characteristics parameters. The results show that the optimized nozzle characteristics parameters using RSM can effectively improve the nozzle jet performance, the optimized jet flow rate increased by 8.38%, and can be more effective in dust removal; jet pressure on the workpiece surface decreases as the nozzle incidence angle increases; in the speed range of 400–1200 r/min, the pressure change caused by the jet on the wall surface is small, and the flow rate is relatively stable. In this paper, the impact jet field between the pneumatic nozzle and the workpiece surface is simulated by the computational fluid dynamics method, and the influence law of the nozzle structure parameters on the jet performance is obtained by combining the response surface method (RSM), so as to improve the dust removal effect of the pneumatic nozzle. Firstly, the nozzle impact jet field calculation model was established, and the experimental platform of wind speed and volume measurement was built to verify the accuracy of the numerical calculation model and to simulate and analyze the jet field distribution characteristics of the nozzle under rotating working conditions. Then combined with the Box-Behnken Design (BBD) method, a response surface regression model with nozzle inlet radius ( R 1), cylindrical section length ( L ), and cone angle ( A ) as design variables and nozzle jet fixed point (20 mm) flow rate as the target variable was established to find the optimal combination of nozzle characteristics parameters. The results show that the optimized nozzle characteristics parameters using RSM can effectively improve the nozzle jet performance, the optimized jet flow rate increased by 8.38%, and can be more effective in dust removal; jet pressure on the workpiece surface decreases as the nozzle incidence angle increases; in the speed range of 400–1200 r/min, the pressure change caused by the jet on the wall surface is small, and the flow rate is relatively stable. |
Author | Yang, Wenlong Wang, Pengyu |
Author_xml | – sequence: 1 givenname: Pengyu surname: Wang fullname: Wang, Pengyu email: pywang@mail.ustc.edu.cn – sequence: 2 givenname: Wenlong orcidid: 0009-0009-1613-9502 surname: Yang fullname: Yang, Wenlong |
BookMark | eNp9kU9LXTEQxUOxULV-gO4uuH42k_9ZFlErCO2i3XQT5ubmvkbuu3lNchHfpzf62gqVupphcs6POZkjcjCnORDyAegZgNYfQRltgDPGAaykoN6Qw8fZyoCgB397zt6Rk1JiTyVVlCprD8mPr3NYNlij73KqmO-7Oe12U-hKzYuvSw5d2ta4ibumSXM3hBLXc4fz0GHM45TuOv8TM_oaciwNU9obTvcllvfk7YhTCSe_6zH5fnnx7fzz6ubL1fX5p5uVF8LWVS97UIAy6FGZFsEgHYK22lsuPTOil3QEKRijVlsahB-gNxRtz40R3Ct-TK733CHhrdvmuGkxXMLongYprx3mttkUXK8xGG41ZQ00qqFXwIJnImiGII1prNM9a5vTryWU6m7Tklug4phlFKzglr2qMtJKIaWmTaX3Kp9TKTmMzsf69Is1Y5wcUPd4Pffies0J_zj_pHrNc7b3FFyH533-b3gAuxCpcw |
CitedBy_id | crossref_primary_10_3390_app132212330 crossref_primary_10_1115_1_4065312 |
Cites_doi | 10.3389/fbioe.2021.781614 10.1016/j.petsci.2022.05.016 10.1260/1756-8250.5.1.47 10.3390/jmse11030668 10.1115/1.4055247 10.1145/3190645 10.1016/j.ijrefrig.2023.01.002 10.3390/en16041687 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 The Author(s) 2023. This work is licensed under the Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is licensed under the Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AFRWT AAYXX CITATION 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 H8D HCIFZ L6V L7M M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS PRINS DOA |
DOI | 10.1177/16878132231195016 |
DatabaseName | Sage Journals GOLD Open Access 2024 CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Engineering Research Database Aerospace Database SciTech Premium Collection ProQuest Engineering Collection Advanced Technologies Database with Aerospace Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering collection ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central China |
DatabaseTitleList | Publicly Available Content Database Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: AFRWT name: Sage Journals GOLD Open Access 2024 url: http://journals.sagepub.com/ sourceTypes: Publisher – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1687-8140 |
ExternalDocumentID | oai_doaj_org_article_b7ae8397020e4f6db612ec24e72a1588 10_1177_16878132231195016 10.1177_16878132231195016 |
GrantInformation_xml | – fundername: Open Fund of Anhui Key Laboratory of Mine Intelligent Equipment and Technology grantid: ZKSYS202103 – fundername: Mining intelligent technology and equipment research and innovation team grantid: 2022AH010052 – fundername: Open Fund of State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines grantid: SKLMRDPC20KF12 |
GroupedDBID | .DC 0R~ 188 23M 2UF 2WC 4.4 54M 5GY 5VS 8FE 8FG 8R4 8R5 AAJPV AASGM ABAWP ABJCF ABQXT ACGFS ACIWK ACROE ADBBV ADOGD AEDFJ AENEX AEUHG AEWDL AFCOW AFKRA AFKRG AFRWT AINHJ AJUZI ALMA_UNASSIGNED_HOLDINGS AUTPY AYAKG BCNDV BDDNI BENPR BGLVJ C1A CAHYU CCPQU CNMHZ E3Z EBS EJD GROUPED_DOAJ H13 HCIFZ IAO IEA IL9 ITC J8X K.F KQ8 L6V M7S O9- OK1 PHGZM PHGZT PIMPY PTHSS Q2X RHU ROL SAUOL SCDPB SCNPE SFC TR2 UGNYK AAYXX ACHEB CITATION 7TB 8FD ABUWG AZQEC DWQXO FR3 H8D L7M PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c449t-b5b161a5e7f682238a0de797c935c284b50f1542209790e4cd1b80a9b38843c63 |
IEDL.DBID | BENPR |
ISSN | 1687-8132 |
IngestDate | Wed Aug 27 01:24:07 EDT 2025 Sat Aug 23 14:10:02 EDT 2025 Fri Jul 25 12:17:14 EDT 2025 Tue Jul 01 05:23:28 EDT 2025 Thu Apr 24 23:11:51 EDT 2025 Tue Jun 17 22:28:39 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | rotating jet response surface method parameter optimization Pneumatic nozzle |
Language | English |
License | This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c449t-b5b161a5e7f682238a0de797c935c284b50f1542209790e4cd1b80a9b38843c63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0009-1613-9502 |
OpenAccessLink | https://www.proquest.com/docview/2859545570?pq-origsite=%requestingapplication% |
PQID | 2859545570 |
PQPubID | 237349 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b7ae8397020e4f6db612ec24e72a1588 proquest_journals_2920194392 proquest_journals_2859545570 crossref_citationtrail_10_1177_16878132231195016 crossref_primary_10_1177_16878132231195016 sage_journals_10_1177_16878132231195016 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-01 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London, England |
PublicationPlace_xml | – name: London, England – name: New York |
PublicationTitle | Advances in mechanical engineering |
PublicationYear | 2023 |
Publisher | SAGE Publications Sage Publications Ltd SAGE Publishing |
Publisher_xml | – name: SAGE Publications – name: Sage Publications Ltd – name: SAGE Publishing |
References | Li 2022 Miao 2021 Hu, Ai, Yu 2014; 42 Zhao 2018 Wu, Zhang, Tan 2022; 19 Li 2015 Zhang, Yao, Xi 2002 Demir, Demir, Lončar 2023; 16 Jiang, Ren, Zhao 2018; 16 Yang, Hu, Du 2022; 41 Xu, Jia, Li 2023; 11 Borikar, Borikar, Panchal 2023; 148 Zhang, Ding, Wang 2022; 144 Dong, Yang 2017; 38 Soemoto, Wakimoto, Katoh 2013; 5 Huang, Zhang, Yin 2022; 50 Xu, Cai 2008 Li, Liu, Guo 2021; 9 Chen, Zhao 2022; 51 Fang, Xie, Liu 2019; 47 Miao H (bibr4-16878132231195016) 2021 Xu W (bibr8-16878132231195016) 2008 Fang Y (bibr11-16878132231195016) 2019; 47 Li Y (bibr12-16878132231195016) 2015 bibr21-16878132231195016 Chen G (bibr2-16878132231195016) 2022; 51 Yang T (bibr3-16878132231195016) 2022; 41 bibr10-16878132231195016 bibr17-16878132231195016 bibr1-16878132231195016 Zhao J (bibr6-16878132231195016) 2018 bibr20-16878132231195016 Hu K (bibr18-16878132231195016) 2014; 42 Jiang D (bibr7-16878132231195016) 2018; 16 bibr14-16878132231195016 Huang D (bibr5-16878132231195016) 2022; 50 Zhang X (bibr9-16878132231195016) 2002 bibr13-16878132231195016 Dong J (bibr16-16878132231195016) 2017; 38 Li M (bibr15-16878132231195016) 2022 bibr19-16878132231195016 |
References_xml | – year: 2021 publication-title: Design and experimental study of integrated clean air knife – year: 2015 publication-title: Flow field simulation and structural optimization design of three-dimensional rotating jet gun nozzle – volume: 42 start-page: 27 year: 2014 end-page: 30 article-title: Research on structural optimization of cylindrical nozzle based on response surface method publication-title: Mach Tool Hydraul – volume: 50 start-page: 144 year: 2022 end-page: 148 article-title: Flow field simulation and structural optimization of negative pressure air knife system in film casting machine publication-title: Mach Tool Hydraul – volume: 5 start-page: 47 year: 2013 end-page: 58 article-title: Removal of fine particles on a wall by high-frequency turbulence added air flow publication-title: Int J Flow Control – volume: 144 year: 2022 article-title: Multiphase Flow field analysis and experimental study of pulsating air jet polishing publication-title: J Manuf Sci Eng – start-page: 37 year: 2008 end-page: 40 article-title: Research on energy-saving device of pneumatic nozzle publication-title: Hydraul Pneum – volume: 19 start-page: 2284 year: 2022 end-page: 2296 article-title: Flow-visualization and numerical investigation on the optimum design of cavitating jet nozzle publication-title: Pet Sci – start-page: 118 year: 2002 end-page: 121 article-title: Relationship between dust removal efficiency of air gun nozzle and various factors publication-title: Eng Mech – volume: 38 start-page: 2537 year: 2017 end-page: 2541 article-title: Blockage and critical parameters of flow with friction in spray pipe publication-title: J Eng Thermophys – year: 2022 publication-title: Research on structural optimization of right-angle elbow and nozzle of medium and high pressure well drilling rig – volume: 16 start-page: 27 year: 2018 end-page: 30 article-title: Design of a measurement device for jet impact force of pneumatic nozzle publication-title: Exp Sci Technol – volume: 16 start-page: 1687 year: 2023 article-title: Optimization of caper drying using response surface methodology and artificial neural networks for energy efficiency characteristics publication-title: Energies – year: 2018 publication-title: Research on jet water removal characteristics and evaluation methods – volume: 11 start-page: 668 year: 2023 article-title: Optimization study of marine energy harvesting from vortex-induced vibration using a response-surface method publication-title: J Mar Sci Eng – volume: 41 start-page: 1894 year: 2022 end-page: 1899 article-title: Numerical simulation of air knife blocking dust removal in laser die cutting station publication-title: Mech Sci Technol – volume: 9 start-page: 781614 year: 2021 article-title: Genetic algorithm-based optimization of curved-tube nozzle parameters for rotating spinning publication-title: Front Bioeng Biotechnol – volume: 51 start-page: 56 year: 2022 end-page: 61 article-title: Design of diaphragm feeding mechanism publication-title: Spec Equip Electron Ind – volume: 47 year: 2019 article-title: Structural optimization and arch-breaking test research of air jet nozzle publication-title: Mach Tool Hydraul – volume: 148 start-page: 75 year: 2023 end-page: 82 article-title: An experimental case study on the effect of condenser geometry in a refrigerator: Sub-cooling and coefficient of performance issues publication-title: Int J Refrig – ident: bibr13-16878132231195016 doi: 10.3389/fbioe.2021.781614 – ident: bibr14-16878132231195016 doi: 10.1016/j.petsci.2022.05.016 – volume: 38 start-page: 2537 year: 2017 ident: bibr16-16878132231195016 publication-title: J Eng Thermophys – ident: bibr10-16878132231195016 doi: 10.1260/1756-8250.5.1.47 – year: 2022 ident: bibr15-16878132231195016 publication-title: Research on structural optimization of right-angle elbow and nozzle of medium and high pressure well drilling rig – ident: bibr19-16878132231195016 doi: 10.3390/jmse11030668 – year: 2018 ident: bibr6-16878132231195016 publication-title: Research on jet water removal characteristics and evaluation methods – start-page: 118 year: 2002 ident: bibr9-16878132231195016 publication-title: Eng Mech – year: 2015 ident: bibr12-16878132231195016 publication-title: Flow field simulation and structural optimization design of three-dimensional rotating jet gun nozzle – volume: 41 start-page: 1894 year: 2022 ident: bibr3-16878132231195016 publication-title: Mech Sci Technol – volume: 51 start-page: 56 year: 2022 ident: bibr2-16878132231195016 publication-title: Spec Equip Electron Ind – ident: bibr17-16878132231195016 doi: 10.1115/1.4055247 – volume: 50 start-page: 144 year: 2022 ident: bibr5-16878132231195016 publication-title: Mach Tool Hydraul – year: 2021 ident: bibr4-16878132231195016 publication-title: Design and experimental study of integrated clean air knife – volume: 42 start-page: 27 year: 2014 ident: bibr18-16878132231195016 publication-title: Mach Tool Hydraul – volume: 47 year: 2019 ident: bibr11-16878132231195016 publication-title: Mach Tool Hydraul – volume: 16 start-page: 27 year: 2018 ident: bibr7-16878132231195016 publication-title: Exp Sci Technol – ident: bibr1-16878132231195016 doi: 10.1145/3190645 – ident: bibr21-16878132231195016 doi: 10.1016/j.ijrefrig.2023.01.002 – start-page: 37 year: 2008 ident: bibr8-16878132231195016 publication-title: Hydraul Pneum – ident: bibr20-16878132231195016 doi: 10.3390/en16041687 |
SSID | ssib050600699 ssj0000395696 ssib044728254 ssib023771143 |
Score | 2.2978323 |
Snippet | In this paper, the impact jet field between the pneumatic nozzle and the workpiece surface is simulated by the computational fluid dynamics method, and the... |
SourceID | doaj proquest crossref sage |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Air flow Computational fluid dynamics Design optimization Dust control Flow velocity Incidence angle Jet flow Nozzles Parameters Regression models Response surface methodology Volume measurement Wind speed Workpieces |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3NS8MwGMaDeNKD-InVKTkIglBsmzQfRxXHEBQPDoaXkqQpCLOVuiHur_dN2s0Ovy5emxbCm7d5nrTJ70XoRHAOvjsyoaUSFiggMKHy3-B5oXKVCEU8juH2jg2G9GaUjjqlvtyesAYP3ATuXHNlQcQ52BpLC5ZrkGRrEmp5ouJU-GO-oHmdxZSfgwn4fsna35iOsBQzwYVbehFf-dTVN-8Ikef1L5nMzr4uLzX9TbTRekR80fRtC63Ychutd8iBO-jxvrRTT1vFdTVR9Tsuq9lsbHHDg53WFlcwGTy3pyxx7jdqYFXmWD3Vxbh6w2YZ1QxtDZ5kFw371w9Xg7AtkxAaSuUk1KkG26ZSywsGck-EinLLJTeSpAbUR6dRAUYpgTBxCUE0eaxFpKQmQlBiGNlDq2VV2n2EJeVMMxAomhOqZCJYEeUOaBMJxWA5G6BoHrPMtAxxV8pinMUtNvxLmAN0tnjkpQFo_HbzpRuIxY2Ofe0vQEZkbUZkf2VEgHrzYczaF_I1c5w-MIspj75vlmCEJJizJECnbuQ_m37s7MF_dPYQrbkC9s2utR5ahSSxR2BzJvrYZ_QHvebxwg priority: 102 providerName: Directory of Open Access Journals – databaseName: Sage Journals GOLD Open Access 2024 dbid: AFRWT link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9QwEA_n3os-iJ-4ekoeBEGolyZpPp7kFJdDUEQ8PHwpSZqKsNtK3UXu_npn0nTdxVN8bVIYJpPMb5KZ3xDy1GgNuJuFIkoLAQo4mMKlO3jdusZx40SiY3j3Xp2eybfn1fkB6adamKzBHy8wrQokSoc17m68jT7Oj4zHpTLaYBwlUhvTUr3crFf1eN09ddXAL_g-vVnh03bAhMiLYipvu0YOuVYVn5HDk8XHz9stwAXIvsN4J6XG4s6tySIdH1MZwafDXkCAkbqAoUwFCpXfTq-Uc8_7pSYBe8h2J5ks-bfFLXIzA1N6MlrSbXIQuzvkxg5d4V3y5UMXN4nilQ792g0XtOsvL5eRjiS0myHSHk6gVS7tpE3KDqGua6j7NrTL_icN-_zQMDZyotwjZ4s3n16fFrk3QxGktOvCVx6woquibhVgDGEca6K2OlhRBXB5vmItoDPOmdWWRRma0hvmrBfGSBGUuE9mXd_FB4RaqZUHnTLZCOksN6plDbLoMOMUxNBzwiad1SETl2P_jGVdZq7yP9Q8J8-3v3wfWTv-NfkVLsR2IhJupw_98LXO-7f22kXAkhrQdZStajwgwxi4jJq7sjJmTo6mZawnG66RHBAQaqXZ1cMW0JcFRMjn5Bmu_O-hvwr78L9nPiLXOdjzmA93RGZgCfExAKi1f5KN_hc50gnL priority: 102 providerName: SAGE Publications |
Title | Pneumatic rotary nozzle structure optimization design and airflow characteristics analysis |
URI | https://journals.sagepub.com/doi/full/10.1177/16878132231195016 https://www.proquest.com/docview/2859545570 https://www.proquest.com/docview/2920194392 https://doaj.org/article/b7ae8397020e4f6db612ec24e72a1588 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEB_s3Ys-iJ94th55EARhMbfJ5uNJWulZBEspLRZflnytFM7dur1S7F_vJJu7XlH7mmTZkJnM_CaZ_AbgrZIScTd1ReAaAxR0MIVJZ_CyMd6UyrBEx_D1UByc8i9n1Vk-cLvMaZUrm5gMte9cPCP_EInW0NtXkn68-FXEqlHxdjWX0NiCMZpgpUYw3ts_PDpeaVTJcCobBHacy_hWc62BkV2PigzIk-1mGC-kol4zgbtPYayWr0IjS1Nsi02IiWL11FgjfcOZJc7_O0B1Izcsuav5E3iccSbZHRTjKTwI7TN4tME--By-H7XhKjG2kr5bmv43abubm0UgA6fsVR9IhwblZ36pSXxK9iCm9cSc982iuybuLt0z9g0UJy_gdL5_8umgyKUWCse5Xha2sgj9TBVkIxAyMGWoD1JLp1nl0IPZijYItsqSaqlp4M7PrKJGW6YUZ06wlzBquza8AqK5FBbXlHLPuNGlEg31kRSHKiMwJJ4AXa1Z7TIPeSyHsahnmXr8r2WewPv1JxcDCcd9g_eiINYDI392auj6H3XejrWVJiA0lAiWA2-Etwj0git5kKWZVUpNYGclxjpv6sv6VgX_3a0RTGkEeOUE3kXJ33b9d7Kv7__PNjyM5e2HnLYdGKH4wxsEQUs7hS01_zyF8e78-NvJNOv9NB0p_AEr8Psc |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKfYUsAHEBJShNd2YvuAEK9lSx_i0EoVl2A7DkLaJiXdqmp_FL-RseNstwJ669XO0zOe-cb2fAPwXEmJuJu6zAuNAQo6mMzENXhZm8owZXikY9jeKaZ74st-vr8Cv4dcmHCscrCJ0VBXrQtr5K8D0Rp6-1zSt4e_slA1KuyuDiU0erXY9KcnGLIdvdn4iPJ9wdjk0-6HaZaqCmROCD3PbG4R5Zjcy7pA78iVoZWXWjrNc4fG2ua0RlzBGNVSUy9cNbaKGm25UoK7guNzr8F1wdGTh8z0yedBfxnHH1-iyxNChszQhb4HLj9aJPgfPQXH6CSWEBsXONcVRoZp4zVwQoW20IQILNRqDRXZl1xnrDBwARYvnUSLznFyB24nVEve9Wp4F1Z8cw9uLXEd3odvXxt_HPlhSdfOTXdKmvbsbOZJz2B73HnSovk6SHmhpIpHS4hpKmJ-dvWsPSHuIrk09vWEKg9g70pE8BBWm7bxj4BoIQuLY0pFxYXRTBU1rQIFD1WmwAB8BHQYs9Il1vNQfGNWjhPR-V_DPIJXi1sOe8qPyy5-HwSxuDCwdceGtvtRpslfWmk8AlGJ0NyLuqgswkrvmPCSmXGu1AjWBzGWyYQclecK_-9ujdBNI5xkI3gZJH_e9d-PXbv8Pc_gxnR3e6vc2tjZfAw3GSp0f5puHVZRFfwThF9z-zTqPIHvVz3J_gA2wjEj |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3daxQxEB_qFUQfxE962moeFEFYmstmN8mDSGt7tFaPQywUX9ZskhXh3K3bK6X90_zrnGSz1ytq3_qaZD_ITGZ-k0x-A_BSCoG4m5rEcYUBCjqYRIc9eFFpq5nUaaBj-DTJ9w75h6PsaAV-93dhfFplbxODobaN8Xvkm55oDb19JuhmFdMipjvjd8e_El9Byp-09uU0OhU5cOdnGL6dvN3fQVm_Ymy8--X9XhIrDCSGczVPyqxExKMzJ6ocPWUqNbVOKGFUmhk03GVGK8QYjFElFHXc2FEpqVZlKiVPTZ7ie2_BqvBR0QBWt3cn08-9NrMUp2GJPI9z4e-JLrTfM_vRPAYDwW-kGKuEgmKjHFe-xDgxHsN6hijf5psQj_nKrb4--5IjDfUGroDkpby04CrH9-FexLhkq1PKB7Di6odwd4n58BF8ndbuNLDFkraZ6_ac1M3FxcyRjs_2tHWkQWP2M94SJTYkmhBdW6J_tNWsOSPmKtU09nX0Ko_h8EaE8AQGdVO7NSCKi7zEOaXcplwrJvOKWk_IQ6XOMRwfAu3nrDCRA92X4pgVo0h7_tc0D-HN4pHjjgDkusHbXhCLgZ67OzQ07fcimoKiFNohLBUI1B2vclsiyHSGcSeYHmVSDmG9F2MRDcpJcan-_-5WCOQUgks2hNde8pdd__3Zp9d_5wXcxgVWfNyfHDyDOwz1uUutW4cBaoLbQCw2L59HpSfw7abX2R9wUDa1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pneumatic+rotary+nozzle+structure+optimization+design+and+airflow+characteristics+analysis&rft.jtitle=Advances+in+mechanical+engineering&rft.au=Wang%2C+Pengyu&rft.au=Yang%2C+Wenlong&rft.date=2023-09-01&rft.pub=Sage+Publications+Ltd&rft.issn=1687-8132&rft.eissn=1687-8140&rft.volume=15&rft.issue=8&rft_id=info:doi/10.1177%2F16878132231195016&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-8132&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-8132&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-8132&client=summon |