An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis
Polynomial chaos (PC) expansions are used in stochastic finite element analysis to represent the random model response by a set of coefficients in a suitable (so-called polynomial chaos) basis. The number of terms to be computed grows dramatically with the size of the input random vector, which make...
Saved in:
Published in | Probabilistic engineering mechanics Vol. 25; no. 2; pp. 183 - 197 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.04.2010
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Polynomial chaos (PC) expansions are used in stochastic finite element analysis to represent the random model response by a set of coefficients in a suitable (so-called
polynomial chaos) basis. The number of terms to be computed grows dramatically with the size of the input random vector, which makes the computational cost of classical solution schemes (may it be intrusive (i.e.of Galerkin type) or non-intrusive) unaffordable when the deterministic finite element model is expensive to evaluate.
To address such problems, this paper describes a non-intrusive method that builds a
sparse PC expansion. An adaptive regression-based algorithm is proposed for automatically detecting the significant coefficients of the PC expansion. Besides the sparsity of the basis, the experimental design used at each step of the algorithm is systematically complemented in order to ensure the well-posedness of the various regression problems. The accuracy of the PC model is checked using classical tools of statistical learning theory (e.g.
leave-one-out cross-validation). As a consequence, a rather small number of PC terms is eventually retained (
sparse representation), which may be obtained at a reduced computational cost compared to the classical “full” PC approximation. The convergence of the algorithm is shown on an academic example. Then the method is illustrated on two stochastic finite element problems, namely a truss and a frame structure involving 10 and 21 input random variables, respectively. |
---|---|
AbstractList | Polynomial chaos (PC) expansions are used in stochastic finite element analysis to represent the random model response by a set of coefficients in a suitable (so-called polynomial chaos) basis. The number of terms to be computed grows dramatically with the size of the input random vector, which makes the computational cost of classical solution schemes (may it be intrusive (i.e.of Galerkin type) or non-intrusive) unaffordable when the deterministic finite element model is expensive to evaluate. To address such problems, this paper describes a non-intrusive method that builds a sparse PC expansion. An adaptive regression-based algorithm is proposed for automatically detecting the significant coefficients of the PC expansion. Besides the sparsity of the basis, the experimental design used at each step of the algorithm is systematically complemented in order to ensure the well-posedness of the various regression problems. The accuracy of the PC model is checked using classical tools of statistical learning theory (e.g. leave-one-out cross-validation). As a consequence, a rather small number of PC terms is eventually retained (sparse representation), which may be obtained at a reduced computational cost compared to the classical "full" PC approximation. The convergence of the algorithm is shown on an academic example. Then the method is illustrated on two stochastic finite element problems, namely a truss and a frame structure involving 10 and 21 input random variables, respectively. Polynomial chaos (PC) expansions are used in stochastic finite element analysis to represent the random model response by a set of coefficients in a suitable (so-called polynomial chaos) basis. The number of terms to be computed grows dramatically with the size of the input random vector, which makes the computational cost of classical solution schemes (may it be intrusive (i.e.of Galerkin type) or non-intrusive) unaffordable when the deterministic finite element model is expensive to evaluate. To address such problems, this paper describes a non-intrusive method that builds a sparse PC expansion. An adaptive regression-based algorithm is proposed for automatically detecting the significant coefficients of the PC expansion. Besides the sparsity of the basis, the experimental design used at each step of the algorithm is systematically complemented in order to ensure the well-posedness of the various regression problems. The accuracy of the PC model is checked using classical tools of statistical learning theory (e.g. leave-one-out cross-validation). As a consequence, a rather small number of PC terms is eventually retained ( sparse representation), which may be obtained at a reduced computational cost compared to the classical “full” PC approximation. The convergence of the algorithm is shown on an academic example. Then the method is illustrated on two stochastic finite element problems, namely a truss and a frame structure involving 10 and 21 input random variables, respectively. |
Author | Sudret, Bruno Blatman, Géraud |
Author_xml | – sequence: 1 givenname: Géraud surname: Blatman fullname: Blatman, Géraud email: geraud.blatman@edf.fr organization: IFMA-LaMI, Campus des Cézeaux, BP 265, 63175 Aubière cedex, France – sequence: 2 givenname: Bruno surname: Sudret fullname: Sudret, Bruno organization: IFMA-LaMI, Campus des Cézeaux, BP 265, 63175 Aubière cedex, France |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22535935$$DView record in Pascal Francis |
BookMark | eNqNUU2LFDEQDbKCs6v_IR7EU49Jf6VzkmVwVVjwoudQna7eyZhO2lRmcf69GWYF8bSnglfvg6p3za5CDMjYWym2Usj-w2G7pjhieFjQ7re1ELrgWyGaF2wjBzVUba26K7YRdd9Xg67FK3ZNdBBCKtnqDft5GzhMsGb3iBz8Q0wu7xeeIx-Pzk_8uHJaIRHyNfpTiIsDz-0eInH8vUIgFwPxOSZOORacsrN8dsFl5OhxwZA5BPAncvSavZzBE755mjfsx92n77sv1f23z193t_eVbVudq7EZBE6tHLFFQNWLEaWaZQeNnEHCbLtOj1IL2_aqnRS03Thobdtp1FLZRjQ37P3Ft7zm1xEpm8WRRe8hYDySUV2jSkbfF-a7JyaQBT8nCNaRWZNbIJ1MXXdNp5uu8D5eeDZFooSzsS5DLrfnBM4bKcy5DXMw_7Rhzm2cV6WN4qD_c_gb8hzt7qLF8rRHh8mQdRgsTi6hzWaK7hkufwDedrE3 |
CitedBy_id | crossref_primary_10_1016_j_probengmech_2021_103130 crossref_primary_10_1016_j_apm_2018_07_054 crossref_primary_10_1029_2023GL104464 crossref_primary_10_3389_fevo_2023_1257854 crossref_primary_10_3389_fsysb_2024_1419809 crossref_primary_10_1002_cnm_3178 crossref_primary_10_1016_j_engstruct_2020_111786 crossref_primary_10_1016_j_envsoft_2022_105611 crossref_primary_10_1007_s44379_024_00011_x crossref_primary_10_1007_s00466_020_01870_w crossref_primary_10_1115_1_4031984 crossref_primary_10_1007_s11831_011_9058_5 crossref_primary_10_1016_j_ymssp_2022_109619 crossref_primary_10_1016_j_apm_2018_06_015 crossref_primary_10_1016_j_jsv_2020_115398 crossref_primary_10_1177_8755293020919419 crossref_primary_10_1177_1748006X13476821 crossref_primary_10_1002_eqe_3646 crossref_primary_10_1007_s00158_015_1322_0 crossref_primary_10_1111_mice_12088 crossref_primary_10_1002_nme_5966 crossref_primary_10_1016_j_jcp_2010_12_021 crossref_primary_10_1016_j_nucengdes_2024_113484 crossref_primary_10_1007_s10443_017_9652_2 crossref_primary_10_1016_j_soildyn_2025_109239 crossref_primary_10_1615_Int_J_UncertaintyQuantification_2022043638 crossref_primary_10_1144_petgeo2016_068 crossref_primary_10_3846_13923730_2014_914105 crossref_primary_10_1016_j_ress_2023_109898 crossref_primary_10_1016_j_probengmech_2019_04_003 crossref_primary_10_1016_j_petrol_2017_03_046 crossref_primary_10_1016_j_ress_2016_01_023 crossref_primary_10_1016_j_egypro_2013_06_374 crossref_primary_10_1080_15732479_2016_1151446 crossref_primary_10_1016_j_strusafe_2019_101915 crossref_primary_10_1017_aer_2024_65 crossref_primary_10_1002_fld_5135 crossref_primary_10_1007_s00158_020_02516_4 crossref_primary_10_1016_j_cam_2021_113613 crossref_primary_10_1016_j_strusafe_2017_03_005 crossref_primary_10_1016_j_ifacol_2019_12_388 crossref_primary_10_1021_ie300856p crossref_primary_10_1016_j_ress_2017_10_017 crossref_primary_10_1007_s00158_018_1911_9 crossref_primary_10_1007_s00366_024_02089_6 crossref_primary_10_1007_s00158_015_1347_4 crossref_primary_10_1016_j_jcp_2017_09_024 crossref_primary_10_1109_TMAG_2015_2390593 crossref_primary_10_1007_s11242_017_0974_1 crossref_primary_10_1061__ASCE_EM_1943_7889_0002028 crossref_primary_10_1016_j_ress_2021_107815 crossref_primary_10_1016_j_strusafe_2020_102011 crossref_primary_10_1016_j_cma_2024_117392 crossref_primary_10_1061_JENMDT_EMENG_6964 crossref_primary_10_1016_j_strusafe_2020_102019 crossref_primary_10_1061_AJRUA6_0001091 crossref_primary_10_1016_j_jobe_2022_105004 crossref_primary_10_1061__ASCE_EM_1943_7889_0002020 crossref_primary_10_1016_j_compgeo_2024_106615 crossref_primary_10_1016_j_applthermaleng_2017_07_047 crossref_primary_10_1080_13632469_2017_1401566 crossref_primary_10_1061__ASCE_EM_1943_7889_0002023 crossref_primary_10_1080_02626667_2019_1601727 crossref_primary_10_1016_j_rinp_2022_105414 crossref_primary_10_1016_j_ymssp_2015_08_009 crossref_primary_10_1051_e3sconf_202338903058 crossref_primary_10_1016_j_cma_2022_115360 crossref_primary_10_1016_j_cma_2024_117269 crossref_primary_10_1016_j_compstruc_2017_03_006 crossref_primary_10_1016_j_ymssp_2019_106251 crossref_primary_10_1016_j_ijrmms_2011_11_005 crossref_primary_10_1007_s41403_016_0014_4 crossref_primary_10_1137_20M1337302 crossref_primary_10_3390_aerospace9080396 crossref_primary_10_1016_j_strusafe_2011_01_002 crossref_primary_10_1016_j_ymssp_2017_04_014 crossref_primary_10_1016_j_ress_2024_110609 crossref_primary_10_1007_s00158_022_03384_w crossref_primary_10_1016_j_istruc_2022_12_095 crossref_primary_10_1016_j_ress_2023_109568 crossref_primary_10_1016_j_advwatres_2017_04_019 crossref_primary_10_1016_j_cma_2022_115118 crossref_primary_10_1002_tal_1840 crossref_primary_10_1016_j_jobe_2022_105658 crossref_primary_10_1061_AJRUA6_0001086 crossref_primary_10_1002_cnm_3388 crossref_primary_10_1016_j_strusafe_2025_102579 crossref_primary_10_1109_TEMC_2024_3474795 crossref_primary_10_1016_j_econmod_2021_105653 crossref_primary_10_1007_s00603_022_02821_y crossref_primary_10_3390_app122211553 crossref_primary_10_1016_j_compgeo_2019_103093 crossref_primary_10_1016_j_jcp_2017_03_021 crossref_primary_10_1016_j_engstruct_2022_114073 crossref_primary_10_1016_j_ress_2022_109034 crossref_primary_10_3390_a13030051 crossref_primary_10_1016_j_jsv_2024_118730 crossref_primary_10_1016_j_strusafe_2018_04_001 crossref_primary_10_1061__ASCE_EM_1943_7889_0002088 crossref_primary_10_1080_23789689_2022_2029325 crossref_primary_10_1115_1_4064135 crossref_primary_10_1139_cgj_2018_0409 crossref_primary_10_2118_214329_PA crossref_primary_10_1002_cnm_3395 crossref_primary_10_1002_qre_3476 crossref_primary_10_1016_j_jhydrol_2019_123994 crossref_primary_10_1007_s11270_012_1183_8 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123783 crossref_primary_10_1137_20M1315774 crossref_primary_10_1016_j_cma_2017_01_039 crossref_primary_10_1016_j_envsoft_2019_104612 crossref_primary_10_1016_j_cma_2018_10_047 crossref_primary_10_1109_TCPMT_2014_2312455 crossref_primary_10_3390_electronics7030030 crossref_primary_10_1016_j_compbiomed_2022_105528 crossref_primary_10_1007_s00158_018_2150_9 crossref_primary_10_1016_j_cja_2024_02_008 crossref_primary_10_1016_j_cma_2017_01_033 crossref_primary_10_1016_j_probengmech_2018_02_001 crossref_primary_10_1016_j_ymssp_2018_06_044 crossref_primary_10_1016_j_ress_2023_109541 crossref_primary_10_2139_ssrn_2903994 crossref_primary_10_1007_s12205_016_1312_9 crossref_primary_10_1016_j_strusafe_2017_02_001 crossref_primary_10_1111_mice_13354 crossref_primary_10_3934_jcd_2014_1_357 crossref_primary_10_1007_s12046_012_0085_1 crossref_primary_10_1016_j_istruc_2023_05_122 crossref_primary_10_1016_j_probengmech_2019_102996 crossref_primary_10_1080_13632469_2025_2467322 crossref_primary_10_1002_nme_4733 crossref_primary_10_1016_j_buildenv_2020_107500 crossref_primary_10_1016_j_nucengdes_2024_113466 crossref_primary_10_1016_j_jcp_2013_12_025 crossref_primary_10_1016_j_advwatres_2017_10_023 crossref_primary_10_1016_j_ast_2021_106911 crossref_primary_10_1108_EC_03_2019_0085 crossref_primary_10_1109_TCPMT_2018_2880995 crossref_primary_10_1007_s12205_019_2059_x crossref_primary_10_1016_j_ymssp_2021_108120 crossref_primary_10_1093_mnras_stz197 crossref_primary_10_3390_e20030202 crossref_primary_10_1016_j_ceja_2024_100667 crossref_primary_10_1016_j_jcp_2016_06_005 crossref_primary_10_1016_j_engstruct_2022_114294 crossref_primary_10_1016_j_cma_2022_115368 crossref_primary_10_4208_cicp_020911_200412a crossref_primary_10_1109_TCSI_2020_2987470 crossref_primary_10_1061_AJRUA6_0001176 crossref_primary_10_1007_s00477_019_01703_0 crossref_primary_10_1016_j_cma_2023_116099 crossref_primary_10_1016_j_cma_2019_02_021 crossref_primary_10_1016_j_oceaneng_2023_114657 crossref_primary_10_1063_5_0144937 crossref_primary_10_1016_j_jcp_2021_110141 crossref_primary_10_1016_j_cma_2016_12_026 crossref_primary_10_1016_j_ymssp_2023_110728 crossref_primary_10_1002_pamm_201610324 crossref_primary_10_1016_j_advwatres_2022_104179 crossref_primary_10_2514_1_J057527 crossref_primary_10_1002_nme_4926 crossref_primary_10_1016_j_soildyn_2024_108945 crossref_primary_10_1016_j_cma_2018_01_055 crossref_primary_10_1016_j_nucengdes_2021_111609 crossref_primary_10_1007_s11222_011_9277_5 crossref_primary_10_1080_00949655_2017_1368080 crossref_primary_10_1016_j_compgeo_2019_01_009 crossref_primary_10_1016_j_cma_2021_114105 crossref_primary_10_1016_j_cma_2021_114109 crossref_primary_10_1016_j_amc_2024_128873 crossref_primary_10_1115_1_4045744 crossref_primary_10_1007_s00466_021_02096_0 crossref_primary_10_1071_MF24003 crossref_primary_10_1142_S0219876220500036 crossref_primary_10_1007_s00158_020_02798_8 crossref_primary_10_1115_1_4062668 crossref_primary_10_1080_15732479_2010_539057 crossref_primary_10_1016_j_ress_2017_12_007 crossref_primary_10_1016_j_ymssp_2020_106732 crossref_primary_10_1088_1742_6596_1329_1_012011 crossref_primary_10_3390_sym12081379 crossref_primary_10_1016_j_ifacol_2020_12_552 crossref_primary_10_1016_j_strusafe_2020_102074 crossref_primary_10_1109_LEMCPA_2020_3042122 crossref_primary_10_1007_s00466_024_02583_0 crossref_primary_10_1016_j_jcp_2019_04_014 crossref_primary_10_1016_j_nucengdes_2020_110800 crossref_primary_10_1007_s00603_024_04059_2 crossref_primary_10_1016_j_probengmech_2020_103027 crossref_primary_10_1016_j_ress_2024_110537 crossref_primary_10_1615_Int_J_UncertaintyQuantification_2024049519 crossref_primary_10_1016_j_strusafe_2021_102141 crossref_primary_10_1002_cnm_3598 crossref_primary_10_1061__ASCE_EM_1943_7889_0001102 crossref_primary_10_1149_2_1301805jes crossref_primary_10_1007_s10064_020_01847_2 crossref_primary_10_1016_j_ymssp_2018_02_020 crossref_primary_10_1016_j_probengmech_2020_103032 crossref_primary_10_1016_j_apenergy_2019_114318 crossref_primary_10_1016_j_energy_2018_12_064 crossref_primary_10_1016_j_jhydrol_2021_126367 crossref_primary_10_1016_j_cma_2014_03_009 crossref_primary_10_1016_j_ress_2020_107008 crossref_primary_10_1007_s40799_020_00372_x crossref_primary_10_1016_j_engstruct_2019_109631 crossref_primary_10_1061_AJRUA6_0000966 crossref_primary_10_1016_j_ress_2020_107124 crossref_primary_10_1080_17480930_2021_1878087 crossref_primary_10_1002_eqe_3690 crossref_primary_10_1016_j_ress_2020_107248 crossref_primary_10_1016_j_probengmech_2022_103359 crossref_primary_10_1016_j_ymssp_2019_06_009 crossref_primary_10_1061__ASCE_MT_1943_5533_0001309 crossref_primary_10_1002_nag_3615 crossref_primary_10_1016_j_compgeo_2023_105638 crossref_primary_10_1016_j_jcp_2021_110598 crossref_primary_10_1016_j_cma_2022_115735 crossref_primary_10_1016_j_probengmech_2017_06_001 crossref_primary_10_1371_journal_pone_0290331 crossref_primary_10_1016_j_ymssp_2018_05_046 crossref_primary_10_1007_s00158_017_1802_5 crossref_primary_10_1016_j_probengmech_2022_103366 crossref_primary_10_1007_s40868_020_00088_y crossref_primary_10_1061_AJRUA6_0000950 crossref_primary_10_1016_j_compgeo_2018_07_010 crossref_primary_10_1016_j_ijheatmasstransfer_2018_07_073 crossref_primary_10_1016_j_ress_2010_06_015 crossref_primary_10_1016_j_probengmech_2011_07_001 crossref_primary_10_1007_s10483_017_2208_8 crossref_primary_10_1016_j_compstruc_2020_106223 crossref_primary_10_1016_j_jcp_2024_112926 crossref_primary_10_1142_S0219455421500358 crossref_primary_10_1016_j_ress_2016_07_012 crossref_primary_10_1016_j_ress_2024_110753 crossref_primary_10_1007_s11044_017_9577_4 crossref_primary_10_1016_j_cma_2022_115845 crossref_primary_10_1016_j_jcp_2018_10_051 crossref_primary_10_1115_1_4044502 crossref_primary_10_1007_s00158_020_02661_w crossref_primary_10_1007_s00158_011_0653_8 crossref_primary_10_1016_j_apm_2022_03_015 crossref_primary_10_1016_j_engstruct_2019_03_056 crossref_primary_10_1016_j_compchemeng_2019_03_016 crossref_primary_10_3390_math11040836 crossref_primary_10_1016_j_ymssp_2015_12_001 crossref_primary_10_1146_annurev_fluid_122414_034441 crossref_primary_10_1007_s40430_020_02367_6 crossref_primary_10_3390_modelling4040025 crossref_primary_10_5194_acp_20_1363_2020 crossref_primary_10_3390_en13143685 crossref_primary_10_1002_jnm_2725 crossref_primary_10_1007_s13137_020_0147_1 crossref_primary_10_1088_1757_899X_936_1_012042 crossref_primary_10_1016_j_ress_2013_09_011 crossref_primary_10_1155_2020_7417835 crossref_primary_10_1016_j_engstruct_2022_115433 crossref_primary_10_1016_j_jss_2018_01_010 crossref_primary_10_1002_cnm_3423 crossref_primary_10_1061__ASCE_GT_1943_5606_0001720 crossref_primary_10_1142_S021812742250167X crossref_primary_10_1016_j_probengmech_2021_103166 crossref_primary_10_1115_1_4034709 crossref_primary_10_3390_app12052324 crossref_primary_10_1103_PhysRevE_96_063301 crossref_primary_10_1016_j_ress_2019_01_001 crossref_primary_10_1016_j_ress_2022_108901 crossref_primary_10_3390_s17040720 crossref_primary_10_1155_2015_450492 crossref_primary_10_1080_10255842_2022_2131401 crossref_primary_10_1016_j_compstruc_2021_106583 crossref_primary_10_1016_j_strusafe_2019_101905 crossref_primary_10_1016_j_ress_2016_05_002 crossref_primary_10_1016_j_cma_2021_114130 crossref_primary_10_1002_suco_201900398 crossref_primary_10_1061__ASCE_GT_1943_5606_0001852 crossref_primary_10_1016_j_apm_2020_01_065 crossref_primary_10_1007_s00158_020_02599_z crossref_primary_10_1142_S0219876223500068 crossref_primary_10_1016_j_cja_2023_03_041 crossref_primary_10_1002_nme_7182 crossref_primary_10_1051_mmnp_201611201 crossref_primary_10_1080_00423114_2018_1436717 crossref_primary_10_1115_1_4050163 crossref_primary_10_1016_j_ress_2020_107323 crossref_primary_10_1016_j_ress_2023_109145 crossref_primary_10_1016_j_compgeo_2021_104387 crossref_primary_10_1109_ACCESS_2019_2928332 crossref_primary_10_1109_TMTT_2014_2327100 crossref_primary_10_1016_j_ress_2019_106499 crossref_primary_10_1137_140972536 crossref_primary_10_1109_TAP_2014_2359478 crossref_primary_10_1016_j_wavemoti_2019_102390 crossref_primary_10_1137_17M116272X crossref_primary_10_1080_15376494_2018_1546415 crossref_primary_10_1016_j_advwatres_2024_104706 crossref_primary_10_1016_j_apm_2021_01_012 crossref_primary_10_1109_ACCESS_2020_3005289 crossref_primary_10_1109_TAP_2018_2801344 crossref_primary_10_1016_j_firesaf_2022_103591 crossref_primary_10_1109_ACCESS_2020_3020314 crossref_primary_10_1002_mma_5315 crossref_primary_10_1016_j_matpr_2023_06_323 crossref_primary_10_1177_1687814018767682 crossref_primary_10_1016_j_cja_2024_04_001 crossref_primary_10_1002_nme_6086 crossref_primary_10_1016_j_jcp_2022_111313 crossref_primary_10_1002_stc_2936 crossref_primary_10_1016_j_ast_2022_107851 crossref_primary_10_1016_j_engstruct_2019_109332 crossref_primary_10_1063_5_0158821 crossref_primary_10_1016_j_ress_2022_108716 crossref_primary_10_3390_jmse10070860 crossref_primary_10_1016_j_jcp_2016_12_015 crossref_primary_10_1016_j_engstruct_2021_112000 crossref_primary_10_1016_j_nima_2017_03_040 crossref_primary_10_1016_j_cpc_2013_02_005 crossref_primary_10_1016_j_jcp_2018_01_042 crossref_primary_10_1155_2021_8575107 crossref_primary_10_1016_j_jngse_2022_104651 crossref_primary_10_1002_nme_6155 crossref_primary_10_1016_j_anucene_2025_111362 crossref_primary_10_1063_5_0147817 crossref_primary_10_1680_jgeot_21_00169 crossref_primary_10_1007_s00521_017_3109_2 crossref_primary_10_1016_j_ymssp_2021_107727 crossref_primary_10_1002_nme_7469 crossref_primary_10_1016_j_rockmb_2022_100023 crossref_primary_10_1080_00949655_2017_1340475 crossref_primary_10_1016_j_strusafe_2017_07_007 crossref_primary_10_1007_s00419_015_1112_6 crossref_primary_10_1137_16M1103488 crossref_primary_10_1016_j_strusafe_2016_05_002 crossref_primary_10_1007_s10596_021_10076_9 crossref_primary_10_1016_j_soildyn_2024_108683 crossref_primary_10_1108_EC_04_2018_0157 crossref_primary_10_1002_nme_6145 crossref_primary_10_1016_j_ymssp_2023_110574 crossref_primary_10_1142_S0218126619501524 crossref_primary_10_1016_j_probengmech_2013_04_002 crossref_primary_10_1115_1_4047636 crossref_primary_10_1016_j_ast_2024_109133 crossref_primary_10_1016_j_probengmech_2017_04_003 crossref_primary_10_1016_j_ress_2014_01_005 crossref_primary_10_1002_eer2_42 crossref_primary_10_1016_j_engstruct_2024_118763 crossref_primary_10_1016_j_strusafe_2020_101971 crossref_primary_10_33737_jgpps_138902 crossref_primary_10_1002_cnm_3518 crossref_primary_10_1016_j_cma_2013_04_003 crossref_primary_10_1016_j_soildyn_2020_106466 crossref_primary_10_1002_qre_2626 crossref_primary_10_1002_nag_2120 crossref_primary_10_1016_j_istruc_2023_105457 crossref_primary_10_1016_j_strusafe_2018_02_001 crossref_primary_10_1007_s00477_018_1637_7 crossref_primary_10_1016_j_ress_2022_108813 crossref_primary_10_1002_jnm_2037 crossref_primary_10_1016_j_strusafe_2013_08_010 crossref_primary_10_1016_j_ress_2019_106737 crossref_primary_10_1109_ACCESS_2020_2980228 crossref_primary_10_1007_s11440_017_0541_5 crossref_primary_10_1016_j_ress_2015_11_005 crossref_primary_10_1007_s11081_024_09901_8 crossref_primary_10_1016_j_pnucene_2022_104279 crossref_primary_10_1002_nme_6297 crossref_primary_10_1016_j_jcp_2019_02_046 crossref_primary_10_1061__ASCE_EM_1943_7889_0000643 crossref_primary_10_1016_j_probengmech_2012_10_001 crossref_primary_10_1007_s11831_020_09438_w crossref_primary_10_1121_10_0020273 crossref_primary_10_1016_j_ssci_2023_106363 crossref_primary_10_1002_nag_2251 crossref_primary_10_1016_j_prime_2022_100059 crossref_primary_10_1109_ACCESS_2023_3277521 crossref_primary_10_1002_jgrc_20130 crossref_primary_10_1016_j_cma_2020_113467 crossref_primary_10_12989_sem_2016_57_4_587 crossref_primary_10_1016_j_ymssp_2023_110796 crossref_primary_10_3390_aerospace8030084 crossref_primary_10_1617_s11527_020_01519_3 crossref_primary_10_1016_j_compgeo_2021_104059 crossref_primary_10_3390_app7070684 crossref_primary_10_1016_j_gsf_2020_03_016 crossref_primary_10_1016_j_jcp_2011_01_002 crossref_primary_10_1016_j_probengmech_2023_103454 crossref_primary_10_1061__ASCE_EM_1943_7889_0001685 crossref_primary_10_3166_ejcm_19_795_830 crossref_primary_10_3390_ma15248878 crossref_primary_10_1016_j_probengmech_2022_103299 crossref_primary_10_1007_s10596_019_09858_z crossref_primary_10_1007_s12665_018_8028_8 crossref_primary_10_1007_s00158_022_03196_y crossref_primary_10_1615_Int_J_UncertaintyQuantification_2022042912 crossref_primary_10_1002_cnm_2727 crossref_primary_10_1214_20_EJS1793 crossref_primary_10_1061__ASCE_ST_1943_541X_0003451 crossref_primary_10_1016_j_ress_2021_107663 crossref_primary_10_1007_s10472_017_9542_1 crossref_primary_10_1007_s40430_017_0815_8 crossref_primary_10_1137_15M1046812 crossref_primary_10_1016_j_ress_2019_03_005 crossref_primary_10_1016_j_ast_2019_105464 crossref_primary_10_1002_nme_6351 crossref_primary_10_1016_j_probengmech_2024_103613 crossref_primary_10_1016_j_ress_2024_110052 crossref_primary_10_2139_ssrn_3215873 crossref_primary_10_1016_j_apacoust_2020_107282 crossref_primary_10_1016_j_compgeo_2020_103966 crossref_primary_10_1002_eer2_30 crossref_primary_10_1016_j_strusafe_2021_102179 crossref_primary_10_1016_j_strusafe_2022_102278 crossref_primary_10_1016_j_anucene_2022_109016 crossref_primary_10_1007_s00226_015_0737_5 crossref_primary_10_1016_j_compstruc_2023_107153 crossref_primary_10_3390_w13131830 crossref_primary_10_1002_nag_3044 crossref_primary_10_1103_PhysRevD_110_083529 crossref_primary_10_1016_j_probengmech_2012_12_003 crossref_primary_10_1016_j_ymssp_2018_12_007 crossref_primary_10_1016_j_asoc_2020_106133 crossref_primary_10_1016_j_cma_2018_07_035 crossref_primary_10_1016_j_cma_2019_112759 crossref_primary_10_1016_j_ress_2024_110020 crossref_primary_10_1115_1_4041179 crossref_primary_10_1016_j_probengmech_2023_103478 crossref_primary_10_1115_1_4044446 crossref_primary_10_1007_s00158_022_03173_5 crossref_primary_10_1109_ACCESS_2020_2993338 crossref_primary_10_1061__ASCE_ST_1943_541X_0003436 crossref_primary_10_1093_mnras_stab1366 crossref_primary_10_1016_j_ress_2017_06_028 crossref_primary_10_1016_j_ress_2017_06_026 crossref_primary_10_1016_j_ress_2017_06_024 crossref_primary_10_2139_ssrn_2908760 crossref_primary_10_1016_j_soildyn_2023_108213 crossref_primary_10_1016_j_jcp_2020_109298 crossref_primary_10_1002_nme_6135 crossref_primary_10_1016_j_cam_2022_114819 crossref_primary_10_1016_j_jcp_2024_112854 crossref_primary_10_1108_EC_09_2018_0428 crossref_primary_10_12989_eas_2015_8_4_915 crossref_primary_10_1002_nme_6495 crossref_primary_10_1016_j_jconhyd_2016_04_007 crossref_primary_10_1007_s11831_018_9259_2 crossref_primary_10_1016_j_apor_2018_02_023 crossref_primary_10_1061_AJRUA6_0000872 crossref_primary_10_1061__ASCE_GM_1943_5622_0001116 crossref_primary_10_1016_j_ijheatmasstransfer_2020_120360 crossref_primary_10_1061_AJRUA6_0000870 crossref_primary_10_1007_s11831_017_9211_x crossref_primary_10_1016_j_compstruc_2015_05_002 crossref_primary_10_1016_j_advwatres_2015_09_009 crossref_primary_10_1007_s00158_022_03260_7 crossref_primary_10_1007_s11012_019_01019_x crossref_primary_10_1016_j_electacta_2022_141430 crossref_primary_10_1007_s00158_019_02337_0 crossref_primary_10_1029_2020WR028975 crossref_primary_10_1109_MEMC_2021_9477248 crossref_primary_10_1016_j_ress_2020_107033 crossref_primary_10_1016_j_apm_2020_07_034 crossref_primary_10_1016_j_advengsoft_2019_102709 crossref_primary_10_3390_w13233414 crossref_primary_10_1016_j_ast_2015_02_018 crossref_primary_10_1016_j_jcp_2022_110986 crossref_primary_10_1002_cepa_2195 crossref_primary_10_1016_j_ress_2021_107693 crossref_primary_10_1016_j_ymssp_2023_110352 crossref_primary_10_1108_EC_07_2020_0418 crossref_primary_10_1080_13632469_2022_2134945 crossref_primary_10_1016_j_energy_2024_133166 crossref_primary_10_1016_j_enganabound_2021_01_016 crossref_primary_10_1016_j_compstruc_2013_06_016 crossref_primary_10_1016_j_engfailanal_2023_107646 crossref_primary_10_1109_TMTT_2016_2642104 crossref_primary_10_3982_QE866 crossref_primary_10_1080_17499518_2016_1232831 crossref_primary_10_2514_1_G005130 crossref_primary_10_1016_j_cma_2023_116303 crossref_primary_10_1016_j_cma_2024_117693 crossref_primary_10_1016_j_ress_2018_10_004 crossref_primary_10_1016_j_compstruc_2017_09_002 crossref_primary_10_1016_j_compstruc_2023_107117 crossref_primary_10_1016_j_istruc_2024_106674 crossref_primary_10_1016_j_jcp_2015_01_034 crossref_primary_10_1007_s12205_022_2099_5 crossref_primary_10_1002_nme_4485 crossref_primary_10_1007_s10237_023_01687_5 crossref_primary_10_1016_j_ijar_2016_06_012 crossref_primary_10_1016_j_compgeo_2020_103762 crossref_primary_10_1007_s00158_018_2062_8 crossref_primary_10_1007_s00158_019_02413_5 crossref_primary_10_1016_j_compstruc_2023_107239 crossref_primary_10_1016_j_probengmech_2016_08_002 crossref_primary_10_1016_j_strusafe_2024_102518 crossref_primary_10_1016_j_ast_2022_107791 crossref_primary_10_1007_s00158_022_03440_5 crossref_primary_10_1016_j_strusafe_2022_102186 crossref_primary_10_1016_j_compfluid_2017_06_016 crossref_primary_10_1061_JENMDT_EMENG_7083 crossref_primary_10_1016_j_strusafe_2024_102543 crossref_primary_10_1007_s11440_020_00991_z crossref_primary_10_1016_j_engstruct_2018_07_053 crossref_primary_10_1109_ACCESS_2019_2958704 crossref_primary_10_3390_en13184881 crossref_primary_10_1016_j_engstruct_2024_117955 crossref_primary_10_2514_1_J061320 crossref_primary_10_2136_vzj2011_0150 crossref_primary_10_1016_j_compstruct_2021_114680 crossref_primary_10_1016_j_ress_2022_108771 crossref_primary_10_1007_s00466_023_02384_x crossref_primary_10_3390_w13030302 crossref_primary_10_1016_j_engstruct_2019_110063 crossref_primary_10_1016_j_ress_2016_03_021 crossref_primary_10_1016_j_cma_2019_112589 crossref_primary_10_1016_j_jcp_2016_03_026 crossref_primary_10_1103_PhysRevE_86_036702 crossref_primary_10_1007_s00366_019_00793_2 crossref_primary_10_1016_j_strusafe_2017_05_003 crossref_primary_10_1088_1748_0221_15_03_P03021 crossref_primary_10_1016_j_aei_2022_101853 crossref_primary_10_1016_j_compstruc_2023_107018 crossref_primary_10_1016_j_cma_2019_06_034 crossref_primary_10_1016_j_jhydrol_2020_124798 crossref_primary_10_1016_j_jcp_2014_02_024 crossref_primary_10_1016_j_ymssp_2024_111426 crossref_primary_10_1007_s00158_017_1799_9 crossref_primary_10_1016_j_ress_2016_09_003 crossref_primary_10_1016_j_strusafe_2024_102539 crossref_primary_10_1080_0305215X_2020_1804898 crossref_primary_10_1108_EC_11_2015_0363 crossref_primary_10_1109_ACCESS_2020_3014238 crossref_primary_10_1016_j_strusafe_2024_102445 crossref_primary_10_1007_s00158_021_03026_7 crossref_primary_10_1061__ASCE_GT_1943_5606_0002486 crossref_primary_10_1002_eqe_3711 crossref_primary_10_1016_j_cma_2011_01_015 crossref_primary_10_1016_j_cma_2020_113583 crossref_primary_10_1061__ASCE_EM_1943_7889_0001605 crossref_primary_10_1016_j_ijheatmasstransfer_2018_09_031 crossref_primary_10_2139_ssrn_4191835 crossref_primary_10_1016_j_ress_2014_07_009 crossref_primary_10_1061_JGGEFK_GTENG_11884 crossref_primary_10_1051_matecconf_20152401003 crossref_primary_10_1142_S0219876221500730 crossref_primary_10_1007_s11831_017_9240_5 crossref_primary_10_1016_j_ast_2025_110028 crossref_primary_10_1016_j_strusafe_2018_06_003 crossref_primary_10_1061__ASCE_GT_1943_5606_0001046 crossref_primary_10_3389_fbuil_2019_00026 crossref_primary_10_1016_j_strusafe_2024_102557 crossref_primary_10_1016_j_tust_2017_07_009 crossref_primary_10_1016_j_petrol_2018_09_089 crossref_primary_10_1016_j_probengmech_2024_103580 crossref_primary_10_1016_j_probengmech_2019_05_001 crossref_primary_10_1002_2475_8876_70002 crossref_primary_10_1016_j_ress_2023_109610 crossref_primary_10_1016_j_cma_2013_11_013 crossref_primary_10_1115_1_4039836 crossref_primary_10_1016_j_jcp_2023_112004 crossref_primary_10_1061__ASCE_CP_1943_5487_0000692 crossref_primary_10_1016_j_strusafe_2017_04_006 crossref_primary_10_1016_j_tafmec_2024_104639 crossref_primary_10_1016_j_strusafe_2024_102464 crossref_primary_10_1016_j_ymssp_2021_108509 crossref_primary_10_1007_s00158_020_02623_2 crossref_primary_10_1016_j_ress_2012_10_008 crossref_primary_10_1002_2017WR021655 crossref_primary_10_1051_meca_2023037 crossref_primary_10_1016_j_ymssp_2022_109913 crossref_primary_10_1016_j_advengsoft_2017_08_001 crossref_primary_10_1007_s00158_021_02864_9 crossref_primary_10_1016_j_compgeo_2020_103653 crossref_primary_10_1016_j_jcp_2023_112377 crossref_primary_10_1029_2019WR025727 crossref_primary_10_1016_j_strusafe_2018_06_004 crossref_primary_10_1137_16M1083621 crossref_primary_10_1016_j_ress_2018_11_021 crossref_primary_10_1115_1_4047545 crossref_primary_10_1016_j_cma_2012_10_023 crossref_primary_10_1016_j_enconman_2024_118886 crossref_primary_10_3390_w13020203 crossref_primary_10_1016_j_ijheatmasstransfer_2017_07_003 crossref_primary_10_1016_j_ijheatmasstransfer_2020_119548 crossref_primary_10_1051_e3sconf_202236001078 crossref_primary_10_1115_1_4044040 crossref_primary_10_1002_nme_5554 crossref_primary_10_1080_00102202_2022_2068953 crossref_primary_10_1007_s00158_022_03299_6 crossref_primary_10_1016_j_cma_2024_117505 crossref_primary_10_1080_15732479_2019_1650079 crossref_primary_10_1016_j_cma_2024_117506 |
Cites_doi | 10.1016/j.ress.2007.04.002 10.1016/j.cma.2004.05.027 10.2514/1.2220 10.1016/j.probengmech.2008.08.001 10.1016/j.cma.2007.05.016 10.1016/j.probengmech.2005.09.003 10.1016/0167-4730(91)90041-7 10.1016/j.probengmech.2006.05.004 10.1137/S1064827503424505 10.1137/040615201 10.1115/1.1561044 10.1016/j.jcp.2003.11.033 10.1137/050645142 10.1051/meca:2007051 10.1093/bioinformatics/bti499 10.1006/jcph.2002.7104 10.3166/remn.15.81-92 10.1016/j.jcp.2006.12.014 10.1016/j.probengmech.2008.05.001 10.1016/j.crme.2008.02.013 10.1061/(ASCE)0733-9399(2002)128:1(66) 10.1007/s10915-005-9038-8 10.1016/j.strusafe.2006.07.015 10.1007/s00607-003-0015-5 10.1016/j.probengmech.2003.11.017 |
ContentType | Journal Article |
Copyright | 2009 Elsevier Ltd 2015 INIST-CNRS |
Copyright_xml | – notice: 2009 Elsevier Ltd – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7SC 7TB 8FD FR3 H8D JQ2 KR7 L7M L~C L~D |
DOI | 10.1016/j.probengmech.2009.10.003 |
DatabaseName | CrossRef Pascal-Francis Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics Statistics Physics |
EISSN | 1878-4275 |
EndPage | 197 |
ExternalDocumentID | 22535935 10_1016_j_probengmech_2009_10_003 S0266892009000666 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1~. 1~5 29O 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K TN5 WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW 7SC 7TB 8FD FR3 H8D JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c449t-b380ed41be4eae760be17f15a31fa1afc559b190c4674d7a45b899c4db917c303 |
IEDL.DBID | AIKHN |
ISSN | 0266-8920 |
IngestDate | Tue Aug 05 11:11:49 EDT 2025 Mon Jul 21 09:15:09 EDT 2025 Thu Apr 24 23:11:38 EDT 2025 Tue Jul 01 04:09:49 EDT 2025 Fri Feb 23 02:27:44 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Regression Structural reliability Adaptive stochastic finite elements Sparse polynomial chaos expansion Sequential experimental design Response surfaces Chaos Adaptive algorithm Cross validation Random vector Stochastic process Modeling Adaptive method Finite element method Sparse matrix Probability learning Random variable Statistical analysis Probabilistic approach Sequential design Frame construction Well posed problem Orthogonal polynomial Program verification Stochastic analysis Truss structure Experimental design Deterministic model Galerkin method |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c449t-b380ed41be4eae760be17f15a31fa1afc559b190c4674d7a45b899c4db917c303 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 753738066 |
PQPubID | 23500 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_753738066 pascalfrancis_primary_22535935 crossref_citationtrail_10_1016_j_probengmech_2009_10_003 crossref_primary_10_1016_j_probengmech_2009_10_003 elsevier_sciencedirect_doi_10_1016_j_probengmech_2009_10_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-04-01 |
PublicationDateYYYYMMDD | 2010-04-01 |
PublicationDate_xml | – month: 04 year: 2010 text: 2010-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Probabilistic engineering mechanics |
PublicationYear | 2010 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Stone (b19) 1974; 36 Ghanem, Spanos (b1) 2003 Matthies, Keese (b4) 2005; 194 Lebrun, Dutfoy (b23) 2009; 24 Wan, Karniadakis (b26) 2006; 27 Ganapathysubramanian, Zabaras (b15) 2007; 225 Choi, Grandhi, Canfield, Pettit (b8) 2004; 45 Sudret B. Uncertainty propagation and sensitivity analysis in mechanical models — Contributions to structural reliability and stochastic spectral methods. Clermont-Ferrand (France): Habilitation à diriger des recherches. Université Blaise Pascal; 2007 dimensions et leurs marges. In: Publications de l’Institut de Statistique de l’Université de Paris 8. 1959. p. 229–31 Field, Grigoriu (b30) 2004; 19 Nouy (b5) 2007; 196 Sudret (b11) 2008; 93 Smolyak (b29) 1963; 4 Soize, Ghanem (b2) 2004; 26 Le Maître, Knio, Najm, Ghanem (b3) 2004; 197 Vapnik (b31) 1995 Babus˘ka, Nobile, Tempone (b13) 2007; 45 Molinaro, Simon, Pfeiffer (b32) 2005; 21 Xiu, Hesthaven (b12) 2005; 27 Nataf (b27) 1962; 225 Lebrun, Dutfoy (b24) 2009; 24 Saporta (b33) 2006 Berveiller, Sudret, Lemaire (b10) 2006; 15 Wang (b18) 2003; 125 Blatman, Sudret, Berveiller (b28) 2007; 8 Liu, Der Kiureghian (b36) 1991; 9 Sachdeva, Nair, Keane (b17) 2006; 21 Blatman G, Sudret B. Efficient computation of Sobol’ sensitivity indices using sparse polynomial chaos expansions. Reliab Eng Sys Safety 2008 (submitted for publication) Sklar A. Fonctions de répartition Wei, Rahman (b37) 2007; 22 Ditlevsen, Madsen (b39) 1996 Nelsen (b22) 1999; vol. 139 Blatman, Sudret (b34) 2008; 336 Xiu, Karniadakis (b20) 2002; 24 (b35) 2000 Ghanem, Saad, Doostan (b16) 2006; 29 Ghiocel, Ghanem (b6) 2002; 128 Berveiller, Sudret, Lemaire (b9) 2005 Le Maître, Reagan, Najm, Ghanem, Knio (b7) 2002; 181 Gerstner, Griebel (b14) 2003; 71 Vapnik (10.1016/j.probengmech.2009.10.003_b31) 1995 Stone (10.1016/j.probengmech.2009.10.003_b19) 1974; 36 Molinaro (10.1016/j.probengmech.2009.10.003_b32) 2005; 21 Xiu (10.1016/j.probengmech.2009.10.003_b20) 2002; 24 Gerstner (10.1016/j.probengmech.2009.10.003_b14) 2003; 71 (10.1016/j.probengmech.2009.10.003_b35) 2000 Ganapathysubramanian (10.1016/j.probengmech.2009.10.003_b15) 2007; 225 Blatman (10.1016/j.probengmech.2009.10.003_b28) 2007; 8 Blatman (10.1016/j.probengmech.2009.10.003_b34) 2008; 336 Sachdeva (10.1016/j.probengmech.2009.10.003_b17) 2006; 21 Ghanem (10.1016/j.probengmech.2009.10.003_b16) 2006; 29 Field (10.1016/j.probengmech.2009.10.003_b30) 2004; 19 Nelsen (10.1016/j.probengmech.2009.10.003_b22) 1999; vol. 139 Nouy (10.1016/j.probengmech.2009.10.003_b5) 2007; 196 10.1016/j.probengmech.2009.10.003_b38 Liu (10.1016/j.probengmech.2009.10.003_b36) 1991; 9 Ditlevsen (10.1016/j.probengmech.2009.10.003_b39) 1996 Soize (10.1016/j.probengmech.2009.10.003_b2) 2004; 26 Sudret (10.1016/j.probengmech.2009.10.003_b11) 2008; 93 Berveiller (10.1016/j.probengmech.2009.10.003_b10) 2006; 15 Le Maître (10.1016/j.probengmech.2009.10.003_b3) 2004; 197 Choi (10.1016/j.probengmech.2009.10.003_b8) 2004; 45 Smolyak (10.1016/j.probengmech.2009.10.003_b29) 1963; 4 Ghiocel (10.1016/j.probengmech.2009.10.003_b6) 2002; 128 Lebrun (10.1016/j.probengmech.2009.10.003_b24) 2009; 24 Nataf (10.1016/j.probengmech.2009.10.003_b27) 1962; 225 Le Maître (10.1016/j.probengmech.2009.10.003_b7) 2002; 181 Xiu (10.1016/j.probengmech.2009.10.003_b12) 2005; 27 Babus˘ka (10.1016/j.probengmech.2009.10.003_b13) 2007; 45 Wan (10.1016/j.probengmech.2009.10.003_b26) 2006; 27 Saporta (10.1016/j.probengmech.2009.10.003_b33) 2006 10.1016/j.probengmech.2009.10.003_b21 Wang (10.1016/j.probengmech.2009.10.003_b18) 2003; 125 Matthies (10.1016/j.probengmech.2009.10.003_b4) 2005; 194 10.1016/j.probengmech.2009.10.003_b25 Wei (10.1016/j.probengmech.2009.10.003_b37) 2007; 22 Ghanem (10.1016/j.probengmech.2009.10.003_b1) 2003 Berveiller (10.1016/j.probengmech.2009.10.003_b9) 2005 Lebrun (10.1016/j.probengmech.2009.10.003_b23) 2009; 24 |
References_xml | – volume: 71 start-page: 65 year: 2003 end-page: 87 ident: b14 article-title: Dimension-adaptive tensor-product quadrature publication-title: Computing – volume: 8 start-page: 289 year: 2007 end-page: 297 ident: b28 article-title: Quasi-random numbers in stochastic finite element analysis publication-title: Méc Ind – volume: 19 start-page: 68 year: 2004 end-page: 80 ident: b30 article-title: On the accuracy of the polynomial chaos approximation publication-title: Prob Eng Mech – volume: 197 start-page: 28 year: 2004 end-page: 57 ident: b3 article-title: Uncertainty propagation using Wiener–Haar expansions publication-title: J Comput Phys – reference: dimensions et leurs marges. In: Publications de l’Institut de Statistique de l’Université de Paris 8. 1959. p. 229–31 – volume: 36 start-page: 111 year: 1974 end-page: 147 ident: b19 article-title: Cross-validatory choice and assessment of statistical predictions publication-title: J Roy Statist Soc Ser B – volume: vol. 139 year: 1999 ident: b22 publication-title: An introduction to copulas – volume: 4 start-page: 240 year: 1963 end-page: 243 ident: b29 article-title: Quadrature and interpolation formulas for tensor products of certain classes of functions publication-title: Soviet Math Dokl – year: 2006 ident: b33 article-title: Probabilités, analyse des données et statistique – volume: 336 start-page: 518 year: 2008 end-page: 523 ident: b34 article-title: Sparse polynomial chaos expansions and adaptive stochastic finite elements using a regression approach publication-title: C R Méc – volume: 93 start-page: 964 year: 2008 end-page: 979 ident: b11 article-title: Global sensitivity analysis using polynomial chaos expansions publication-title: Reliab Eng Sys Safety – year: 1996 ident: b39 article-title: Structural reliability methods – volume: 24 start-page: 172 year: 2009 end-page: 178 ident: b23 article-title: A generalization of the Nataf transformation to distributions with elliptical copula publication-title: Prob Eng Mech – volume: 21 start-page: 182 year: 2006 end-page: 192 ident: b17 article-title: Hybridization of stochastic reduced basis methods with polynomial chaos expansions publication-title: Prob Eng Mech – year: 2003 ident: b1 article-title: Stochastic finite elements: A spectral appoach – volume: 15 start-page: 81 year: 2006 end-page: 92 ident: b10 article-title: Stochastic finite elements: A non intrusive approach by regression publication-title: Eur J Comput Mech – reference: Sudret B. Uncertainty propagation and sensitivity analysis in mechanical models — Contributions to structural reliability and stochastic spectral methods. Clermont-Ferrand (France): Habilitation à diriger des recherches. Université Blaise Pascal; 2007 – volume: 24 start-page: 312 year: 2009 end-page: 320 ident: b24 article-title: An innovating analysis of the nataf transformation from the copula viewpoint publication-title: Prob Eng Mech – volume: 27 start-page: 455 year: 2006 end-page: 464 ident: b26 article-title: Beyond Wiener–Askey expansions: Handling arbitrary PDFs publication-title: J Sci Comput – volume: 196 start-page: 4521 year: 2007 end-page: 4537 ident: b5 article-title: A generalized spectral decomposition technique to solve stochastic partial differential equations publication-title: Comput Methods Appl Mech Eng – volume: 45 start-page: 1005 year: 2007 end-page: 1034 ident: b13 article-title: A stochastic collocation method for elliptic partial differential equations with random input data publication-title: SIAM J Num Anal – volume: 225 start-page: 42 year: 1962 end-page: 43 ident: b27 article-title: Détermination des distributions dont les marges sont données publication-title: C R Acad Sci Paris – volume: 125 start-page: 210 year: 2003 end-page: 220 ident: b18 article-title: Adaptive response surface method using inherited latin hypercube design points publication-title: J Mech Des – year: 2000 ident: b35 publication-title: Sensitivity analysis – year: 2005 ident: b9 article-title: Non linear non intrusive stochastic finite element method — Application to a fracture mechanics problem publication-title: Proc. 9th int. conf. struct. safety and reliability (ICOSSAR’2005), Roma, Italy – reference: Blatman G, Sudret B. Efficient computation of Sobol’ sensitivity indices using sparse polynomial chaos expansions. Reliab Eng Sys Safety 2008 (submitted for publication) – reference: Sklar A. Fonctions de répartition – volume: 24 start-page: 619 year: 2002 end-page: 644 ident: b20 article-title: The Wiener–Askey polynomial chaos for stochastic differential equations publication-title: J Sci Comput – volume: 29 start-page: 238 year: 2006 end-page: 251 ident: b16 article-title: Efficient solution of stochastic systems: Application to the embankment dam problem publication-title: Struct Saf – volume: 181 start-page: 9 year: 2002 end-page: 44 ident: b7 article-title: A stochastic projection method for fluid flow — II. Random process publication-title: J Comput Phys – year: 1995 ident: b31 article-title: The nature of statistical learning theory – volume: 194 start-page: 1295 year: 2005 end-page: 1331 ident: b4 article-title: Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations publication-title: Comput Methods Appl Mech Eng – volume: 45 start-page: 1191 year: 2004 end-page: 1198 ident: b8 article-title: Polynomial chaos expansion with Latin Hypercube sampling for estimating response variability publication-title: AIAA J – volume: 225 start-page: 652 year: 2007 end-page: 685 ident: b15 article-title: Sparse grid collocation schemes for stochastic natural convection problems publication-title: J Comput Physics – volume: 9 start-page: 161 year: 1991 end-page: 177 ident: b36 article-title: Optimization algorithms for structural reliability publication-title: Struct Saf – volume: 27 start-page: 1118 year: 2005 end-page: 1139 ident: b12 article-title: High-order collocation methods for differential equations with random inputs publication-title: SIAM J Sci Comput – volume: 128 start-page: 66 year: 2002 end-page: 77 ident: b6 article-title: Stochastic finite element analysis of seismic soil–structure interaction publication-title: J Eng Mech – volume: 22 start-page: 27 year: 2007 end-page: 38 ident: b37 article-title: Stuctural reliability analysis by univariate decomposition and numerical integration publication-title: Prob Eng Mech – volume: 21 start-page: 3301 year: 2005 end-page: 3307 ident: b32 article-title: Prediction error estimation: A comparison of resampling methods publication-title: Bioinformatics – volume: 26 start-page: 395 year: 2004 end-page: 410 ident: b2 article-title: Physical systems with random uncertainties: Chaos representations with arbitrary probability measure publication-title: SIAM J Sci Comput – volume: 93 start-page: 964 year: 2008 ident: 10.1016/j.probengmech.2009.10.003_b11 article-title: Global sensitivity analysis using polynomial chaos expansions publication-title: Reliab Eng Sys Safety doi: 10.1016/j.ress.2007.04.002 – volume: 225 start-page: 42 year: 1962 ident: 10.1016/j.probengmech.2009.10.003_b27 article-title: Détermination des distributions dont les marges sont données publication-title: C R Acad Sci Paris – volume: 194 start-page: 1295 year: 2005 ident: 10.1016/j.probengmech.2009.10.003_b4 article-title: Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2004.05.027 – volume: 45 start-page: 1191 year: 2004 ident: 10.1016/j.probengmech.2009.10.003_b8 article-title: Polynomial chaos expansion with Latin Hypercube sampling for estimating response variability publication-title: AIAA J doi: 10.2514/1.2220 – volume: 24 start-page: 312 issue: 3 year: 2009 ident: 10.1016/j.probengmech.2009.10.003_b24 article-title: An innovating analysis of the nataf transformation from the copula viewpoint publication-title: Prob Eng Mech doi: 10.1016/j.probengmech.2008.08.001 – volume: 196 start-page: 4521 issue: 45–48 year: 2007 ident: 10.1016/j.probengmech.2009.10.003_b5 article-title: A generalized spectral decomposition technique to solve stochastic partial differential equations publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2007.05.016 – volume: 21 start-page: 182 issue: 2 year: 2006 ident: 10.1016/j.probengmech.2009.10.003_b17 article-title: Hybridization of stochastic reduced basis methods with polynomial chaos expansions publication-title: Prob Eng Mech doi: 10.1016/j.probengmech.2005.09.003 – volume: 9 start-page: 161 year: 1991 ident: 10.1016/j.probengmech.2009.10.003_b36 article-title: Optimization algorithms for structural reliability publication-title: Struct Saf doi: 10.1016/0167-4730(91)90041-7 – ident: 10.1016/j.probengmech.2009.10.003_b38 – volume: 22 start-page: 27 year: 2007 ident: 10.1016/j.probengmech.2009.10.003_b37 article-title: Stuctural reliability analysis by univariate decomposition and numerical integration publication-title: Prob Eng Mech doi: 10.1016/j.probengmech.2006.05.004 – year: 2006 ident: 10.1016/j.probengmech.2009.10.003_b33 – volume: 26 start-page: 395 issue: 2 year: 2004 ident: 10.1016/j.probengmech.2009.10.003_b2 article-title: Physical systems with random uncertainties: Chaos representations with arbitrary probability measure publication-title: SIAM J Sci Comput doi: 10.1137/S1064827503424505 – volume: 27 start-page: 1118 issue: 3 year: 2005 ident: 10.1016/j.probengmech.2009.10.003_b12 article-title: High-order collocation methods for differential equations with random inputs publication-title: SIAM J Sci Comput doi: 10.1137/040615201 – volume: 125 start-page: 210 year: 2003 ident: 10.1016/j.probengmech.2009.10.003_b18 article-title: Adaptive response surface method using inherited latin hypercube design points publication-title: J Mech Des doi: 10.1115/1.1561044 – volume: 197 start-page: 28 year: 2004 ident: 10.1016/j.probengmech.2009.10.003_b3 article-title: Uncertainty propagation using Wiener–Haar expansions publication-title: J Comput Phys doi: 10.1016/j.jcp.2003.11.033 – volume: 45 start-page: 1005 issue: 3 year: 2007 ident: 10.1016/j.probengmech.2009.10.003_b13 article-title: A stochastic collocation method for elliptic partial differential equations with random input data publication-title: SIAM J Num Anal doi: 10.1137/050645142 – ident: 10.1016/j.probengmech.2009.10.003_b25 – volume: 8 start-page: 289 year: 2007 ident: 10.1016/j.probengmech.2009.10.003_b28 article-title: Quasi-random numbers in stochastic finite element analysis publication-title: Méc Ind doi: 10.1051/meca:2007051 – volume: 21 start-page: 3301 year: 2005 ident: 10.1016/j.probengmech.2009.10.003_b32 article-title: Prediction error estimation: A comparison of resampling methods publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti499 – volume: 24 start-page: 619 issue: 2 year: 2002 ident: 10.1016/j.probengmech.2009.10.003_b20 article-title: The Wiener–Askey polynomial chaos for stochastic differential equations publication-title: J Sci Comput – volume: 4 start-page: 240 year: 1963 ident: 10.1016/j.probengmech.2009.10.003_b29 article-title: Quadrature and interpolation formulas for tensor products of certain classes of functions publication-title: Soviet Math Dokl – volume: 181 start-page: 9 year: 2002 ident: 10.1016/j.probengmech.2009.10.003_b7 article-title: A stochastic projection method for fluid flow — II. Random process publication-title: J Comput Phys doi: 10.1006/jcph.2002.7104 – volume: 15 start-page: 81 issue: 1–3 year: 2006 ident: 10.1016/j.probengmech.2009.10.003_b10 article-title: Stochastic finite elements: A non intrusive approach by regression publication-title: Eur J Comput Mech doi: 10.3166/remn.15.81-92 – year: 1995 ident: 10.1016/j.probengmech.2009.10.003_b31 – volume: 225 start-page: 652 year: 2007 ident: 10.1016/j.probengmech.2009.10.003_b15 article-title: Sparse grid collocation schemes for stochastic natural convection problems publication-title: J Comput Physics doi: 10.1016/j.jcp.2006.12.014 – year: 1996 ident: 10.1016/j.probengmech.2009.10.003_b39 – year: 2003 ident: 10.1016/j.probengmech.2009.10.003_b1 – volume: 24 start-page: 172 issue: 2 year: 2009 ident: 10.1016/j.probengmech.2009.10.003_b23 article-title: A generalization of the Nataf transformation to distributions with elliptical copula publication-title: Prob Eng Mech doi: 10.1016/j.probengmech.2008.05.001 – year: 2000 ident: 10.1016/j.probengmech.2009.10.003_b35 – year: 2005 ident: 10.1016/j.probengmech.2009.10.003_b9 article-title: Non linear non intrusive stochastic finite element method — Application to a fracture mechanics problem – volume: 336 start-page: 518 issue: 6 year: 2008 ident: 10.1016/j.probengmech.2009.10.003_b34 article-title: Sparse polynomial chaos expansions and adaptive stochastic finite elements using a regression approach publication-title: C R Méc doi: 10.1016/j.crme.2008.02.013 – volume: 128 start-page: 66 year: 2002 ident: 10.1016/j.probengmech.2009.10.003_b6 article-title: Stochastic finite element analysis of seismic soil–structure interaction publication-title: J Eng Mech doi: 10.1061/(ASCE)0733-9399(2002)128:1(66) – volume: vol. 139 year: 1999 ident: 10.1016/j.probengmech.2009.10.003_b22 – volume: 27 start-page: 455 year: 2006 ident: 10.1016/j.probengmech.2009.10.003_b26 article-title: Beyond Wiener–Askey expansions: Handling arbitrary PDFs publication-title: J Sci Comput doi: 10.1007/s10915-005-9038-8 – volume: 36 start-page: 111 year: 1974 ident: 10.1016/j.probengmech.2009.10.003_b19 article-title: Cross-validatory choice and assessment of statistical predictions publication-title: J Roy Statist Soc Ser B – volume: 29 start-page: 238 year: 2006 ident: 10.1016/j.probengmech.2009.10.003_b16 article-title: Efficient solution of stochastic systems: Application to the embankment dam problem publication-title: Struct Saf doi: 10.1016/j.strusafe.2006.07.015 – ident: 10.1016/j.probengmech.2009.10.003_b21 – volume: 71 start-page: 65 year: 2003 ident: 10.1016/j.probengmech.2009.10.003_b14 article-title: Dimension-adaptive tensor-product quadrature publication-title: Computing doi: 10.1007/s00607-003-0015-5 – volume: 19 start-page: 68 year: 2004 ident: 10.1016/j.probengmech.2009.10.003_b30 article-title: On the accuracy of the polynomial chaos approximation publication-title: Prob Eng Mech doi: 10.1016/j.probengmech.2003.11.017 |
SSID | ssj0017149 |
Score | 2.4706526 |
Snippet | Polynomial chaos (PC) expansions are used in stochastic finite element analysis to represent the random model response by a set of coefficients in a suitable... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 183 |
SubjectTerms | Adaptive stochastic finite elements Algorithms Applied sciences Building structure Buildings. Public works Chaos theory Computational efficiency Construction (buildings and works) Exact sciences and technology Experimental design Finite element method Fundamental areas of phenomenology (including applications) Mathematical analysis Mathematical models Mathematics Personal computers Physics Probability and statistics Probability theory and stochastic processes Regression Response surfaces Sciences and techniques of general use Sequential experimental design Solid mechanics Sparse polynomial chaos expansion Statistics Stochastic processes Stochasticity Structural and continuum mechanics Structural reliability Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) |
Title | An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis |
URI | https://dx.doi.org/10.1016/j.probengmech.2009.10.003 https://www.proquest.com/docview/753738066 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Li9RAEC72ASKIb3F8DC14zc500ukk4GVYXEYH96Au7i30c3d0NgmTDOjF327VpDO6iLDgKdBJJU115auvuqu7AF4bm9rM6jQysSoi4TMZ6diJyHJPBbZTHzua7_hwKudn4v15er4Hx8NeGEqrDNjfY_oWrUPLJGhz0iyXk08YPci8oNn9reOU-3AYJ4VE0z6cvVvMT3eLCRnvWTA-H5HALXj1O82L6ra46uLK9UsTxdE21yv5l5u606gWlef7qhd_AfjWK53ch7uBTrJZ3-MHsOeqh3AvUEsWftz2EXybVUxZ1RC4MbW6qNfL7vKKdTXTVBebbRqG0LJuHWvq1Q_aqoxvNZeqbpn7joBBc2otQ4LLkCxiO53uzPySCCtzfQY6U-F8k8dwdvL28_E8CnUWIiNE0UU6yafOCq6dcMplcqodzzxPVcK94sobjDo0EgdDlUlspkSqMUozwmqM9Qz6wCdwUNWVewrM8dzmfGoRSGKReKukQkKBlNJLj0wmG0E-qLU04RByqoWxKodss6_lHyNCRTILuoUjMoJ4J9r0J3HcROjNMHblNbMq0WPcRHx8bbx3H0YUTNIiSUfABgMo8b-kxRZVuXrTlhgGZqhXKZ_9Xxeew-0-YYGShV7AQbfeuJfIgzo9hv2jn3wcrJ2ui49fFr8Agt4Ntg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS9xAFD5YC22h9Grp2taO0Ne4m2QyScAXkcq2VV9U8C3MVVfXJGyy0L70t_ecZLKtiCD0dZJJhrl85ztnzswH8EWbxKRGJYGOZB5wl4pARZYHJnQksJ24yFK84-hYTM_49_PkfA32h7MwlFbpsb_H9A6tfcnY9-a4ns3GJ-g9iCyn6H5nOMUjeMxx-dLq3Pm9yvMgge-8D7SIgF5_Att_k7xItcWWFze235jId7pMr_g-I_W8lg12nes1L-7Ad2eTDl7BC08m2V7f3tewZss38NITS-aXbfMWrvdKJo2sCdqYnF9Ui1l7ecPaiilSxWbLmiGwLBrL6mr-iw4q41f1pawaZn8iXFBErWFIbxlSRSynu52ZmxFdZbbPP2fS326yAWcHX0_3p4FXWQg053kbqDibWMNDZbmVNhUTZcPUhYmMQydD6TT6HAppgyZdEpNKnij00TQ3Cj09jRbwHayXVWnfA7NhZrJwYhBGIh47I4VEOoGE0gmHPCYdQTZ0a6H9FeSkhDEvhlyzq-KfESGJzJwe4YiMIFpVrft7OB5SaXcYu-LWpCrQXjyk-tat8V79GDEwTvI4GQEbJkCBq5K2WmRpq2VToBOYYr8Ksfl_TfgMT6enR4fF4bfjHx_gWZ-6QGlDH2G9XSztJ2RErdrqZvwfVwMM1w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+adaptive+algorithm+to+build+up+sparse+polynomial+chaos+expansions+for+stochastic+finite+element+analysis&rft.jtitle=Probabilistic+engineering+mechanics&rft.au=Blatman%2C+G%C3%A9raud&rft.au=Sudret%2C+Bruno&rft.date=2010-04-01&rft.issn=0266-8920&rft.volume=25&rft.issue=2&rft.spage=183&rft.epage=197&rft_id=info:doi/10.1016%2Fj.probengmech.2009.10.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_probengmech_2009_10_003 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-8920&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-8920&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-8920&client=summon |