Battery internal temperature estimation by combined impedance and surface temperature measurement
A new approach, suitable for real-time implementation, is introduced for estimation of non-uniform internal temperature distribution in cylindrical lithium-ion cells. A radial 1-D model is used to estimate the distribution using two inputs: the real or imaginary part of the electrochemical impedance...
Saved in:
Published in | Journal of power sources Vol. 265; pp. 254 - 261 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.11.2014
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A new approach, suitable for real-time implementation, is introduced for estimation of non-uniform internal temperature distribution in cylindrical lithium-ion cells. A radial 1-D model is used to estimate the distribution using two inputs: the real or imaginary part of the electrochemical impedance of the cell at a single frequency, and the surface temperature. The approach does not require knowledge of cell thermal properties, heat generation or thermal boundary conditions.
The model is validated experimentally, the first time for such an approach, using a cylindrical 26650 cell fitted with an internal thermocouple. The cell is heated by applying (1) current pulses of up to ±20 A and (2) a 3500 s HEV drive cycle current profile, whilst monitoring the surface and core temperatures and measuring impedance at 215 Hz. During the drive cycle test, the battery core temperature increases by 20 °C and the surface temperature increases by 14 °C. The mean absolute error in the predicted maximum temperature throughout the cycle is 0.6 °C (3% of the total core temperature increase), in contrast to a mean absolute error of 2.6 °C if the temperature is assumed to be uniform (13% of the total core temperature increase).
•Method introduced for estimating cylindrical Li-ion cell temperature distribution.•Impedance measurement alone shown to underestimate maximum internal temperature.•The new method combines impedance with surface temperature measurements.•Method validated experimentally for the first time with an internal thermocouple.•The method is efficient enough to be implemented in a battery management system. |
---|---|
AbstractList | A new approach, suitable for real-time implementation, is introduced for estimation of non-uniform internal temperature distribution in cylindrical lithium-ion cells. A radial 1-D model is used to estimate the distribution using two inputs: the real or imaginary part of the electrochemical impedance of the cell at a single frequency, and the surface temperature. The approach does not require knowledge of cell thermal properties, heat generation or thermal boundary conditions. The model is validated experimentally, the first time for such an approach, using a cylindrical 26650 cell fitted with an internal thermocouple. The cell is heated by applying (1) current pulses of up to + or -20 A and (2) a 3500 s HEV drive cycle current profile, whilst monitoring the surface and core temperatures and measuring impedance at 215 Hz. During the drive cycle test, the battery core temperature increases by 20 [degrees]C and the surface temperature increases by 14 [degrees]C. The mean absolute error in the predicted maximum temperature throughout the cycle is 0.6 [degees]C (3% of the total core temperature increase), in contrast to a mean absolute error of 2.6 [degrees]C if the temperature is assumed to be uniform (13% of the total core temperature increase). A new approach, suitable for real-time implementation, is introduced for estimation of non-uniform internal temperature distribution in cylindrical lithium-ion cells. A radial 1-D model is used to estimate the distribution using two inputs: the real or imaginary part of the electrochemical impedance of the cell at a single frequency, and the surface temperature. The approach does not require knowledge of cell thermal properties, heat generation or thermal boundary conditions. The model is validated experimentally, the first time for such an approach, using a cylindrical 26650 cell fitted with an internal thermocouple. The cell is heated by applying (1) current pulses of up to ±20 A and (2) a 3500 s HEV drive cycle current profile, whilst monitoring the surface and core temperatures and measuring impedance at 215 Hz. During the drive cycle test, the battery core temperature increases by 20 °C and the surface temperature increases by 14 °C. The mean absolute error in the predicted maximum temperature throughout the cycle is 0.6 °C (3% of the total core temperature increase), in contrast to a mean absolute error of 2.6 °C if the temperature is assumed to be uniform (13% of the total core temperature increase). •Method introduced for estimating cylindrical Li-ion cell temperature distribution.•Impedance measurement alone shown to underestimate maximum internal temperature.•The new method combines impedance with surface temperature measurements.•Method validated experimentally for the first time with an internal thermocouple.•The method is efficient enough to be implemented in a battery management system. |
Author | Ireland, Peter T. Richardson, Robert R. Howey, David A. |
Author_xml | – sequence: 1 givenname: Robert R. surname: Richardson fullname: Richardson, Robert R. email: robert.richardson@eng.ox.ac.uk – sequence: 2 givenname: Peter T. surname: Ireland fullname: Ireland, Peter T. email: peter.ireland@eng.ox.ac.uk – sequence: 3 givenname: David A. surname: Howey fullname: Howey, David A. email: david.howey@eng.ox.ac.uk |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28513461$$DView record in Pascal Francis |
BookMark | eNqFkE1r3DAQhkVJoZu0f6H4UsjFrmTJlnRrE9IPCPTSnsVYGoMWW9pKcsL--yjsNvSW04jheecVzyW5CDEgIR8Z7Rhl4-d9tz_Exxy31PWUiY6KjvX6DdkxJXnby2G4IDvKpWqlHPg7cpnznlLKmKQ7AjdQCqZj40MdAZam4HrABGVL2GAufoXiY2imY2PjOvmArvGVcBAsNhBck7c0Q33_H1wR6hpXDOU9eTvDkvHDeV6RP9_uft_-aO9_ff95-_W-tULo0gIqCTPCOEs1SZionhS3A-31oC2bQCk3C80VBSrcgJN1QszC9Xqs3YwDvyLXp7uHFP9u9edm9dniskDAuGXDRim1ZpyL19FhlIyOvVAVHU-oTTHnhLM5pKokHQ2j5lm_2Zt_-s2zfkOFqfpr8NO5A7KFZU7Vl88v6V4NjIuRVe7LicPq5sFjMtl6rG6dT2iLcdG_VvUEjiGjuw |
CODEN | JPSODZ |
CitedBy_id | crossref_primary_10_1149_1945_7111_ac1a85 crossref_primary_10_1109_TCST_2017_2776218 crossref_primary_10_1016_j_applthermaleng_2019_114816 crossref_primary_10_1016_j_jpowsour_2017_02_039 crossref_primary_10_1016_j_jechem_2024_04_005 crossref_primary_10_1109_MIM_2022_9759355 crossref_primary_10_1016_j_mattod_2021_02_011 crossref_primary_10_1016_j_jpowsour_2015_05_087 crossref_primary_10_3390_wevj14100271 crossref_primary_10_1149_2_0141801jes crossref_primary_10_1016_j_eml_2016_03_013 crossref_primary_10_1109_TPEL_2020_3027561 crossref_primary_10_1149_2_0901813jes crossref_primary_10_1109_TPEL_2020_2977274 crossref_primary_10_1016_j_jpowsour_2016_05_082 crossref_primary_10_1016_j_jpowsour_2015_04_043 crossref_primary_10_3390_s22051763 crossref_primary_10_1149_1945_7111_ac4ea4 crossref_primary_10_3389_fceng_2022_804704 crossref_primary_10_3390_batteries7040085 crossref_primary_10_1016_j_simpat_2018_05_008 crossref_primary_10_1002_er_7905 crossref_primary_10_1016_j_jpowsour_2021_229910 crossref_primary_10_1002_er_4914 crossref_primary_10_1016_j_electacta_2021_139807 crossref_primary_10_1149_1945_7111_abd452 crossref_primary_10_1016_j_jpowsour_2016_06_103 crossref_primary_10_1016_j_jpowsour_2016_06_104 crossref_primary_10_1016_j_est_2023_107073 crossref_primary_10_1016_j_enconman_2017_12_092 crossref_primary_10_1109_TIE_2022_3146503 crossref_primary_10_1109_TIE_2021_3062267 crossref_primary_10_1016_j_rser_2020_110480 crossref_primary_10_1016_j_jpowsour_2021_230864 crossref_primary_10_3390_en17122979 crossref_primary_10_1109_TTE_2022_3208186 crossref_primary_10_1016_j_est_2020_101833 crossref_primary_10_1016_j_jclepro_2023_137099 crossref_primary_10_1016_j_prime_2023_100342 crossref_primary_10_1515_psr_2017_0158 crossref_primary_10_1016_j_measurement_2023_113671 crossref_primary_10_1016_j_applthermaleng_2021_116750 crossref_primary_10_1016_j_jpowsour_2018_10_014 crossref_primary_10_3390_s150511485 crossref_primary_10_1109_TIA_2020_2979783 crossref_primary_10_1109_TTE_2023_3294417 crossref_primary_10_1016_j_jpowsour_2014_09_166 crossref_primary_10_1016_j_jpowsour_2016_09_008 crossref_primary_10_1016_j_automatica_2021_109849 crossref_primary_10_1109_TIA_2020_2988425 crossref_primary_10_3390_jimaging2010002 crossref_primary_10_1016_j_est_2021_102854 crossref_primary_10_1016_j_jpowsour_2019_227297 crossref_primary_10_3390_batteries9090458 crossref_primary_10_1016_j_est_2023_106850 crossref_primary_10_1016_j_jpowsour_2017_11_011 crossref_primary_10_3390_en14123617 crossref_primary_10_1016_j_jpowsour_2021_229572 crossref_primary_10_1016_j_jpowsour_2021_230957 crossref_primary_10_1016_j_automatica_2022_110463 crossref_primary_10_3390_en8054400 crossref_primary_10_1016_j_jpowsour_2020_228742 crossref_primary_10_1016_j_energy_2017_12_032 crossref_primary_10_3390_batteries8100169 crossref_primary_10_1016_j_est_2022_106260 crossref_primary_10_1016_j_jpowsour_2020_227935 crossref_primary_10_1016_j_applthermaleng_2022_118562 crossref_primary_10_1016_j_jpowsour_2016_08_031 crossref_primary_10_1016_j_ensm_2021_06_008 crossref_primary_10_1007_s11431_020_1736_5 crossref_primary_10_3390_pr11082345 crossref_primary_10_1016_j_applthermaleng_2018_07_105 crossref_primary_10_1016_j_jpowsour_2021_229462 crossref_primary_10_1016_j_etran_2022_100195 crossref_primary_10_1149_2_0131814jes crossref_primary_10_1016_j_electacta_2015_06_003 crossref_primary_10_1016_j_jpowsour_2016_02_070 crossref_primary_10_1016_j_est_2022_104291 crossref_primary_10_3390_batteries8070060 crossref_primary_10_20964_2019_07_06 crossref_primary_10_1016_j_egypro_2018_09_046 crossref_primary_10_1016_j_jechem_2023_12_049 crossref_primary_10_2139_ssrn_3581856 crossref_primary_10_3390_s16091394 crossref_primary_10_1109_TII_2019_2960833 crossref_primary_10_1016_j_electacta_2015_10_182 crossref_primary_10_3390_en14185960 crossref_primary_10_1146_annurev_control_053018_023643 crossref_primary_10_1016_j_etran_2021_100145 crossref_primary_10_1109_TTE_2019_2953606 crossref_primary_10_1016_j_est_2024_110690 crossref_primary_10_1109_TIE_2019_2931275 crossref_primary_10_1016_j_apenergy_2016_04_103 crossref_primary_10_1115_1_4034413 crossref_primary_10_3390_batteries7020031 crossref_primary_10_1002_er_6229 crossref_primary_10_1038_s41598_021_93801_9 crossref_primary_10_1016_j_apenergy_2019_02_078 crossref_primary_10_1016_j_est_2022_104218 crossref_primary_10_1016_j_est_2022_105951 crossref_primary_10_1109_TIA_2023_3259397 crossref_primary_10_1016_j_applthermaleng_2023_120402 crossref_primary_10_1155_2018_9642892 crossref_primary_10_1016_j_est_2024_112406 crossref_primary_10_3390_batteries4040052 crossref_primary_10_4271_2017_01_1215 crossref_primary_10_1109_JESTPE_2018_2852218 crossref_primary_10_1016_j_pnsc_2018_11_002 crossref_primary_10_1016_j_est_2023_108241 crossref_primary_10_1016_j_apenergy_2023_122237 crossref_primary_10_1016_j_energy_2018_01_024 crossref_primary_10_3390_en15113930 crossref_primary_10_1016_j_jpowsour_2015_04_099 crossref_primary_10_1016_j_jpowsour_2016_02_006 crossref_primary_10_1016_j_jpowsour_2021_230786 crossref_primary_10_1109_TTE_2021_3071950 crossref_primary_10_1016_j_est_2019_101039 crossref_primary_10_1016_j_egyai_2020_100016 crossref_primary_10_1109_TIA_2020_3005382 crossref_primary_10_1109_TIE_2016_2624720 crossref_primary_10_1080_15325008_2021_1913262 crossref_primary_10_1016_j_ifacol_2015_10_055 crossref_primary_10_1016_j_pecs_2023_101120 crossref_primary_10_1109_TMECH_2023_3235726 crossref_primary_10_1016_j_jpowsour_2021_229523 crossref_primary_10_1016_j_rser_2019_109334 crossref_primary_10_1109_ACCESS_2023_3327062 crossref_primary_10_1016_j_jpowsour_2017_09_046 crossref_primary_10_1016_j_jpowsour_2015_10_052 crossref_primary_10_1016_j_ijheatmasstransfer_2016_05_073 crossref_primary_10_3390_batteries4040064 crossref_primary_10_1109_TIE_2016_2610398 crossref_primary_10_1109_JMEMS_2019_2939811 crossref_primary_10_1002_er_5350 crossref_primary_10_1177_01423312221124354 crossref_primary_10_2339_politeknik_1161986 crossref_primary_10_1016_j_electacta_2023_142939 crossref_primary_10_3390_en10010060 crossref_primary_10_1109_TSTE_2015_2420375 crossref_primary_10_1109_JESTPE_2021_3136906 crossref_primary_10_1002_adsr_202300055 crossref_primary_10_3390_en10070838 crossref_primary_10_1016_j_conengprac_2018_07_013 crossref_primary_10_3390_en14185989 crossref_primary_10_1109_TIE_2023_3292868 crossref_primary_10_1016_j_est_2022_104685 crossref_primary_10_1109_JSEN_2018_2805309 crossref_primary_10_1109_TIE_2016_2516961 crossref_primary_10_1109_ACCESS_2020_3043657 crossref_primary_10_1016_j_conengprac_2016_08_002 crossref_primary_10_1016_j_jpowsour_2017_03_001 crossref_primary_10_1039_D1RA03066C crossref_primary_10_1109_ACCESS_2021_3089032 crossref_primary_10_1109_TPEL_2022_3202939 crossref_primary_10_1016_j_est_2022_104608 crossref_primary_10_1109_JESTIE_2022_3214060 crossref_primary_10_1016_j_jpowsour_2021_230762 crossref_primary_10_1109_TIE_2023_3331090 crossref_primary_10_1109_TPEL_2022_3166170 crossref_primary_10_1016_j_trpro_2016_05_437 crossref_primary_10_1002_er_5107 crossref_primary_10_1149_1945_7111_abec54 crossref_primary_10_1155_2023_4021256 crossref_primary_10_1149_1945_7111_ac239b crossref_primary_10_1149_1945_7111_ac5ada |
Cites_doi | 10.1016/j.jpowsour.2005.11.085 10.1016/j.jpowsour.2009.05.002 10.1016/j.jpowsour.2012.02.038 10.1016/j.jpowsour.2014.01.097 10.1016/j.jpowsour.2013.06.084 10.1016/j.jpowsour.2013.09.005 10.1016/j.jpowsour.2014.03.004 10.1149/1.3515880 10.1016/j.jpowsour.2012.07.144 10.1016/j.jpowsour.2011.01.043 10.1016/j.jpowsour.2013.06.013 10.1016/j.jpowsour.2009.10.105 10.1016/j.electacta.2011.03.136 10.1109/TCST.2012.2231865 10.1016/j.jpowsour.2013.04.117 10.1016/j.jpowsour.2011.09.077 |
ContentType | Journal Article |
Copyright | 2014 Elsevier B.V. 2015 INIST-CNRS |
Copyright_xml | – notice: 2014 Elsevier B.V. – notice: 2015 INIST-CNRS |
DBID | IQODW AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M |
DOI | 10.1016/j.jpowsour.2014.04.129 |
DatabaseName | Pascal-Francis CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Civil Engineering Abstracts Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1873-2755 |
EndPage | 261 |
ExternalDocumentID | 10_1016_j_jpowsour_2014_04_129 28513461 S0378775314006302 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXUO ABFNM ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LX7 LY6 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSK SSM SSR SSZ T5K XPP ZMT ~G- 29L AALMO AAQXK ABPIF ABPTK ACNNM ADALY AI. ASPBG AVWKF AZFZN BBWZM EJD FEDTE FGOYB G-2 HLY HVGLF HZ~ IPNFZ IQODW NDZJH R2- SAC SCB SCE SEW T9H VH1 VOH WUQ AAXKI AAYXX ADMUD AFJKZ CITATION 7SP 7TB 8FD FR3 KR7 L7M |
ID | FETCH-LOGICAL-c449t-ae87afea6f78b7ab09b83c502959c1ba88df49380a04d5ebcd44f4d296ace13a3 |
IEDL.DBID | AIKHN |
ISSN | 0378-7753 |
IngestDate | Fri Oct 25 23:23:00 EDT 2024 Fri Oct 25 08:41:16 EDT 2024 Thu Sep 26 18:39:08 EDT 2024 Fri Nov 25 06:02:58 EST 2022 Sun Apr 21 12:55:39 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Battery management system Temperature Lithium-ion Thermal runaway Electrochemical impedance spectroscopy Temperature measurement Battery management systems Battery Surface temperature Secondary cell Lithium ion Electrical impedance |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c449t-ae87afea6f78b7ab09b83c502959c1ba88df49380a04d5ebcd44f4d296ace13a3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PQID | 1567106248 |
PQPubID | 23500 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1677991334 proquest_miscellaneous_1567106248 crossref_primary_10_1016_j_jpowsour_2014_04_129 pascalfrancis_primary_28513461 elsevier_sciencedirect_doi_10_1016_j_jpowsour_2014_04_129 |
PublicationCentury | 2000 |
PublicationDate | 2014-11-01 |
PublicationDateYYYYMMDD | 2014-11-01 |
PublicationDate_xml | – month: 11 year: 2014 text: 2014-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Journal of power sources |
PublicationYear | 2014 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Wang, Ping, Zhao, Chu, Sun, Chen (bib2) 2012; 208 Fleckenstein, Bohlen, Roscher, Bäker (bib18) 2011; 196 Brandon, Howey, Mitcheson, Offer, Yufit (bib21) 2013; 99 Troxler, Wu, Marinescu, Yufit, Patel, Marquis, Brandon, Offer (bib14) 2014; 247 X. Lin, H.E. Perez, J.B. Siegel, A.G. Stefanopoulou, Y. Ding, M.P. Castanier, in: Les Rencontres Scientifiques d'IFP Energies nouvelles, Rueil-Malmaison, 6th–7th December, 2011. Mutyala, Zhao, Li, Pan, Yuan, Li (bib11) 2014; 260 Lin, Perez, Mohan, Siegel, Stefanopoulou, Ding, Castanier (bib5) 2014; 257 Srinivasan, Carkhuff, Butler, Baisden (bib12) 2011; 56 Lin, Perez, Siegel, Stefanopoulou, Li, Anderson, Ding, Castanier (bib4) 2013; 21 Li, Zhang, Wu, Huang, Nie, Sun, An, Wu (bib10) 2013; 241 Forgez, Vinh Do, Friedrich, Morcrette, Delacourt (bib1) 2010; 195 Srinivasan (bib13) 2012; 198 Fleckenstein, Fischer, Bohlen, Bäker (bib17) 2013; 223 Incropera, De Witt (bib19) 1985 Kim, Mohan, Siegel, Stefanopoulou, Ding (bib7) 2013 Kim, Siegel, Stefanopoulou (bib6) 2013 Santhanagopalan, Ramadass, (Zhengming) Zhang (bib9) 2009; 194 Brandon, Mitcheson, Howey, Yufit, Offer (bib22) 2012 Raijmakers, Danilov, van Lammeren, Lammers, Notten (bib16) 2014; 247 Ratnakumar, Smart, Whitcanack, Ewell (bib20) 2006; 159 Schmidt, Arnold, Loges, Werner, Wetzel, Ivers-Tiffée (bib15) 2013; 243 Bandhauer, Garimella, Fuller (bib8) 2011; 158 Troxler (10.1016/j.jpowsour.2014.04.129_bib14) 2014; 247 Srinivasan (10.1016/j.jpowsour.2014.04.129_bib12) 2011; 56 10.1016/j.jpowsour.2014.04.129_bib3 Srinivasan (10.1016/j.jpowsour.2014.04.129_bib13) 2012; 198 Bandhauer (10.1016/j.jpowsour.2014.04.129_bib8) 2011; 158 Kim (10.1016/j.jpowsour.2014.04.129_bib7) 2013 Ratnakumar (10.1016/j.jpowsour.2014.04.129_bib20) 2006; 159 Lin (10.1016/j.jpowsour.2014.04.129_bib5) 2014; 257 Lin (10.1016/j.jpowsour.2014.04.129_bib4) 2013; 21 Schmidt (10.1016/j.jpowsour.2014.04.129_bib15) 2013; 243 Li (10.1016/j.jpowsour.2014.04.129_bib10) 2013; 241 Kim (10.1016/j.jpowsour.2014.04.129_bib6) 2013 Raijmakers (10.1016/j.jpowsour.2014.04.129_bib16) 2014; 247 Wang (10.1016/j.jpowsour.2014.04.129_bib2) 2012; 208 Brandon (10.1016/j.jpowsour.2014.04.129_bib22) 2012 Mutyala (10.1016/j.jpowsour.2014.04.129_bib11) 2014; 260 Incropera (10.1016/j.jpowsour.2014.04.129_bib19) 1985 Fleckenstein (10.1016/j.jpowsour.2014.04.129_bib18) 2011; 196 Forgez (10.1016/j.jpowsour.2014.04.129_bib1) 2010; 195 Santhanagopalan (10.1016/j.jpowsour.2014.04.129_bib9) 2009; 194 Fleckenstein (10.1016/j.jpowsour.2014.04.129_bib17) 2013; 223 Brandon (10.1016/j.jpowsour.2014.04.129_bib21) 2013; 99 |
References_xml | – volume: 194 start-page: 550 year: 2009 end-page: 557 ident: bib9 publication-title: J. Power Sources contributor: fullname: (Zhengming) Zhang – volume: 195 start-page: 2961 year: 2010 end-page: 2968 ident: bib1 publication-title: J. Power Sources contributor: fullname: Delacourt – year: 1985 ident: bib19 article-title: Fundamentals of Heat and Mass Transfer contributor: fullname: De Witt – start-page: 5680 year: 2013 end-page: 5685 ident: bib7 publication-title: 52nd IEEE Conference on Decision and Control contributor: fullname: Ding – start-page: 698 year: 2013 end-page: 703 ident: bib6 publication-title: Am. Control Conf. (ACC) contributor: fullname: Stefanopoulou – volume: 247 start-page: 1018 year: 2014 end-page: 1025 ident: bib14 publication-title: J. Power Sources contributor: fullname: Offer – volume: 56 start-page: 6198 year: 2011 end-page: 6204 ident: bib12 publication-title: Electrochim. Acta contributor: fullname: Baisden – volume: 257 start-page: 1 year: 2014 end-page: 11 ident: bib5 publication-title: J. Power Sources contributor: fullname: Castanier – volume: 21 start-page: 1745 year: 2013 end-page: 1755 ident: bib4 publication-title: IEEE Trans. Control Syst. Technol. contributor: fullname: Castanier – year: 2012 ident: bib22 article-title: Battery Monitoring in Electric Vehicles, Hybrid Vehicles and Other Applications contributor: fullname: Offer – volume: 159 start-page: 1428 year: 2006 end-page: 1439 ident: bib20 publication-title: J. Power Sources contributor: fullname: Ewell – volume: 247 start-page: 539 year: 2014 end-page: 544 ident: bib16 publication-title: J. Power Sources contributor: fullname: Notten – volume: 243 start-page: 110 year: 2013 end-page: 117 ident: bib15 publication-title: J. Power Sources contributor: fullname: Ivers-Tiffée – volume: 223 start-page: 259 year: 2013 end-page: 267 ident: bib17 publication-title: J. Power Sources contributor: fullname: Bäker – volume: 196 start-page: 4769 year: 2011 end-page: 4778 ident: bib18 publication-title: J. Power Sources contributor: fullname: Bäker – volume: 260 start-page: 43 year: 2014 end-page: 49 ident: bib11 publication-title: J. Power Sources contributor: fullname: Li – volume: 99 start-page: 1 year: 2013 end-page: 10 ident: bib21 publication-title: IEEE Trans. Veh. Technol. contributor: fullname: Yufit – volume: 158 start-page: R1 year: 2011 end-page: R25 ident: bib8 publication-title: J. Electrochem. Soc. contributor: fullname: Fuller – volume: 198 start-page: 351 year: 2012 end-page: 358 ident: bib13 publication-title: J. Power Sources contributor: fullname: Srinivasan – volume: 208 start-page: 210 year: 2012 end-page: 224 ident: bib2 publication-title: J. Power Sources contributor: fullname: Chen – volume: 241 start-page: 536 year: 2013 end-page: 553 ident: bib10 publication-title: J. Power Sources contributor: fullname: Wu – volume: 159 start-page: 1428 year: 2006 ident: 10.1016/j.jpowsour.2014.04.129_bib20 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2005.11.085 contributor: fullname: Ratnakumar – volume: 194 start-page: 550 year: 2009 ident: 10.1016/j.jpowsour.2014.04.129_bib9 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2009.05.002 contributor: fullname: Santhanagopalan – volume: 208 start-page: 210 year: 2012 ident: 10.1016/j.jpowsour.2014.04.129_bib2 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.02.038 contributor: fullname: Wang – volume: 257 start-page: 1 year: 2014 ident: 10.1016/j.jpowsour.2014.04.129_bib5 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.01.097 contributor: fullname: Lin – volume: 247 start-page: 1018 year: 2014 ident: 10.1016/j.jpowsour.2014.04.129_bib14 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.06.084 contributor: fullname: Troxler – volume: 247 start-page: 539 year: 2014 ident: 10.1016/j.jpowsour.2014.04.129_bib16 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.09.005 contributor: fullname: Raijmakers – volume: 260 start-page: 43 year: 2014 ident: 10.1016/j.jpowsour.2014.04.129_bib11 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.03.004 contributor: fullname: Mutyala – volume: 158 start-page: R1 year: 2011 ident: 10.1016/j.jpowsour.2014.04.129_bib8 publication-title: J. Electrochem. Soc. doi: 10.1149/1.3515880 contributor: fullname: Bandhauer – volume: 223 start-page: 259 year: 2013 ident: 10.1016/j.jpowsour.2014.04.129_bib17 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.07.144 contributor: fullname: Fleckenstein – volume: 196 start-page: 4769 year: 2011 ident: 10.1016/j.jpowsour.2014.04.129_bib18 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2011.01.043 contributor: fullname: Fleckenstein – volume: 243 start-page: 110 year: 2013 ident: 10.1016/j.jpowsour.2014.04.129_bib15 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.06.013 contributor: fullname: Schmidt – volume: 195 start-page: 2961 year: 2010 ident: 10.1016/j.jpowsour.2014.04.129_bib1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2009.10.105 contributor: fullname: Forgez – start-page: 5680 year: 2013 ident: 10.1016/j.jpowsour.2014.04.129_bib7 contributor: fullname: Kim – start-page: 698 year: 2013 ident: 10.1016/j.jpowsour.2014.04.129_bib6 contributor: fullname: Kim – volume: 56 start-page: 6198 year: 2011 ident: 10.1016/j.jpowsour.2014.04.129_bib12 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2011.03.136 contributor: fullname: Srinivasan – year: 1985 ident: 10.1016/j.jpowsour.2014.04.129_bib19 contributor: fullname: Incropera – volume: 21 start-page: 1745 year: 2013 ident: 10.1016/j.jpowsour.2014.04.129_bib4 publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2012.2231865 contributor: fullname: Lin – volume: 241 start-page: 536 year: 2013 ident: 10.1016/j.jpowsour.2014.04.129_bib10 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.04.117 contributor: fullname: Li – volume: 99 start-page: 1 year: 2013 ident: 10.1016/j.jpowsour.2014.04.129_bib21 publication-title: IEEE Trans. Veh. Technol. contributor: fullname: Brandon – volume: 198 start-page: 351 year: 2012 ident: 10.1016/j.jpowsour.2014.04.129_bib13 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2011.09.077 contributor: fullname: Srinivasan – year: 2012 ident: 10.1016/j.jpowsour.2014.04.129_bib22 contributor: fullname: Brandon – ident: 10.1016/j.jpowsour.2014.04.129_bib3 |
SSID | ssj0001170 |
Score | 2.5855052 |
Snippet | A new approach, suitable for real-time implementation, is introduced for estimation of non-uniform internal temperature distribution in cylindrical lithium-ion... |
SourceID | proquest crossref pascalfrancis elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 254 |
SubjectTerms | Applied sciences Battery Battery management system Direct energy conversion and energy accumulation Electric cells Electrical engineering. Electrical power engineering Electrical power engineering Electrochemical conversion: primary and secondary batteries, fuel cells Electrochemical impedance spectroscopy Errors Estimates Exact sciences and technology Impedance Lithium-ion Surface temperature Temperature Thermal properties Thermal runaway Thermocouples |
Title | Battery internal temperature estimation by combined impedance and surface temperature measurement |
URI | https://dx.doi.org/10.1016/j.jpowsour.2014.04.129 https://search.proquest.com/docview/1567106248 https://search.proquest.com/docview/1677991334 |
Volume | 265 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA86XxQRP_FzRPC1W9tc0_RRxDEVfdHB3kLSJLCh3XAb4ot_u5e11YmiD761JSHh7nr5XZL7HSFnvvKJM1YHMWM8AKXQDxpmAw05T22ehCr0-c63d7zbg-t-0l8iF3UujL9WWfn-0qfPvXX1pV1Jsz0eDNr3IUNjQ7SNIYInjkI_vILLUSwaZOX86qZ79-GQfXGV-WECBky-w0Ki8LA1HI9e_D65v-UFnvU0mqPNH9eo9bGaoORcWfLim_eeL0mdTbJRYUl6Xk53iyzZYpusLTAM7hBV8me-0kG58_dIPRdVRaRMPcNGmbpI9StFEWCYbA0dYAvjrYGqwtDJ7NkpfF7s-PS5s7hLep3Lh4tuUFVVCHKAbBooK1LlrOIuFTpVOsy0YKiUOEuyPNJKCOMgYwK1BCaxOjcADkyccRwrYortkUYxKuw-oRF-tRoMKMvAukykhoeOJeBShG4uOiDtWo5yXJJnyPpW2VDWkpde8jIEiZI_IFktbvnFDCR6-D_7Nr_o52PIGFElA47TOa0VJvEn8icjqrCj2URiEItIi8cgfmnD0xTBNGNw-I9JHpFV_1ZmMx6TxvR5Zk8Q1kx1kyy33qJmZbzvDW_8bA |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6iBxURn_g2gte6bTNNm6Msyuo-Lip4C0mTwC7aXdxdxH_vZNvqiqIHbyVNSJiZfPnymBlCzn3mE2esDmLGeABKIQ4aZgMNOU9tnoQq9P7O3R5vPcDtY_K4QJq1L4x_Vllhf4npM7SuShqVNBujfr9xFzI0NmTbuEXwgaMQh5eQDQicnUuXN-1W7wOQfXKV2WUCbph8gzlH4cHFYDR89efk_pUX-Kin0Yxt_rhGrY3UGCXnypQX39B7tiRdb5D1ikvSy3K4m2TBFltkdS7C4DZRZfzMN9ovT_6eqI9FVQVSpj7CRum6SPUbRRHgNtka2scaxlsDVYWh4-mLU_g93_D582RxhzxcX903W0GVVSHIAcQkUDZLlbOKuzTTqdKh0BlDpcQiEXmkVZYZB4JlqCUwidW5AXBgYsGxr4gptksWi2Fh9wiNsNRqMKAsA-tElhoeOpaAS5G6uWifNGo5ylEZPEPWr8oGspa89JKXIUiU_D4RtbjlFzOQiPB_tj35op-PLmNklQw4DuesVpjESeRvRlRhh9OxxE0sMi0eQ_ZLHZ6mSKYZg4N_DPKULLfuux3Zuem1D8mK_1N6Nh6RxcnL1B4jxZnok8qE3wEn6P5g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Battery+internal+temperature+estimation+by+combined+impedance+and+surface+temperature+measurement&rft.jtitle=Journal+of+power+sources&rft.au=Richardson%2C+Robert+R&rft.au=Ireland%2C+Peter+T&rft.au=Howey%2C+David+A&rft.date=2014-11-01&rft.issn=0378-7753&rft.volume=265&rft.spage=254&rft.epage=261&rft_id=info:doi/10.1016%2Fj.jpowsour.2014.04.129&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7753&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7753&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7753&client=summon |