Antioxidant, antiglycation, and antibacterial of copper oxide nanoparticles synthesized using Caesalpinia Sappan extract
Synthesis of metal nanoparticles using plant extracts is environmentally friendly and of increasing interest. However, not all plant extracts can meet successfully on the synthesis. Therefore, searching for the high potential extracts that can reduce the metal salt precursor in the synthesis reactio...
Saved in:
Published in | Drug Discoveries & Therapeutics Vol. 18; no. 3; pp. 167 - 177 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Japan
International Research and Cooperation Association for Bio & Socio-Sciences Advancement
30.06.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Synthesis of metal nanoparticles using plant extracts is environmentally friendly and of increasing interest. However, not all plant extracts can meet successfully on the synthesis. Therefore, searching for the high potential extracts that can reduce the metal salt precursor in the synthesis reaction is essential. The present study explores the synthesis of copper oxide nanoparticles (CuONPs) using Caesalpinia sappan heartwood extract. Phytochemical analysis and determination of the total phenolic content of the extract were performed before use as a reducing agent. Under the suitable synthesized condition, a color change in the color of the solutions to brown confirmed the formation of CuONPs. The obtained CuONPs were confirmed using ultraviolet-visible spectroscopy, photon correlation spectroscopy, X-ray diffraction, scanning electron microscope, energy dispersive X-ray, and Fourier transform infrared analysis. The synthesized CuONPs investigated for antioxidant, antiglycation, and antibacterial activities. CuONPs possessed antioxidant activities by quenching free radicals with an IC50 value of 63.35 µg/mL and reducing activity with an EC range of 3.19-10.27 mM/mg. CuONPs also inhibited the formation of advanced glycation end products in the bovine serum albumin/ribose model with an IC50 value of 17.05 µg/mL. In addition, CuONPs showed inhibition of human pathogens, including Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli, and prevention of biofilm formation and biofilm eradication, with maximum inhibition of approx. 75%. Our findings suggest that C. sappan extract can be used to obtain highly bioactive CuONPs for the development of certain medical devices and therapeutic agents. |
---|---|
AbstractList | Synthesis of metal nanoparticles using plant extracts is environmentally friendly and of increasing interest. However, not all plant extracts can meet successfully on the synthesis. Therefore, searching for the high potential extracts that can reduce the metal salt precursor in the synthesis reaction is essential. The present study explores the synthesis of copper oxide nanoparticles (CuONPs) using Caesalpinia sappan heartwood extract. Phytochemical analysis and determination of the total phenolic content of the extract were performed before use as a reducing agent. Under the suitable synthesized condition, a color change in the color of the solutions to brown confirmed the formation of CuONPs. The obtained CuONPs were confirmed using ultraviolet-visible spectroscopy, photon correlation spectroscopy, X-ray diffraction, scanning electron microscope, energy dispersive X-ray, and Fourier transform infrared analysis. The synthesized CuONPs investigated for antioxidant, antiglycation, and antibacterial activities. CuONPs possessed antioxidant activities by quenching free radicals with an IC50 value of 63.35 µg/mL and reducing activity with an EC range of 3.19-10.27 mM/mg. CuONPs also inhibited the formation of advanced glycation end products in the bovine serum albumin/ribose model with an IC50 value of 17.05 µg/mL. In addition, CuONPs showed inhibition of human pathogens, including Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli, and prevention of biofilm formation and biofilm eradication, with maximum inhibition of approx. 75%. Our findings suggest that C. sappan extract can be used to obtain highly bioactive CuONPs for the development of certain medical devices and therapeutic agents. Synthesis of metal nanoparticles using plant extracts is environmentally friendly and of increasing interest. However, not all plant extracts can meet successfully on the synthesis. Therefore, searching for the high potential extracts that can reduce the metal salt precursor in the synthesis reaction is essential. The present study explores the synthesis of copper oxide nanoparticles (CuONPs) using Caesalpinia sappan heartwood extract. Phytochemical analysis and determination of the total phenolic content of the extract were performed before use as a reducing agent. Under the suitable synthesized condition, a color change in the color of the solutions to brown confirmed the formation of CuONPs. The obtained CuONPs were confirmed using ultraviolet-visible spectroscopy, photon correlation spectroscopy, X-ray diffraction, scanning electron microscope, energy dispersive X-ray, and Fourier transform infrared analysis. The synthesized CuONPs investigated for antioxidant, antiglycation, and antibacterial activities. CuONPs possessed antioxidant activities by quenching free radicals with an IC value of 63.35 µg/mL and reducing activity with an EC range of 3.19-10.27 mM/mg. CuONPs also inhibited the formation of advanced glycation end products in the bovine serum albumin/ribose model with an IC value of 17.05 µg/mL. In addition, CuONPs showed inhibition of human pathogens, including Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli, and prevention of biofilm formation and biofilm eradication, with maximum inhibition of approx. 75%. Our findings suggest that C. sappan extract can be used to obtain highly bioactive CuONPs for the development of certain medical devices and therapeutic agents. |
ArticleNumber | 2024.01030 |
Author | Wanachantararak, Phenphichar Chaijareenont, Pisaisit Okonogi, Siriporn Sasarom, Mathurada |
Author_xml | – sequence: 1 fullname: Okonogi, Siriporn organization: Center of Excellence in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand – sequence: 1 fullname: Wanachantararak, Phenphichar organization: Dentistry Research Center, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand – sequence: 1 fullname: Chaijareenont, Pisaisit organization: Center of Excellence in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand – sequence: 1 fullname: Sasarom, Mathurada organization: Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38945877$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kE1LAzEQhoMoVmuvHiU_wNZkk93NHkv9BMGDCt6WaT7ayJpdkgitv95sWysI5jDJzLzvhHlO0aFrnUbonJJJnovsSqk4yUjGJ4QSRg7QCRWCjkvB3w73b0YHaBTCO0kn54KK_BgNmKh4LsryBK2mLtp2ZRW4eIlTsItmLSHVXJ-qTWkOMmpvocGtwbLtOu1x79HYgWs78NHKRgcc1i4udbBfWuHPYN0Cz0AHaDrrLOBn6DpwWK-iT_PO0JGBJujR7h6i19ubl9n9-PHp7mE2fRxLzqs4hrziRLBqXhZZAaRQGeRGKmVM2oRCXhLK5tJwKVQhKiOZYRpKLcusqDKWVWyILrZzu8_5h1Z15-0H-HX9gyAJJluB9G0IXpu9hJK6x1wnzHWPud5gTgb-xyBt3BBLi9nmf9v11vYeIiz0_pcdvY2cipr14de2b8sl-Fo79g1lspvS |
CitedBy_id | crossref_primary_10_1016_j_matchemphys_2025_130364 crossref_primary_10_3389_fphar_2024_1514573 crossref_primary_10_1016_j_heliyon_2025_e42159 |
Cites_doi | 10.5582/ddt.2023.01032 10.1016/j.foodchem.2006.09.034 10.3390/pharmaceutics14010106 10.1152/physrev.00001.2019 10.1016/j.cub.2011.09.040 10.1002/fft2.10 10.5582/ddt.2017.01055 10.3390/ph9040075 10.1016/j.sajb.2021.11.021 10.1016/j.ijpharm.2010.09.041 10.3390/pharmaceutics14102141 10.1007/s13204-013-0233-x 10.1016/j.bbadis.2015.10.021 10.1038/s41598-021-99286-w 10.1016/j.fct.2022.113330 10.1016/j.foodchem.2007.06.016 10.1016/j.tox.2013.07.012 10.1007/s12011-020-02138-3 10.1016/j.archoralbio.2020.104690 10.3390/molecules25214974 10.1039/D1RA02382A 10.3390/nano10020312 10.1007/s001250051591 10.1038/srep20414 10.1016/j.jscs.2015.01.009 10.1016/S1007-0214(08)70076-2 10.1088/0957-4484/26/14/145703 10.3390/foods11030402 10.1016/j.apjtm.2015.05.014 10.1007/s42452-019-0592-3 10.5582/ddt.2018.01059 10.1039/c1gc15386b 10.3390/molecules191118828 10.3390/molecules181114320 10.1039/D0MA00807A 10.4196/kjpp.2014.18.1.1 10.3390/molecules25225243 10.1080/10408699891274273 10.1080/24701556.2019.1601738 10.3390/ma11060940 10.5582/ddt.2012.v6.1.38 10.1016/j.toxrep.2021.11.020 10.1016/j.lwt.2010.02.015 10.1080/07391102.2020.1803137 |
ContentType | Journal Article |
Copyright | 2024 International Research and Cooperation Association for Bio & Socio-Sciences Advancement |
Copyright_xml | – notice: 2024 International Research and Cooperation Association for Bio & Socio-Sciences Advancement |
DBID | AAYXX CITATION NPM |
DOI | 10.5582/ddt.2024.01030 |
DatabaseName | CrossRef PubMed |
DatabaseTitle | CrossRef PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1881-784X |
EndPage | 177 |
ExternalDocumentID | 38945877 10_5582_ddt_2024_01030 article_ddt_18_3_18_2024_01030_article_char_en |
Genre | Journal Article |
GroupedDBID | --- 53G 7.U ABDBF ACUHS ADBBV ALMA_UNASSIGNED_HOLDINGS BAWUL DIK EBD EMOBN ESX F5P JSF JSH KQ8 MK0 OK1 P2P RJT RZJ SV3 TUS AAYXX CITATION NPM |
ID | FETCH-LOGICAL-c449t-a5940839b7626a06d2a5fcddff1851a57013bcf4c8d689fc3f3ea7ec726923293 |
ISSN | 1881-7831 |
IngestDate | Wed Feb 19 02:06:22 EST 2025 Tue Jul 01 01:15:40 EDT 2025 Thu Apr 24 22:54:30 EDT 2025 Wed Sep 03 06:30:39 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Caesalpinia Sappan antibacterial activity antiglycation activity copper oxide nanoparticles antioxidant activity |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c449t-a5940839b7626a06d2a5fcddff1851a57013bcf4c8d689fc3f3ea7ec726923293 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/ddt/18/3/18_2024.01030/_article/-char/en |
PMID | 38945877 |
PageCount | 11 |
ParticipantIDs | pubmed_primary_38945877 crossref_primary_10_5582_ddt_2024_01030 crossref_citationtrail_10_5582_ddt_2024_01030 jstage_primary_article_ddt_18_3_18_2024_01030_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024/06/30 |
PublicationDateYYYYMMDD | 2024-06-30 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024/06/30 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan |
PublicationTitle | Drug Discoveries & Therapeutics |
PublicationTitleAlternate | DD&T |
PublicationYear | 2024 |
Publisher | International Research and Cooperation Association for Bio & Socio-Sciences Advancement |
Publisher_xml | – name: International Research and Cooperation Association for Bio & Socio-Sciences Advancement |
References | 25. Alrubaye A, Motovali-Bashi M, Miroliaei M. Rosmarinic acid inhibits DNA glycation and modulates the expression of Akt1 and Akt3 partially in the hippocampus of diabetic rats. Sci Rep. 2021; 11:20605. 21. Peng X, Zheng Z, Cheng KW, Shan F, Ren GX, Chen F, Wang M. Inhibitory effect of mung bean extract and its constituents vitexin and isovitexin on the formation of advanced glycation endproducts. Food Chem. 2008; 106:475-481. 39. Singh R, Barden A, Mori T, Beilin L. Advanced glycation end-products: A review. Diabetologia. 2001; 44:129-146. 45. Festa RA, Thiele DJ. Copper: An essential metal in biology copper in prokaryotes. Curr Biol. 2011; 21:877-883. 7. Salem SS, Fouda A. Green synthesis of metallic nanoparticles and their prospective biotechnological applications: An overview. Biol Trace Elem Res. 2011; 199:344-370. 12. Hu J, Yan X, Wang W, Wu H, Hua L, Du L. Antioxidant activity in vitro of three constituents from Caesalpinia sappan L. 2008; 13:474-479. 2. Couto C, Almeida A. Metallic nanoparticles in the food sector: A mini-review. Foods. 2022; 11:10-12. 28. Juang YP, Liang PH. Biological and pharmacological effects of synthetic saponins. Molecules. 2020; 25:4974. 13. Rajput MS, Nirmal NP, Nirmal SJ, Santivarangkna C. Bio-actives from Caesalpinia sappan L.: Recent advancements in phytochemistry and pharmacology. South African J Bot. 2022; 151:60-74. 33. Nirmal NP, Rajput MS, Prasad RGSV, Ahmad M. Brazilin from Caesalpinia sappan heartwood and its pharmacological activities: A review. Asian Pac J Trop Med. 2015; 8:421-430. 34. Verma PR, Khan F. Green approach for biofabrication of CuO nanoparticles from Prunus amygdalus pericarp extract and characterization. Inorg Nano-Metal Chem. 2019; 49:69-74. 22. Puttipan R, Wanachantararak P, Khongkhunthian S, Okonogi S. Effects of Caesalpinia sappan on pathogenic bacteria causing dental caries and gingivitis. Drug Discov Ther. 2017; 11:316-322. 43. Ashraf JM, Ansari MA, Khan HM, Alzohairy MA, Choi I. Green synthesis of silver nanoparticles and characterization of their inhibitory effects on AGEs formation using biophysical techniques. Sci Rep. 2016; 6:20414. 8. Iravani S. Green synthesis of metal nanoparticles using plants. Green Chem. 2011; 13:2638-2650. 10. Singh P, Singh KRB, Singh J, Das SN, Singh RP. Tunable electrochemistry and efficient antibacterial activity of plant-mediated copper oxide nanoparticles synthesized by Annona squamosa seed extract for agricultural utility. RSC Advanc. 2021; 11:18050-18060. 20. Froldi G, Djeujo FM, Bulf N, Caparelli E, Ragazzi E. Comparative evaluation of the antiglycation and anti-α-glucosidase activities of baicalein , baicalin ( baicalein 7-o-glucuronide) and the antidiabetic drug metformin. 2022; 14:2141. 38. Iannuzzi C, Borriello M, Carafa V, Altucci L, Vitiello M, Balestrieri ML, Ricci G, Irace G, Sirangelo I. D-ribose-glycation of insulin prevents amyloid aggregation and produces cytotoxic adducts. Biochim Biophys Acta - Mol Basis Dis. 2016; 1862:93-104. 31. Abboud Y, Saffaj T, Chagraoui A, Bouari AEI, Brouzi K, Tanane O, Ihssane B. Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata). Appl Nanosci. 2014; 4:571-576. 1. Halwani AA. Development of pharmaceutical nanomedicines: From the bench to the market. Pharmaceutics. 2022; 14:106. 23. Phumat P, Khongkhunthian S, Wanachantararak P, Okonogi S. Comparative inhibitory effects of 4-allylpyrocatechol isolated from Piper betle on Streptococcus intermedius, Streptococcus mutans, and Candida albicans. Arch Oral Biol. 2020; 113:104690. 35. Singare DS, Marella S, Gowthamrajan K, Kulkarni GT, Vooturi R, Rao PS. Optimization of formulation and process variable of nanosuspension: An industrial perspective. Int J Pharm. 2010; 402:213-220. 14. Suwan T, Wanachantararak P, Khongkhunthian S, Okonogi S. Antioxidant activity and potential of Caesalpinia sappan aqueous extract on synthesis of silver nanoparticles. Drug Discov Ther. 2018; 12:259-266. 30. Marslin G, Siram K, Maqbool Q, Selvakesavan RK, Kruszka D, Kachlicki P, Franklin G. Secondary metabolites in the green synthesis of metallic nanoparticles. Materials (Basel). 2018; 11:940. 9. Sarkar J, Chakraborty N, Chatterjee A, Bhattacharjee A. Green synthesized copper oxide nanoparticles ameliorate defence and antioxidant enzymes in Lens culinaris. Nanomaterials. 2020; 10:312. 11. Sathiyavimal S, Durán-Lara EF, Vasantharaj S, Saravanan M, Sabour A, Alshiekheid M, Lan C, Nguyen T, Brindhadevi K, Pugazhendhi A. Green synthesis of copper oxide nanoparticles using Abutilon indicum leaves extract and their evaluation of antibacterial, anticancer in human A549 lung and MDA-MB-231 breast cancer cells. Food Chem Toxicol. 2022; 168:113330. 5. Manuja A, Kumar B, Kumar R, Chhabra D, Ghosh M, Manuja M, Manuja A, Brar B, Pal Y, Tripathi BN, Prasad M. Metal/metal oxide nanoparticles: Toxicity concerns associated with their physical state and remediation for biomedical applications. Toxicol Rep. 2021; 8:1970-1978. 26. Schalkwijk CG, Stehouwer CDA. Methylglyoxal, a highly reactive dicarbonyl compound, in diabetes, its vascular complications, and other age-related diseases. Physiol Rev. 2020; 100:407-461. 29. Ullah A, Munir S, Badshah SL, Khan N, Ghani L, Poulson BG, Emwas AH, Jaremko M. Important flavonoids and their role as a therapeutic agent. Molecules. 2020; 25:5243. 4. Baig N, Kammakakam I, Falath W, Kammakakam I. Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Mater Adv. 2021; 2:1821-1871. 17. Nantitanon W, Yotsawimonwat S, Okonogi S. Factors influencing antioxidant activities and total phenolic content of guava leaf extract. LWT - Food Sci Technol. 2010; 43:1095-1103. 24. Séro L, Sanguinet L, Blanchard P, Dang BT, Morel S, Richomme P, Séraphin D, Derbré S. Tuning a 96-well microtiter plate fluorescence-based assay to identify AGE inhibitors in crude plant extracts. Molecules. 2013; 18:14320-14339. 16. Kokate CK. Practical pharmacognosy. 4 th. New Delhi: Vallabh Prakashan; 2005. pp.7-111. 19. Sadowska-Bartosz I, Galiniak S, Bartosz G. Kinetics of glycoxidation of bovine serum albumin by glucose, fructose and ribose and its prevention by food components. Molecules. 2014; 19:18828-18849. 37. Nantitanon W, Okonogi S. Comparison of antioxidant activity of compounds isolated from guava leaves and a stability study of the most active compound. Drug Discov Ther. 2012; 6:38-43. 15. Sasarom M, Wanachantararak P, Chaijareenont P, Okonogi S. Biosynthesis of copper oxide nanoparticles using Caesalpinia sappan extract: In vitro evaluation of antifungal and antibiofilm activities against Candida albicans. 2023; 17:238-247. 18. Okonogi S, Duangrat C, Anuchpreeda S, Tachakittirungrod S, Chowwanapoonpohn S. Comparison of antioxidant capacities and cytotoxicities of certain fruit peels. Food Chem. 2007; 103:839-846. 3. Chavali MS, Nikolova MP. Metal oxide nanoparticles and their applications in nanotechnology. SN Appl Sci. 2019; 1:607. 27. Chung KT, Wong TY, Wei CI, Huang YW, Lin Y. Tannins and human health: A review. Crit Rev Food Sci Nutr. 1998; 38:421-464. 36. Xiao F, Xu T, Lu B, Liu R. Guidelines for antioxidant assays for food components. Food Front. 2020; 1:60-69. 44. Karlsson HL, Cronholm P, Hedberg Y, Tornberg M, Battice LD, Svedhem S, Wallinder IO. Cell membrane damage and protein interaction induced by copper containing nanoparticles-Importance of the metal release process. Toxicol. 2013; 313:59-69. 41. Yu S, Zhang W, Liu W, Zhu W, Guo R, Wang Y, Zhang D, Wang J. The inhibitory effect of selenium nanoparticles on protein glycation in vitro. Nanotechnology. 2015; 26:145703. 42. Kumar D, Bhatkalkar SG, Sachar S, Ali A. Studies on the antiglycating potential of zinc oxide nanoparticle and its interaction with BSA. J Biomol Struct Dyn. 2020; 39:6918-6925. 6. Grigore ME, Biscu ER, Holban AM, Gestal MC, Grumezescu AM. Methods of synthesis, properties and biomedical applications of CuO nanoparticles. Pharmaceuticals. 2016; 9:75-88. 40. Singh VP, Bali A, Singh N, Jaggi AS. Advanced glycation end products and diabetic complications. Korean J Physiol Pharmacol. 2014; 18:1-14. 32. Kumar B, Smita K, Cumbal L, Debut A, Angulo Y. Biofabrication of copper oxide nanoparticles using Andean blackberry (Rubus glaucus Benth.) fruit and leaf. J Saudi Chem Soc. 2017; 21:475-480. 22 44 23 45 24 25 26 27 28 29 30 31 10 32 11 33 12 34 13 35 14 36 15 37 16 38 17 39 18 19 1 2 3 4 5 6 7 8 9 40 41 20 42 21 43 |
References_xml | – reference: 13. Rajput MS, Nirmal NP, Nirmal SJ, Santivarangkna C. Bio-actives from Caesalpinia sappan L.: Recent advancements in phytochemistry and pharmacology. South African J Bot. 2022; 151:60-74. – reference: 15. Sasarom M, Wanachantararak P, Chaijareenont P, Okonogi S. Biosynthesis of copper oxide nanoparticles using Caesalpinia sappan extract: In vitro evaluation of antifungal and antibiofilm activities against Candida albicans. 2023; 17:238-247. – reference: 17. Nantitanon W, Yotsawimonwat S, Okonogi S. Factors influencing antioxidant activities and total phenolic content of guava leaf extract. LWT - Food Sci Technol. 2010; 43:1095-1103. – reference: 41. Yu S, Zhang W, Liu W, Zhu W, Guo R, Wang Y, Zhang D, Wang J. The inhibitory effect of selenium nanoparticles on protein glycation in vitro. Nanotechnology. 2015; 26:145703. – reference: 32. Kumar B, Smita K, Cumbal L, Debut A, Angulo Y. Biofabrication of copper oxide nanoparticles using Andean blackberry (Rubus glaucus Benth.) fruit and leaf. J Saudi Chem Soc. 2017; 21:475-480. – reference: 30. Marslin G, Siram K, Maqbool Q, Selvakesavan RK, Kruszka D, Kachlicki P, Franklin G. Secondary metabolites in the green synthesis of metallic nanoparticles. Materials (Basel). 2018; 11:940. – reference: 10. Singh P, Singh KRB, Singh J, Das SN, Singh RP. Tunable electrochemistry and efficient antibacterial activity of plant-mediated copper oxide nanoparticles synthesized by Annona squamosa seed extract for agricultural utility. RSC Advanc. 2021; 11:18050-18060. – reference: 3. Chavali MS, Nikolova MP. Metal oxide nanoparticles and their applications in nanotechnology. SN Appl Sci. 2019; 1:607. – reference: 25. Alrubaye A, Motovali-Bashi M, Miroliaei M. Rosmarinic acid inhibits DNA glycation and modulates the expression of Akt1 and Akt3 partially in the hippocampus of diabetic rats. Sci Rep. 2021; 11:20605. – reference: 24. Séro L, Sanguinet L, Blanchard P, Dang BT, Morel S, Richomme P, Séraphin D, Derbré S. Tuning a 96-well microtiter plate fluorescence-based assay to identify AGE inhibitors in crude plant extracts. Molecules. 2013; 18:14320-14339. – reference: 35. Singare DS, Marella S, Gowthamrajan K, Kulkarni GT, Vooturi R, Rao PS. Optimization of formulation and process variable of nanosuspension: An industrial perspective. Int J Pharm. 2010; 402:213-220. – reference: 34. Verma PR, Khan F. Green approach for biofabrication of CuO nanoparticles from Prunus amygdalus pericarp extract and characterization. Inorg Nano-Metal Chem. 2019; 49:69-74. – reference: 44. Karlsson HL, Cronholm P, Hedberg Y, Tornberg M, Battice LD, Svedhem S, Wallinder IO. Cell membrane damage and protein interaction induced by copper containing nanoparticles-Importance of the metal release process. Toxicol. 2013; 313:59-69. – reference: 1. Halwani AA. Development of pharmaceutical nanomedicines: From the bench to the market. Pharmaceutics. 2022; 14:106. – reference: 9. Sarkar J, Chakraborty N, Chatterjee A, Bhattacharjee A. Green synthesized copper oxide nanoparticles ameliorate defence and antioxidant enzymes in Lens culinaris. Nanomaterials. 2020; 10:312. – reference: 33. Nirmal NP, Rajput MS, Prasad RGSV, Ahmad M. Brazilin from Caesalpinia sappan heartwood and its pharmacological activities: A review. Asian Pac J Trop Med. 2015; 8:421-430. – reference: 40. Singh VP, Bali A, Singh N, Jaggi AS. Advanced glycation end products and diabetic complications. Korean J Physiol Pharmacol. 2014; 18:1-14. – reference: 6. Grigore ME, Biscu ER, Holban AM, Gestal MC, Grumezescu AM. Methods of synthesis, properties and biomedical applications of CuO nanoparticles. Pharmaceuticals. 2016; 9:75-88. – reference: 8. Iravani S. Green synthesis of metal nanoparticles using plants. Green Chem. 2011; 13:2638-2650. – reference: 19. Sadowska-Bartosz I, Galiniak S, Bartosz G. Kinetics of glycoxidation of bovine serum albumin by glucose, fructose and ribose and its prevention by food components. Molecules. 2014; 19:18828-18849. – reference: 11. Sathiyavimal S, Durán-Lara EF, Vasantharaj S, Saravanan M, Sabour A, Alshiekheid M, Lan C, Nguyen T, Brindhadevi K, Pugazhendhi A. Green synthesis of copper oxide nanoparticles using Abutilon indicum leaves extract and their evaluation of antibacterial, anticancer in human A549 lung and MDA-MB-231 breast cancer cells. Food Chem Toxicol. 2022; 168:113330. – reference: 7. Salem SS, Fouda A. Green synthesis of metallic nanoparticles and their prospective biotechnological applications: An overview. Biol Trace Elem Res. 2011; 199:344-370. – reference: 26. Schalkwijk CG, Stehouwer CDA. Methylglyoxal, a highly reactive dicarbonyl compound, in diabetes, its vascular complications, and other age-related diseases. Physiol Rev. 2020; 100:407-461. – reference: 39. Singh R, Barden A, Mori T, Beilin L. Advanced glycation end-products: A review. Diabetologia. 2001; 44:129-146. – reference: 29. Ullah A, Munir S, Badshah SL, Khan N, Ghani L, Poulson BG, Emwas AH, Jaremko M. Important flavonoids and their role as a therapeutic agent. Molecules. 2020; 25:5243. – reference: 21. Peng X, Zheng Z, Cheng KW, Shan F, Ren GX, Chen F, Wang M. Inhibitory effect of mung bean extract and its constituents vitexin and isovitexin on the formation of advanced glycation endproducts. Food Chem. 2008; 106:475-481. – reference: 5. Manuja A, Kumar B, Kumar R, Chhabra D, Ghosh M, Manuja M, Manuja A, Brar B, Pal Y, Tripathi BN, Prasad M. Metal/metal oxide nanoparticles: Toxicity concerns associated with their physical state and remediation for biomedical applications. Toxicol Rep. 2021; 8:1970-1978. – reference: 4. Baig N, Kammakakam I, Falath W, Kammakakam I. Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Mater Adv. 2021; 2:1821-1871. – reference: 12. Hu J, Yan X, Wang W, Wu H, Hua L, Du L. Antioxidant activity in vitro of three constituents from Caesalpinia sappan L. 2008; 13:474-479. – reference: 14. Suwan T, Wanachantararak P, Khongkhunthian S, Okonogi S. Antioxidant activity and potential of Caesalpinia sappan aqueous extract on synthesis of silver nanoparticles. Drug Discov Ther. 2018; 12:259-266. – reference: 18. Okonogi S, Duangrat C, Anuchpreeda S, Tachakittirungrod S, Chowwanapoonpohn S. Comparison of antioxidant capacities and cytotoxicities of certain fruit peels. Food Chem. 2007; 103:839-846. – reference: 45. Festa RA, Thiele DJ. Copper: An essential metal in biology copper in prokaryotes. Curr Biol. 2011; 21:877-883. – reference: 20. Froldi G, Djeujo FM, Bulf N, Caparelli E, Ragazzi E. Comparative evaluation of the antiglycation and anti-α-glucosidase activities of baicalein , baicalin ( baicalein 7-o-glucuronide) and the antidiabetic drug metformin. 2022; 14:2141. – reference: 37. Nantitanon W, Okonogi S. Comparison of antioxidant activity of compounds isolated from guava leaves and a stability study of the most active compound. Drug Discov Ther. 2012; 6:38-43. – reference: 38. Iannuzzi C, Borriello M, Carafa V, Altucci L, Vitiello M, Balestrieri ML, Ricci G, Irace G, Sirangelo I. D-ribose-glycation of insulin prevents amyloid aggregation and produces cytotoxic adducts. Biochim Biophys Acta - Mol Basis Dis. 2016; 1862:93-104. – reference: 23. Phumat P, Khongkhunthian S, Wanachantararak P, Okonogi S. Comparative inhibitory effects of 4-allylpyrocatechol isolated from Piper betle on Streptococcus intermedius, Streptococcus mutans, and Candida albicans. Arch Oral Biol. 2020; 113:104690. – reference: 28. Juang YP, Liang PH. Biological and pharmacological effects of synthetic saponins. Molecules. 2020; 25:4974. – reference: 22. Puttipan R, Wanachantararak P, Khongkhunthian S, Okonogi S. Effects of Caesalpinia sappan on pathogenic bacteria causing dental caries and gingivitis. Drug Discov Ther. 2017; 11:316-322. – reference: 31. Abboud Y, Saffaj T, Chagraoui A, Bouari AEI, Brouzi K, Tanane O, Ihssane B. Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata). Appl Nanosci. 2014; 4:571-576. – reference: 36. Xiao F, Xu T, Lu B, Liu R. Guidelines for antioxidant assays for food components. Food Front. 2020; 1:60-69. – reference: 42. Kumar D, Bhatkalkar SG, Sachar S, Ali A. Studies on the antiglycating potential of zinc oxide nanoparticle and its interaction with BSA. J Biomol Struct Dyn. 2020; 39:6918-6925. – reference: 16. Kokate CK. Practical pharmacognosy. 4 th. New Delhi: Vallabh Prakashan; 2005. pp.7-111. – reference: 2. Couto C, Almeida A. Metallic nanoparticles in the food sector: A mini-review. Foods. 2022; 11:10-12. – reference: 27. Chung KT, Wong TY, Wei CI, Huang YW, Lin Y. Tannins and human health: A review. Crit Rev Food Sci Nutr. 1998; 38:421-464. – reference: 43. Ashraf JM, Ansari MA, Khan HM, Alzohairy MA, Choi I. Green synthesis of silver nanoparticles and characterization of their inhibitory effects on AGEs formation using biophysical techniques. Sci Rep. 2016; 6:20414. – ident: 15 doi: 10.5582/ddt.2023.01032 – ident: 18 doi: 10.1016/j.foodchem.2006.09.034 – ident: 1 doi: 10.3390/pharmaceutics14010106 – ident: 26 doi: 10.1152/physrev.00001.2019 – ident: 45 doi: 10.1016/j.cub.2011.09.040 – ident: 36 doi: 10.1002/fft2.10 – ident: 22 doi: 10.5582/ddt.2017.01055 – ident: 6 doi: 10.3390/ph9040075 – ident: 13 doi: 10.1016/j.sajb.2021.11.021 – ident: 35 doi: 10.1016/j.ijpharm.2010.09.041 – ident: 20 doi: 10.3390/pharmaceutics14102141 – ident: 31 doi: 10.1007/s13204-013-0233-x – ident: 38 doi: 10.1016/j.bbadis.2015.10.021 – ident: 25 doi: 10.1038/s41598-021-99286-w – ident: 11 doi: 10.1016/j.fct.2022.113330 – ident: 21 doi: 10.1016/j.foodchem.2007.06.016 – ident: 16 – ident: 44 doi: 10.1016/j.tox.2013.07.012 – ident: 7 doi: 10.1007/s12011-020-02138-3 – ident: 23 doi: 10.1016/j.archoralbio.2020.104690 – ident: 28 doi: 10.3390/molecules25214974 – ident: 10 doi: 10.1039/D1RA02382A – ident: 9 doi: 10.3390/nano10020312 – ident: 39 doi: 10.1007/s001250051591 – ident: 43 doi: 10.1038/srep20414 – ident: 32 doi: 10.1016/j.jscs.2015.01.009 – ident: 12 doi: 10.1016/S1007-0214(08)70076-2 – ident: 41 doi: 10.1088/0957-4484/26/14/145703 – ident: 2 doi: 10.3390/foods11030402 – ident: 33 doi: 10.1016/j.apjtm.2015.05.014 – ident: 3 doi: 10.1007/s42452-019-0592-3 – ident: 14 doi: 10.5582/ddt.2018.01059 – ident: 8 doi: 10.1039/c1gc15386b – ident: 19 doi: 10.3390/molecules191118828 – ident: 24 doi: 10.3390/molecules181114320 – ident: 4 doi: 10.1039/D0MA00807A – ident: 40 doi: 10.4196/kjpp.2014.18.1.1 – ident: 29 doi: 10.3390/molecules25225243 – ident: 27 doi: 10.1080/10408699891274273 – ident: 34 doi: 10.1080/24701556.2019.1601738 – ident: 30 doi: 10.3390/ma11060940 – ident: 37 doi: 10.5582/ddt.2012.v6.1.38 – ident: 5 doi: 10.1016/j.toxrep.2021.11.020 – ident: 17 doi: 10.1016/j.lwt.2010.02.015 – ident: 42 doi: 10.1080/07391102.2020.1803137 |
SSID | ssj0000548185 |
Score | 2.3109753 |
Snippet | Synthesis of metal nanoparticles using plant extracts is environmentally friendly and of increasing interest. However, not all plant extracts can meet... |
SourceID | pubmed crossref jstage |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 167 |
SubjectTerms | antibacterial activity antiglycation activity antioxidant activity Caesalpinia Sappan copper oxide nanoparticles |
Title | Antioxidant, antiglycation, and antibacterial of copper oxide nanoparticles synthesized using Caesalpinia Sappan extract |
URI | https://www.jstage.jst.go.jp/article/ddt/18/3/18_2024.01030/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/38945877 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Drug Discoveries & Therapeutics, 2024/06/30, Vol.18(3), pp.167-177 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5tAEF4lTg-9VH3XfUR7qNKDTWrwAsuhB6dpFFVKZCmOmps17EJCamGEbSnOr-xP6gyLeaSplPaCzbKLgPmYnRm-mWXsoxcPpLadyFK2F1oixFcRHFdZWgyGsRfEAMU6ZCen3vG5-H7hXmxt_WqwllbLcF_d3ptX8j9SxTaUK2XJ_oNkq5NiA_5H-eIWJYzbB8l4RFTFm0SDKR6AP8nlbF0SNkpaJjWGpiSzsTvVPMuivEfjol4KKXrNJTmOyhegPbhIbtEKXRlGAEQLmGUJ5W6dQYaqo4fanDKrmlbtYb66pE89ivigSRHI9XqNzK7Kbj-DBeRzE4VF03OVQx0Q-AEpUBrykj5_wE8T7YnS7KrIDGvQEJJrILLQ3Nz0OFlAskhq9g5avKjOi6hughpxnqfNyIYjNjS8ShlLaVu-LGeJqNlmWJ1_avDawS_UsW2W-ihndtssGHN30nBdSUVotSZqrSP2aeWLQT09bigBd2bNisuIXhSdYYrjpzR-WozfZjsOOi5Oh-2MDg4Pjqq4H5rIZCNRHGBze6aWKJ3kc_siWrbSo2t0F6gORMv9KcygyVP2pPRf-MhA5hnbitLnbG9sCqCv-3zSkHqf7_FxXRp9_YLdNBDb5y280q7mLbTyecwNWnmBVt5CK2-glRdo5Q20coNWXqL1JTs_-jb5emyVa39YSohgaYEbCPQOghAnaw8GnnbAjZXWcYwPzwbXR9clVLFQUnsyiNUwHkbgR8p3PHRZ0IZ9xToIxOgN46h1hCdCwOOuUDoAGUgKd9qxq7UOZJdZm6c8VWVhfFqfZTa9X7Rd9qnqn5mSMH_t-cUIrepXPqKiny2nQ9rU_avD9F6hguuy10bW1Xh0L4Qrff_tg6_hHXtcv1vvWWeZr6IPaEcvw90Smrts-3R88hsP0NGT |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antioxidant%2C+antiglycation%2C+and+antibacterial+of+copper+oxide+nanoparticles+synthesized+using+Caesalpinia+Sappan+extract&rft.jtitle=Drug+discoveries+%26+therapeutics&rft.au=Sasarom%2C+Mathurada&rft.au=Wanachantararak%2C+Phenphichar&rft.au=Chaijareenont%2C+Pisaisit&rft.au=Okonogi%2C+Siriporn&rft.date=2024-06-30&rft.issn=1881-7831&rft.eissn=1881-784X&rft.volume=18&rft.issue=3&rft.spage=167&rft.epage=177&rft_id=info:doi/10.5582%2Fddt.2024.01030&rft.externalDBID=n%2Fa&rft.externalDocID=10_5582_ddt_2024_01030 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1881-7831&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1881-7831&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1881-7831&client=summon |