Battery internal temperature estimation by combined impedance and surface temperature measurement

A new approach, suitable for real-time implementation, is introduced for estimation of non-uniform internal temperature distribution in cylindrical lithium-ion cells. A radial 1-D model is used to estimate the distribution using two inputs: the real or imaginary part of the electrochemical impedance...

Full description

Saved in:
Bibliographic Details
Published inJournal of power sources Vol. 265; pp. 254 - 261
Main Authors Richardson, Robert R., Ireland, Peter T., Howey, David A.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.11.2014
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A new approach, suitable for real-time implementation, is introduced for estimation of non-uniform internal temperature distribution in cylindrical lithium-ion cells. A radial 1-D model is used to estimate the distribution using two inputs: the real or imaginary part of the electrochemical impedance of the cell at a single frequency, and the surface temperature. The approach does not require knowledge of cell thermal properties, heat generation or thermal boundary conditions. The model is validated experimentally, the first time for such an approach, using a cylindrical 26650 cell fitted with an internal thermocouple. The cell is heated by applying (1) current pulses of up to ±20 A and (2) a 3500 s HEV drive cycle current profile, whilst monitoring the surface and core temperatures and measuring impedance at 215 Hz. During the drive cycle test, the battery core temperature increases by 20 °C and the surface temperature increases by 14 °C. The mean absolute error in the predicted maximum temperature throughout the cycle is 0.6 °C (3% of the total core temperature increase), in contrast to a mean absolute error of 2.6 °C if the temperature is assumed to be uniform (13% of the total core temperature increase). •Method introduced for estimating cylindrical Li-ion cell temperature distribution.•Impedance measurement alone shown to underestimate maximum internal temperature.•The new method combines impedance with surface temperature measurements.•Method validated experimentally for the first time with an internal thermocouple.•The method is efficient enough to be implemented in a battery management system.
AbstractList A new approach, suitable for real-time implementation, is introduced for estimation of non-uniform internal temperature distribution in cylindrical lithium-ion cells. A radial 1-D model is used to estimate the distribution using two inputs: the real or imaginary part of the electrochemical impedance of the cell at a single frequency, and the surface temperature. The approach does not require knowledge of cell thermal properties, heat generation or thermal boundary conditions. The model is validated experimentally, the first time for such an approach, using a cylindrical 26650 cell fitted with an internal thermocouple. The cell is heated by applying (1) current pulses of up to + or -20 A and (2) a 3500 s HEV drive cycle current profile, whilst monitoring the surface and core temperatures and measuring impedance at 215 Hz. During the drive cycle test, the battery core temperature increases by 20 [degrees]C and the surface temperature increases by 14 [degrees]C. The mean absolute error in the predicted maximum temperature throughout the cycle is 0.6 [degees]C (3% of the total core temperature increase), in contrast to a mean absolute error of 2.6 [degrees]C if the temperature is assumed to be uniform (13% of the total core temperature increase).
A new approach, suitable for real-time implementation, is introduced for estimation of non-uniform internal temperature distribution in cylindrical lithium-ion cells. A radial 1-D model is used to estimate the distribution using two inputs: the real or imaginary part of the electrochemical impedance of the cell at a single frequency, and the surface temperature. The approach does not require knowledge of cell thermal properties, heat generation or thermal boundary conditions. The model is validated experimentally, the first time for such an approach, using a cylindrical 26650 cell fitted with an internal thermocouple. The cell is heated by applying (1) current pulses of up to ±20 A and (2) a 3500 s HEV drive cycle current profile, whilst monitoring the surface and core temperatures and measuring impedance at 215 Hz. During the drive cycle test, the battery core temperature increases by 20 °C and the surface temperature increases by 14 °C. The mean absolute error in the predicted maximum temperature throughout the cycle is 0.6 °C (3% of the total core temperature increase), in contrast to a mean absolute error of 2.6 °C if the temperature is assumed to be uniform (13% of the total core temperature increase). •Method introduced for estimating cylindrical Li-ion cell temperature distribution.•Impedance measurement alone shown to underestimate maximum internal temperature.•The new method combines impedance with surface temperature measurements.•Method validated experimentally for the first time with an internal thermocouple.•The method is efficient enough to be implemented in a battery management system.
Author Ireland, Peter T.
Richardson, Robert R.
Howey, David A.
Author_xml – sequence: 1
  givenname: Robert R.
  surname: Richardson
  fullname: Richardson, Robert R.
  email: robert.richardson@eng.ox.ac.uk
– sequence: 2
  givenname: Peter T.
  surname: Ireland
  fullname: Ireland, Peter T.
  email: peter.ireland@eng.ox.ac.uk
– sequence: 3
  givenname: David A.
  surname: Howey
  fullname: Howey, David A.
  email: david.howey@eng.ox.ac.uk
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28513461$$DView record in Pascal Francis
BookMark eNqFkE1r3DAQhkVJoZu0f6H4UsjFrmTJlnRrE9IPCPTSnsVYGoMWW9pKcsL--yjsNvSW04jheecVzyW5CDEgIR8Z7Rhl4-d9tz_Exxy31PWUiY6KjvX6DdkxJXnby2G4IDvKpWqlHPg7cpnznlLKmKQ7AjdQCqZj40MdAZam4HrABGVL2GAufoXiY2imY2PjOvmArvGVcBAsNhBck7c0Q33_H1wR6hpXDOU9eTvDkvHDeV6RP9_uft_-aO9_ff95-_W-tULo0gIqCTPCOEs1SZionhS3A-31oC2bQCk3C80VBSrcgJN1QszC9Xqs3YwDvyLXp7uHFP9u9edm9dniskDAuGXDRim1ZpyL19FhlIyOvVAVHU-oTTHnhLM5pKokHQ2j5lm_2Zt_-s2zfkOFqfpr8NO5A7KFZU7Vl88v6V4NjIuRVe7LicPq5sFjMtl6rG6dT2iLcdG_VvUEjiGjuw
CODEN JPSODZ
CitedBy_id crossref_primary_10_1149_1945_7111_ac1a85
crossref_primary_10_1109_TCST_2017_2776218
crossref_primary_10_1016_j_applthermaleng_2019_114816
crossref_primary_10_1016_j_jpowsour_2017_02_039
crossref_primary_10_1016_j_jechem_2024_04_005
crossref_primary_10_1109_MIM_2022_9759355
crossref_primary_10_1016_j_mattod_2021_02_011
crossref_primary_10_1016_j_jpowsour_2015_05_087
crossref_primary_10_3390_wevj14100271
crossref_primary_10_1149_2_0141801jes
crossref_primary_10_1016_j_eml_2016_03_013
crossref_primary_10_1109_TPEL_2020_3027561
crossref_primary_10_1149_2_0901813jes
crossref_primary_10_1109_TPEL_2020_2977274
crossref_primary_10_1016_j_jpowsour_2016_05_082
crossref_primary_10_1016_j_jpowsour_2015_04_043
crossref_primary_10_3390_s22051763
crossref_primary_10_1149_1945_7111_ac4ea4
crossref_primary_10_3389_fceng_2022_804704
crossref_primary_10_3390_batteries7040085
crossref_primary_10_1016_j_simpat_2018_05_008
crossref_primary_10_1002_er_7905
crossref_primary_10_1016_j_jpowsour_2021_229910
crossref_primary_10_1002_er_4914
crossref_primary_10_1016_j_electacta_2021_139807
crossref_primary_10_1149_1945_7111_abd452
crossref_primary_10_1016_j_jpowsour_2016_06_103
crossref_primary_10_1016_j_jpowsour_2016_06_104
crossref_primary_10_1016_j_est_2023_107073
crossref_primary_10_1016_j_enconman_2017_12_092
crossref_primary_10_1109_TIE_2022_3146503
crossref_primary_10_1109_TIE_2021_3062267
crossref_primary_10_1016_j_rser_2020_110480
crossref_primary_10_1016_j_jpowsour_2021_230864
crossref_primary_10_3390_en17122979
crossref_primary_10_1109_TTE_2022_3208186
crossref_primary_10_1016_j_est_2020_101833
crossref_primary_10_1016_j_jclepro_2023_137099
crossref_primary_10_1016_j_prime_2023_100342
crossref_primary_10_1515_psr_2017_0158
crossref_primary_10_1016_j_measurement_2023_113671
crossref_primary_10_1016_j_applthermaleng_2021_116750
crossref_primary_10_1016_j_jpowsour_2018_10_014
crossref_primary_10_3390_s150511485
crossref_primary_10_1109_TIA_2020_2979783
crossref_primary_10_1109_TTE_2023_3294417
crossref_primary_10_1016_j_jpowsour_2014_09_166
crossref_primary_10_1016_j_jpowsour_2016_09_008
crossref_primary_10_1016_j_automatica_2021_109849
crossref_primary_10_1109_TIA_2020_2988425
crossref_primary_10_3390_jimaging2010002
crossref_primary_10_1016_j_est_2021_102854
crossref_primary_10_1016_j_jpowsour_2019_227297
crossref_primary_10_3390_batteries9090458
crossref_primary_10_1016_j_est_2023_106850
crossref_primary_10_1016_j_jpowsour_2017_11_011
crossref_primary_10_3390_en14123617
crossref_primary_10_1016_j_jpowsour_2021_229572
crossref_primary_10_1016_j_jpowsour_2021_230957
crossref_primary_10_1016_j_automatica_2022_110463
crossref_primary_10_3390_en8054400
crossref_primary_10_1016_j_jpowsour_2020_228742
crossref_primary_10_1016_j_energy_2017_12_032
crossref_primary_10_3390_batteries8100169
crossref_primary_10_1016_j_est_2022_106260
crossref_primary_10_1016_j_jpowsour_2020_227935
crossref_primary_10_1016_j_applthermaleng_2022_118562
crossref_primary_10_1016_j_jpowsour_2016_08_031
crossref_primary_10_1016_j_ensm_2021_06_008
crossref_primary_10_1007_s11431_020_1736_5
crossref_primary_10_3390_pr11082345
crossref_primary_10_1016_j_applthermaleng_2018_07_105
crossref_primary_10_1016_j_jpowsour_2021_229462
crossref_primary_10_1016_j_etran_2022_100195
crossref_primary_10_1149_2_0131814jes
crossref_primary_10_1016_j_electacta_2015_06_003
crossref_primary_10_1016_j_jpowsour_2016_02_070
crossref_primary_10_1016_j_est_2022_104291
crossref_primary_10_3390_batteries8070060
crossref_primary_10_20964_2019_07_06
crossref_primary_10_1016_j_egypro_2018_09_046
crossref_primary_10_1016_j_jechem_2023_12_049
crossref_primary_10_2139_ssrn_3581856
crossref_primary_10_3390_s16091394
crossref_primary_10_1109_TII_2019_2960833
crossref_primary_10_1016_j_electacta_2015_10_182
crossref_primary_10_3390_en14185960
crossref_primary_10_1146_annurev_control_053018_023643
crossref_primary_10_1016_j_etran_2021_100145
crossref_primary_10_1109_TTE_2019_2953606
crossref_primary_10_1016_j_est_2024_110690
crossref_primary_10_1109_TIE_2019_2931275
crossref_primary_10_1016_j_apenergy_2016_04_103
crossref_primary_10_1115_1_4034413
crossref_primary_10_3390_batteries7020031
crossref_primary_10_1002_er_6229
crossref_primary_10_1038_s41598_021_93801_9
crossref_primary_10_1016_j_apenergy_2019_02_078
crossref_primary_10_1016_j_est_2022_104218
crossref_primary_10_1016_j_est_2022_105951
crossref_primary_10_1109_TIA_2023_3259397
crossref_primary_10_1016_j_applthermaleng_2023_120402
crossref_primary_10_1155_2018_9642892
crossref_primary_10_1016_j_est_2024_112406
crossref_primary_10_3390_batteries4040052
crossref_primary_10_4271_2017_01_1215
crossref_primary_10_1109_JESTPE_2018_2852218
crossref_primary_10_1016_j_pnsc_2018_11_002
crossref_primary_10_1016_j_est_2023_108241
crossref_primary_10_1016_j_apenergy_2023_122237
crossref_primary_10_1016_j_energy_2018_01_024
crossref_primary_10_3390_en15113930
crossref_primary_10_1016_j_jpowsour_2015_04_099
crossref_primary_10_1016_j_jpowsour_2016_02_006
crossref_primary_10_1016_j_jpowsour_2021_230786
crossref_primary_10_1109_TTE_2021_3071950
crossref_primary_10_1016_j_est_2019_101039
crossref_primary_10_1016_j_egyai_2020_100016
crossref_primary_10_1109_TIA_2020_3005382
crossref_primary_10_1109_TIE_2016_2624720
crossref_primary_10_1080_15325008_2021_1913262
crossref_primary_10_1016_j_ifacol_2015_10_055
crossref_primary_10_1016_j_pecs_2023_101120
crossref_primary_10_1109_TMECH_2023_3235726
crossref_primary_10_1016_j_jpowsour_2021_229523
crossref_primary_10_1016_j_rser_2019_109334
crossref_primary_10_1109_ACCESS_2023_3327062
crossref_primary_10_1016_j_jpowsour_2017_09_046
crossref_primary_10_1016_j_jpowsour_2015_10_052
crossref_primary_10_1016_j_ijheatmasstransfer_2016_05_073
crossref_primary_10_3390_batteries4040064
crossref_primary_10_1109_TIE_2016_2610398
crossref_primary_10_1109_JMEMS_2019_2939811
crossref_primary_10_1002_er_5350
crossref_primary_10_1177_01423312221124354
crossref_primary_10_2339_politeknik_1161986
crossref_primary_10_1016_j_electacta_2023_142939
crossref_primary_10_3390_en10010060
crossref_primary_10_1109_TSTE_2015_2420375
crossref_primary_10_1109_JESTPE_2021_3136906
crossref_primary_10_1002_adsr_202300055
crossref_primary_10_3390_en10070838
crossref_primary_10_1016_j_conengprac_2018_07_013
crossref_primary_10_3390_en14185989
crossref_primary_10_1109_TIE_2023_3292868
crossref_primary_10_1016_j_est_2022_104685
crossref_primary_10_1109_JSEN_2018_2805309
crossref_primary_10_1109_TIE_2016_2516961
crossref_primary_10_1109_ACCESS_2020_3043657
crossref_primary_10_1016_j_conengprac_2016_08_002
crossref_primary_10_1016_j_jpowsour_2017_03_001
crossref_primary_10_1039_D1RA03066C
crossref_primary_10_1109_ACCESS_2021_3089032
crossref_primary_10_1109_TPEL_2022_3202939
crossref_primary_10_1016_j_est_2022_104608
crossref_primary_10_1109_JESTIE_2022_3214060
crossref_primary_10_1016_j_jpowsour_2021_230762
crossref_primary_10_1109_TIE_2023_3331090
crossref_primary_10_1109_TPEL_2022_3166170
crossref_primary_10_1016_j_trpro_2016_05_437
crossref_primary_10_1002_er_5107
crossref_primary_10_1149_1945_7111_abec54
crossref_primary_10_1155_2023_4021256
crossref_primary_10_1149_1945_7111_ac239b
crossref_primary_10_1149_1945_7111_ac5ada
Cites_doi 10.1016/j.jpowsour.2005.11.085
10.1016/j.jpowsour.2009.05.002
10.1016/j.jpowsour.2012.02.038
10.1016/j.jpowsour.2014.01.097
10.1016/j.jpowsour.2013.06.084
10.1016/j.jpowsour.2013.09.005
10.1016/j.jpowsour.2014.03.004
10.1149/1.3515880
10.1016/j.jpowsour.2012.07.144
10.1016/j.jpowsour.2011.01.043
10.1016/j.jpowsour.2013.06.013
10.1016/j.jpowsour.2009.10.105
10.1016/j.electacta.2011.03.136
10.1109/TCST.2012.2231865
10.1016/j.jpowsour.2013.04.117
10.1016/j.jpowsour.2011.09.077
ContentType Journal Article
Copyright 2014 Elsevier B.V.
2015 INIST-CNRS
Copyright_xml – notice: 2014 Elsevier B.V.
– notice: 2015 INIST-CNRS
DBID IQODW
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
DOI 10.1016/j.jpowsour.2014.04.129
DatabaseName Pascal-Francis
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Civil Engineering Abstracts
Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1873-2755
EndPage 261
ExternalDocumentID 10_1016_j_jpowsour_2014_04_129
28513461
S0378775314006302
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABFNM
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LX7
LY6
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
XPP
ZMT
~G-
29L
AALMO
AAQXK
ABPIF
ABPTK
ACNNM
ADALY
AI.
ASPBG
AVWKF
AZFZN
BBWZM
EJD
FEDTE
FGOYB
G-2
HLY
HVGLF
HZ~
IPNFZ
IQODW
NDZJH
R2-
SAC
SCB
SCE
SEW
T9H
VH1
VOH
WUQ
AAXKI
AAYXX
ADMUD
AFJKZ
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c449t-ae87afea6f78b7ab09b83c502959c1ba88df49380a04d5ebcd44f4d296ace13a3
IEDL.DBID AIKHN
ISSN 0378-7753
IngestDate Fri Oct 25 23:23:00 EDT 2024
Fri Oct 25 08:41:16 EDT 2024
Thu Sep 26 18:39:08 EDT 2024
Fri Nov 25 06:02:58 EST 2022
Sun Apr 21 12:55:39 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Battery management system
Temperature
Lithium-ion
Thermal runaway
Electrochemical impedance spectroscopy
Temperature measurement
Battery management systems
Battery
Surface temperature
Secondary cell
Lithium ion
Electrical impedance
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c449t-ae87afea6f78b7ab09b83c502959c1ba88df49380a04d5ebcd44f4d296ace13a3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 1567106248
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_1677991334
proquest_miscellaneous_1567106248
crossref_primary_10_1016_j_jpowsour_2014_04_129
pascalfrancis_primary_28513461
elsevier_sciencedirect_doi_10_1016_j_jpowsour_2014_04_129
PublicationCentury 2000
PublicationDate 2014-11-01
PublicationDateYYYYMMDD 2014-11-01
PublicationDate_xml – month: 11
  year: 2014
  text: 2014-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Journal of power sources
PublicationYear 2014
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Wang, Ping, Zhao, Chu, Sun, Chen (bib2) 2012; 208
Fleckenstein, Bohlen, Roscher, Bäker (bib18) 2011; 196
Brandon, Howey, Mitcheson, Offer, Yufit (bib21) 2013; 99
Troxler, Wu, Marinescu, Yufit, Patel, Marquis, Brandon, Offer (bib14) 2014; 247
X. Lin, H.E. Perez, J.B. Siegel, A.G. Stefanopoulou, Y. Ding, M.P. Castanier, in: Les Rencontres Scientifiques d'IFP Energies nouvelles, Rueil-Malmaison, 6th–7th December, 2011.
Mutyala, Zhao, Li, Pan, Yuan, Li (bib11) 2014; 260
Lin, Perez, Mohan, Siegel, Stefanopoulou, Ding, Castanier (bib5) 2014; 257
Srinivasan, Carkhuff, Butler, Baisden (bib12) 2011; 56
Lin, Perez, Siegel, Stefanopoulou, Li, Anderson, Ding, Castanier (bib4) 2013; 21
Li, Zhang, Wu, Huang, Nie, Sun, An, Wu (bib10) 2013; 241
Forgez, Vinh Do, Friedrich, Morcrette, Delacourt (bib1) 2010; 195
Srinivasan (bib13) 2012; 198
Fleckenstein, Fischer, Bohlen, Bäker (bib17) 2013; 223
Incropera, De Witt (bib19) 1985
Kim, Mohan, Siegel, Stefanopoulou, Ding (bib7) 2013
Kim, Siegel, Stefanopoulou (bib6) 2013
Santhanagopalan, Ramadass, (Zhengming) Zhang (bib9) 2009; 194
Brandon, Mitcheson, Howey, Yufit, Offer (bib22) 2012
Raijmakers, Danilov, van Lammeren, Lammers, Notten (bib16) 2014; 247
Ratnakumar, Smart, Whitcanack, Ewell (bib20) 2006; 159
Schmidt, Arnold, Loges, Werner, Wetzel, Ivers-Tiffée (bib15) 2013; 243
Bandhauer, Garimella, Fuller (bib8) 2011; 158
Troxler (10.1016/j.jpowsour.2014.04.129_bib14) 2014; 247
Srinivasan (10.1016/j.jpowsour.2014.04.129_bib12) 2011; 56
10.1016/j.jpowsour.2014.04.129_bib3
Srinivasan (10.1016/j.jpowsour.2014.04.129_bib13) 2012; 198
Bandhauer (10.1016/j.jpowsour.2014.04.129_bib8) 2011; 158
Kim (10.1016/j.jpowsour.2014.04.129_bib7) 2013
Ratnakumar (10.1016/j.jpowsour.2014.04.129_bib20) 2006; 159
Lin (10.1016/j.jpowsour.2014.04.129_bib5) 2014; 257
Lin (10.1016/j.jpowsour.2014.04.129_bib4) 2013; 21
Schmidt (10.1016/j.jpowsour.2014.04.129_bib15) 2013; 243
Li (10.1016/j.jpowsour.2014.04.129_bib10) 2013; 241
Kim (10.1016/j.jpowsour.2014.04.129_bib6) 2013
Raijmakers (10.1016/j.jpowsour.2014.04.129_bib16) 2014; 247
Wang (10.1016/j.jpowsour.2014.04.129_bib2) 2012; 208
Brandon (10.1016/j.jpowsour.2014.04.129_bib22) 2012
Mutyala (10.1016/j.jpowsour.2014.04.129_bib11) 2014; 260
Incropera (10.1016/j.jpowsour.2014.04.129_bib19) 1985
Fleckenstein (10.1016/j.jpowsour.2014.04.129_bib18) 2011; 196
Forgez (10.1016/j.jpowsour.2014.04.129_bib1) 2010; 195
Santhanagopalan (10.1016/j.jpowsour.2014.04.129_bib9) 2009; 194
Fleckenstein (10.1016/j.jpowsour.2014.04.129_bib17) 2013; 223
Brandon (10.1016/j.jpowsour.2014.04.129_bib21) 2013; 99
References_xml – volume: 194
  start-page: 550
  year: 2009
  end-page: 557
  ident: bib9
  publication-title: J. Power Sources
  contributor:
    fullname: (Zhengming) Zhang
– volume: 195
  start-page: 2961
  year: 2010
  end-page: 2968
  ident: bib1
  publication-title: J. Power Sources
  contributor:
    fullname: Delacourt
– year: 1985
  ident: bib19
  article-title: Fundamentals of Heat and Mass Transfer
  contributor:
    fullname: De Witt
– start-page: 5680
  year: 2013
  end-page: 5685
  ident: bib7
  publication-title: 52nd IEEE Conference on Decision and Control
  contributor:
    fullname: Ding
– start-page: 698
  year: 2013
  end-page: 703
  ident: bib6
  publication-title: Am. Control Conf. (ACC)
  contributor:
    fullname: Stefanopoulou
– volume: 247
  start-page: 1018
  year: 2014
  end-page: 1025
  ident: bib14
  publication-title: J. Power Sources
  contributor:
    fullname: Offer
– volume: 56
  start-page: 6198
  year: 2011
  end-page: 6204
  ident: bib12
  publication-title: Electrochim. Acta
  contributor:
    fullname: Baisden
– volume: 257
  start-page: 1
  year: 2014
  end-page: 11
  ident: bib5
  publication-title: J. Power Sources
  contributor:
    fullname: Castanier
– volume: 21
  start-page: 1745
  year: 2013
  end-page: 1755
  ident: bib4
  publication-title: IEEE Trans. Control Syst. Technol.
  contributor:
    fullname: Castanier
– year: 2012
  ident: bib22
  article-title: Battery Monitoring in Electric Vehicles, Hybrid Vehicles and Other Applications
  contributor:
    fullname: Offer
– volume: 159
  start-page: 1428
  year: 2006
  end-page: 1439
  ident: bib20
  publication-title: J. Power Sources
  contributor:
    fullname: Ewell
– volume: 247
  start-page: 539
  year: 2014
  end-page: 544
  ident: bib16
  publication-title: J. Power Sources
  contributor:
    fullname: Notten
– volume: 243
  start-page: 110
  year: 2013
  end-page: 117
  ident: bib15
  publication-title: J. Power Sources
  contributor:
    fullname: Ivers-Tiffée
– volume: 223
  start-page: 259
  year: 2013
  end-page: 267
  ident: bib17
  publication-title: J. Power Sources
  contributor:
    fullname: Bäker
– volume: 196
  start-page: 4769
  year: 2011
  end-page: 4778
  ident: bib18
  publication-title: J. Power Sources
  contributor:
    fullname: Bäker
– volume: 260
  start-page: 43
  year: 2014
  end-page: 49
  ident: bib11
  publication-title: J. Power Sources
  contributor:
    fullname: Li
– volume: 99
  start-page: 1
  year: 2013
  end-page: 10
  ident: bib21
  publication-title: IEEE Trans. Veh. Technol.
  contributor:
    fullname: Yufit
– volume: 158
  start-page: R1
  year: 2011
  end-page: R25
  ident: bib8
  publication-title: J. Electrochem. Soc.
  contributor:
    fullname: Fuller
– volume: 198
  start-page: 351
  year: 2012
  end-page: 358
  ident: bib13
  publication-title: J. Power Sources
  contributor:
    fullname: Srinivasan
– volume: 208
  start-page: 210
  year: 2012
  end-page: 224
  ident: bib2
  publication-title: J. Power Sources
  contributor:
    fullname: Chen
– volume: 241
  start-page: 536
  year: 2013
  end-page: 553
  ident: bib10
  publication-title: J. Power Sources
  contributor:
    fullname: Wu
– volume: 159
  start-page: 1428
  year: 2006
  ident: 10.1016/j.jpowsour.2014.04.129_bib20
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2005.11.085
  contributor:
    fullname: Ratnakumar
– volume: 194
  start-page: 550
  year: 2009
  ident: 10.1016/j.jpowsour.2014.04.129_bib9
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2009.05.002
  contributor:
    fullname: Santhanagopalan
– volume: 208
  start-page: 210
  year: 2012
  ident: 10.1016/j.jpowsour.2014.04.129_bib2
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.02.038
  contributor:
    fullname: Wang
– volume: 257
  start-page: 1
  year: 2014
  ident: 10.1016/j.jpowsour.2014.04.129_bib5
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.01.097
  contributor:
    fullname: Lin
– volume: 247
  start-page: 1018
  year: 2014
  ident: 10.1016/j.jpowsour.2014.04.129_bib14
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.06.084
  contributor:
    fullname: Troxler
– volume: 247
  start-page: 539
  year: 2014
  ident: 10.1016/j.jpowsour.2014.04.129_bib16
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.09.005
  contributor:
    fullname: Raijmakers
– volume: 260
  start-page: 43
  year: 2014
  ident: 10.1016/j.jpowsour.2014.04.129_bib11
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.03.004
  contributor:
    fullname: Mutyala
– volume: 158
  start-page: R1
  year: 2011
  ident: 10.1016/j.jpowsour.2014.04.129_bib8
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3515880
  contributor:
    fullname: Bandhauer
– volume: 223
  start-page: 259
  year: 2013
  ident: 10.1016/j.jpowsour.2014.04.129_bib17
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.07.144
  contributor:
    fullname: Fleckenstein
– volume: 196
  start-page: 4769
  year: 2011
  ident: 10.1016/j.jpowsour.2014.04.129_bib18
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2011.01.043
  contributor:
    fullname: Fleckenstein
– volume: 243
  start-page: 110
  year: 2013
  ident: 10.1016/j.jpowsour.2014.04.129_bib15
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.06.013
  contributor:
    fullname: Schmidt
– volume: 195
  start-page: 2961
  year: 2010
  ident: 10.1016/j.jpowsour.2014.04.129_bib1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2009.10.105
  contributor:
    fullname: Forgez
– start-page: 5680
  year: 2013
  ident: 10.1016/j.jpowsour.2014.04.129_bib7
  contributor:
    fullname: Kim
– start-page: 698
  year: 2013
  ident: 10.1016/j.jpowsour.2014.04.129_bib6
  contributor:
    fullname: Kim
– volume: 56
  start-page: 6198
  year: 2011
  ident: 10.1016/j.jpowsour.2014.04.129_bib12
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2011.03.136
  contributor:
    fullname: Srinivasan
– year: 1985
  ident: 10.1016/j.jpowsour.2014.04.129_bib19
  contributor:
    fullname: Incropera
– volume: 21
  start-page: 1745
  year: 2013
  ident: 10.1016/j.jpowsour.2014.04.129_bib4
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2012.2231865
  contributor:
    fullname: Lin
– volume: 241
  start-page: 536
  year: 2013
  ident: 10.1016/j.jpowsour.2014.04.129_bib10
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.04.117
  contributor:
    fullname: Li
– volume: 99
  start-page: 1
  year: 2013
  ident: 10.1016/j.jpowsour.2014.04.129_bib21
  publication-title: IEEE Trans. Veh. Technol.
  contributor:
    fullname: Brandon
– volume: 198
  start-page: 351
  year: 2012
  ident: 10.1016/j.jpowsour.2014.04.129_bib13
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2011.09.077
  contributor:
    fullname: Srinivasan
– year: 2012
  ident: 10.1016/j.jpowsour.2014.04.129_bib22
  contributor:
    fullname: Brandon
– ident: 10.1016/j.jpowsour.2014.04.129_bib3
SSID ssj0001170
Score 2.5855052
Snippet A new approach, suitable for real-time implementation, is introduced for estimation of non-uniform internal temperature distribution in cylindrical lithium-ion...
SourceID proquest
crossref
pascalfrancis
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 254
SubjectTerms Applied sciences
Battery
Battery management system
Direct energy conversion and energy accumulation
Electric cells
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
Electrochemical impedance spectroscopy
Errors
Estimates
Exact sciences and technology
Impedance
Lithium-ion
Surface temperature
Temperature
Thermal properties
Thermal runaway
Thermocouples
Title Battery internal temperature estimation by combined impedance and surface temperature measurement
URI https://dx.doi.org/10.1016/j.jpowsour.2014.04.129
https://search.proquest.com/docview/1567106248
https://search.proquest.com/docview/1677991334
Volume 265
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA86XxQRP_FzRPC1W9tc0_RRxDEVfdHB3kLSJLCh3XAb4ot_u5e11YmiD761JSHh7nr5XZL7HSFnvvKJM1YHMWM8AKXQDxpmAw05T22ehCr0-c63d7zbg-t-0l8iF3UujL9WWfn-0qfPvXX1pV1Jsz0eDNr3IUNjQ7SNIYInjkI_vILLUSwaZOX86qZ79-GQfXGV-WECBky-w0Ki8LA1HI9e_D65v-UFnvU0mqPNH9eo9bGaoORcWfLim_eeL0mdTbJRYUl6Xk53iyzZYpusLTAM7hBV8me-0kG58_dIPRdVRaRMPcNGmbpI9StFEWCYbA0dYAvjrYGqwtDJ7NkpfF7s-PS5s7hLep3Lh4tuUFVVCHKAbBooK1LlrOIuFTpVOsy0YKiUOEuyPNJKCOMgYwK1BCaxOjcADkyccRwrYortkUYxKuw-oRF-tRoMKMvAukykhoeOJeBShG4uOiDtWo5yXJJnyPpW2VDWkpde8jIEiZI_IFktbvnFDCR6-D_7Nr_o52PIGFElA47TOa0VJvEn8icjqrCj2URiEItIi8cgfmnD0xTBNGNw-I9JHpFV_1ZmMx6TxvR5Zk8Q1kx1kyy33qJmZbzvDW_8bA
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6iBxURn_g2gte6bTNNm6Msyuo-Lip4C0mTwC7aXdxdxH_vZNvqiqIHbyVNSJiZfPnymBlCzn3mE2esDmLGeABKIQ4aZgMNOU9tnoQq9P7O3R5vPcDtY_K4QJq1L4x_Vllhf4npM7SuShqVNBujfr9xFzI0NmTbuEXwgaMQh5eQDQicnUuXN-1W7wOQfXKV2WUCbph8gzlH4cHFYDR89efk_pUX-Kin0Yxt_rhGrY3UGCXnypQX39B7tiRdb5D1ikvSy3K4m2TBFltkdS7C4DZRZfzMN9ovT_6eqI9FVQVSpj7CRum6SPUbRRHgNtka2scaxlsDVYWh4-mLU_g93_D582RxhzxcX903W0GVVSHIAcQkUDZLlbOKuzTTqdKh0BlDpcQiEXmkVZYZB4JlqCUwidW5AXBgYsGxr4gptksWi2Fh9wiNsNRqMKAsA-tElhoeOpaAS5G6uWifNGo5ylEZPEPWr8oGspa89JKXIUiU_D4RtbjlFzOQiPB_tj35op-PLmNklQw4DuesVpjESeRvRlRhh9OxxE0sMi0eQ_ZLHZ6mSKYZg4N_DPKULLfuux3Zuem1D8mK_1N6Nh6RxcnL1B4jxZnok8qE3wEn6P5g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Battery+internal+temperature+estimation+by+combined+impedance+and+surface+temperature+measurement&rft.jtitle=Journal+of+power+sources&rft.au=Richardson%2C+Robert+R&rft.au=Ireland%2C+Peter+T&rft.au=Howey%2C+David+A&rft.date=2014-11-01&rft.issn=0378-7753&rft.volume=265&rft.spage=254&rft.epage=261&rft_id=info:doi/10.1016%2Fj.jpowsour.2014.04.129&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7753&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7753&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7753&client=summon