Antioxidant, antiglycation, and antibacterial of copper oxide nanoparticles synthesized using Caesalpinia Sappan extract

Synthesis of metal nanoparticles using plant extracts is environmentally friendly and of increasing interest. However, not all plant extracts can meet successfully on the synthesis. Therefore, searching for the high potential extracts that can reduce the metal salt precursor in the synthesis reactio...

Full description

Saved in:
Bibliographic Details
Published inDrug Discoveries & Therapeutics Vol. 18; no. 3; pp. 167 - 177
Main Authors Okonogi, Siriporn, Wanachantararak, Phenphichar, Chaijareenont, Pisaisit, Sasarom, Mathurada
Format Journal Article
LanguageEnglish
Published Japan International Research and Cooperation Association for Bio & Socio-Sciences Advancement 30.06.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Synthesis of metal nanoparticles using plant extracts is environmentally friendly and of increasing interest. However, not all plant extracts can meet successfully on the synthesis. Therefore, searching for the high potential extracts that can reduce the metal salt precursor in the synthesis reaction is essential. The present study explores the synthesis of copper oxide nanoparticles (CuONPs) using Caesalpinia sappan heartwood extract. Phytochemical analysis and determination of the total phenolic content of the extract were performed before use as a reducing agent. Under the suitable synthesized condition, a color change in the color of the solutions to brown confirmed the formation of CuONPs. The obtained CuONPs were confirmed using ultraviolet-visible spectroscopy, photon correlation spectroscopy, X-ray diffraction, scanning electron microscope, energy dispersive X-ray, and Fourier transform infrared analysis. The synthesized CuONPs investigated for antioxidant, antiglycation, and antibacterial activities. CuONPs possessed antioxidant activities by quenching free radicals with an IC50 value of 63.35 µg/mL and reducing activity with an EC range of 3.19-10.27 mM/mg. CuONPs also inhibited the formation of advanced glycation end products in the bovine serum albumin/ribose model with an IC50 value of 17.05 µg/mL. In addition, CuONPs showed inhibition of human pathogens, including Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli, and prevention of biofilm formation and biofilm eradication, with maximum inhibition of approx. 75%. Our findings suggest that C. sappan extract can be used to obtain highly bioactive CuONPs for the development of certain medical devices and therapeutic agents.
AbstractList Synthesis of metal nanoparticles using plant extracts is environmentally friendly and of increasing interest. However, not all plant extracts can meet successfully on the synthesis. Therefore, searching for the high potential extracts that can reduce the metal salt precursor in the synthesis reaction is essential. The present study explores the synthesis of copper oxide nanoparticles (CuONPs) using Caesalpinia sappan heartwood extract. Phytochemical analysis and determination of the total phenolic content of the extract were performed before use as a reducing agent. Under the suitable synthesized condition, a color change in the color of the solutions to brown confirmed the formation of CuONPs. The obtained CuONPs were confirmed using ultraviolet-visible spectroscopy, photon correlation spectroscopy, X-ray diffraction, scanning electron microscope, energy dispersive X-ray, and Fourier transform infrared analysis. The synthesized CuONPs investigated for antioxidant, antiglycation, and antibacterial activities. CuONPs possessed antioxidant activities by quenching free radicals with an IC50 value of 63.35 µg/mL and reducing activity with an EC range of 3.19-10.27 mM/mg. CuONPs also inhibited the formation of advanced glycation end products in the bovine serum albumin/ribose model with an IC50 value of 17.05 µg/mL. In addition, CuONPs showed inhibition of human pathogens, including Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli, and prevention of biofilm formation and biofilm eradication, with maximum inhibition of approx. 75%. Our findings suggest that C. sappan extract can be used to obtain highly bioactive CuONPs for the development of certain medical devices and therapeutic agents.
Synthesis of metal nanoparticles using plant extracts is environmentally friendly and of increasing interest. However, not all plant extracts can meet successfully on the synthesis. Therefore, searching for the high potential extracts that can reduce the metal salt precursor in the synthesis reaction is essential. The present study explores the synthesis of copper oxide nanoparticles (CuONPs) using Caesalpinia sappan heartwood extract. Phytochemical analysis and determination of the total phenolic content of the extract were performed before use as a reducing agent. Under the suitable synthesized condition, a color change in the color of the solutions to brown confirmed the formation of CuONPs. The obtained CuONPs were confirmed using ultraviolet-visible spectroscopy, photon correlation spectroscopy, X-ray diffraction, scanning electron microscope, energy dispersive X-ray, and Fourier transform infrared analysis. The synthesized CuONPs investigated for antioxidant, antiglycation, and antibacterial activities. CuONPs possessed antioxidant activities by quenching free radicals with an IC value of 63.35 µg/mL and reducing activity with an EC range of 3.19-10.27 mM/mg. CuONPs also inhibited the formation of advanced glycation end products in the bovine serum albumin/ribose model with an IC value of 17.05 µg/mL. In addition, CuONPs showed inhibition of human pathogens, including Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli, and prevention of biofilm formation and biofilm eradication, with maximum inhibition of approx. 75%. Our findings suggest that C. sappan extract can be used to obtain highly bioactive CuONPs for the development of certain medical devices and therapeutic agents.
ArticleNumber 2024.01030
Author Wanachantararak, Phenphichar
Chaijareenont, Pisaisit
Okonogi, Siriporn
Sasarom, Mathurada
Author_xml – sequence: 1
  fullname: Okonogi, Siriporn
  organization: Center of Excellence in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
– sequence: 1
  fullname: Wanachantararak, Phenphichar
  organization: Dentistry Research Center, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
– sequence: 1
  fullname: Chaijareenont, Pisaisit
  organization: Center of Excellence in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
– sequence: 1
  fullname: Sasarom, Mathurada
  organization: Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38945877$$D View this record in MEDLINE/PubMed
BookMark eNp1kE1LAzEQhoMoVmuvHiU_wNZkk93NHkv9BMGDCt6WaT7ayJpdkgitv95sWysI5jDJzLzvhHlO0aFrnUbonJJJnovsSqk4yUjGJ4QSRg7QCRWCjkvB3w73b0YHaBTCO0kn54KK_BgNmKh4LsryBK2mLtp2ZRW4eIlTsItmLSHVXJ-qTWkOMmpvocGtwbLtOu1x79HYgWs78NHKRgcc1i4udbBfWuHPYN0Cz0AHaDrrLOBn6DpwWK-iT_PO0JGBJujR7h6i19ubl9n9-PHp7mE2fRxLzqs4hrziRLBqXhZZAaRQGeRGKmVM2oRCXhLK5tJwKVQhKiOZYRpKLcusqDKWVWyILrZzu8_5h1Z15-0H-HX9gyAJJluB9G0IXpu9hJK6x1wnzHWPud5gTgb-xyBt3BBLi9nmf9v11vYeIiz0_pcdvY2cipr14de2b8sl-Fo79g1lspvS
CitedBy_id crossref_primary_10_1016_j_matchemphys_2025_130364
crossref_primary_10_3389_fphar_2024_1514573
crossref_primary_10_1016_j_heliyon_2025_e42159
Cites_doi 10.5582/ddt.2023.01032
10.1016/j.foodchem.2006.09.034
10.3390/pharmaceutics14010106
10.1152/physrev.00001.2019
10.1016/j.cub.2011.09.040
10.1002/fft2.10
10.5582/ddt.2017.01055
10.3390/ph9040075
10.1016/j.sajb.2021.11.021
10.1016/j.ijpharm.2010.09.041
10.3390/pharmaceutics14102141
10.1007/s13204-013-0233-x
10.1016/j.bbadis.2015.10.021
10.1038/s41598-021-99286-w
10.1016/j.fct.2022.113330
10.1016/j.foodchem.2007.06.016
10.1016/j.tox.2013.07.012
10.1007/s12011-020-02138-3
10.1016/j.archoralbio.2020.104690
10.3390/molecules25214974
10.1039/D1RA02382A
10.3390/nano10020312
10.1007/s001250051591
10.1038/srep20414
10.1016/j.jscs.2015.01.009
10.1016/S1007-0214(08)70076-2
10.1088/0957-4484/26/14/145703
10.3390/foods11030402
10.1016/j.apjtm.2015.05.014
10.1007/s42452-019-0592-3
10.5582/ddt.2018.01059
10.1039/c1gc15386b
10.3390/molecules191118828
10.3390/molecules181114320
10.1039/D0MA00807A
10.4196/kjpp.2014.18.1.1
10.3390/molecules25225243
10.1080/10408699891274273
10.1080/24701556.2019.1601738
10.3390/ma11060940
10.5582/ddt.2012.v6.1.38
10.1016/j.toxrep.2021.11.020
10.1016/j.lwt.2010.02.015
10.1080/07391102.2020.1803137
ContentType Journal Article
Copyright 2024 International Research and Cooperation Association for Bio & Socio-Sciences Advancement
Copyright_xml – notice: 2024 International Research and Cooperation Association for Bio & Socio-Sciences Advancement
DBID AAYXX
CITATION
NPM
DOI 10.5582/ddt.2024.01030
DatabaseName CrossRef
PubMed
DatabaseTitle CrossRef
PubMed
DatabaseTitleList
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1881-784X
EndPage 177
ExternalDocumentID 38945877
10_5582_ddt_2024_01030
article_ddt_18_3_18_2024_01030_article_char_en
Genre Journal Article
GroupedDBID ---
53G
7.U
ABDBF
ACUHS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BAWUL
DIK
EBD
EMOBN
ESX
F5P
JSF
JSH
KQ8
MK0
OK1
P2P
RJT
RZJ
SV3
TUS
AAYXX
CITATION
NPM
ID FETCH-LOGICAL-c449t-a5940839b7626a06d2a5fcddff1851a57013bcf4c8d689fc3f3ea7ec726923293
ISSN 1881-7831
IngestDate Wed Feb 19 02:06:22 EST 2025
Tue Jul 01 01:15:40 EDT 2025
Thu Apr 24 22:54:30 EDT 2025
Wed Sep 03 06:30:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Caesalpinia Sappan
antibacterial activity
antiglycation activity
copper oxide nanoparticles
antioxidant activity
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c449t-a5940839b7626a06d2a5fcddff1851a57013bcf4c8d689fc3f3ea7ec726923293
OpenAccessLink https://www.jstage.jst.go.jp/article/ddt/18/3/18_2024.01030/_article/-char/en
PMID 38945877
PageCount 11
ParticipantIDs pubmed_primary_38945877
crossref_primary_10_5582_ddt_2024_01030
crossref_citationtrail_10_5582_ddt_2024_01030
jstage_primary_article_ddt_18_3_18_2024_01030_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024/06/30
PublicationDateYYYYMMDD 2024-06-30
PublicationDate_xml – month: 06
  year: 2024
  text: 2024/06/30
  day: 30
PublicationDecade 2020
PublicationPlace Japan
PublicationPlace_xml – name: Japan
PublicationTitle Drug Discoveries & Therapeutics
PublicationTitleAlternate DD&T
PublicationYear 2024
Publisher International Research and Cooperation Association for Bio & Socio-Sciences Advancement
Publisher_xml – name: International Research and Cooperation Association for Bio & Socio-Sciences Advancement
References 25. Alrubaye A, Motovali-Bashi M, Miroliaei M. Rosmarinic acid inhibits DNA glycation and modulates the expression of Akt1 and Akt3 partially in the hippocampus of diabetic rats. Sci Rep. 2021; 11:20605.
21. Peng X, Zheng Z, Cheng KW, Shan F, Ren GX, Chen F, Wang M. Inhibitory effect of mung bean extract and its constituents vitexin and isovitexin on the formation of advanced glycation endproducts. Food Chem. 2008; 106:475-481.
39. Singh R, Barden A, Mori T, Beilin L. Advanced glycation end-products: A review. Diabetologia. 2001; 44:129-146.
45. Festa RA, Thiele DJ. Copper: An essential metal in biology copper in prokaryotes. Curr Biol. 2011; 21:877-883.
7. Salem SS, Fouda A. Green synthesis of metallic nanoparticles and their prospective biotechnological applications: An overview. Biol Trace Elem Res. 2011; 199:344-370.
12. Hu J, Yan X, Wang W, Wu H, Hua L, Du L. Antioxidant activity in vitro of three constituents from Caesalpinia sappan L. 2008; 13:474-479.
2. Couto C, Almeida A. Metallic nanoparticles in the food sector: A mini-review. Foods. 2022; 11:10-12.
28. Juang YP, Liang PH. Biological and pharmacological effects of synthetic saponins. Molecules. 2020; 25:4974.
13. Rajput MS, Nirmal NP, Nirmal SJ, Santivarangkna C. Bio-actives from Caesalpinia sappan L.: Recent advancements in phytochemistry and pharmacology. South African J Bot. 2022; 151:60-74.
33. Nirmal NP, Rajput MS, Prasad RGSV, Ahmad M. Brazilin from Caesalpinia sappan heartwood and its pharmacological activities: A review. Asian Pac J Trop Med. 2015; 8:421-430.
34. Verma PR, Khan F. Green approach for biofabrication of CuO nanoparticles from Prunus amygdalus pericarp extract and characterization. Inorg Nano-Metal Chem. 2019; 49:69-74.
22. Puttipan R, Wanachantararak P, Khongkhunthian S, Okonogi S. Effects of Caesalpinia sappan on pathogenic bacteria causing dental caries and gingivitis. Drug Discov Ther. 2017; 11:316-322.
43. Ashraf JM, Ansari MA, Khan HM, Alzohairy MA, Choi I. Green synthesis of silver nanoparticles and characterization of their inhibitory effects on AGEs formation using biophysical techniques. Sci Rep. 2016; 6:20414.
8. Iravani S. Green synthesis of metal nanoparticles using plants. Green Chem. 2011; 13:2638-2650.
10. Singh P, Singh KRB, Singh J, Das SN, Singh RP. Tunable electrochemistry and efficient antibacterial activity of plant-mediated copper oxide nanoparticles synthesized by Annona squamosa seed extract for agricultural utility. RSC Advanc. 2021; 11:18050-18060.
20. Froldi G, Djeujo FM, Bulf N, Caparelli E, Ragazzi E. Comparative evaluation of the antiglycation and anti-α-glucosidase activities of baicalein , baicalin ( baicalein 7-o-glucuronide) and the antidiabetic drug metformin. 2022; 14:2141.
38. Iannuzzi C, Borriello M, Carafa V, Altucci L, Vitiello M, Balestrieri ML, Ricci G, Irace G, Sirangelo I. D-ribose-glycation of insulin prevents amyloid aggregation and produces cytotoxic adducts. Biochim Biophys Acta - Mol Basis Dis. 2016; 1862:93-104.
31. Abboud Y, Saffaj T, Chagraoui A, Bouari AEI, Brouzi K, Tanane O, Ihssane B. Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata). Appl Nanosci. 2014; 4:571-576.
1. Halwani AA. Development of pharmaceutical nanomedicines: From the bench to the market. Pharmaceutics. 2022; 14:106.
23. Phumat P, Khongkhunthian S, Wanachantararak P, Okonogi S. Comparative inhibitory effects of 4-allylpyrocatechol isolated from Piper betle on Streptococcus intermedius, Streptococcus mutans, and Candida albicans. Arch Oral Biol. 2020; 113:104690.
35. Singare DS, Marella S, Gowthamrajan K, Kulkarni GT, Vooturi R, Rao PS. Optimization of formulation and process variable of nanosuspension: An industrial perspective. Int J Pharm. 2010; 402:213-220.
14. Suwan T, Wanachantararak P, Khongkhunthian S, Okonogi S. Antioxidant activity and potential of Caesalpinia sappan aqueous extract on synthesis of silver nanoparticles. Drug Discov Ther. 2018; 12:259-266.
30. Marslin G, Siram K, Maqbool Q, Selvakesavan RK, Kruszka D, Kachlicki P, Franklin G. Secondary metabolites in the green synthesis of metallic nanoparticles. Materials (Basel). 2018; 11:940.
9. Sarkar J, Chakraborty N, Chatterjee A, Bhattacharjee A. Green synthesized copper oxide nanoparticles ameliorate defence and antioxidant enzymes in Lens culinaris. Nanomaterials. 2020; 10:312.
11. Sathiyavimal S, Durán-Lara EF, Vasantharaj S, Saravanan M, Sabour A, Alshiekheid M, Lan C, Nguyen T, Brindhadevi K, Pugazhendhi A. Green synthesis of copper oxide nanoparticles using Abutilon indicum leaves extract and their evaluation of antibacterial, anticancer in human A549 lung and MDA-MB-231 breast cancer cells. Food Chem Toxicol. 2022; 168:113330.
5. Manuja A, Kumar B, Kumar R, Chhabra D, Ghosh M, Manuja M, Manuja A, Brar B, Pal Y, Tripathi BN, Prasad M. Metal/metal oxide nanoparticles: Toxicity concerns associated with their physical state and remediation for biomedical applications. Toxicol Rep. 2021; 8:1970-1978.
26. Schalkwijk CG, Stehouwer CDA. Methylglyoxal, a highly reactive dicarbonyl compound, in diabetes, its vascular complications, and other age-related diseases. Physiol Rev. 2020; 100:407-461.
29. Ullah A, Munir S, Badshah SL, Khan N, Ghani L, Poulson BG, Emwas AH, Jaremko M. Important flavonoids and their role as a therapeutic agent. Molecules. 2020; 25:5243.
4. Baig N, Kammakakam I, Falath W, Kammakakam I. Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Mater Adv. 2021; 2:1821-1871.
17. Nantitanon W, Yotsawimonwat S, Okonogi S. Factors influencing antioxidant activities and total phenolic content of guava leaf extract. LWT - Food Sci Technol. 2010; 43:1095-1103.
24. Séro L, Sanguinet L, Blanchard P, Dang BT, Morel S, Richomme P, Séraphin D, Derbré S. Tuning a 96-well microtiter plate fluorescence-based assay to identify AGE inhibitors in crude plant extracts. Molecules. 2013; 18:14320-14339.
16. Kokate CK. Practical pharmacognosy. 4 th. New Delhi: Vallabh Prakashan; 2005. pp.7-111.
19. Sadowska-Bartosz I, Galiniak S, Bartosz G. Kinetics of glycoxidation of bovine serum albumin by glucose, fructose and ribose and its prevention by food components. Molecules. 2014; 19:18828-18849.
37. Nantitanon W, Okonogi S. Comparison of antioxidant activity of compounds isolated from guava leaves and a stability study of the most active compound. Drug Discov Ther. 2012; 6:38-43.
15. Sasarom M, Wanachantararak P, Chaijareenont P, Okonogi S. Biosynthesis of copper oxide nanoparticles using Caesalpinia sappan extract: In vitro evaluation of antifungal and antibiofilm activities against Candida albicans. 2023; 17:238-247.
18. Okonogi S, Duangrat C, Anuchpreeda S, Tachakittirungrod S, Chowwanapoonpohn S. Comparison of antioxidant capacities and cytotoxicities of certain fruit peels. Food Chem. 2007; 103:839-846.
3. Chavali MS, Nikolova MP. Metal oxide nanoparticles and their applications in nanotechnology. SN Appl Sci. 2019; 1:607.
27. Chung KT, Wong TY, Wei CI, Huang YW, Lin Y. Tannins and human health: A review. Crit Rev Food Sci Nutr. 1998; 38:421-464.
36. Xiao F, Xu T, Lu B, Liu R. Guidelines for antioxidant assays for food components. Food Front. 2020; 1:60-69.
44. Karlsson HL, Cronholm P, Hedberg Y, Tornberg M, Battice LD, Svedhem S, Wallinder IO. Cell membrane damage and protein interaction induced by copper containing nanoparticles-Importance of the metal release process. Toxicol. 2013; 313:59-69.
41. Yu S, Zhang W, Liu W, Zhu W, Guo R, Wang Y, Zhang D, Wang J. The inhibitory effect of selenium nanoparticles on protein glycation in vitro. Nanotechnology. 2015; 26:145703.
42. Kumar D, Bhatkalkar SG, Sachar S, Ali A. Studies on the antiglycating potential of zinc oxide nanoparticle and its interaction with BSA. J Biomol Struct Dyn. 2020; 39:6918-6925.
6. Grigore ME, Biscu ER, Holban AM, Gestal MC, Grumezescu AM. Methods of synthesis, properties and biomedical applications of CuO nanoparticles. Pharmaceuticals. 2016; 9:75-88.
40. Singh VP, Bali A, Singh N, Jaggi AS. Advanced glycation end products and diabetic complications. Korean J Physiol Pharmacol. 2014; 18:1-14.
32. Kumar B, Smita K, Cumbal L, Debut A, Angulo Y. Biofabrication of copper oxide nanoparticles using Andean blackberry (Rubus glaucus Benth.) fruit and leaf. J Saudi Chem Soc. 2017; 21:475-480.
22
44
23
45
24
25
26
27
28
29
30
31
10
32
11
33
12
34
13
35
14
36
15
37
16
38
17
39
18
19
1
2
3
4
5
6
7
8
9
40
41
20
42
21
43
References_xml – reference: 13. Rajput MS, Nirmal NP, Nirmal SJ, Santivarangkna C. Bio-actives from Caesalpinia sappan L.: Recent advancements in phytochemistry and pharmacology. South African J Bot. 2022; 151:60-74.
– reference: 15. Sasarom M, Wanachantararak P, Chaijareenont P, Okonogi S. Biosynthesis of copper oxide nanoparticles using Caesalpinia sappan extract: In vitro evaluation of antifungal and antibiofilm activities against Candida albicans. 2023; 17:238-247.
– reference: 17. Nantitanon W, Yotsawimonwat S, Okonogi S. Factors influencing antioxidant activities and total phenolic content of guava leaf extract. LWT - Food Sci Technol. 2010; 43:1095-1103.
– reference: 41. Yu S, Zhang W, Liu W, Zhu W, Guo R, Wang Y, Zhang D, Wang J. The inhibitory effect of selenium nanoparticles on protein glycation in vitro. Nanotechnology. 2015; 26:145703.
– reference: 32. Kumar B, Smita K, Cumbal L, Debut A, Angulo Y. Biofabrication of copper oxide nanoparticles using Andean blackberry (Rubus glaucus Benth.) fruit and leaf. J Saudi Chem Soc. 2017; 21:475-480.
– reference: 30. Marslin G, Siram K, Maqbool Q, Selvakesavan RK, Kruszka D, Kachlicki P, Franklin G. Secondary metabolites in the green synthesis of metallic nanoparticles. Materials (Basel). 2018; 11:940.
– reference: 10. Singh P, Singh KRB, Singh J, Das SN, Singh RP. Tunable electrochemistry and efficient antibacterial activity of plant-mediated copper oxide nanoparticles synthesized by Annona squamosa seed extract for agricultural utility. RSC Advanc. 2021; 11:18050-18060.
– reference: 3. Chavali MS, Nikolova MP. Metal oxide nanoparticles and their applications in nanotechnology. SN Appl Sci. 2019; 1:607.
– reference: 25. Alrubaye A, Motovali-Bashi M, Miroliaei M. Rosmarinic acid inhibits DNA glycation and modulates the expression of Akt1 and Akt3 partially in the hippocampus of diabetic rats. Sci Rep. 2021; 11:20605.
– reference: 24. Séro L, Sanguinet L, Blanchard P, Dang BT, Morel S, Richomme P, Séraphin D, Derbré S. Tuning a 96-well microtiter plate fluorescence-based assay to identify AGE inhibitors in crude plant extracts. Molecules. 2013; 18:14320-14339.
– reference: 35. Singare DS, Marella S, Gowthamrajan K, Kulkarni GT, Vooturi R, Rao PS. Optimization of formulation and process variable of nanosuspension: An industrial perspective. Int J Pharm. 2010; 402:213-220.
– reference: 34. Verma PR, Khan F. Green approach for biofabrication of CuO nanoparticles from Prunus amygdalus pericarp extract and characterization. Inorg Nano-Metal Chem. 2019; 49:69-74.
– reference: 44. Karlsson HL, Cronholm P, Hedberg Y, Tornberg M, Battice LD, Svedhem S, Wallinder IO. Cell membrane damage and protein interaction induced by copper containing nanoparticles-Importance of the metal release process. Toxicol. 2013; 313:59-69.
– reference: 1. Halwani AA. Development of pharmaceutical nanomedicines: From the bench to the market. Pharmaceutics. 2022; 14:106.
– reference: 9. Sarkar J, Chakraborty N, Chatterjee A, Bhattacharjee A. Green synthesized copper oxide nanoparticles ameliorate defence and antioxidant enzymes in Lens culinaris. Nanomaterials. 2020; 10:312.
– reference: 33. Nirmal NP, Rajput MS, Prasad RGSV, Ahmad M. Brazilin from Caesalpinia sappan heartwood and its pharmacological activities: A review. Asian Pac J Trop Med. 2015; 8:421-430.
– reference: 40. Singh VP, Bali A, Singh N, Jaggi AS. Advanced glycation end products and diabetic complications. Korean J Physiol Pharmacol. 2014; 18:1-14.
– reference: 6. Grigore ME, Biscu ER, Holban AM, Gestal MC, Grumezescu AM. Methods of synthesis, properties and biomedical applications of CuO nanoparticles. Pharmaceuticals. 2016; 9:75-88.
– reference: 8. Iravani S. Green synthesis of metal nanoparticles using plants. Green Chem. 2011; 13:2638-2650.
– reference: 19. Sadowska-Bartosz I, Galiniak S, Bartosz G. Kinetics of glycoxidation of bovine serum albumin by glucose, fructose and ribose and its prevention by food components. Molecules. 2014; 19:18828-18849.
– reference: 11. Sathiyavimal S, Durán-Lara EF, Vasantharaj S, Saravanan M, Sabour A, Alshiekheid M, Lan C, Nguyen T, Brindhadevi K, Pugazhendhi A. Green synthesis of copper oxide nanoparticles using Abutilon indicum leaves extract and their evaluation of antibacterial, anticancer in human A549 lung and MDA-MB-231 breast cancer cells. Food Chem Toxicol. 2022; 168:113330.
– reference: 7. Salem SS, Fouda A. Green synthesis of metallic nanoparticles and their prospective biotechnological applications: An overview. Biol Trace Elem Res. 2011; 199:344-370.
– reference: 26. Schalkwijk CG, Stehouwer CDA. Methylglyoxal, a highly reactive dicarbonyl compound, in diabetes, its vascular complications, and other age-related diseases. Physiol Rev. 2020; 100:407-461.
– reference: 39. Singh R, Barden A, Mori T, Beilin L. Advanced glycation end-products: A review. Diabetologia. 2001; 44:129-146.
– reference: 29. Ullah A, Munir S, Badshah SL, Khan N, Ghani L, Poulson BG, Emwas AH, Jaremko M. Important flavonoids and their role as a therapeutic agent. Molecules. 2020; 25:5243.
– reference: 21. Peng X, Zheng Z, Cheng KW, Shan F, Ren GX, Chen F, Wang M. Inhibitory effect of mung bean extract and its constituents vitexin and isovitexin on the formation of advanced glycation endproducts. Food Chem. 2008; 106:475-481.
– reference: 5. Manuja A, Kumar B, Kumar R, Chhabra D, Ghosh M, Manuja M, Manuja A, Brar B, Pal Y, Tripathi BN, Prasad M. Metal/metal oxide nanoparticles: Toxicity concerns associated with their physical state and remediation for biomedical applications. Toxicol Rep. 2021; 8:1970-1978.
– reference: 4. Baig N, Kammakakam I, Falath W, Kammakakam I. Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Mater Adv. 2021; 2:1821-1871.
– reference: 12. Hu J, Yan X, Wang W, Wu H, Hua L, Du L. Antioxidant activity in vitro of three constituents from Caesalpinia sappan L. 2008; 13:474-479.
– reference: 14. Suwan T, Wanachantararak P, Khongkhunthian S, Okonogi S. Antioxidant activity and potential of Caesalpinia sappan aqueous extract on synthesis of silver nanoparticles. Drug Discov Ther. 2018; 12:259-266.
– reference: 18. Okonogi S, Duangrat C, Anuchpreeda S, Tachakittirungrod S, Chowwanapoonpohn S. Comparison of antioxidant capacities and cytotoxicities of certain fruit peels. Food Chem. 2007; 103:839-846.
– reference: 45. Festa RA, Thiele DJ. Copper: An essential metal in biology copper in prokaryotes. Curr Biol. 2011; 21:877-883.
– reference: 20. Froldi G, Djeujo FM, Bulf N, Caparelli E, Ragazzi E. Comparative evaluation of the antiglycation and anti-α-glucosidase activities of baicalein , baicalin ( baicalein 7-o-glucuronide) and the antidiabetic drug metformin. 2022; 14:2141.
– reference: 37. Nantitanon W, Okonogi S. Comparison of antioxidant activity of compounds isolated from guava leaves and a stability study of the most active compound. Drug Discov Ther. 2012; 6:38-43.
– reference: 38. Iannuzzi C, Borriello M, Carafa V, Altucci L, Vitiello M, Balestrieri ML, Ricci G, Irace G, Sirangelo I. D-ribose-glycation of insulin prevents amyloid aggregation and produces cytotoxic adducts. Biochim Biophys Acta - Mol Basis Dis. 2016; 1862:93-104.
– reference: 23. Phumat P, Khongkhunthian S, Wanachantararak P, Okonogi S. Comparative inhibitory effects of 4-allylpyrocatechol isolated from Piper betle on Streptococcus intermedius, Streptococcus mutans, and Candida albicans. Arch Oral Biol. 2020; 113:104690.
– reference: 28. Juang YP, Liang PH. Biological and pharmacological effects of synthetic saponins. Molecules. 2020; 25:4974.
– reference: 22. Puttipan R, Wanachantararak P, Khongkhunthian S, Okonogi S. Effects of Caesalpinia sappan on pathogenic bacteria causing dental caries and gingivitis. Drug Discov Ther. 2017; 11:316-322.
– reference: 31. Abboud Y, Saffaj T, Chagraoui A, Bouari AEI, Brouzi K, Tanane O, Ihssane B. Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata). Appl Nanosci. 2014; 4:571-576.
– reference: 36. Xiao F, Xu T, Lu B, Liu R. Guidelines for antioxidant assays for food components. Food Front. 2020; 1:60-69.
– reference: 42. Kumar D, Bhatkalkar SG, Sachar S, Ali A. Studies on the antiglycating potential of zinc oxide nanoparticle and its interaction with BSA. J Biomol Struct Dyn. 2020; 39:6918-6925.
– reference: 16. Kokate CK. Practical pharmacognosy. 4 th. New Delhi: Vallabh Prakashan; 2005. pp.7-111.
– reference: 2. Couto C, Almeida A. Metallic nanoparticles in the food sector: A mini-review. Foods. 2022; 11:10-12.
– reference: 27. Chung KT, Wong TY, Wei CI, Huang YW, Lin Y. Tannins and human health: A review. Crit Rev Food Sci Nutr. 1998; 38:421-464.
– reference: 43. Ashraf JM, Ansari MA, Khan HM, Alzohairy MA, Choi I. Green synthesis of silver nanoparticles and characterization of their inhibitory effects on AGEs formation using biophysical techniques. Sci Rep. 2016; 6:20414.
– ident: 15
  doi: 10.5582/ddt.2023.01032
– ident: 18
  doi: 10.1016/j.foodchem.2006.09.034
– ident: 1
  doi: 10.3390/pharmaceutics14010106
– ident: 26
  doi: 10.1152/physrev.00001.2019
– ident: 45
  doi: 10.1016/j.cub.2011.09.040
– ident: 36
  doi: 10.1002/fft2.10
– ident: 22
  doi: 10.5582/ddt.2017.01055
– ident: 6
  doi: 10.3390/ph9040075
– ident: 13
  doi: 10.1016/j.sajb.2021.11.021
– ident: 35
  doi: 10.1016/j.ijpharm.2010.09.041
– ident: 20
  doi: 10.3390/pharmaceutics14102141
– ident: 31
  doi: 10.1007/s13204-013-0233-x
– ident: 38
  doi: 10.1016/j.bbadis.2015.10.021
– ident: 25
  doi: 10.1038/s41598-021-99286-w
– ident: 11
  doi: 10.1016/j.fct.2022.113330
– ident: 21
  doi: 10.1016/j.foodchem.2007.06.016
– ident: 16
– ident: 44
  doi: 10.1016/j.tox.2013.07.012
– ident: 7
  doi: 10.1007/s12011-020-02138-3
– ident: 23
  doi: 10.1016/j.archoralbio.2020.104690
– ident: 28
  doi: 10.3390/molecules25214974
– ident: 10
  doi: 10.1039/D1RA02382A
– ident: 9
  doi: 10.3390/nano10020312
– ident: 39
  doi: 10.1007/s001250051591
– ident: 43
  doi: 10.1038/srep20414
– ident: 32
  doi: 10.1016/j.jscs.2015.01.009
– ident: 12
  doi: 10.1016/S1007-0214(08)70076-2
– ident: 41
  doi: 10.1088/0957-4484/26/14/145703
– ident: 2
  doi: 10.3390/foods11030402
– ident: 33
  doi: 10.1016/j.apjtm.2015.05.014
– ident: 3
  doi: 10.1007/s42452-019-0592-3
– ident: 14
  doi: 10.5582/ddt.2018.01059
– ident: 8
  doi: 10.1039/c1gc15386b
– ident: 19
  doi: 10.3390/molecules191118828
– ident: 24
  doi: 10.3390/molecules181114320
– ident: 4
  doi: 10.1039/D0MA00807A
– ident: 40
  doi: 10.4196/kjpp.2014.18.1.1
– ident: 29
  doi: 10.3390/molecules25225243
– ident: 27
  doi: 10.1080/10408699891274273
– ident: 34
  doi: 10.1080/24701556.2019.1601738
– ident: 30
  doi: 10.3390/ma11060940
– ident: 37
  doi: 10.5582/ddt.2012.v6.1.38
– ident: 5
  doi: 10.1016/j.toxrep.2021.11.020
– ident: 17
  doi: 10.1016/j.lwt.2010.02.015
– ident: 42
  doi: 10.1080/07391102.2020.1803137
SSID ssj0000548185
Score 2.3109753
Snippet Synthesis of metal nanoparticles using plant extracts is environmentally friendly and of increasing interest. However, not all plant extracts can meet...
SourceID pubmed
crossref
jstage
SourceType Index Database
Enrichment Source
Publisher
StartPage 167
SubjectTerms antibacterial activity
antiglycation activity
antioxidant activity
Caesalpinia Sappan
copper oxide nanoparticles
Title Antioxidant, antiglycation, and antibacterial of copper oxide nanoparticles synthesized using Caesalpinia Sappan extract
URI https://www.jstage.jst.go.jp/article/ddt/18/3/18_2024.01030/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/38945877
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Drug Discoveries & Therapeutics, 2024/06/30, Vol.18(3), pp.167-177
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5tAEF4lTg-9VH3XfUR7qNKDTWrwAsuhB6dpFFVKZCmOmps17EJCamGEbSnOr-xP6gyLeaSplPaCzbKLgPmYnRm-mWXsoxcPpLadyFK2F1oixFcRHFdZWgyGsRfEAMU6ZCen3vG5-H7hXmxt_WqwllbLcF_d3ptX8j9SxTaUK2XJ_oNkq5NiA_5H-eIWJYzbB8l4RFTFm0SDKR6AP8nlbF0SNkpaJjWGpiSzsTvVPMuivEfjol4KKXrNJTmOyhegPbhIbtEKXRlGAEQLmGUJ5W6dQYaqo4fanDKrmlbtYb66pE89ivigSRHI9XqNzK7Kbj-DBeRzE4VF03OVQx0Q-AEpUBrykj5_wE8T7YnS7KrIDGvQEJJrILLQ3Nz0OFlAskhq9g5avKjOi6hughpxnqfNyIYjNjS8ShlLaVu-LGeJqNlmWJ1_avDawS_UsW2W-ihndtssGHN30nBdSUVotSZqrSP2aeWLQT09bigBd2bNisuIXhSdYYrjpzR-WozfZjsOOi5Oh-2MDg4Pjqq4H5rIZCNRHGBze6aWKJ3kc_siWrbSo2t0F6gORMv9KcygyVP2pPRf-MhA5hnbitLnbG9sCqCv-3zSkHqf7_FxXRp9_YLdNBDb5y280q7mLbTyecwNWnmBVt5CK2-glRdo5Q20coNWXqL1JTs_-jb5emyVa39YSohgaYEbCPQOghAnaw8GnnbAjZXWcYwPzwbXR9clVLFQUnsyiNUwHkbgR8p3PHRZ0IZ9xToIxOgN46h1hCdCwOOuUDoAGUgKd9qxq7UOZJdZm6c8VWVhfFqfZTa9X7Rd9qnqn5mSMH_t-cUIrepXPqKiny2nQ9rU_avD9F6hguuy10bW1Xh0L4Qrff_tg6_hHXtcv1vvWWeZr6IPaEcvw90Smrts-3R88hsP0NGT
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antioxidant%2C+antiglycation%2C+and+antibacterial+of+copper+oxide+nanoparticles+synthesized+using+Caesalpinia+Sappan+extract&rft.jtitle=Drug+discoveries+%26+therapeutics&rft.au=Sasarom%2C+Mathurada&rft.au=Wanachantararak%2C+Phenphichar&rft.au=Chaijareenont%2C+Pisaisit&rft.au=Okonogi%2C+Siriporn&rft.date=2024-06-30&rft.issn=1881-7831&rft.eissn=1881-784X&rft.volume=18&rft.issue=3&rft.spage=167&rft.epage=177&rft_id=info:doi/10.5582%2Fddt.2024.01030&rft.externalDBID=n%2Fa&rft.externalDocID=10_5582_ddt_2024_01030
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1881-7831&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1881-7831&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1881-7831&client=summon