Deep learning in spiking neural networks

In recent years, deep learning has revolutionized the field of machine learning, for computer vision in particular. In this approach, a deep (multilayer) artificial neural network (ANN) is trained, most often in a supervised manner using backpropagation. Vast amounts of labeled training examples are...

Full description

Saved in:
Bibliographic Details
Published inNeural networks Vol. 111; pp. 47 - 63
Main Authors Tavanaei, Amirhossein, Ghodrati, Masoud, Kheradpisheh, Saeed Reza, Masquelier, Timothée, Maida, Anthony
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.03.2019
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In recent years, deep learning has revolutionized the field of machine learning, for computer vision in particular. In this approach, a deep (multilayer) artificial neural network (ANN) is trained, most often in a supervised manner using backpropagation. Vast amounts of labeled training examples are required, but the resulting classification accuracy is truly impressive, sometimes outperforming humans. Neurons in an ANN are characterized by a single, static, continuous-valued activation. Yet biological neurons use discrete spikes to compute and transmit information, and the spike times, in addition to the spike rates, matter. Spiking neural networks (SNNs) are thus more biologically realistic than ANNs, and are arguably the only viable option if one wants to understand how the brain computes at the neuronal description level. The spikes of biological neurons are sparse in time and space, and event-driven. Combined with bio-plausible local learning rules, this makes it easier to build low-power, neuromorphic hardware for SNNs. However, training deep SNNs remains a challenge. Spiking neurons’ transfer function is usually non-differentiable, which prevents using backpropagation. Here we review recent supervised and unsupervised methods to train deep SNNs, and compare them in terms of accuracy and computational cost. The emerging picture is that SNNs still lag behind ANNs in terms of accuracy, but the gap is decreasing, and can even vanish on some tasks, while SNNs typically require many fewer operations and are the better candidates to process spatio-temporal data.
AbstractList In recent years, deep learning has revolutionized the field of machine learning, for computer vision in particular. In this approach, a deep (multilayer) artificial neural network (ANN) is trained, most often in a supervised manner using backpropagation. Vast amounts of labeled training examples are required, but the resulting classification accuracy is truly impressive, sometimes outperforming humans. Neurons in an ANN are characterized by a single, static, continuous-valued activation. Yet biological neurons use discrete spikes to compute and transmit information, and the spike times, in addition to the spike rates, matter. Spiking neural networks (SNNs) are thus more biologically realistic than ANNs, and are arguably the only viable option if one wants to understand how the brain computes at the neuronal description level. The spikes of biological neurons are sparse in time and space, and event-driven. Combined with bio-plausible local learning rules, this makes it easier to build low-power, neuromorphic hardware for SNNs. However, training deep SNNs remains a challenge. Spiking neurons' transfer function is usually non-differentiable, which prevents using backpropagation. Here we review recent supervised and unsupervised methods to train deep SNNs, and compare them in terms of accuracy and computational cost. The emerging picture is that SNNs still lag behind ANNs in terms of accuracy, but the gap is decreasing, and can even vanish on some tasks, while SNNs typically require many fewer operations and are the better candidates to process spatio-temporal data.
In recent years, deep learning has revolutionized the field of machine learning, for computer vision in particular. In this approach, a deep (multilayer) artificial neural network (ANN) is trained, most often in a supervised manner using backpropagation. Vast amounts of labeled training examples are required, but the resulting classification accuracy is truly impressive, sometimes outperforming humans. Neurons in an ANN are characterized by a single, static, continuous-valued activation. Yet biological neurons use discrete spikes to compute and transmit information, and the spike times, in addition to the spike rates, matter. Spiking neural networks (SNNs) are thus more biologically realistic than ANNs, and are arguably the only viable option if one wants to understand how the brain computes at the neuronal description level. The spikes of biological neurons are sparse in time and space, and event-driven. Combined with bio-plausible local learning rules, this makes it easier to build low-power, neuromorphic hardware for SNNs. However, training deep SNNs remains a challenge. Spiking neurons’ transfer function is usually non-differentiable, which prevents using backpropagation. Here we review recent supervised and unsupervised methods to train deep SNNs, and compare them in terms of accuracy and computational cost. The emerging picture is that SNNs still lag behind ANNs in terms of accuracy, but the gap is decreasing, and can even vanish on some tasks, while SNNs typically require many fewer operations and are the better candidates to process spatio-temporal data.
In recent years, deep learning has revolutionized the field of machine learning, for computer vision in particular. In this approach, a deep (multilayer) artificial neural network (ANN) is trained, most often in a supervised manner using backpropagation. Vast amounts of labeled training examples are required, but the resulting classification accuracy is truly impressive, sometimes outperforming humans. Neurons in an ANN are characterized by a single, static, continuous-valued activation. Yet biological neurons use discrete spikes to compute and transmit information, and the spike times, in addition to the spike rates, matter. Spiking neural networks (SNNs) are thus more biologically realistic than ANNs, and are arguably the only viable option if one wants to understand how the brain computes at the neuronal description level. The spikes of biological neurons are sparse in time and space, and event-driven. Combined with bio-plausible local learning rules, this makes it easier to build low-power, neuromorphic hardware for SNNs. However, training deep SNNs remains a challenge. Spiking neurons' transfer function is usually non-differentiable, which prevents using backpropagation. Here we review recent supervised and unsupervised methods to train deep SNNs, and compare them in terms of accuracy and computational cost. The emerging picture is that SNNs still lag behind ANNs in terms of accuracy, but the gap is decreasing, and can even vanish on some tasks, while SNNs typically require many fewer operations and are the better candidates to process spatio-temporal data.In recent years, deep learning has revolutionized the field of machine learning, for computer vision in particular. In this approach, a deep (multilayer) artificial neural network (ANN) is trained, most often in a supervised manner using backpropagation. Vast amounts of labeled training examples are required, but the resulting classification accuracy is truly impressive, sometimes outperforming humans. Neurons in an ANN are characterized by a single, static, continuous-valued activation. Yet biological neurons use discrete spikes to compute and transmit information, and the spike times, in addition to the spike rates, matter. Spiking neural networks (SNNs) are thus more biologically realistic than ANNs, and are arguably the only viable option if one wants to understand how the brain computes at the neuronal description level. The spikes of biological neurons are sparse in time and space, and event-driven. Combined with bio-plausible local learning rules, this makes it easier to build low-power, neuromorphic hardware for SNNs. However, training deep SNNs remains a challenge. Spiking neurons' transfer function is usually non-differentiable, which prevents using backpropagation. Here we review recent supervised and unsupervised methods to train deep SNNs, and compare them in terms of accuracy and computational cost. The emerging picture is that SNNs still lag behind ANNs in terms of accuracy, but the gap is decreasing, and can even vanish on some tasks, while SNNs typically require many fewer operations and are the better candidates to process spatio-temporal data.
Author Kheradpisheh, Saeed Reza
Tavanaei, Amirhossein
Maida, Anthony
Ghodrati, Masoud
Masquelier, Timothée
Author_xml – sequence: 1
  givenname: Amirhossein
  orcidid: 0000-0002-6482-440X
  surname: Tavanaei
  fullname: Tavanaei, Amirhossein
  email: tavanaei@louisiana.edu
  organization: School of Computing and Informatics, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
– sequence: 2
  givenname: Masoud
  orcidid: 0000-0002-4006-2578
  surname: Ghodrati
  fullname: Ghodrati, Masoud
  organization: Department of Physiology, Monash University, Clayton, VIC, Australia
– sequence: 3
  givenname: Saeed Reza
  surname: Kheradpisheh
  fullname: Kheradpisheh, Saeed Reza
  organization: Department of Computer Science, Faculty of Mathematical Sciences and Computer, Kharazmi University, Tehran, Iran
– sequence: 4
  givenname: Timothée
  orcidid: 0000-0001-8629-9506
  surname: Masquelier
  fullname: Masquelier, Timothée
  organization: CERCO UMR 5549, CNRS-Université de Toulouse 3, F-31300, France
– sequence: 5
  givenname: Anthony
  surname: Maida
  fullname: Maida, Anthony
  organization: School of Computing and Informatics, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30682710$$D View this record in MEDLINE/PubMed
https://hal.science/hal-02341924$$DView record in HAL
BookMark eNqFkLtOxDAQRS0EguXxBwhtCUXC-JHEpkBa8ZZWooHacpwJeMk6i50F8fckClBQQDVXo3NvcXbJpm89EnJIIaVA89NF6nHtsUsZUJlSlgKwDTKhslAJKyTbJBOQiic5SNghuzEuACCXgm-THd4HVlCYkONLxNW0QRO8809T56dx5V6G2K8H0_Sne2_DS9wnW7VpIh583T3yeH31cHGbzO9v7i5m88QKobpEiRKh5HWegeGyFmVVVoxJZbMahbKIShouFFMCoBSYZyVmWGWG8hwKVVC-R07G3WfT6FVwSxM-dGucvp3N9fADxgVVTLwN7PHIrkL7usbY6aWLFpvGeGzXUTNaKEFzxlWPHn2h63KJ1c_yt4keOBsBG9oYA9baus50rvVdMK7RFPSgXS_0qF0P2jVlutfel8Wv8vf-P7XzsYa90DeHQUfr0FusXEDb6ap1fw98ArMUm6U
CitedBy_id crossref_primary_10_3389_fncom_2022_859874
crossref_primary_10_1016_j_envsoft_2019_04_012
crossref_primary_10_1016_j_ribaf_2022_101844
crossref_primary_10_1142_S0129065723500442
crossref_primary_10_3389_fncom_2023_1153572
crossref_primary_10_1039_D0NR01671C
crossref_primary_10_1007_s00521_023_09293_3
crossref_primary_10_1109_TNNLS_2023_3341446
crossref_primary_10_1016_j_neunet_2022_02_006
crossref_primary_10_1038_s42256_021_00388_x
crossref_primary_10_1063_5_0009482
crossref_primary_10_1109_ACCESS_2019_2925085
crossref_primary_10_1002_aisy_202400673
crossref_primary_10_1109_ACCESS_2023_3335387
crossref_primary_10_1002_aisy_202400557
crossref_primary_10_1109_ACCESS_2022_3160271
crossref_primary_10_1016_j_jhydrol_2021_126506
crossref_primary_10_1109_TKDE_2025_3527551
crossref_primary_10_1109_TNNLS_2020_3006263
crossref_primary_10_1360_TB_2023_0775
crossref_primary_10_1109_ACCESS_2020_3037395
crossref_primary_10_18466_cbayarfbe_1538362
crossref_primary_10_1016_j_comnet_2025_111063
crossref_primary_10_1007_s00034_019_01330_8
crossref_primary_10_1016_j_neunet_2025_107333
crossref_primary_10_1007_s00500_020_05501_7
crossref_primary_10_1038_s41467_024_53827_9
crossref_primary_10_1098_rsos_231606
crossref_primary_10_1109_ACCESS_2023_3340735
crossref_primary_10_1109_TBCAS_2022_3166530
crossref_primary_10_1109_ACCESS_2023_3342915
crossref_primary_10_1364_OE_27_037150
crossref_primary_10_1007_s40815_022_01395_9
crossref_primary_10_1007_s10489_024_05629_1
crossref_primary_10_1016_j_array_2023_100323
crossref_primary_10_1364_BOE_531797
crossref_primary_10_1016_j_neunet_2021_08_009
crossref_primary_10_1007_s00521_021_06824_8
crossref_primary_10_1016_j_epsr_2024_111075
crossref_primary_10_1021_acsnano_2c02906
crossref_primary_10_1109_ACCESS_2021_3099492
crossref_primary_10_1109_TASE_2020_3021742
crossref_primary_10_1109_JSEN_2023_3298828
crossref_primary_10_1016_j_neucom_2020_07_105
crossref_primary_10_1007_s11141_022_10175_2
crossref_primary_10_1016_j_commatsci_2022_111835
crossref_primary_10_1021_acsami_4c10687
crossref_primary_10_1080_00207217_2024_2408784
crossref_primary_10_35848_1347_4065_ab8be6
crossref_primary_10_1088_1361_6528_aba70f
crossref_primary_10_1016_j_sna_2024_115210
crossref_primary_10_3390_electronics9071059
crossref_primary_10_1055_s_0040_1717824
crossref_primary_10_1007_s11063_021_10680_x
crossref_primary_10_1109_TNNLS_2021_3085966
crossref_primary_10_1002_aelm_202200877
crossref_primary_10_1113_JP282755
crossref_primary_10_3389_fncom_2020_00039
crossref_primary_10_1038_s41598_023_50201_5
crossref_primary_10_3390_app10051605
crossref_primary_10_1016_j_neucom_2020_03_079
crossref_primary_10_1109_TED_2022_3159270
crossref_primary_10_1109_TNNLS_2023_3329525
crossref_primary_10_3390_app14178062
crossref_primary_10_1007_s00521_022_06984_1
crossref_primary_10_1109_JBHI_2024_3441332
crossref_primary_10_1109_JSEN_2024_3454153
crossref_primary_10_1109_JSYST_2020_2996185
crossref_primary_10_3389_fnins_2022_991851
crossref_primary_10_1007_s11263_024_02046_2
crossref_primary_10_1109_ACCESS_2024_3444596
crossref_primary_10_1007_s11831_023_09901_4
crossref_primary_10_1063_5_0152703
crossref_primary_10_1016_j_heliyon_2022_e08803
crossref_primary_10_1021_acs_nanolett_3c01597
crossref_primary_10_1039_D3TC04265K
crossref_primary_10_1109_ACCESS_2020_3001296
crossref_primary_10_3389_fnsys_2022_838822
crossref_primary_10_1038_s43588_024_00674_9
crossref_primary_10_1109_TDSC_2022_3148331
crossref_primary_10_3390_cryptography7020017
crossref_primary_10_1016_j_neucom_2024_128173
crossref_primary_10_1109_ACCESS_2020_3040895
crossref_primary_10_1088_1757_899X_873_1_012019
crossref_primary_10_1007_s11071_024_09525_8
crossref_primary_10_1016_j_aei_2025_103132
crossref_primary_10_1109_TCAD_2020_3013049
crossref_primary_10_1109_MIC_2023_3301010
crossref_primary_10_35848_1347_4065_ac5533
crossref_primary_10_3389_fnins_2023_1225871
crossref_primary_10_1109_MED_2023_3296084
crossref_primary_10_1016_j_neucom_2023_126838
crossref_primary_10_1103_PhysRevLett_125_207202
crossref_primary_10_1109_TCASAI_2025_3532406
crossref_primary_10_3389_fphys_2024_1379977
crossref_primary_10_3389_fnbot_2020_568319
crossref_primary_10_1038_s41598_024_84775_5
crossref_primary_10_1007_s10489_023_04966_x
crossref_primary_10_1007_s11063_021_10669_6
crossref_primary_10_1109_MCAS_2022_3142669
crossref_primary_10_1109_TETCI_2024_3363071
crossref_primary_10_1088_2634_4386_ac1a64
crossref_primary_10_1016_j_neucom_2024_128190
crossref_primary_10_1109_TNNLS_2023_3329741
crossref_primary_10_1155_2022_4134864
crossref_primary_10_1088_2634_4386_ac4c38
crossref_primary_10_1021_acsnano_4c07454
crossref_primary_10_1109_LED_2021_3138907
crossref_primary_10_1016_j_neunet_2019_09_024
crossref_primary_10_1186_s42234_021_00078_4
crossref_primary_10_1016_j_neucom_2020_01_109
crossref_primary_10_1038_s41467_024_48905_x
crossref_primary_10_1007_s12274_023_5639_5
crossref_primary_10_1016_j_optcom_2024_130374
crossref_primary_10_1016_j_neucom_2020_07_109
crossref_primary_10_3389_fnins_2019_00625
crossref_primary_10_1016_j_neucom_2021_09_004
crossref_primary_10_1016_j_neunet_2021_07_011
crossref_primary_10_1063_5_0066350
crossref_primary_10_1016_j_neunet_2019_09_026
crossref_primary_10_1016_j_neucom_2022_06_036
crossref_primary_10_1063_5_0204469
crossref_primary_10_1109_TCDS_2023_3278712
crossref_primary_10_1109_TIP_2023_3249579
crossref_primary_10_1016_j_mtphys_2022_100667
crossref_primary_10_1109_TBCAS_2023_3292469
crossref_primary_10_3390_brainsci13020168
crossref_primary_10_1088_2634_4386_adb884
crossref_primary_10_1021_acssensors_4c01867
crossref_primary_10_1016_j_matpr_2021_10_088
crossref_primary_10_1109_TBCAS_2023_3327496
crossref_primary_10_1108_IJICC_06_2020_0061
crossref_primary_10_1109_JPROC_2024_3429360
crossref_primary_10_1016_j_isatra_2023_06_008
crossref_primary_10_3390_electronics11121889
crossref_primary_10_3389_fnbot_2024_1395617
crossref_primary_10_1038_s41524_021_00564_y
crossref_primary_10_3390_e26020126
crossref_primary_10_3389_frobt_2022_1007547
crossref_primary_10_3390_brainsci12020281
crossref_primary_10_1103_PhysRevApplied_14_014096
crossref_primary_10_1142_S0219649222500174
crossref_primary_10_1109_TBCAS_2024_3389875
crossref_primary_10_3390_biomimetics9100646
crossref_primary_10_1109_TNNLS_2021_3095724
crossref_primary_10_1109_ACCESS_2023_3236800
crossref_primary_10_1109_ACCESS_2024_3391889
crossref_primary_10_7554_eLife_86365
crossref_primary_10_1016_j_neunet_2022_09_003
crossref_primary_10_1016_j_displa_2024_102864
crossref_primary_10_1016_j_patrec_2022_01_008
crossref_primary_10_1109_TNNLS_2020_3044364
crossref_primary_10_3389_fncom_2024_1363514
crossref_primary_10_1002_dac_70035
crossref_primary_10_3390_math11071701
crossref_primary_10_3390_mi15040426
crossref_primary_10_1016_j_tcs_2020_07_016
crossref_primary_10_1371_journal_pone_0244683
crossref_primary_10_1007_s12555_019_0403_z
crossref_primary_10_1002_admt_202401316
crossref_primary_10_1109_TCSVT_2023_3272375
crossref_primary_10_1109_JETCAS_2023_3328863
crossref_primary_10_1109_TCSI_2021_3052885
crossref_primary_10_1108_IJPCC_02_2021_0037
crossref_primary_10_1002_cta_2753
crossref_primary_10_1016_j_cscm_2023_e02800
crossref_primary_10_1007_s11432_023_3789_7
crossref_primary_10_1109_ACCESS_2022_3221123
crossref_primary_10_1016_j_neucom_2021_11_097
crossref_primary_10_1109_TCSII_2020_2997117
crossref_primary_10_1016_j_neucom_2023_126988
crossref_primary_10_3390_e24040455
crossref_primary_10_1080_03772063_2024_2378475
crossref_primary_10_1088_2632_2153_ada220
crossref_primary_10_1007_s11063_023_11247_8
crossref_primary_10_1142_S0218126625500987
crossref_primary_10_3389_fninf_2023_941696
crossref_primary_10_1155_2021_9290921
crossref_primary_10_1109_TED_2023_3324898
crossref_primary_10_3389_fnins_2024_1449020
crossref_primary_10_1016_j_mtcomm_2024_109675
crossref_primary_10_1109_TWC_2021_3123220
crossref_primary_10_1109_LED_2024_3445970
crossref_primary_10_1016_j_measurement_2023_113273
crossref_primary_10_1109_MC_2024_3437828
crossref_primary_10_3389_fncom_2019_00055
crossref_primary_10_1109_TC_2022_3197089
crossref_primary_10_1038_s44172_024_00165_9
crossref_primary_10_1142_S0218127423501328
crossref_primary_10_1002_adma_202204778
crossref_primary_10_1088_1361_6528_ac0ac4
crossref_primary_10_1109_JSTARS_2023_3242310
crossref_primary_10_1007_s12559_023_10113_y
crossref_primary_10_1016_j_neucom_2023_126784
crossref_primary_10_1371_journal_pcbi_1011005
crossref_primary_10_1063_5_0129205
crossref_primary_10_1126_scirobotics_adi0591
crossref_primary_10_1088_2634_4386_acc683
crossref_primary_10_3390_ma13040938
crossref_primary_10_1038_s41598_022_17013_5
crossref_primary_10_1088_1674_1056_ad1c58
crossref_primary_10_1109_TED_2023_3236906
crossref_primary_10_1007_s11042_020_10243_7
crossref_primary_10_1016_j_neunet_2024_106474
crossref_primary_10_1016_j_ress_2023_109102
crossref_primary_10_1587_transinf_2022EDP7183
crossref_primary_10_3390_biomimetics7040246
crossref_primary_10_1016_j_knosys_2020_105472
crossref_primary_10_1007_s00521_022_07513_w
crossref_primary_10_1109_TNSM_2022_3169988
crossref_primary_10_1007_s11063_021_10562_2
crossref_primary_10_3389_fninf_2023_1067095
crossref_primary_10_3390_math10183275
crossref_primary_10_1016_j_cageo_2025_105864
crossref_primary_10_1021_acsaelm_4c00482
crossref_primary_10_1109_TCASAI_2024_3496837
crossref_primary_10_1109_TBCAS_2022_3209073
crossref_primary_10_1021_acsami_3c12244
crossref_primary_10_3390_sym14030505
crossref_primary_10_1016_j_neunet_2024_106244
crossref_primary_10_1109_TIP_2024_3430080
crossref_primary_10_1016_j_neunet_2024_106368
crossref_primary_10_1109_TCYB_2022_3188015
crossref_primary_10_1038_s41598_020_64878_5
crossref_primary_10_3389_fnins_2021_638474
crossref_primary_10_1016_j_mjafi_2020_10_005
crossref_primary_10_1021_acsaelm_3c01323
crossref_primary_10_1109_JSTQE_2020_3005589
crossref_primary_10_3389_fnins_2024_1439155
crossref_primary_10_1109_TCSI_2024_3352729
crossref_primary_10_3390_math12081230
crossref_primary_10_1016_j_neucom_2021_02_027
crossref_primary_10_1109_TCDS_2021_3073846
crossref_primary_10_1177_10943420231178537
crossref_primary_10_1109_ACCESS_2022_3213816
crossref_primary_10_3389_fnins_2023_994517
crossref_primary_10_1109_TETCI_2024_3359539
crossref_primary_10_1002_aisy_202100054
crossref_primary_10_1038_s43588_021_00132_w
crossref_primary_10_3389_fnbot_2023_1149675
crossref_primary_10_1002_adma_202108025
crossref_primary_10_3389_fnins_2022_819063
crossref_primary_10_3389_fnins_2023_1209795
crossref_primary_10_1080_14680629_2023_2230298
crossref_primary_10_1016_j_asoc_2019_04_006
crossref_primary_10_3390_math9243237
crossref_primary_10_1016_j_neucom_2024_127934
crossref_primary_10_1063_5_0243083
crossref_primary_10_1038_s41598_023_42605_0
crossref_primary_10_3389_fncom_2023_1215824
crossref_primary_10_1016_j_procs_2021_09_280
crossref_primary_10_1109_ACCESS_2024_3445464
crossref_primary_10_1109_TNNLS_2020_3005538
crossref_primary_10_3389_fnbot_2022_817948
crossref_primary_10_3390_bdcc7020110
crossref_primary_10_1109_ACCESS_2024_3365632
crossref_primary_10_3390_s22228845
crossref_primary_10_1016_j_image_2025_117263
crossref_primary_10_1109_TBME_2024_3498097
crossref_primary_10_3390_info14100537
crossref_primary_10_3389_fncom_2024_1338280
crossref_primary_10_3389_fnins_2022_949142
crossref_primary_10_3390_brainsci10110781
crossref_primary_10_1016_j_physa_2023_129334
crossref_primary_10_1109_TCDS_2021_3140115
crossref_primary_10_1109_ACCESS_2023_3249966
crossref_primary_10_1145_3635032
crossref_primary_10_3389_fnins_2022_1018006
crossref_primary_10_25726_v0077_0284_6922_y
crossref_primary_10_1109_TNNLS_2023_3263008
crossref_primary_10_1145_3520133
crossref_primary_10_1088_1757_899X_890_1_012144
crossref_primary_10_1109_ACCESS_2025_3551270
crossref_primary_10_1016_j_neucom_2024_127953
crossref_primary_10_7717_peerj_cs_2549
crossref_primary_10_1016_j_softx_2024_102006
crossref_primary_10_1109_MNANO_2021_3098219
crossref_primary_10_3389_fnins_2022_838832
crossref_primary_10_3390_electronics13071281
crossref_primary_10_1016_j_neunet_2023_09_011
crossref_primary_10_1002_aisy_202100159
crossref_primary_10_1177_14759217241305159
crossref_primary_10_3390_s21093240
crossref_primary_10_1016_j_knosys_2024_111816
crossref_primary_10_1038_s41598_023_27385_x
crossref_primary_10_1145_3451214
crossref_primary_10_1109_TNNLS_2023_3285488
crossref_primary_10_1109_TNNLS_2023_3286458
crossref_primary_10_1016_j_ins_2022_04_054
crossref_primary_10_1371_journal_pcbi_1011315
crossref_primary_10_3390_agronomy15010242
crossref_primary_10_7498_aps_72_20230819
crossref_primary_10_1002_aelm_202100465
crossref_primary_10_3390_electronics8121479
crossref_primary_10_1007_s11571_024_10133_w
crossref_primary_10_3390_medicina56070364
crossref_primary_10_7566_JPSJ_90_074802
crossref_primary_10_1016_j_neucom_2021_10_080
crossref_primary_10_1109_TIP_2021_3122092
crossref_primary_10_1109_JEDS_2021_3057456
crossref_primary_10_1002_ett_4169
crossref_primary_10_1038_s41928_021_00705_7
crossref_primary_10_1109_TSIPI_2022_3222122
crossref_primary_10_3390_polym14173668
crossref_primary_10_1002_adma_202003610
crossref_primary_10_1177_02783649241284058
crossref_primary_10_1016_j_tcs_2022_09_021
crossref_primary_10_1109_LRA_2020_3012129
crossref_primary_10_3389_fnins_2023_1093865
crossref_primary_10_1109_JETCAS_2022_3224071
crossref_primary_10_3390_sci4040046
crossref_primary_10_1038_s41467_022_32884_y
crossref_primary_10_3389_fnins_2022_945037
crossref_primary_10_1063_5_0133515
crossref_primary_10_1109_ACCESS_2021_3094262
crossref_primary_10_1007_s00521_021_05832_y
crossref_primary_10_1007_s00521_020_05388_3
crossref_primary_10_1002_aisy_202300383
crossref_primary_10_1109_TCDS_2024_3422873
crossref_primary_10_1103_PhysRevResearch_3_023146
crossref_primary_10_1007_s13369_020_04872_1
crossref_primary_10_1002_adma_201902761
crossref_primary_10_1109_TBCAS_2023_3268502
crossref_primary_10_2174_0129503779282967240315040931
crossref_primary_10_3390_make5030052
crossref_primary_10_1016_j_neunet_2022_06_001
crossref_primary_10_1088_2634_4386_ad473b
crossref_primary_10_1088_2634_4386_ad6cef
crossref_primary_10_1016_j_neucom_2024_128707
crossref_primary_10_1016_j_neucom_2023_126234
crossref_primary_10_1109_TED_2021_3098503
crossref_primary_10_3389_frai_2022_680165
crossref_primary_10_1016_j_neucom_2022_01_021
crossref_primary_10_1002_aisy_202300136
crossref_primary_10_1007_s11042_023_16344_3
crossref_primary_10_1016_j_neunet_2019_06_001
crossref_primary_10_1109_ACCESS_2020_3047993
crossref_primary_10_3389_fnins_2023_1159440
crossref_primary_10_1109_TNSRE_2023_3336467
crossref_primary_10_1002_aisy_202300132
crossref_primary_10_1016_j_asoc_2020_106691
crossref_primary_10_1109_TETC_2024_3387026
crossref_primary_10_3390_s23167232
crossref_primary_10_1016_j_jjimei_2024_100286
crossref_primary_10_1109_TCSII_2024_3485178
crossref_primary_10_1016_j_avb_2020_101536
crossref_primary_10_1007_s10489_023_04553_0
crossref_primary_10_1038_s41467_021_24427_8
crossref_primary_10_1007_s11571_022_09799_x
crossref_primary_10_3389_fnano_2021_801999
crossref_primary_10_3390_s23146578
crossref_primary_10_1007_s11276_021_02555_9
crossref_primary_10_1016_j_measurement_2023_113796
crossref_primary_10_1109_ACCESS_2020_3034353
crossref_primary_10_1109_ACCESS_2025_3544379
crossref_primary_10_1038_s41598_021_91786_z
crossref_primary_10_1109_TCYB_2022_3227363
crossref_primary_10_1016_j_neunet_2020_02_010
crossref_primary_10_1021_acsaelm_4c02015
crossref_primary_10_1016_j_neunet_2020_02_011
crossref_primary_10_1109_TCDS_2023_3338614
crossref_primary_10_1109_ACCESS_2021_3094484
crossref_primary_10_1142_S0129065720500276
crossref_primary_10_3389_fnins_2022_857513
crossref_primary_10_3390_app13084809
crossref_primary_10_1016_j_flatc_2024_100755
crossref_primary_10_1021_acsnano_4c12884
crossref_primary_10_1109_TCDS_2024_3406168
crossref_primary_10_3389_fdata_2022_787421
crossref_primary_10_1103_PhysRevResearch_4_043051
crossref_primary_10_3389_fnins_2023_1270090
crossref_primary_10_1162_neco_a_01424
crossref_primary_10_1162_neco_a_01668
crossref_primary_10_1038_s41598_020_69361_9
crossref_primary_10_1002_jnm_3227
crossref_primary_10_1038_s44287_024_00107_9
crossref_primary_10_1016_j_neucom_2023_126377
crossref_primary_10_1002_aelm_202400421
crossref_primary_10_3389_fmats_2023_1269992
crossref_primary_10_1109_TC_2024_3416705
crossref_primary_10_1021_acsomega_4c10277
crossref_primary_10_1007_s42979_022_01259_x
crossref_primary_10_1016_j_compeleceng_2024_109562
crossref_primary_10_1109_ACCESS_2020_2998098
crossref_primary_10_1016_j_neunet_2023_01_026
crossref_primary_10_1016_j_energy_2020_117072
crossref_primary_10_1016_j_robot_2024_104782
crossref_primary_10_1103_PhysRevApplied_19_064010
crossref_primary_10_1109_TED_2022_3207707
crossref_primary_10_1109_TCSI_2021_3066967
crossref_primary_10_3389_fnins_2021_629000
crossref_primary_10_1088_2634_4386_ac7c8a
crossref_primary_10_1002_adma_202208683
crossref_primary_10_1038_s41467_021_22576_4
crossref_primary_10_3390_pr11092772
crossref_primary_10_1016_j_cosrev_2020_100288
crossref_primary_10_1002_aelm_202300904
crossref_primary_10_3389_fncom_2022_1054421
crossref_primary_10_1142_S0129065724500345
crossref_primary_10_34133_icomputing_0032
crossref_primary_10_1109_JPHOT_2024_3361930
crossref_primary_10_1109_JSEN_2024_3520666
crossref_primary_10_1088_2634_4386_ac7a5a
crossref_primary_10_3390_e27030267
crossref_primary_10_1016_j_neuron_2020_09_005
crossref_primary_10_1371_journal_pone_0252676
crossref_primary_10_3390_en15197256
crossref_primary_10_3389_fnins_2021_694170
crossref_primary_10_1007_s13534_024_00406_y
crossref_primary_10_1016_j_carpta_2024_100627
crossref_primary_10_1016_j_jmapro_2024_11_066
crossref_primary_10_1162_neco_a_01409
crossref_primary_10_30931_jetas_1432261
crossref_primary_10_1049_bme2_12099
crossref_primary_10_1145_3461667
crossref_primary_10_18034_ajase_v10i1_17
crossref_primary_10_1016_j_rser_2023_113728
crossref_primary_10_1016_j_chaos_2024_115940
crossref_primary_10_1109_ACCESS_2020_2995886
crossref_primary_10_1109_TNNLS_2021_3110991
crossref_primary_10_1145_3510854
crossref_primary_10_1109_TCSI_2020_3027583
crossref_primary_10_1109_TCSII_2021_3063784
crossref_primary_10_1016_j_neunet_2020_01_017
crossref_primary_10_3389_fnins_2022_937782
crossref_primary_10_1088_2634_4386_adb7fe
crossref_primary_10_23919_emsci_2023_0015
crossref_primary_10_1063_5_0179424
crossref_primary_10_1109_TVLSI_2023_3335232
crossref_primary_10_3390_jlpea12040059
crossref_primary_10_1016_j_chip_2024_100093
crossref_primary_10_1016_j_neunet_2024_106318
crossref_primary_10_1109_ACCESS_2020_2985839
crossref_primary_10_1109_JPROC_2020_3045625
crossref_primary_10_1109_TNNLS_2021_3095068
crossref_primary_10_1016_j_icte_2020_05_002
crossref_primary_10_1080_02664763_2024_2395961
crossref_primary_10_1080_10298436_2023_2257852
crossref_primary_10_1109_COMST_2024_3365076
crossref_primary_10_1109_JETCAS_2023_3328926
crossref_primary_10_1063_5_0210790
crossref_primary_10_1016_j_neucom_2024_127792
crossref_primary_10_1117_1_NPh_11_3_033405
crossref_primary_10_1007_s11063_023_11348_4
crossref_primary_10_1109_TVT_2020_3022394
crossref_primary_10_1016_j_knosys_2024_112627
crossref_primary_10_1063_1_5129306
crossref_primary_10_1007_s13534_024_00404_0
crossref_primary_10_1109_ACCESS_2020_2981346
crossref_primary_10_1007_s12559_022_09994_2
crossref_primary_10_1007_s11042_022_12624_6
crossref_primary_10_3389_fphy_2024_1334298
crossref_primary_10_1021_acs_chemrev_4c00369
crossref_primary_10_1063_5_0193810
crossref_primary_10_1002_adma_202412549
crossref_primary_10_1109_TCSVT_2024_3495769
crossref_primary_10_1002_aisy_202400282
crossref_primary_10_1007_s00521_023_08672_0
crossref_primary_10_1002_adfm_202405670
crossref_primary_10_1016_j_neucom_2024_128650
crossref_primary_10_1016_j_orgel_2022_106455
crossref_primary_10_1049_ipr2_12437
crossref_primary_10_1016_j_sse_2022_108481
crossref_primary_10_1103_PhysRevApplied_23_034051
crossref_primary_10_1038_s41598_023_31365_6
crossref_primary_10_1109_ACCESS_2020_3041946
crossref_primary_10_3233_AIC_210009
crossref_primary_10_1016_j_engappai_2024_109756
crossref_primary_10_1109_TASE_2024_3359641
crossref_primary_10_1109_ACCESS_2025_3548318
crossref_primary_10_3389_frai_2022_770254
crossref_primary_10_1109_TASLP_2022_3221011
crossref_primary_10_1038_s41598_020_60572_8
crossref_primary_10_1016_j_nhres_2023_10_001
crossref_primary_10_1016_j_neucom_2020_07_047
crossref_primary_10_1002_smll_202000041
crossref_primary_10_1155_2020_9464593
crossref_primary_10_1063_5_0026093
crossref_primary_10_1016_j_jcp_2024_113363
crossref_primary_10_1109_TCE_2023_3279135
crossref_primary_10_1016_j_eng_2020_02_004
crossref_primary_10_1109_TNNLS_2024_3353571
crossref_primary_10_1162_neco_a_01604
crossref_primary_10_1007_s11071_019_05309_7
crossref_primary_10_1109_ACCESS_2025_3544086
crossref_primary_10_1109_MSP_2019_2931595
crossref_primary_10_3389_fncom_2022_1017284
crossref_primary_10_1016_j_compind_2019_103132
crossref_primary_10_3390_info15080472
crossref_primary_10_35848_1347_4065_ad53b2
crossref_primary_10_1007_s00371_021_02237_9
crossref_primary_10_3390_brainsci14111149
crossref_primary_10_1109_ACCESS_2024_3479968
crossref_primary_10_1109_TIM_2025_3547517
crossref_primary_10_1098_rsta_2018_0131
crossref_primary_10_3389_fnins_2023_1233037
crossref_primary_10_3389_fninf_2021_715131
crossref_primary_10_1016_j_engappai_2024_109415
crossref_primary_10_1016_j_neunet_2019_09_036
crossref_primary_10_1038_s41467_024_51254_4
crossref_primary_10_1038_s41928_022_00876_x
crossref_primary_10_1016_j_autcon_2024_105723
crossref_primary_10_1088_1361_6668_ad44e3
crossref_primary_10_1109_TCAD_2021_3120068
crossref_primary_10_1038_s41598_018_35828_z
crossref_primary_10_1007_s00339_022_06365_4
crossref_primary_10_1007_s10489_023_04921_w
crossref_primary_10_1109_LES_2023_3328223
crossref_primary_10_1021_acs_nanolett_8b04023
crossref_primary_10_1109_ACCESS_2020_2990416
crossref_primary_10_1038_s41928_022_00840_9
crossref_primary_10_1016_j_eswa_2022_116570
crossref_primary_10_1016_j_neunet_2019_08_019
crossref_primary_10_1162_neco_a_01702
crossref_primary_10_1002_adma_202306818
crossref_primary_10_1002_aisy_202200179
crossref_primary_10_1109_TNNLS_2021_3071976
crossref_primary_10_1063_5_0047946
crossref_primary_10_3390_s24113426
crossref_primary_10_1016_j_neunet_2021_09_021
crossref_primary_10_1134_S105261882307004X
crossref_primary_10_1242_jeb_245409
crossref_primary_10_1007_s00422_024_00998_9
crossref_primary_10_1002_er_4855
crossref_primary_10_1016_j_neucom_2025_129440
crossref_primary_10_3389_fnins_2023_1047008
crossref_primary_10_1063_5_0158341
crossref_primary_10_1021_acsomega_3c09936
crossref_primary_10_3748_wjg_v25_i14_1666
crossref_primary_10_1109_TCSII_2023_3301180
crossref_primary_10_1016_j_marmicro_2023_102293
crossref_primary_10_1016_j_tbench_2023_100108
crossref_primary_10_1016_j_neunet_2024_106976
crossref_primary_10_1371_journal_pone_0204596
crossref_primary_10_3389_fnins_2020_00199
crossref_primary_10_1007_s11263_024_02148_x
crossref_primary_10_1016_j_ijhydene_2024_03_115
crossref_primary_10_1016_j_neucom_2023_02_026
crossref_primary_10_1109_TNANO_2024_3505985
crossref_primary_10_1109_TNNLS_2021_3082911
crossref_primary_10_1109_ACCESS_2022_3187033
crossref_primary_10_3390_electronics8101065
crossref_primary_10_1038_s41467_022_30964_7
crossref_primary_10_1080_14686996_2023_2188878
crossref_primary_10_1126_sciadv_adi1480
crossref_primary_10_1063_5_0191571
crossref_primary_10_1016_j_neucom_2021_05_104
crossref_primary_10_1002_pssr_202300181
crossref_primary_10_1109_TCAD_2022_3197512
crossref_primary_10_3390_brainsci15030217
crossref_primary_10_3389_fnbot_2020_589532
crossref_primary_10_1109_JSEN_2023_3329559
crossref_primary_10_1109_TED_2021_3077346
crossref_primary_10_3389_fnins_2020_00088
crossref_primary_10_1007_s40747_023_01333_8
crossref_primary_10_1061_JSDCCC_SCENG_1611
crossref_primary_10_1016_j_ress_2023_109850
crossref_primary_10_1007_s13748_024_00313_4
crossref_primary_10_1109_TNNLS_2020_3043415
crossref_primary_10_3389_fnins_2024_1291053
crossref_primary_10_1016_j_rineng_2023_100984
crossref_primary_10_3390_electronics13050909
crossref_primary_10_1016_j_amc_2022_127630
crossref_primary_10_3389_fncom_2023_1274575
crossref_primary_10_1002_adma_202303336
crossref_primary_10_3389_fphy_2022_839243
crossref_primary_10_1007_s10489_022_04258_w
crossref_primary_10_1016_j_mattod_2022_08_017
crossref_primary_10_3390_nano14171412
crossref_primary_10_1038_s41598_024_59469_7
crossref_primary_10_1109_TNNLS_2023_3278265
crossref_primary_10_1016_j_neunet_2023_05_038
crossref_primary_10_1063_5_0126890
crossref_primary_10_1063_5_0191119
crossref_primary_10_1016_j_procs_2025_01_025
crossref_primary_10_1016_j_vlsi_2023_04_002
crossref_primary_10_3390_electronics13152988
crossref_primary_10_1021_acsphotonics_2c01516
crossref_primary_10_1016_j_engappai_2024_109845
crossref_primary_10_1038_s41578_019_0159_3
crossref_primary_10_1109_ACCESS_2024_3389288
crossref_primary_10_1109_TED_2020_3017186
crossref_primary_10_1002_adfm_202113050
crossref_primary_10_17798_bitlisfen_1024236
crossref_primary_10_1007_s12293_022_00373_w
crossref_primary_10_1038_s41598_023_35005_x
crossref_primary_10_3389_fnins_2022_999029
crossref_primary_10_3390_electronics10182281
crossref_primary_10_1016_j_ress_2022_108561
crossref_primary_10_1088_2634_4386_ad4411
crossref_primary_10_1016_j_neucom_2020_11_016
Cites_doi 10.1038/nature04050
10.1007/s13218-012-0204-5
10.1109/72.991428
10.1207/s15516709cog1402_1
10.1073/pnas.79.8.2554
10.1016/j.neucom.2004.01.068
10.1109/TNNLS.2014.2362542
10.1109/CVPR.2016.308
10.1023/B:NACO.0000027755.02868.60
10.1016/j.cosrev.2009.03.005
10.1007/BF02331346
10.1109/ICRC.2016.7738691
10.1146/annurev.neuro.31.060407.125639
10.1162/neco.2007.19.6.1437
10.1016/S0925-2312(99)00095-8
10.1038/nn1643
10.1016/j.neucom.2013.06.052
10.1007/s11263-014-0788-3
10.1371/journal.pcbi.1004566
10.1162/neco.2009.11-08-901
10.1016/j.ipl.2005.05.023
10.1007/s11063-010-9149-6
10.1016/j.specom.2008.08.002
10.1109/5.726791
10.1073/pnas.1611734114
10.1109/CVPR.2015.7298965
10.1080/03640210802353016
10.1561/2200000006
10.3389/fnins.2017.00350
10.1162/neco.1997.9.5.1015
10.1109/CVPR.2014.222
10.1109/MSP.2012.2205597
10.1016/j.neunet.2013.07.012
10.1016/j.neucom.2013.09.049
10.1113/jphysiol.1959.sp006308
10.1145/2001269.2001295
10.1109/TVLSI.2013.2294916
10.3389/fnins.2015.00222
10.1162/0899766053429390
10.1162/neco_a_01086
10.1113/jphysiol.1952.sp004764
10.1109/TCAD.2015.2474396
10.1016/S0042-6989(97)00121-1
10.1214/aoms/1177729694
10.1038/nature06105
10.1038/34584
10.1016/j.neucom.2014.04.017
10.3233/ICA-2007-14301
10.1371/journal.pcbi.1003037
10.1103/PhysRevLett.118.018103
10.1016/j.neucom.2013.03.047
10.1016/S0896-6273(03)00761-X
10.1109/TPAMI.2016.2574707
10.1016/S0925-2312(02)00494-0
10.1007/s11263-015-0816-y
10.1371/journal.pcbi.1002250
10.1109/JPROC.2015.2496679
10.1016/S0925-2312(01)00658-0
10.1016/j.conb.2005.08.002
10.1016/j.neunet.2014.09.003
10.1523/JNEUROSCI.20-14-05392.2000
10.1093/nar/gkw226
10.3389/fnins.2015.00437
10.1162/neco.2006.18.7.1527
10.1093/bioinformatics/btw255
10.1016/j.neunet.2014.01.006
10.1073/pnas.1604850113
10.1016/j.neunet.2009.04.003
10.14569/IJARAI.2015.040701
10.1016/j.neucom.2017.01.088
10.1038/srep32672
10.1016/j.neunet.2012.11.014
10.1162/NECO_a_00934
10.1016/j.neunet.2010.04.009
10.3389/fpsyg.2017.00142
10.1103/PhysRevE.96.042156
10.1007/s10827-006-0003-9
10.1162/neco.2006.18.6.1318
10.1371/journal.pone.0040233
10.1016/j.neucom.2012.08.034
10.1088/0954-898X_8_2_003
10.1126/science.1194908
10.1038/nature14539
10.1109/CVPR.2016.90
10.3389/fnsyn.2011.00004
10.1364/JOSA.70.001297
10.1109/CVPR.2014.81
10.1109/TASL.2011.2109382
10.1523/JNEUROSCI.5044-12.2013
10.1109/TNNLS.2017.2726060
10.1142/S0129065709002002
10.1038/376033a0
10.1109/72.279181
10.1109/TPAMI.2013.71
10.1103/PhysRevLett.118.138301
10.1152/physrev.00030.2005
10.1016/j.neunet.2012.04.004
10.1038/78829
10.1038/nature02169
10.1371/journal.pcbi.1003511
10.1113/jphysiol.1962.sp006837
10.1371/journal.pcbi.1002211
10.1126/science.7770778
10.1523/JNEUROSCI.1425-06.2006
10.3389/fncom.2016.00092
10.1016/j.neunet.2017.12.005
10.1162/neco.2007.19.11.2881
10.1093/cercor/1.1.1
10.1162/neco_a_00990
10.1162/089976602760407955
10.1038/s41598-018-27169-8
10.1162/neco.2008.04-07-510
10.1007/BF00229331
10.1126/science.1254642
10.1162/neco.1996.8.1.1
10.1371/journal.pone.0001377
10.1162/neco.1997.9.8.1735
10.1109/CVPR.2014.233
10.1371/journal.pcbi.1000757
10.1007/s11263-008-0201-1
10.1162/neco.1996.8.6.1185
10.1523/JNEUROSCI.5153-10.2011
10.3389/fnins.2016.00508
10.1162/neco.2008.06-08-804
10.1038/381607a0
10.1016/j.ins.2012.07.023
10.1016/j.neuron.2017.06.011
10.1109/TNN.2003.820440
10.1162/neco.2010.08-09-1081
10.1109/TPDS.2012.289
10.1016/S0893-6080(97)00011-7
10.1523/JNEUROSCI.4188-12.2013
10.1142/S0129065712500128
10.1126/science.1149639
10.3389/fncom.2018.00046
10.3389/fncom.2018.00042
10.1021/acs.molpharmaceut.5b00982
10.1126/science.1225266
10.3389/fncom.2015.00099
10.1016/j.neucom.2016.04.029
10.1007/s11265-016-1153-2
10.1016/j.neunet.2018.05.018
10.1109/TNANO.2013.2250995
10.1371/journal.pcbi.0030031
10.1016/j.neucom.2007.12.038
10.1016/j.cell.2017.01.005
10.1016/j.neunet.2012.06.003
10.3389/fnins.2017.00324
10.3389/fnins.2017.00682
10.1371/journal.pbio.1002018
10.1038/srep17573
10.1103/PhysRevE.97.022310
10.1109/TNN.2010.2074212
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright © 2018 Elsevier Ltd. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright © 2018 Elsevier Ltd. All rights reserved.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
VOOES
DOI 10.1016/j.neunet.2018.12.002
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1879-2782
EndPage 63
ExternalDocumentID oai_HAL_hal_02341924v1
30682710
10_1016_j_neunet_2018_12_002
S0893608018303332
Genre Journal Article
Review
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
AAYFN
ABAOU
ABBOA
ABCQJ
ABEFU
ABFNM
ABFRF
ABHFT
ABIVO
ABJNI
ABLJU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADRHT
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMQ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
KZ1
LG9
LMP
M2V
M41
MHUIS
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPC
SPCBC
SSN
SST
SSV
SSW
SSZ
T5K
TAE
UAP
UNMZH
VOH
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7X8
1XC
EFKBS
VOOES
ID FETCH-LOGICAL-c449t-94be0b3f650a38f4bdbd2289c5fe49cee98a34929400b4e65be5ed5a136079713
IEDL.DBID .~1
ISSN 0893-6080
1879-2782
IngestDate Fri Jul 25 06:45:03 EDT 2025
Fri Jul 11 14:59:00 EDT 2025
Wed Feb 19 02:37:07 EST 2025
Tue Jul 01 01:24:33 EDT 2025
Thu Apr 24 23:08:42 EDT 2025
Fri Feb 23 02:28:37 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Spiking neural network
Power-efficient architecture
Machine learning
Biological plausibility
Language English
License Copyright © 2018 Elsevier Ltd. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c449t-94be0b3f650a38f4bdbd2289c5fe49cee98a34929400b4e65be5ed5a136079713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-4006-2578
0000-0001-8629-9506
0000-0002-6482-440X
0000-0001-6168-4379
OpenAccessLink https://hal.science/hal-02341924
PMID 30682710
PQID 2179416239
PQPubID 23479
PageCount 17
ParticipantIDs hal_primary_oai_HAL_hal_02341924v1
proquest_miscellaneous_2179416239
pubmed_primary_30682710
crossref_citationtrail_10_1016_j_neunet_2018_12_002
crossref_primary_10_1016_j_neunet_2018_12_002
elsevier_sciencedirect_doi_10_1016_j_neunet_2018_12_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-01
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neural networks
PublicationTitleAlternate Neural Netw
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Paulun, Wendt, Kasabov (b175) 2018; 12
Bengio, Simard, Frasconi (b14) 1994; 5
Bengio (b11) 2009; 2
Neil, D., Pfeiffer, M., & Liu, S. (2016a). Phased LSTM: Accelerating neural network training for long or event-based sequences. In
Butts, Weng, Jin, Yeh, Lesica, Alonso (b25) 2007; 449
Rao, Olshausen, Lewicki (b185) 2002
Le Roux, Bengio (b113) 2008; 20
Kullback, Leibler (b109) 1951; 22
Mozafari, Kheradpisheh, Masquelier, Nowzari-Dalini, Ganjtabesh (b157) 2018
Tavanaei, Maida (b226) 2018
Barra, Bernacchia, Santucci, Contucci (b6) 2012; 34
Hubel, Wiesel (b80) 1962; 160
1–9.
Gütig, Sompolinsky (b64) 2006; 9
Abdel -Hamid, Deng, Yu (b1) 2013
Hochreiter, Schmidhuber (b74) 1997; 9
Krizhevsky, Sutskever, Hinton (b107) 2012
1–16.
Pfister, Toyoizumi, Barber, Gerstner (b180) 2006; 18
Zylberberg, Murphy, DeWeese (b248) 2011; 7
.
Hunsberger, E., & Eliasmith, C. (2015). Spiking deep networks with LIF neurons, arXiv preprint
Stromatias, Neil, Pfeiffer, Galluppi, Furber, Liu (b213) 2015; 9
Felleman, Van Essen (b49) 1991; 1
Hunsberger, E., & Eliasmith, C. (2016). Training spiking deep networks for neuromorphic hardware, arXiv preprint
Diehl, Neil, Binas, Cook, Liu, Pfeiffer (b40) 2015
Lamb, A., Goyal, A., Zhang, Y., Zhang, S., Courville, A., & Bengio, Y. (2016). Professor forcing: A new algorithm for training recurrent networks, arXiv preprint
Pecevski, Maass (b176) 2016
Tang, Chehayeb, Srivastava, Nemenman, Sober (b218) 2014; 12
Eliasmith, Stewart, Choo, Bekolay, DeWolf, Tang (b44) 2012; 338
Escobar, Masson, Vieville, Kornprobst (b46) 2009; 82
Oquab, M., Bottou, L., Laptev, I., & Sivic, J. (2014). Learning and transferring mid-level image representations using convolutional neural networks. In
Neftci, Augustine, Paul, Detorakis (b160) 2017; 11
Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In
Tavanaei, A., & Maida, A. S. (2016). Bio-inspired spiking convolutional neural network using layer-wise sparse coding and STDP learning, arXiv preprint
Seo, Brezzo, Liu, Parker, Esser, Montoye (b202) 2011
Seung (b204) 2003; 40
Bohte, La Poutré, Kok (b19) 2002; 13
Liu, P., Han, S., Meng, Z., & Tong, Y. (2014). Facial expression recognition via a boosted deep belief network. In
(pp. 1805–1812).
Tavanaei, Maida (b227) 2018; 90
Beyeler, Dutt, Krichmar (b15) 2013; 48
Kandel, Schwartz, Jessell, Siegelbaum, Hudspeth (b88) 2013
Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. In
Dayan, Abbott (b36) 2001
Kasabov (b91) 2012
Lillicrap, Cownden, Tweed, Akerman (b124) 2016
Ghosh-Dastidar, Adeli (b57) 2009; 22
Kistler, Gerstner, van Hemmen (b102) 1997; 9
Pyle, Rosenbaum (b182) 2017; 118
Ponulak, Kasinski (b181) 2010; 22
Quang, Xie (b183) 2016; 44
(pp. 580–587).
Shrestha, Ahmed, Wang, Widemann, Moody, Van Essen (b205) 2017
1–14.
Pfeiffer, Pfeil (b178) 2018; 12
Indiveri, Corradi, Qiao (b84) 2015
Mainen, Sejnowski (b136) 1995; 268
Liu, Liu, Lin, Jin, Quan, Wen (b126) 2017
Marĉelja (b138) 1980; 70
Näger, Storck, Deco (b159) 2002; 44
Savin, Joshi, Triesch (b198) 2010; 6
Rueckauer, Hu, Lungu, Pfeiffer, Liu (b193) 2017; 11
Pfister, Gerstner (b179) 2006; 26
Masquelier, Thorpe (b144) 2010
Russakovsky, Deng, Su, Krause, Satheesh, Ma (b195) 2015; 115
Stromatias, Soto, Serrano -Gotarredona, Linares -Barranco (b214) 2017; 11
(pp. 2818–2826).
Markram, Gerstner, Sjöström (b139) 2011; 3
Freiwald, Tsao (b52) 2010; 330
Cao, Chen, Khosla (b26) 2015; 113
Deng, Dong, Socher, Li, Li, Fei -Fei (b38) 2009
Maass (b133) 1997; 10
Merolla, Arthur, Akopyan, Imam, Manohar, Modha (b146) 2011
Bengio, Mesnard, Fischer, Zhang, Wu (b13) 2017
Zemel, Natarajan, Dayan, Huys (b244) 2004
Costa, Assael, Shillingford, de Freitas, Vogels (b33) 2017
Tavanaei, Masquelier, Maida (b229) 2016
Victor (b235) 2005; 15
Buesing, Bill, Nessler, Maass (b23) 2011; 7
Lee, Grosse, Ranganath, Ng (b121) 2011; 54
Thiele, Bichler, Dupret (b231) 2018; 12
Tubiana, Monasson (b232) 2017; 118
(pp. 3431–3440).
Kheradpisheh, Ganjtabesh, Masquelier (b97) 2016; 205
Hopfield (b78) 1995; 376
Tavanaei, Maida (b225) 2017
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In
Loiselle, Rouat, Pressnitzer, Thorpe (b128) 2005; Vol. 4
Bengio, Y., Lee, D. -H., Bornschein, J., Mesnard, T., & Lin, Z. (2015). Towards biologically plausible deep learning, arXiv preprint
Hinton, Deng, Yu, Dahl, Mohamed, Jaitly (b72) 2012; 29
Mozer, Pashler, Homaei (b158) 2008; 32
Hodgkin, Huxley (b76) 1952; 117
Neil, Liu (b162) 2014; 22
Hopfield (b77) 1982; 79
Mohamed, Dahl, Hinton (b151) 2012; 20
Brader, Senn, Fusi (b21) 2007; 19
Kasinski, Ponulak (b96) 2006; 16
Diehl, Cook (b39) 2015; 9
Tavanaei, Masquelier, Maida (b230) 2018; 105
Földiak (b51) 1990; 64
Stone (b211) 2018
Lukoševičius, Jaeger (b130) 2009; 3
Burbank (b24) 2015; 11
Goodfellow, Bengio, Courville (b61) 2016
Song, Pan, Păun (b209) 2013; 219
(pp. 770–778).
Morrison, Aertsen, Diesmann (b154) 2007; 19
Carrillo, Harkin, McDaid, Morgan, Pande, Cawley (b28) 2013; 24
Masquelier, Guyonneau, Thorpe (b140) 2008; 3
Tavanaei, Maida, Kaniymattam, Loganantharaj (b228) 2016
Wysoski, Benuskova, Kasabov (b241) 2008; 71
Lee, Delbruck, Pfeiffer (b119) 2016; 10
Sainath, Mohamed, Kingsbury, Ramabhadran (b196) 2013
Delorme, Gautrais, Van Rullen, Thorpe (b37) 1999; 26
Ghosh-Dastidar, Adeli (b58) 2009; 19
Panchev, Wermter (b173) 2004; 58
Barra, Genovese, Sollich, Tantari (b8) 2018; 97
Mozafari, M., Ganjtabesh, M., Nowzari -Dalini, A., Thorpe, S. J., & Masquelier, T. (2018a). Combining STDP and reward-modulated STDP in deep convolutional spiking neural networks for digit recognition, arXiv preprint
Le Roux, Bengio (b114) 2010; 22
Wang, Belatreche, Maguire, McGinnity (b239) 2014; 144
Panda, Roy (b174) 2016
Liu, Pu, Poo (b127) 2005; 437
Salama, Hassanien, Fahmy (b197) 2010
Anwani, Rajendran (b4) 2015
Hinton, Osindero, Teh (b73) 2006; 18
Elman (b45) 1990; 14
Masquelier, Thorpe (b143) 2007; 3
Ghosh-Dastidar, Adeli (b56) 2007; 14
Lee, Pham, Largman, Ng (b122) 2009
Meftah, Lezoray, Benyettou (b145) 2010; 32
Kasabov (b92) 2014; 52
Herikstad, Baker, Lachaux, Gray, Yen (b69) 2011; 31
Ronneberger, Fischer, Brox (b191) 2015
Nessler, Pfeiffer, Buesing, Maass (b166) 2013; 9
99.
Bishop (b16) 1995
Krizhevsky, A., & Hinton, G. (2010). Convolutional deep belief networks on CIFAR-10, Unpublished Manuscript 40.
Hertz, Krogh, Palmer (b70) 1991
Hubel, Wiesel (b79) 1959; 148
Krizhevsky, Hinton (b105) 2009
Masquelier, Guyonneau, Thorpe (b141) 2009; 21
Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition, arXiv preprint
Tavanaei, Maida (b223) 2017
Tavanaei, Maida (b224) 2017; 240
Mleczko, Kapuściński, Nowicki (b149) 2015
Diehl, P. U., Zarrella, G., Cassidy, A., Pedroni, B. U., & Neftci, E. (2016). Conversion of artificial recurrent neural networks to spiking neural networks for low-power neuromorphic hardware. In
Masquelier, T., & Kheradpisheh, S. R. (2018). Optimal localist and distributed coding of spatiotemporal spike patterns through STDP and coincidence detection, arXiv preprint
Lukoševičius, Jaeger, Schrauwen (b131) 2012; 26
Maass (b134) 2015; 103
Sengupta, A., Ye, Y., Wang, R., Liu, C., & Roy, K. (2018). Going deeper in spiking networks: VGG and residual architectures, arXiv [Preprint].
Bair, Koch (b5) 1996; 8
Rueckauer, B., Lungu, I. -A., Hu, Y., & Pfeiffer, M. (2016). Theory and tools for the conversion of analog to spiking convolutional neural networks, arXiv preprint
Rezende, Wierstra, Gerstner (b189) 2011
Hinton (b71) 2007; Vol. 656
O’Connor, P., & Welling, M. (2016). Deep spiking networks, arXiv preprint
Akopyan, Sawada, Cassidy, Alvarez -Icaza, Arthur, Merolla (b3) 2015; 34
Kasabov (b93) 2018
Neil, Pfeiffer, Liu (b165) 2016
Gerstner, Kistler, Naud, Paninski (b55) 2014
Nessler, Pfeiffer, Maass (b167) 2009
Esser, Merolla, Arthur, Cassidy, Appuswamy, Andreopoulos (b48) 2016
Susskind, Hinton, Movellan, Anderson (b215) 2008
Mostafa (b155) 2017
Yu, Tang, Tan, Yu (b243) 2014; 138
Gupta, Long (b63) 2007
Olshausen (b170) 1996; 381
Hochreiter, Younger, Conwell (b75) 2001
Jolivet, Timothy, Gerstner (b87) 2003
Mohamed, Dahl, Hinton (b150) 2009; Vol. 1
Orchard, Jayawant, Cohen, Thakor (b172) 2015; 9
Jo, Hou, Eickholt, Cheng (b86) 2015; 5
Kasabov, Dhoble, Nuntalid, Indiveri (b94) 2013; 41
Grossberg (b62) 1987; 11
Kasabov, Feigin, Hou, Chen, Liang, Krishnamurthi (b95) 2014; 134
Serre (b203) 2014
Caporale, Dan (b27) 2008; 31
Hamel, Eck (b66) 2010; Vol. 10
Kröger, Kannampuzha, Neuschaefer -Rube (b108) 2009; 51
Doborjeh, Kasabov, Doborjeh, Sumich (b42) 2018; 8
Esser, Appuswamy, Merolla, Arthur, Modha (b47) 2015
Tavanaei, Maida (b220) 2015; 4
Bellec, G., Salaj, D., Subramoney, A., Legenstein, R., & Maass, W. (2018). Long short-term memory and learning-to-learn in networks of spiking neurons, arXiv preprint
Kheradpisheh, Ghodrati, Ganjtabesh, Masquelier (b100) 2016; 6
Gerstner, Kistler (b54) 2002
LeCun, Bengio, Hinton (b115) 2015; 521
Florian (b50) 2012; 7
Song, Miller, Abbott (b208) 2000; 3
Mohemmed, Schliebs, Matsuda, Kasabov (b152) 2012; 22
(pp. 3889–3897).
Doya (b43) 2007
King, Zylberberg, DeWeese (b101) 2013; 33
Maass (b132) 1996; 8
Barra, Genovese, Sollich, Tantari (b7) 2017; 96
Wade, McDaid, Santos, Sayers (b238) 2010; 21
Szegedy, Liu, Jia, Sermanet, Reed, Anguelov (b216) 2015
Carrillo, Harkin, McDaid, Pande, Cawley, McGinley (b29) 2012; 33
Reinagel, Reid (b188) 2000; 20
LeCun, Y., Cortes, C., & Burges, C. J. (1998b). The MNIST database, URL
Querlioz, Bichler, Dollfus, Gamrat (b184) 2013; 12
Wu, Y., Deng, L., Li, G., Zhu, J., & Shi, L. (2017). Spatio-temporal backpropagation for training high-performance spiking neural networks, arXiv preprint
Izhikevich (b85) 2003; 14
Rehn, Sommer (b187) 2007; 22
Mamoshina, Vieira, Putin, Zhavoronkov (b137) 2016; 13
Klampfl, Maass (b103) 2013; 33
Neftci, Das, Pedroni, Kreutz -Delgado, Cauwenberghs (b161) 2014; 8
Booij, tat Nguyen (b20) 2005; 95
Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent neural networks on sequence modeling, arXiv preprint
LeCun, Bottou, Bengio, Haffner (b116) 1998; 86
Rawat, Wang (b186) 2017
Kheradpisheh,
Maass (10.1016/j.neunet.2018.12.002_b132) 1996; 8
Schliebs (10.1016/j.neunet.2018.12.002_b199) 2011
Brea (10.1016/j.neunet.2018.12.002_b22) 2011
Susskind (10.1016/j.neunet.2018.12.002_b215) 2008
Tavanaei (10.1016/j.neunet.2018.12.002_b223) 2017
Le Roux (10.1016/j.neunet.2018.12.002_b113) 2008; 20
Mohamed (10.1016/j.neunet.2018.12.002_b150) 2009; Vol. 1
Mozer (10.1016/j.neunet.2018.12.002_b158) 2008; 32
Stromatias (10.1016/j.neunet.2018.12.002_b214) 2017; 11
Crick (10.1016/j.neunet.2018.12.002_b34) 1998; 391
Salama (10.1016/j.neunet.2018.12.002_b197) 2010
Rozenberg (10.1016/j.neunet.2018.12.002_b192) 2011
Vreeken (10.1016/j.neunet.2018.12.002_b237) 2003
Barra (10.1016/j.neunet.2018.12.002_b7) 2017; 96
Krizhevsky (10.1016/j.neunet.2018.12.002_b107) 2012
Liu (10.1016/j.neunet.2018.12.002_b127) 2005; 437
Seung (10.1016/j.neunet.2018.12.002_b204) 2003; 40
Bishop (10.1016/j.neunet.2018.12.002_b16) 1995
Lee (10.1016/j.neunet.2018.12.002_b119) 2016; 10
Rezende (10.1016/j.neunet.2018.12.002_b189) 2011
Eliasmith (10.1016/j.neunet.2018.12.002_b44) 2012; 338
10.1016/j.neunet.2018.12.002_b194
Gerstner (10.1016/j.neunet.2018.12.002_b54) 2002
Lee (10.1016/j.neunet.2018.12.002_b121) 2011; 54
Pfister (10.1016/j.neunet.2018.12.002_b179) 2006; 26
Hopfield (10.1016/j.neunet.2018.12.002_b77) 1982; 79
Masquelier (10.1016/j.neunet.2018.12.002_b140) 2008; 3
Doborjeh (10.1016/j.neunet.2018.12.002_b42) 2018; 8
Pfeiffer (10.1016/j.neunet.2018.12.002_b178) 2018; 12
Bohte (10.1016/j.neunet.2018.12.002_b19) 2002; 13
Meftah (10.1016/j.neunet.2018.12.002_b145) 2010; 32
Tavanaei (10.1016/j.neunet.2018.12.002_b224) 2017; 240
Zylberberg (10.1016/j.neunet.2018.12.002_b248) 2011; 7
Quang (10.1016/j.neunet.2018.12.002_b183) 2016; 44
Ghosh-Dastidar (10.1016/j.neunet.2018.12.002_b56) 2007; 14
Liu (10.1016/j.neunet.2018.12.002_b126) 2017
Dayan (10.1016/j.neunet.2018.12.002_b36) 2001
Deng (10.1016/j.neunet.2018.12.002_b38) 2009
Venna (10.1016/j.neunet.2018.12.002_b234) 2017
Lagorce (10.1016/j.neunet.2018.12.002_b111) 2017; 38
Abdel -Hamid (10.1016/j.neunet.2018.12.002_b1) 2013
Mohemmed (10.1016/j.neunet.2018.12.002_b153) 2013; 107
Hubel (10.1016/j.neunet.2018.12.002_b80) 1962; 160
10.1016/j.neunet.2018.12.002_b81
O’Connor (10.1016/j.neunet.2018.12.002_b168) 2013; 7
10.1016/j.neunet.2018.12.002_b82
10.1016/j.neunet.2018.12.002_b83
Tubiana (10.1016/j.neunet.2018.12.002_b232) 2017; 118
Masquelier (10.1016/j.neunet.2018.12.002_b143) 2007; 3
Pecevski (10.1016/j.neunet.2018.12.002_b176) 2016
Seo (10.1016/j.neunet.2018.12.002_b202) 2011
Escobar (10.1016/j.neunet.2018.12.002_b46) 2009; 82
Bair (10.1016/j.neunet.2018.12.002_b5) 1996; 8
Kullback (10.1016/j.neunet.2018.12.002_b109) 1951; 22
Merolla (10.1016/j.neunet.2018.12.002_b146) 2011
Garbin (10.1016/j.neunet.2018.12.002_b53) 2014
Guyonneau (10.1016/j.neunet.2018.12.002_b65) 2005; 17
Perez-Carrasko (10.1016/j.neunet.2018.12.002_b177) 2013; 35
Körding (10.1016/j.neunet.2018.12.002_b104) 2004; 427
Song (10.1016/j.neunet.2018.12.002_b208) 2000; 3
Srivastava (10.1016/j.neunet.2018.12.002_b210) 2017
Bohte (10.1016/j.neunet.2018.12.002_b18) 2002; 48
Bohte (10.1016/j.neunet.2018.12.002_b17) 2004; 3
Russakovsky (10.1016/j.neunet.2018.12.002_b195) 2015; 115
Beyeler (10.1016/j.neunet.2018.12.002_b15) 2013; 48
Wang (10.1016/j.neunet.2018.12.002_b239) 2014; 144
Maass (10.1016/j.neunet.2018.12.002_b133) 1997; 10
Wade (10.1016/j.neunet.2018.12.002_b238) 2010; 21
Olshausen (10.1016/j.neunet.2018.12.002_b170) 1996; 381
Rao (10.1016/j.neunet.2018.12.002_b185) 2002
Mostafa (10.1016/j.neunet.2018.12.002_b155) 2017
Neftci (10.1016/j.neunet.2018.12.002_b161) 2014; 8
Maass (10.1016/j.neunet.2018.12.002_b135) 2002; 14
Ghosh-Dastidar (10.1016/j.neunet.2018.12.002_b58) 2009; 19
Lee (10.1016/j.neunet.2018.12.002_b122) 2009
Hochreiter (10.1016/j.neunet.2018.12.002_b74) 1997; 9
Masquelier (10.1016/j.neunet.2018.12.002_b141) 2009; 21
Min (10.1016/j.neunet.2018.12.002_b148) 2017; 18
Serre (10.1016/j.neunet.2018.12.002_b203) 2014
Ghosh-Dastidar (10.1016/j.neunet.2018.12.002_b57) 2009; 22
Caporale (10.1016/j.neunet.2018.12.002_b27) 2008; 31
Lillicrap (10.1016/j.neunet.2018.12.002_b124) 2016
Ronneberger (10.1016/j.neunet.2018.12.002_b191) 2015
Mainen (10.1016/j.neunet.2018.12.002_b136) 1995; 268
Schmidhuber (10.1016/j.neunet.2018.12.002_b200) 2015; 61
Kasabov (10.1016/j.neunet.2018.12.002_b94) 2013; 41
Näger (10.1016/j.neunet.2018.12.002_b159) 2002; 44
Neftci (10.1016/j.neunet.2018.12.002_b160) 2017; 11
Nessler (10.1016/j.neunet.2018.12.002_b167) 2009
Marĉelja (10.1016/j.neunet.2018.12.002_b138) 1980; 70
Carrillo (10.1016/j.neunet.2018.12.002_b29) 2012; 33
Song (10.1016/j.neunet.2018.12.002_b209) 2013; 219
Zeng (10.1016/j.neunet.2018.12.002_b245) 2016; 32
Hertz (10.1016/j.neunet.2018.12.002_b70) 1991
Tavanaei (10.1016/j.neunet.2018.12.002_b228) 2016
Bell (10.1016/j.neunet.2018.12.002_b9) 1997; 37
10.1016/j.neunet.2018.12.002_b206
Victor (10.1016/j.neunet.2018.12.002_b236) 1997; 8
10.1016/j.neunet.2018.12.002_b201
Tavanaei (10.1016/j.neunet.2018.12.002_b230) 2018; 105
Elman (10.1016/j.neunet.2018.12.002_b45) 1990; 14
Burbank (10.1016/j.neunet.2018.12.002_b24) 2015; 11
Tavanaei (10.1016/j.neunet.2018.12.002_b229) 2016
LeCun (10.1016/j.neunet.2018.12.002_b115) 2015; 521
Markram (10.1016/j.neunet.2018.12.002_b139) 2011; 3
Hinton (10.1016/j.neunet.2018.12.002_b71) 2007; Vol. 656
Ponulak (10.1016/j.neunet.2018.12.002_b181) 2010; 22
Pyle (10.1016/j.neunet.2018.12.002_b182) 2017; 118
Carrillo (10.1016/j.neunet.2018.12.002_b28) 2013; 24
Gerstner (10.1016/j.neunet.2018.12.002_b55) 2014
Krizhevsky (10.1016/j.neunet.2018.12.002_b105) 2009
10.1016/j.neunet.2018.12.002_b217
Gupta (10.1016/j.neunet.2018.12.002_b63) 2007
Lee (10.1016/j.neunet.2018.12.002_b120) 2008
10.1016/j.neunet.2018.12.002_b12
10.1016/j.neunet.2018.12.002_b10
Orchard (10.1016/j.neunet.2018.12.002_b172) 2015; 9
Morrison (10.1016/j.neunet.2018.12.002_b154) 2007; 19
Zenke (10.1016/j.neunet.2018.12.002_b246) 2017; 30
Herikstad (10.1016/j.neunet.2018.12.002_b69) 2011; 31
Kheradpisheh (10.1016/j.neunet.2018.12.002_b99) 2016; 10
Reinagel (10.1016/j.neunet.2018.12.002_b188) 2000; 20
Tavanaei (10.1016/j.neunet.2018.12.002_b226) 2018
10.1016/j.neunet.2018.12.002_b106
10.1016/j.neunet.2018.12.002_b222
Wysoski (10.1016/j.neunet.2018.12.002_b241) 2008; 71
Kasabov (10.1016/j.neunet.2018.12.002_b92) 2014; 52
Butts (10.1016/j.neunet.2018.12.002_b25) 2007; 449
Tavanaei (10.1016/j.neunet.2018.12.002_b219) 2018
Gütig (10.1016/j.neunet.2018.12.002_b64) 2006; 9
LeCun (10.1016/j.neunet.2018.12.002_b116) 1998; 86
Shrestha (10.1016/j.neunet.2018.12.002_b205) 2017
Esser (10.1016/j.neunet.2018.12.002_b47) 2015
Izhikevich (10.1016/j.neunet.2018.12.002_b85) 2003; 14
Stromatias (10.1016/j.neunet.2018.12.002_b213) 2015; 9
Querlioz (10.1016/j.neunet.2018.12.002_b184) 2013; 12
Masquelier (10.1016/j.neunet.2018.12.002_b144) 2010
Kang (10.1016/j.neunet.2018.12.002_b89) 2013
Doya (10.1016/j.neunet.2018.12.002_b43) 2007
Mohemmed (10.1016/j.neunet.2018.12.002_b152) 2012; 22
Dan (10.1016/j.neunet.2018.12.002_b35) 2006; 86
Goodfellow (10.1016/j.neunet.2018.12.002_b61) 2016
Kheradpisheh (10.1016/j.neunet.2018.12.002_b98) 2018; 99
Rieke (10.1016/j.neunet.2018.12.002_b190) 1999
10.1016/j.neunet.2018.12.002_b117
10.1016/j.neunet.2018.12.002_b118
10.1016/j.neunet.2018.12.002_b112
Mozafari (10.1016/j.neunet.2018.12.002_b157) 2018
Victor (10.1016/j.neunet.2018.12.002_b235) 2005; 15
Hinton (10.1016/j.neunet.2018.12.002_b73) 2006; 18
10.1016/j.neunet.2018.12.002_b240
Rehn (10.1016/j.neunet.2018.12.002_b187) 2007; 22
Nessler (10.1016/j.neunet.2018.12.002_b166) 2013; 9
Barra (10.1016/j.neunet.2018.12.002_b8) 2018; 97
Florian (10.1016/j.neunet.2018.12.002_b50) 2012; 7
Felleman (10.1016/j.neunet.2018.12.002_b49) 1991; 1
Földiak (10.1016/j.neunet.2018.12.002_b51) 1990; 64
Hopfield (10.1016/j.neunet.2018.12.002_b78) 1995; 376
Maass (10.1016/j.neunet.2018.12.002_b134) 2015; 103
Klampfl (10.1016/j.neunet.2018.12.002_b103) 2013; 33
Tavanaei (10.1016/j.neunet.2018.12.002_b227) 2018; 90
Hochreiter (10.1016/j.neunet.2018.12.002_b75) 2001
10.1016/j.neunet.2018.12.002_b129
10.1016/j.neunet.2018.12.002_b125
Pfister (10.1016/j.neunet.2018.12.002_b180) 2006; 18
Savin (10.1016/j.neunet.2018.12.002_b198) 2010; 6
Anwani (10.1016/j.neunet.2018.12.002_b4) 2015
Lukoševičius (10.1016/j.neunet.2018.12.002_b130) 2009; 3
Costa (10.1016/j.neunet.2018.12.002_b33) 2017
Kasinski (10.1016/j.neunet.2018.12.002_b96) 2006; 16
Le Roux (10.1016/j.neunet.2018.12.002_b114) 2010; 22
Bengio (10.1016/j.neunet.2018.12.002_b11) 2009; 2
Tavanaei (10.1016/j.neunet.2018.12.002_b225) 2017
Akopyan (10.1016/j.neunet.2018.12.002_b3) 2015; 34
Chavez-Noriega (10.1016/j.neunet.2018.12.002_b30) 1990; 79
Delorme (10.1016/j.neunet.2018.12.002_b37) 1999; 26
Freiwald (10.1016/j.neunet.2018.12.002_b52) 2010; 330
VanRullen (10.1016/j.neunet.2018.12.002_b233) 2017; 8
Esser (10.1016/j.neunet.2018.12.002_b48) 2016
10.1016/j.neunet.2018.12.002_b142
Rueckauer (10.1016/j.neunet.2018.12.002_b193) 2017; 11
Stromatias (10.1016/j.neunet.2018.12.002_b212) 2015
10.1016/j.neunet.2018.12.002_b59
Kandel (10.1016/j.neunet.2018.12.002_b88) 2013
Panda (10.1016/j.neunet.2018.12.002_b174) 2016
Tang (10.1016/j.neunet.2018.12.002_b218) 2014; 12
Grossberg (10.1016/j.neunet.2018.12.002_b62) 1987; 11
Jolivet (10.1016/j.neunet.2018.12.002_b87) 2003
Kröger (10.1016/j.neunet.2018.12.002_b108) 2009; 51
Brader (10.1016/j.neunet.2018.12.002_b21) 2007; 19
Hodgkin (10.1016/j.neunet.2018.12.002_b76) 1952; 117
Bengio (10.1016/j.neunet.2018.12.002_b13) 2017
Diehl (10.1016/j.neunet.2018.12.002_b39) 2015; 9
Kheradpisheh (10.1016/j.neunet.2018.12.002_b100) 2016; 6
Kistler (10.1016/j.neunet.2018.12.002_b102) 1997; 9
Mohamed (10.1016/j.neunet.2018.12.002_b151) 2012; 20
Bengio (10.1016/j.neunet.2018.12.002_b14) 1994; 5
Lukoševičius (10.1016/j.neunet.2018.12.002_b131) 2012; 26
Sainath (10.1016/j.neunet.2018.12.002_b196) 2013
Kasabov (10.1016/j.neunet.2018.12.002_b93) 2018
Kuremoto (10.1016/j.neunet.2018.12.002_b110) 2014; 137
Hassabis (10.1016/j.neunet.2018.12.002_b67) 2017; 95
10.1016/j.neunet.2018.12.002_b68
Panchev (10.1016/j.neunet.2018.12.002_b173) 2004; 58
Kasabov (10.1016/j.neunet.2018.12.002_b91) 2012
Mleczko (10.1016/j.neunet
References_xml – volume: 31
  start-page: 25
  year: 2008
  end-page: 46
  ident: b27
  article-title: Spike timing-dependent plasticity: A Hebbian learning rule
  publication-title: Annual Review of Neuroscience
– reference: Neil, D., Pfeiffer, M., & Liu, S. (2016a). Phased LSTM: Accelerating neural network training for long or event-based sequences. In
– volume: 5
  year: 2015
  ident: b86
  article-title: Improving protein fold recognition by deep learning networks
  publication-title: Scientific Reports
– start-page: 846
  year: 2003
  end-page: 853
  ident: b87
  article-title: The spike response model: A framework to predict neuronal spike trains
  publication-title: Artificial neural networks and neural information processing—ICANN/ICONIP 2003
– volume: 12
  start-page: 1
  year: 2018
  end-page: 13
  ident: b231
  article-title: Event-based, timescale invariant unsupervised online learning with STDP
  publication-title: Frontiers in Computational Neuroscience
– start-page: 1357
  year: 2009
  end-page: 1365
  ident: b167
  article-title: STDP enables spiking neurons to detect hidden causes of their inputs
  publication-title: Advances in neural information processing systems
– start-page: 1
  year: 2015
  end-page: 8
  ident: b4
  article-title: Normad-normalized approximate descent based supervised learning rule for spiking neurons
  publication-title: 2015 international joint conference on neural networks
– start-page: 1
  year: 2015
  end-page: 8
  ident: b212
  article-title: Scalable energy-efficient, low-latency implementations of trained spiking deep belief networks on spinnaker
  publication-title: Neural networks, 2015 international joint conference on
– start-page: 3366
  year: 2013
  end-page: 3370
  ident: b1
  article-title: Exploring convolutional neural network structures and optimization techniques for speech recognition
  publication-title: Interspeech
– reference: Oquab, M., Bottou, L., Laptev, I., & Sivic, J. (2014). Learning and transferring mid-level image representations using convolutional neural networks. In
– reference: Tavanaei, A., & Maida, A. S. (2016). Bio-inspired spiking convolutional neural network using layer-wise sparse coding and STDP learning, arXiv preprint
– volume: 21
  start-page: 1817
  year: 2010
  end-page: 1830
  ident: b238
  article-title: SWAT: A spiking neural network training algorithm for classification problems
  publication-title: IEEE Transactions on Neural Networks
– start-page: 87
  year: 2001
  end-page: 94
  ident: b75
  article-title: Learning to learn using gradient descent
  publication-title: Intl conf on artificial neural networks
– start-page: 8012
  year: 2013
  end-page: 8016
  ident: b89
  article-title: Multi-distribution deep belief network for speech synthesis
  publication-title: Acoustics, speech and signal processing, 2013 IEEE international conference on
– volume: 3
  year: 2007
  ident: b143
  article-title: Unsupervised learning of visual features through spike timing dependent plasticity
  publication-title: PLoS Computational Biology
– volume: 26
  start-page: 1963
  year: 2015
  end-page: 1978
  ident: b247
  article-title: Feedforward categorization on AER motion events using cortex-like features in a spiking neural network
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 376
  start-page: 33
  year: 1995
  end-page: 36
  ident: b78
  article-title: Pattern recognition computation using action potential timing for stimulus representation
  publication-title: Nature
– volume: 52
  start-page: 62
  year: 2014
  end-page: 76
  ident: b92
  article-title: NeuCube: A spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data
  publication-title: Neural Networks
– volume: 3
  start-page: 195
  year: 2004
  end-page: 206
  ident: b17
  article-title: The evidence for neural information processing with precise spike-times: A survey
  publication-title: Natural Computing
– volume: 26
  start-page: 9673
  year: 2006
  end-page: 9682
  ident: b179
  article-title: Triplets of spikes in a model of spike timing-dependent plasticity
  publication-title: Journal of Neuroscience
– volume: 148
  start-page: 574
  year: 1959
  end-page: 591
  ident: b79
  article-title: Receptive fields of single neurones in the cat’s striate cortex
  publication-title: The Journal of Physiology
– start-page: 631
  year: 2017
  end-page: 637
  ident: b205
  article-title: A spike-based long short-term memory on a neurosynaptic processor
  publication-title: Computer-aided design, 2017 IEEE/ACM international conference on
– start-page: 873
  year: 2008
  end-page: 880
  ident: b120
  article-title: Sparse deep belief net model for visual area V2
  publication-title: Advances in neural information processing systems
– start-page: 1
  year: 2011
  end-page: 4
  ident: b202
  article-title: A 45nm cmos neuromorphic chip with a scalable architecture for learning in networks of spiking neurons
  publication-title: Custom integrated circuits conference, 2011 IEEE
– volume: 70
  start-page: 1297
  year: 1980
  end-page: 1300
  ident: b138
  article-title: Mathematical description of the responses of simple cortical cells
  publication-title: Journal of the Optical Society of America
– volume: 79
  start-page: 2554
  year: 1982
  end-page: 2558
  ident: b77
  article-title: Neural networks and physical systems with emergent collective computational abilities
  publication-title: Proceedings of the National Academy of Sciences
– volume: 22
  start-page: 2621
  year: 2014
  end-page: 2628
  ident: b162
  article-title: Minitaur, an event-driven FPGA-based spiking network accelerator
  publication-title: IEEE Transactions on Very Large Scale Integration (VLSI) Systems
– reference: Cireşan, D., Meier, U., & Schmidhuber, J. (2012). Multi-column deep neural networks for image classification, arXiv preprint
– volume: 22
  start-page: 79
  year: 1951
  end-page: 86
  ident: b109
  article-title: On information and sufficiency
  publication-title: The Annals of Mathematical Statistics
– start-page: 1
  year: 2015
  end-page: 8
  ident: b40
  article-title: Fast-classifying, high-accuracy spiking deep networks through weight and threshold balancing
  publication-title: Neural networks, 2015 international joint conference on
– volume: 118
  year: 2017
  ident: b182
  article-title: Spatiotemporal dynamics and reliable computations in recurrent spiking neural networks
  publication-title: Physical Review Letters
– volume: 9
  start-page: 1015
  year: 1997
  end-page: 1045
  ident: b102
  article-title: Reduction of the Hodgkin-Huxley equations to a single-variable threshold model
  publication-title: Neural Computation
– volume: 44
  start-page: 937
  year: 2002
  end-page: 942
  ident: b159
  article-title: Speech recognition with spiking neurons and dynamic synapses: A model motivated by the human auditory pathway
  publication-title: Neurocomputing
– volume: 14
  start-page: 179
  year: 1990
  end-page: 211
  ident: b45
  article-title: Finding structure in time
  publication-title: Cognitive Science
– reference: Masquelier, T., & Kheradpisheh, S. R. (2018). Optimal localist and distributed coding of spatiotemporal spike patterns through STDP and coincidence detection, arXiv preprint
– start-page: 1422
  year: 2011
  end-page: 1430
  ident: b22
  article-title: Sequence learning with hidden units in spiking neural networks
  publication-title: Advances in neural information processing systems
– volume: 16
  start-page: 101
  year: 2006
  end-page: 113
  ident: b96
  article-title: Comparison of supervised learning platforms for spike time coding in spiking neural networks
  publication-title: International Journal of Applied Mathematics and Computer Science
– start-page: 450
  year: 2017
  end-page: 457
  ident: b126
  article-title: MT-spike: A multilayer time-based spiking neuromorphic architecture with temporal error backpropagation
  publication-title: Proceedings of the 36th international conference on computer-aided design
– year: 1995
  ident: b16
  article-title: Neural networks for pattern recognition
– volume: 8
  start-page: 1185
  year: 1996
  end-page: 1202
  ident: b5
  article-title: Temporal precision of spike trains in extrastriate cortex of the behaving macaque monkey
  publication-title: Neural Computation
– volume: 17
  start-page: 859
  year: 2005
  end-page: 879
  ident: b65
  article-title: Neurons tune to the earliest spikes through STDP
  publication-title: Neural Computation
– volume: 26
  start-page: 989
  year: 1999
  end-page: 996
  ident: b37
  article-title: SpikeNET: A simulator for modeling large networks of integrate and fire neurons
  publication-title: Neurocomputing
– volume: 345
  start-page: 668
  year: 2014
  end-page: 673
  ident: b147
  article-title: A million spiking-neuron integrated circuit with a scalable communication network and interface
  publication-title: Science
– year: 1999
  ident: b190
  article-title: Spikes: Exploring the neural code
– start-page: 473
  year: 2010
  end-page: 477
  ident: b197
  article-title: Deep belief network for clustering and classification of a continuous data
  publication-title: Signal processing and information technology, 2010 IEEE international symposium on
– volume: 14
  start-page: 2531
  year: 2002
  end-page: 2560
  ident: b135
  article-title: Real-time computing without stable states: A new framework for neural computation based on perturbations
  publication-title: Neural Computation
– volume: 79
  start-page: 633
  year: 1990
  end-page: 641
  ident: b30
  article-title: A decrease in firing threshold observed after induction of the EPSP-spike (ES) component of long-term potentiation in rat hippocampal slices
  publication-title: Experimental Brain Research
– volume: Vol. 4
  start-page: 2076
  year: 2005
  end-page: 2080
  ident: b128
  article-title: Exploration of rank order coding with spiking neural networks for speech recognition
  publication-title: Neural networks, 2005. IJCNN’05. Proceedings. 2005 IEEE international joint conference on
– volume: 12
  year: 2014
  ident: b218
  article-title: Millisecond-scale motor encoding in a cortical vocal area
  publication-title: PLoS Biology
– start-page: 1
  year: 2014
  end-page: 4
  ident: b53
  article-title: Variability-tolerant convolutional neural network for pattern recognition applications based on oxram synapses
  publication-title: Electron devices meeting, 2014 IEEE international
– year: 2013
  ident: b88
  article-title: Principles of neural science
– volume: 107
  start-page: 3
  year: 2013
  end-page: 10
  ident: b153
  article-title: Training spiking neural networks to associate spatio-temporal input-output spike patterns
  publication-title: Neurocomputing
– reference: Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In
– reference: He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In
– volume: 22
  start-page: 2192
  year: 2010
  end-page: 2207
  ident: b114
  article-title: Deep belief networks are compact universal approximators
  publication-title: Neural Computation
– volume: 9
  start-page: 1
  year: 2015
  end-page: 9
  ident: b39
  article-title: Unsupervised learning of digit recognition using spike-timing-dependent plasticity
  publication-title: Frontiers in Computational Neuroscience
– volume: 427
  start-page: 244
  year: 2004
  end-page: 247
  ident: b104
  article-title: Bayesian integration in sensorimotor learning
  publication-title: Nature
– reference: Diehl, P. U., Zarrella, G., Cassidy, A., Pedroni, B. U., & Neftci, E. (2016). Conversion of artificial recurrent neural networks to spiking neural networks for low-power neuromorphic hardware. In
– volume: 38
  start-page: 1346
  year: 2017
  end-page: 1359
  ident: b111
  article-title: HOTS: A hierarchy of event-based time-surfaces for pattern recognition
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 34
  start-page: 1
  year: 2012
  end-page: 9
  ident: b6
  article-title: On the equivalence of Hopfield networks and Boltzmann machines
  publication-title: Neural Networks
– year: 2011
  ident: b192
  article-title: Handbook of natural computing
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b74
  article-title: Long short-term memory
  publication-title: Neural Computation
– volume: 15
  start-page: 585
  year: 2005
  end-page: 592
  ident: b235
  article-title: Spike train metrics
  publication-title: Current Opinion in Neurobiology
– volume: 11
  start-page: 324
  year: 2017
  ident: b160
  article-title: Event-driven random back-propagation: Enabling neuromorphic deep learning machines
  publication-title: Frontiers in Neuroscience
– start-page: 160
  year: 2011
  end-page: 168
  ident: b199
  article-title: Reservoir-based evolving spiking neural network for spatio-temporal pattern recognition
  publication-title: Neural information processing
– start-page: 1
  year: 2015
  end-page: 6
  ident: b221
  article-title: Studying the interaction of a hidden Markov model with a Bayesian spiking neural network
  publication-title: Machine learning for signal processing, 2015 IEEE 25th international workshop on
– start-page: 1609
  year: 2004
  end-page: 1616
  ident: b244
  article-title: Probabilistic computation in spiking populations
  publication-title: Advances in neural information processing systems
– reference: (pp. 2818–2826).
– start-page: 1
  year: 2011
  end-page: 4
  ident: b146
  article-title: A digital neurosynaptic core using embedded crossbar memory with 45pj per spike in 45nm
  publication-title: Custom integrated circuits conference, 2011 IEEE
– start-page: 293
  year: 2016
  end-page: 298
  ident: b165
  article-title: Learning to be efficient: Algorithms for training low-latency, low-compute deep spiking neural networks
  publication-title: Proceedings of the 31st annual ACM symposium on applied computing
– volume: 29
  start-page: 82
  year: 2012
  end-page: 97
  ident: b72
  article-title: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups
  publication-title: IEEE Signal Processing Magazine
– start-page: 2352
  year: 2017
  end-page: 2449
  ident: b186
  article-title: Deep convolutional neural networks for image classification: A comprehensive review
  publication-title: Neural Computation
– start-page: 8614
  year: 2013
  end-page: 8618
  ident: b196
  article-title: Deep convolutional neural networks for LVCSR
  publication-title: Acoustics, speech and signal processing, 2013 IEEE international conference on
– start-page: 1
  year: 2016
  end-page: 8
  ident: b229
  article-title: Acquisition of visual features through probabilistic spike timing dependent plasticity
  publication-title: Neural Networks, The 2016 international joint conference on
– volume: 24
  start-page: 2451
  year: 2013
  end-page: 2461
  ident: b28
  article-title: Scalable hierarchical network-on-chip architecture for spiking neural network hardware implementations
  publication-title: IEEE Transactions on Parallel and Distributed Systems
– start-page: 1
  year: 2018
  end-page: 24
  ident: b157
  article-title: First-spike based visual categorization using reward-modulated STDP
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 31
  start-page: 15844
  year: 2011
  end-page: 15860
  ident: b69
  article-title: Natural movies evoke spike trains with low spike time variability in cat primary visual cortex
  publication-title: Journal of Neuroscience
– volume: 51
  start-page: 793
  year: 2009
  end-page: 809
  ident: b108
  article-title: Towards a neurocomputational model of speech production and perception
  publication-title: Speech Communication
– volume: 86
  start-page: 1033
  year: 2006
  end-page: 1048
  ident: b35
  article-title: Spike timing-dependent plasticity: From synapse to perception
  publication-title: Physiological Reviews
– volume: 11
  start-page: 350
  year: 2017
  ident: b214
  article-title: An event-driven classifier for spiking neural networks fed with synthetic or dynamic vision sensor data
  publication-title: Frontiers in Neuroscience
– volume: 3
  start-page: 1
  year: 2011
  end-page: 24
  ident: b139
  article-title: A history of spike-timing-dependent plasticity
  publication-title: Frontiers in Synaptic Neuroscience
– volume: 8
  start-page: 1
  year: 2014
  end-page: 14
  ident: b161
  article-title: Event-driven contrastive divergence for spiking neuromorphic systems
  publication-title: Frontiers in Neuroscience
– volume: 240
  start-page: 191
  year: 2017
  end-page: 199
  ident: b224
  article-title: A spiking network that learns to extract spike signatures from speech signals
  publication-title: Neurocomputing
– start-page: 81
  year: 2017
  end-page: 88
  ident: b225
  article-title: Multi-layer unsupervised learning in a spiking convolutional neural network
  publication-title: Neural Networks, 2017 international joint conference on
– volume: Vol. 656
  year: 2007
  ident: b71
  article-title: How to do backpropagation in a brain
  publication-title: Invited talk at the NIPS’2007 deep learning workshop
– year: 2018
  ident: b93
  article-title: Time-space, spiking neural networks and brain-inspired artificial intelligence
– reference: Mozafari, M., Ganjtabesh, M., Nowzari -Dalini, A., Thorpe, S. J., & Masquelier, T. (2018a). Combining STDP and reward-modulated STDP in deep convolutional spiking neural networks for digit recognition, arXiv preprint
– start-page: 145
  year: 2016
  end-page: 149
  ident: b228
  article-title: Towards recognition of protein function based on its structure using deep convolutional networks
  publication-title: Bioinformatics and biomedicine, 2016 IEEE international conference on
– volume: 33
  start-page: 42
  year: 2012
  end-page: 57
  ident: b29
  article-title: Advancing interconnect density for spiking neural network hardware implementations using traffic-aware adaptive network-on-chip routers
  publication-title: Neural Networks
– reference: Huh, D., & Sejnowski, T. J. (2017). Gradient descent for spiking neural networks, arXiv preprint
– reference: Rueckauer, B., Lungu, I. -A., Hu, Y., & Pfeiffer, M. (2016). Theory and tools for the conversion of analog to spiking convolutional neural networks, arXiv preprint
– volume: 5
  start-page: 157
  year: 1994
  end-page: 166
  ident: b14
  article-title: Learning long-term dependencies with gradient descent is difficult
  publication-title: IEEE Transactions on Neural Networks
– volume: 391
  start-page: 245
  year: 1998
  end-page: 250
  ident: b34
  article-title: Constrains on cortical and thalamic projections: The no-strong-loops hypothesis
  publication-title: Nature
– volume: 96
  year: 2017
  ident: b7
  article-title: Phase transitions in restricted Boltzmann machines with generic priors
  publication-title: Physical Review E
– volume: 40
  start-page: 1063
  year: 2003
  end-page: 1073
  ident: b204
  article-title: Learning in spiking neural networks by reinforcement of stochastic synaptic transmission
  publication-title: Neuron
– volume: 134
  start-page: 269
  year: 2014
  end-page: 279
  ident: b95
  article-title: Evolving spiking neural networks for personalised modelling, classification and prediction of spatio-temporal patterns with a case study on stroke
  publication-title: Neurocomputing
– reference: LeCun, Y., Cortes, C., & Burges, C. J. (1998b). The MNIST database, URL
– volume: 71
  start-page: 2563
  year: 2008
  end-page: 2575
  ident: b241
  article-title: Fast and adaptive network of spiking neurons for multi-view visual pattern recognition
  publication-title: Neurocomputing
– volume: 12
  start-page: 1
  year: 2018
  end-page: 18
  ident: b178
  article-title: Deep learning with spiking neurons: Opportunities and challenges
  publication-title: Frontiers in Neuroscience
– volume: 6
  year: 2010
  ident: b198
  article-title: Independent component analysis in spiking neurons
  publication-title: PLoS Computational Biology
– volume: 64
  start-page: 165
  year: 1990
  end-page: 170
  ident: b51
  article-title: Forming sparse representations by local anti-hebbian learning
  publication-title: Biological Cybernetics
– reference: .
– volume: 22
  start-page: 135
  year: 2007
  end-page: 146
  ident: b187
  article-title: A network that uses few active neurones to code visual input predicts the diverse shapes of cortical receptive fields
  publication-title: Journal of Computational Neuroscience
– volume: 48
  start-page: 109
  year: 2013
  end-page: 124
  ident: b15
  article-title: Categorization and decision-making in a neurobiologically plausible spiking network using a STDP-like learning rule
  publication-title: Neural Networks
– reference: (pp. 3431–3440).
– volume: 330
  start-page: 845
  year: 2010
  end-page: 851
  ident: b52
  article-title: Functional compartmentalization and viewpoint generalization within the macaque face-processing system
  publication-title: Science
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  ident: b116
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proceedings of the IEEE
– volume: 54
  start-page: 95
  year: 2011
  end-page: 103
  ident: b121
  article-title: Unsupervised learning of hierarchical representations with convolutional deep belief networks
  publication-title: Communications of the ACM
– volume: Vol. 1
  start-page: 39
  year: 2009
  ident: b150
  article-title: Deep belief networks for phone recognition
  publication-title: NIPS workshop on deep learning for speech recognition and related applications
– start-page: 272
  year: 2017
  end-page: 283
  ident: b33
  article-title: Cortical microcircuits as gated-recurrent neural networks
  publication-title: Advances in neural information processing systems
– volume: 160
  start-page: 106
  year: 1962
  end-page: 154
  ident: b80
  article-title: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex
  publication-title: The Journal of Physiology
– volume: 9
  year: 2013
  ident: b166
  article-title: Bayesian computation emerges in generic cortical microcircuits through spike-timing-dependent plasticity
  publication-title: PLoS Computational Biology
– volume: 82
  start-page: 284
  year: 2009
  end-page: 301
  ident: b46
  article-title: Action recognition using a bio-inspired feedforward spiking network
  publication-title: International Journal of Computer Vision
– reference: , 1–10.
– volume: 11
  year: 1987
  ident: b62
  article-title: Competitive learning: From interactive activation to adaptive resonance
  publication-title: Cognitive Science
– start-page: 248
  year: 2009
  end-page: 255
  ident: b38
  article-title: Imagenet: A large-scale hierarchical image database
  publication-title: Computer vision and pattern recognition, 2009. CVPR 2009. IEEE conference on
– start-page: 1
  year: 2018
  end-page: 12
  ident: b226
  article-title: BP-STDP: Approximating Backpropagation using spike timing dependent plasticity
  publication-title: Neurocomputing
– volume: Vol. 10
  start-page: 339
  year: 2010
  end-page: 344
  ident: b66
  article-title: Learning features from music audio with deep belief networks
  publication-title: ISMIR
– reference: LeCun, Y., et al. (2015b). LeNet-5, convolutional neural networks, URL:
– year: 2015
  ident: b84
  article-title: Neuromorphic architectures for spiking deep neural networks
  publication-title: Electron devices meeting, 2015 IEEE international
– reference: Sengupta, A., Ye, Y., Wang, R., Liu, C., & Roy, K. (2018). Going deeper in spiking networks: VGG and residual architectures, arXiv [Preprint].
– start-page: 53
  year: 2007
  end-page: 58
  ident: b63
  article-title: Character recognition using spiking neural networks
  publication-title: Neural networks, 2007. IJCNN 2007. International joint conference on
– reference: Wu, Y., Deng, L., Li, G., Zhu, J., & Shi, L. (2017). Spatio-temporal backpropagation for training high-performance spiking neural networks, arXiv preprint
– volume: 8
  start-page: 127
  year: 1997
  end-page: 164
  ident: b236
  article-title: Metric-space analysis of spike trains: Theory, algorithms and application
  publication-title: Network. Computation in Neural Systems
– volume: 137
  start-page: 47
  year: 2014
  end-page: 56
  ident: b110
  article-title: Time series forecasting using a deep belief network with restricted Boltzmann machines
  publication-title: Neurocomputing
– volume: 13
  start-page: 1445
  year: 2016
  end-page: 1454
  ident: b137
  article-title: Applications of deep learning in biomedicine
  publication-title: Molecular Pharmaceutics
– year: 2017
  ident: b210
  article-title: Motor control by precisely timed spike patterns
  publication-title: Proceedings of the National Academy of Sciences
– volume: 13
  start-page: 426
  year: 2002
  end-page: 435
  ident: b19
  article-title: Unsupervised clustering with spiking neurons by sparse temporal coding and multilayer RBF networks
  publication-title: IEEE Transactions on Neural Networks
– reference: Hunsberger, E., & Eliasmith, C. (2015). Spiking deep networks with LIF neurons, arXiv preprint
– reference: Liu, P., Han, S., Meng, Z., & Tong, Y. (2014). Facial expression recognition via a boosted deep belief network. In
– year: 2002
  ident: b54
  article-title: Spiking neuron models: Single neurons, populations, plasticity
– volume: 449
  start-page: 92
  year: 2007
  end-page: 95
  ident: b25
  article-title: Temporal precision in the neural code and the timescales of natural vision
  publication-title: Nature
– volume: 7
  start-page: 1
  year: 2013
  end-page: 13
  ident: b168
  article-title: Real-time classification and sensor fusion with a spiking deep belief network
  publication-title: Frontiers in Neuroscience
– volume: 118
  year: 2017
  ident: b232
  article-title: Emergence of compositional representations in restricted Boltzmann machines
  publication-title: Physical Review Letters
– volume: 8
  start-page: 8912
  year: 2018
  ident: b42
  article-title: Modelling peri-perceptual brain processes in a deep learning spiking neural network architecture
  publication-title: Scientific Reports
– volume: 44
  year: 2016
  ident: b183
  article-title: DanQ: A hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences
  publication-title: Nucleic Acids Research
– reference: (pp. 1805–1812).
– volume: 319
  start-page: 1108
  year: 2008
  end-page: 1111
  ident: b60
  article-title: Rapid neural coding in the retina with relative spike latencies
  publication-title: Science
– start-page: 1
  year: 2009
  end-page: 60
  ident: b105
  article-title: Learning multiple layers of features from tiny images
– reference: Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. In
– volume: 18
  start-page: 851
  year: 2017
  end-page: 869
  ident: b148
  article-title: Deep learning in bioinformatics
  publication-title: Briefings in Bioinformatics
– start-page: 1
  year: 2018
  end-page: 8
  ident: b219
  article-title: Training spiking convnets by STDP and Gradient Descent
  publication-title: Neural networks, The 2018 international joint conference on
– volume: 30
  start-page: 1514
  year: 2017
  end-page: 1541
  ident: b246
  article-title: SuperSpike: Supervised learning in multi-layer spiking neural networks
  publication-title: Neural Computation
– reference: O’Connor, P., & Welling, M. (2016). Deep spiking networks, arXiv preprint
– start-page: 555
  year: 2017
  end-page: 577
  ident: b13
  article-title: STDP-compatible approximation of backpropagation in an energy-based model
  publication-title: Neural Computation
– volume: 95
  start-page: 552
  year: 2005
  end-page: 558
  ident: b20
  article-title: A gradient descent rule for spiking neurons emitting multiple spikes
  publication-title: Information Processing Letters
– reference: , 99.
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: b115
  article-title: Deep learning
  publication-title: Nature
– volume: 381
  start-page: 607
  year: 1996
  end-page: 609
  ident: b170
  article-title: Emergence of simple-cell receptive field properties by learning a sparse code for natural images
  publication-title: Nature
– start-page: 299
  year: 2016
  end-page: 306
  ident: b174
  article-title: Unsupervised regenerative learning of hierarchical features in spiking deep networks for object recognition
  publication-title: International conference on neural networks
– start-page: 1
  year: 2010
  end-page: 8
  ident: b144
  article-title: Learning to recognize objects using waves of spikes and spike timing-dependent plasticity
  publication-title: Neural Networks, The 2010 international joint conference on
– volume: 10
  year: 2014
  ident: b90
  article-title: STDP installs in winner-take-all circuits an online approximation to hidden Markov model learning
  publication-title: PLoS Computational Biology
– start-page: 1117
  year: 2015
  end-page: 1125
  ident: b47
  article-title: Backpropagation for energy-efficient neuromorphic computing
  publication-title: Advances in neural information processing systems
– start-page: 1096
  year: 2009
  end-page: 1104
  ident: b122
  article-title: Unsupervised feature learning for audio classification using convolutional deep belief networks
  publication-title: Advances in neural information processing systems
– volume: 7
  year: 2011
  ident: b23
  article-title: Neural dynamics as sampling: A model for stochastic computation in recurrent networks of spiking neurons
  publication-title: PLoS Computational Biology
– volume: 37
  start-page: 3327
  year: 1997
  end-page: 3338
  ident: b9
  article-title: The “independent components” of natural scenes are edge filters
  publication-title: Vision Research
– reference: (pp. 580–587).
– volume: 35
  start-page: 2706
  year: 2013
  end-page: 2719
  ident: b177
  article-title: Mapping from frame-driven to frame-free event-driven vision systems by low-rate rate-coding and coincidence processing. application to feed forward convnets
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– year: 2017
  ident: b234
  article-title: A novel data-driven model for real-time influenza forecasting
  publication-title: bioRxiv
– volume: 90
  start-page: 211
  year: 2018
  end-page: 220
  ident: b227
  article-title: Training a hidden Markov model with a Bayesian spiking neural network
  publication-title: Journal of Signal Processing Systems
– volume: 11
  year: 2015
  ident: b24
  article-title: Mirrored STDP implements autoencoder learning in a network of spiking neurons
  publication-title: PLoS Computational Biology
– year: 1991
  ident: b70
  article-title: Introduction to the theory of neural computation
– volume: 99
  start-page: 56
  year: 2018
  end-page: 67
  ident: b98
  article-title: STDP-based spiking deep convolutional neural networks for object recognition
  publication-title: Neural Networks
– volume: 115
  start-page: 211
  year: 2015
  end-page: 252
  ident: b195
  article-title: ImageNet large scale visual recognition challenge
  publication-title: International Journal of Computer Vision
– volume: 8
  start-page: 142
  year: 2017
  ident: b233
  article-title: Perception science in the age of deep neural networks
  publication-title: Frontiers in Psychology
– volume: 95
  start-page: 245
  year: 2017
  end-page: 258
  ident: b67
  article-title: Neuroscience-inspired artificial intelligence
  publication-title: Neuron
– volume: 33
  start-page: 11515
  year: 2013
  end-page: 11529
  ident: b103
  article-title: Emergence of dynamic memory traces in cortical microcircuit models through STDP
  publication-title: The Journal of Neuroscience
– year: 2016
  ident: b61
  article-title: Deep learning
– volume: 22
  year: 2012
  ident: b152
  article-title: Span: Spike pattern association neuron for learning spatio-temporal spike patterns
  publication-title: International Journal of Neural Systems
– reference: Lamb, A., Goyal, A., Zhang, Y., Zhang, S., Courville, A., & Bengio, Y. (2016). Professor forcing: A new algorithm for training recurrent networks, arXiv preprint
– reference: Hunsberger, E., & Eliasmith, C. (2016). Training spiking deep networks for neuromorphic hardware, arXiv preprint
– volume: 61
  start-page: 85
  year: 2015
  end-page: 117
  ident: b200
  article-title: Deep learning in neural networks: An overview
  publication-title: Neural Networks
– volume: 97
  year: 2018
  ident: b8
  article-title: Phase diagram of restricted Boltzmann machines and generalized Hopfield networks with arbitrary priors
  publication-title: Physical Review E
– start-page: 2282
  year: 2016
  end-page: 2285
  ident: b163
  article-title: Effective sensor fusion with event-based sensors and deep network architectures
  publication-title: Circuits and systems, 2016 IEEE international symposium on
– volume: 26
  start-page: 365
  year: 2012
  end-page: 371
  ident: b131
  article-title: Reservoir computing trends
  publication-title: KI-Künstliche Intelligenz
– year: 2002
  ident: b185
  article-title: Probabilistic models of the brain: Perception and neural function
– volume: 9
  start-page: 1
  year: 2015
  end-page: 14
  ident: b213
  article-title: Robustness of spiking deep belief networks to noise and reduced bit precision of neuro-inspired hardware platforms
  publication-title: Frontiers in Neuroscience
– reference: Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition, arXiv preprint
– volume: 338
  start-page: 1202
  year: 2012
  end-page: 1205
  ident: b44
  article-title: A large-scale model of the functioning brain
  publication-title: Science
– volume: 18
  start-page: 1527
  year: 2006
  end-page: 1554
  ident: b73
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Computation
– start-page: 1
  year: 2014
  end-page: 12
  ident: b203
  article-title: Hierarchical models of the visual system
  publication-title: Encyclopedia of computational neuroscience
– volume: 6
  year: 2016
  ident: b100
  article-title: Deep networks can resemble human feed-forward vision in invariant object recognition
  publication-title: Scientific Reports
– volume: 9
  start-page: 437
  year: 2015
  ident: b172
  article-title: Converting static image datasets to spiking neuromorphic datasets using saccades
  publication-title: Frontiers in Neuroscience
– volume: 19
  start-page: 1437
  year: 2007
  end-page: 1467
  ident: b154
  article-title: Spike-timing-dependent plasticity in balanced random networks
  publication-title: Neural Computation
– year: 2014
  ident: b55
  article-title: Neuronal dynamics: From single neurons to networks and models of cognition
– volume: 20
  start-page: 14
  year: 2012
  end-page: 22
  ident: b151
  article-title: Acoustic modeling using deep belief networks
  publication-title: IEEE Transactions on Audio, Speech, and Language Processing
– reference: Bengio, Y., Lee, D. -H., Bornschein, J., Mesnard, T., & Lin, Z. (2015). Towards biologically plausible deep learning, arXiv preprint
– start-page: 234
  year: 2012
  end-page: 260
  ident: b91
  article-title: Evolving spiking neural networks and neurogenetic systems for spatio-and spectro-temporal data modelling and pattern recognition
  publication-title: Advances in computational intelligence
– volume: 20
  start-page: 1631
  year: 2008
  end-page: 1649
  ident: b113
  article-title: Representational power of restricted boltzmann machines and deep belief networks
  publication-title: Neural Computation
– reference: , 1–9.
– volume: 21
  start-page: 1259
  year: 2009
  end-page: 1276
  ident: b141
  article-title: Competitive STDP-based spike pattern learning
  publication-title: Neural computation
– year: 2003
  ident: b237
  article-title: Spiking neural networks, an introduction
– reference: , 1–14.
– volume: 58
  start-page: 365
  year: 2004
  end-page: 371
  ident: b173
  article-title: Spike-timing-dependent synaptic plasticity: From single spikes to spike trains
  publication-title: Neurocomputing
– volume: 2
  start-page: 1
  year: 2009
  end-page: 127
  ident: b11
  article-title: Learning deep architectures for AI
  publication-title: Foundations and Trends in Machine Learning
– volume: 32
  start-page: 1133
  year: 2008
  end-page: 1147
  ident: b158
  article-title: Optimal predictions in everyday cognition: The wisdom of individuals or crowds?
  publication-title: Cognitive Science
– reference: Bellec, G., Salaj, D., Subramoney, A., Legenstein, R., & Maass, W. (2018). Long short-term memory and learning-to-learn in networks of spiking neurons, arXiv preprint
– volume: 14
  start-page: 1569
  year: 2003
  end-page: 1572
  ident: b85
  article-title: Simple model of spiking neurons
  publication-title: IEEE Transactions on Neural Networks
– reference: Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. In
– volume: 4
  start-page: 1
  year: 2015
  end-page: 8
  ident: b220
  article-title: A minimal spiking neural network to rapidly train and classify handwritten digits in binary and 10-digit tasks
  publication-title: International Journal of Advanced Research in Artificial Intelligence
– volume: 10
  start-page: 92
  year: 2016
  ident: b99
  article-title: Humans and deep networks largely agree on which kinds of variation make object recognition harder
  publication-title: Frontiers in Computational Neuroscience
– start-page: 400
  year: 2015
  end-page: 411
  ident: b149
  article-title: Rough deep belief network-application to incomplete handwritten digits pattern classification
  publication-title: International conference on information and software technologies
– volume: 18
  start-page: 1318
  year: 2006
  end-page: 1348
  ident: b180
  article-title: Optimal spike-timing-dependent plasticity for precise action potential firing in supervised learning
  publication-title: Neural Computation
– volume: 268
  start-page: 1503
  year: 1995
  end-page: 1506
  ident: b136
  article-title: Reliability of spike timing in neocortical neurons
  publication-title: Science
– volume: 105
  start-page: 294
  year: 2018
  end-page: 303
  ident: b230
  article-title: Representation learning using event-based STDP
  publication-title: Neural Networks
– year: 2007
  ident: b43
  article-title: Bayesian brain: Probabilistic approaches to neural coding
– volume: 12
  start-page: 288
  year: 2013
  end-page: 295
  ident: b184
  article-title: Immunity to device variations in a spiking neural network with memristive nanodevices
  publication-title: IEEE Transactions on Nanotechnology
– volume: 22
  start-page: 467
  year: 2010
  end-page: 510
  ident: b181
  article-title: Supervised learning in spiking neural networks with ReSuMe: Sequence learning, classification, and spike shifting
  publication-title: Neural Computation
– volume: 22
  start-page: 1419
  year: 2009
  end-page: 1431
  ident: b57
  article-title: A new supervised learning algorithm for multiple spiking neural networks with application in epilepsy and seizure detection
  publication-title: Neural Networks
– volume: 20
  start-page: 5392
  year: 2000
  end-page: 5400
  ident: b188
  article-title: Temporal coding of visual information in the thalamus
  publication-title: Journal of Neuroscience
– volume: 1
  start-page: 1
  year: 1991
  end-page: 47
  ident: b49
  article-title: Distributed hierarchical processing in the primate cerebral cortex
  publication-title: Cerebral Cortex
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: b107
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Advances in neural information processing systems
– volume: 205
  start-page: 382
  year: 2016
  end-page: 392
  ident: b97
  article-title: Bio-inspired unsupervised learning of visual features leads to robust invariant object recognition
  publication-title: Neurocomputing
– year: 2008
  ident: b215
  article-title: Generating facial expressions with deep belief nets
  publication-title: Affective computing
– year: 2016
  ident: b48
  article-title: Convolutional networks for fast, energy-efficient neuromorphic computing
  publication-title: Proceedings of the National Academy of Sciences
– volume: 3
  start-page: 919
  year: 2000
  end-page: 926
  ident: b208
  article-title: Competitive Hebbian learning through spike-timing-dependent synaptic plasticity
  publication-title: Nature Neuroscience
– volume: 23
  start-page: 819
  year: 2010
  end-page: 835
  ident: b242
  article-title: Evolving spiking neural networks for audiovisual information processing
  publication-title: Neural Networks
– reference: (pp. 3889–3897).
– volume: 117
  start-page: 500
  year: 1952
  end-page: 544
  ident: b76
  article-title: A quantitative description of membrane current and its application to conduction and excitation in nerve
  publication-title: The Journal of Physiology
– reference: (pp. 1717–1724).
– start-page: 899
  year: 2017
  end-page: 908
  ident: b223
  article-title: Bio-inspired multi-layer spiking neural network extracts discriminative features from speech signals
  publication-title: International conference on neural information processing
– volume: 9
  start-page: 420
  year: 2006
  end-page: 428
  ident: b64
  article-title: The tempotron: A neuron that learns spike timing-based decisions
  publication-title: Nature Neuroscience
– volume: 437
  start-page: 1027
  year: 2005
  ident: b127
  article-title: Repeated cocaine exposure in vivo facilitates LTP induction in midbrain dopamine neurons
  publication-title: Nature
– start-page: ENEURO
  year: 2016
  end-page: 0048
  ident: b176
  article-title: Learning probabilistic inference through STDP
  publication-title: eneuro
– volume: 144
  start-page: 526
  year: 2014
  end-page: 536
  ident: b239
  article-title: An online supervised learning method for spiking neural networks with adaptive structure
  publication-title: Neurocomputing
– volume: 48
  start-page: 17
  year: 2002
  end-page: 37
  ident: b18
  article-title: Error-backpropagation in temporally encoded networks of spiking neurons
  publication-title: Neurocomputing
– volume: Vol. 3
  start-page: 2175
  year: 1998
  end-page: 2179
  ident: b123
  article-title: Robust speech recognition with dynamic synapses
  publication-title: Neural networks proceedings, 1998. IEEE world congress on computational intelligence. The 1998 IEEE international joint conference on
– start-page: 4277
  year: 2012
  end-page: 4280
  ident: b2
  article-title: Applying convolutional neural networks concepts to hybrid nn-hmm model for speech recognition
  publication-title: Acoustics, speech and signal processing, 2012 IEEE international conference on
– volume: 33
  start-page: 5475
  year: 2013
  end-page: 5485
  ident: b101
  article-title: Inhibitory interneurons decorrelate excitatory cells to drive sparse code formation in a spiking model of V1
  publication-title: Journal of Neuroscience
– volume: 10
  start-page: 508
  year: 2016
  ident: b119
  article-title: Training deep spiking neural networks using backpropagation
  publication-title: Frontiers in Neuroscience
– start-page: 234
  year: 2015
  end-page: 241
  ident: b191
  article-title: U-net: Convolutional networks for biomedical image segmentation
  publication-title: International conference on medical image computing and computer-assisted intervention
– volume: 219
  start-page: 197
  year: 2013
  end-page: 207
  ident: b209
  article-title: Asynchronous spiking neural P systems with local synchronization
  publication-title: Information Sciences
– volume: 7
  year: 2011
  ident: b248
  article-title: A sparse coding model with synaptically local plasticity and spiking neurons can account for the diverse shapes of V1 simple cell receptive fields
  publication-title: PLoS Computational Biology
– volume: 103
  start-page: 2219
  year: 2015
  end-page: 2224
  ident: b134
  article-title: To spike or not to spike: That is the question
  publication-title: Proceedings of the IEEE
– volume: 12
  start-page: 42
  year: 2018
  ident: b175
  article-title: A retinotopic spiking neural network system for accurate recognition of moving objects using NeuCube and dynamic vision sensors
  publication-title: Frontiers in Computational Neuroscience
– volume: 19
  start-page: 295
  year: 2009
  end-page: 308
  ident: b58
  article-title: Spiking neural networks
  publication-title: International Journal of Neural Systems
– year: 2001
  ident: b36
  article-title: Theoretical neuroscience: Computational and mathematical modeling of neural systems
– volume: 32
  start-page: 131
  year: 2010
  end-page: 146
  ident: b145
  article-title: Segmentation and edge detection based on spiking neural network model
  publication-title: Neural Processing Letters
– year: 2018
  ident: b211
  article-title: Principles of neural information theory: Computational neuroscience and metabolic efficiency
– volume: 19
  start-page: 2881
  year: 2007
  end-page: 2912
  ident: b21
  article-title: Learning real-world stimuli in a neural network with spike-driven synaptic dynamics
  publication-title: Neural Computation
– reference: (pp. 770–778).
– volume: 168
  start-page: 413
  year: 2017
  end-page: 426
  ident: b207
  article-title: Cellular and circuit mechanisms shaping the perceptual properties of the primate fovea
  publication-title: Cell
– volume: 3
  year: 2008
  ident: b140
  article-title: Spike timing dependent plasticity finds the start of repeating patterns in continuous spike trains
  publication-title: PloS One
– reference: Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent neural networks on sequence modeling, arXiv preprint
– start-page: 136
  year: 2011
  end-page: 144
  ident: b189
  article-title: Variational learning for recurrent spiking networks
  publication-title: Advances in neural information processing systems
– reference: Krizhevsky, A., & Hinton, G. (2010). Convolutional deep belief networks on CIFAR-10, Unpublished Manuscript 40.
– volume: 11
  start-page: 682
  year: 2017
  ident: b193
  article-title: Conversion of continuous-valued deep networks to efficient event-driven networks for image classification
  publication-title: Frontiers in Neuroscience
– volume: 32
  start-page: i121
  year: 2016
  end-page: i127
  ident: b245
  article-title: Convolutional neural network architectures for predicting DNA–protein binding
  publication-title: Bioinformatics
– volume: 34
  start-page: 1537
  year: 2015
  end-page: 1557
  ident: b3
  article-title: Truenorth: Design and tool flow of a 65 mw 1 million neuron programmable neurosynaptic chip
  publication-title: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
– start-page: 1
  year: 2017
  end-page: 9
  ident: b155
  article-title: Supervised learning based on temporal coding in spiking neural networks
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 113
  start-page: 54
  year: 2015
  end-page: 66
  ident: b26
  article-title: Spiking deep convolutional neural networks for energy-efficient object recognition
  publication-title: International Journal of Computer Vision
– volume: 138
  start-page: 3
  year: 2014
  end-page: 13
  ident: b243
  article-title: A brain-inspired spiking neural network model with temporal encoding and learning
  publication-title: Neurocomputing
– volume: 14
  start-page: 187
  year: 2007
  end-page: 212
  ident: b56
  article-title: Improved spiking neural networks for EEG classification and epilepsy and seizure detection
  publication-title: Integrated Computer-Aided Engineering
– reference: , 1–16.
– year: 2015
  ident: b216
  article-title: Going deeper with convolutions
– volume: 41
  start-page: 188
  year: 2013
  end-page: 201
  ident: b94
  article-title: Dynamic evolving spiking neural networks for on-line spatio-and spectro-temporal pattern recognition
  publication-title: Neural Networks
– volume: 3
  start-page: 127
  year: 2009
  end-page: 149
  ident: b130
  article-title: Reservoir computing approaches to recurrent neural network training
  publication-title: Computer Science Review
– volume: 7
  year: 2012
  ident: b50
  article-title: The chronotron: A neuron that learns to fire temporally precise spike patterns
  publication-title: PloS One
– volume: 10
  start-page: 1659
  year: 1997
  end-page: 1671
  ident: b133
  article-title: Networks of spiking neurons: The third generation of neural network models
  publication-title: Neural networks
– start-page: 1
  year: 2016
  end-page: 10
  ident: b124
  article-title: Randome synaptic feedback weights support error backpropagation for deep learning
  publication-title: Nature Communications
– volume: 8
  start-page: 1
  year: 1996
  end-page: 40
  ident: b132
  article-title: Lower bounds for the computational power of networks of spiking neurons
  publication-title: Neural Computation
– volume: 437
  start-page: 1027
  issue: 7061
  year: 2005
  ident: 10.1016/j.neunet.2018.12.002_b127
  article-title: Repeated cocaine exposure in vivo facilitates LTP induction in midbrain dopamine neurons
  publication-title: Nature
  doi: 10.1038/nature04050
– volume: 26
  start-page: 365
  issue: 4
  year: 2012
  ident: 10.1016/j.neunet.2018.12.002_b131
  article-title: Reservoir computing trends
  publication-title: KI-Künstliche Intelligenz
  doi: 10.1007/s13218-012-0204-5
– volume: 7
  start-page: 1
  year: 2013
  ident: 10.1016/j.neunet.2018.12.002_b168
  article-title: Real-time classification and sensor fusion with a spiking deep belief network
  publication-title: Frontiers in Neuroscience
– start-page: 234
  year: 2015
  ident: 10.1016/j.neunet.2018.12.002_b191
  article-title: U-net: Convolutional networks for biomedical image segmentation
– volume: 13
  start-page: 426
  issue: 2
  year: 2002
  ident: 10.1016/j.neunet.2018.12.002_b19
  article-title: Unsupervised clustering with spiking neurons by sparse temporal coding and multilayer RBF networks
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.991428
– volume: Vol. 1
  start-page: 39
  year: 2009
  ident: 10.1016/j.neunet.2018.12.002_b150
  article-title: Deep belief networks for phone recognition
– volume: 14
  start-page: 179
  issue: 2
  year: 1990
  ident: 10.1016/j.neunet.2018.12.002_b45
  article-title: Finding structure in time
  publication-title: Cognitive Science
  doi: 10.1207/s15516709cog1402_1
– volume: 79
  start-page: 2554
  issue: 8
  year: 1982
  ident: 10.1016/j.neunet.2018.12.002_b77
  article-title: Neural networks and physical systems with emergent collective computational abilities
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.79.8.2554
– start-page: 2282
  year: 2016
  ident: 10.1016/j.neunet.2018.12.002_b163
  article-title: Effective sensor fusion with event-based sensors and deep network architectures
– volume: 58
  start-page: 365
  year: 2004
  ident: 10.1016/j.neunet.2018.12.002_b173
  article-title: Spike-timing-dependent synaptic plasticity: From single spikes to spike trains
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2004.01.068
– volume: 26
  start-page: 1963
  issue: 9
  year: 2015
  ident: 10.1016/j.neunet.2018.12.002_b247
  article-title: Feedforward categorization on AER motion events using cortex-like features in a spiking neural network
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2014.2362542
– start-page: 145
  year: 2016
  ident: 10.1016/j.neunet.2018.12.002_b228
  article-title: Towards recognition of protein function based on its structure using deep convolutional networks
– ident: 10.1016/j.neunet.2018.12.002_b217
  doi: 10.1109/CVPR.2016.308
– volume: 3
  start-page: 195
  issue: 2
  year: 2004
  ident: 10.1016/j.neunet.2018.12.002_b17
  article-title: The evidence for neural information processing with precise spike-times: A survey
  publication-title: Natural Computing
  doi: 10.1023/B:NACO.0000027755.02868.60
– volume: 3
  start-page: 127
  issue: 3
  year: 2009
  ident: 10.1016/j.neunet.2018.12.002_b130
  article-title: Reservoir computing approaches to recurrent neural network training
  publication-title: Computer Science Review
  doi: 10.1016/j.cosrev.2009.03.005
– volume: 64
  start-page: 165
  issue: 2
  year: 1990
  ident: 10.1016/j.neunet.2018.12.002_b51
  article-title: Forming sparse representations by local anti-hebbian learning
  publication-title: Biological Cybernetics
  doi: 10.1007/BF02331346
– ident: 10.1016/j.neunet.2018.12.002_b240
– start-page: 53
  year: 2007
  ident: 10.1016/j.neunet.2018.12.002_b63
  article-title: Character recognition using spiking neural networks
– start-page: 1
  year: 2010
  ident: 10.1016/j.neunet.2018.12.002_b144
  article-title: Learning to recognize objects using waves of spikes and spike timing-dependent plasticity
– ident: 10.1016/j.neunet.2018.12.002_b41
  doi: 10.1109/ICRC.2016.7738691
– year: 2015
  ident: 10.1016/j.neunet.2018.12.002_b216
– volume: 31
  start-page: 25
  year: 2008
  ident: 10.1016/j.neunet.2018.12.002_b27
  article-title: Spike timing-dependent plasticity: A Hebbian learning rule
  publication-title: Annual Review of Neuroscience
  doi: 10.1146/annurev.neuro.31.060407.125639
– volume: 19
  start-page: 1437
  issue: 6
  year: 2007
  ident: 10.1016/j.neunet.2018.12.002_b154
  article-title: Spike-timing-dependent plasticity in balanced random networks
  publication-title: Neural Computation
  doi: 10.1162/neco.2007.19.6.1437
– volume: 26
  start-page: 989
  year: 1999
  ident: 10.1016/j.neunet.2018.12.002_b37
  article-title: SpikeNET: A simulator for modeling large networks of integrate and fire neurons
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(99)00095-8
– ident: 10.1016/j.neunet.2018.12.002_b82
– volume: 9
  start-page: 420
  issue: 3
  year: 2006
  ident: 10.1016/j.neunet.2018.12.002_b64
  article-title: The tempotron: A neuron that learns spike timing-based decisions
  publication-title: Nature Neuroscience
  doi: 10.1038/nn1643
– volume: 138
  start-page: 3
  year: 2014
  ident: 10.1016/j.neunet.2018.12.002_b243
  article-title: A brain-inspired spiking neural network model with temporal encoding and learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.06.052
– year: 2001
  ident: 10.1016/j.neunet.2018.12.002_b36
– volume: 113
  start-page: 54
  issue: 1
  year: 2015
  ident: 10.1016/j.neunet.2018.12.002_b26
  article-title: Spiking deep convolutional neural networks for energy-efficient object recognition
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-014-0788-3
– year: 1991
  ident: 10.1016/j.neunet.2018.12.002_b70
– volume: 11
  issue: 12
  year: 2015
  ident: 10.1016/j.neunet.2018.12.002_b24
  article-title: Mirrored STDP implements autoencoder learning in a network of spiking neurons
  publication-title: PLoS Computational Biology
  doi: 10.1371/journal.pcbi.1004566
– volume: 22
  start-page: 467
  issue: 2
  year: 2010
  ident: 10.1016/j.neunet.2018.12.002_b181
  article-title: Supervised learning in spiking neural networks with ReSuMe: Sequence learning, classification, and spike shifting
  publication-title: Neural Computation
  doi: 10.1162/neco.2009.11-08-901
– start-page: 81
  year: 2017
  ident: 10.1016/j.neunet.2018.12.002_b225
  article-title: Multi-layer unsupervised learning in a spiking convolutional neural network
– volume: 95
  start-page: 552
  issue: 6
  year: 2005
  ident: 10.1016/j.neunet.2018.12.002_b20
  article-title: A gradient descent rule for spiking neurons emitting multiple spikes
  publication-title: Information Processing Letters
  doi: 10.1016/j.ipl.2005.05.023
– volume: 32
  start-page: 131
  issue: 2
  year: 2010
  ident: 10.1016/j.neunet.2018.12.002_b145
  article-title: Segmentation and edge detection based on spiking neural network model
  publication-title: Neural Processing Letters
  doi: 10.1007/s11063-010-9149-6
– volume: 51
  start-page: 793
  issue: 9
  year: 2009
  ident: 10.1016/j.neunet.2018.12.002_b108
  article-title: Towards a neurocomputational model of speech production and perception
  publication-title: Speech Communication
  doi: 10.1016/j.specom.2008.08.002
– ident: 10.1016/j.neunet.2018.12.002_b83
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  ident: 10.1016/j.neunet.2018.12.002_b116
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proceedings of the IEEE
  doi: 10.1109/5.726791
– year: 2017
  ident: 10.1016/j.neunet.2018.12.002_b210
  article-title: Motor control by precisely timed spike patterns
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1611734114
– start-page: 160
  year: 2011
  ident: 10.1016/j.neunet.2018.12.002_b199
  article-title: Reservoir-based evolving spiking neural network for spatio-temporal pattern recognition
– ident: 10.1016/j.neunet.2018.12.002_b129
  doi: 10.1109/CVPR.2015.7298965
– volume: 32
  start-page: 1133
  issue: 7
  year: 2008
  ident: 10.1016/j.neunet.2018.12.002_b158
  article-title: Optimal predictions in everyday cognition: The wisdom of individuals or crowds?
  publication-title: Cognitive Science
  doi: 10.1080/03640210802353016
– start-page: 1096
  year: 2009
  ident: 10.1016/j.neunet.2018.12.002_b122
  article-title: Unsupervised feature learning for audio classification using convolutional deep belief networks
– volume: 2
  start-page: 1
  issue: 1
  year: 2009
  ident: 10.1016/j.neunet.2018.12.002_b11
  article-title: Learning deep architectures for AI
  publication-title: Foundations and Trends in Machine Learning
  doi: 10.1561/2200000006
– volume: 11
  start-page: 350
  year: 2017
  ident: 10.1016/j.neunet.2018.12.002_b214
  article-title: An event-driven classifier for spiking neural networks fed with synthetic or dynamic vision sensor data
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2017.00350
– ident: 10.1016/j.neunet.2018.12.002_b206
– volume: 9
  start-page: 1015
  issue: 5
  year: 1997
  ident: 10.1016/j.neunet.2018.12.002_b102
  article-title: Reduction of the Hodgkin-Huxley equations to a single-variable threshold model
  publication-title: Neural Computation
  doi: 10.1162/neco.1997.9.5.1015
– ident: 10.1016/j.neunet.2018.12.002_b171
  doi: 10.1109/CVPR.2014.222
– ident: 10.1016/j.neunet.2018.12.002_b194
– ident: 10.1016/j.neunet.2018.12.002_b12
– volume: 29
  start-page: 82
  issue: 6
  year: 2012
  ident: 10.1016/j.neunet.2018.12.002_b72
  article-title: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups
  publication-title: IEEE Signal Processing Magazine
  doi: 10.1109/MSP.2012.2205597
– volume: 48
  start-page: 109
  year: 2013
  ident: 10.1016/j.neunet.2018.12.002_b15
  article-title: Categorization and decision-making in a neurobiologically plausible spiking network using a STDP-like learning rule
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2013.07.012
– volume: 134
  start-page: 269
  year: 2014
  ident: 10.1016/j.neunet.2018.12.002_b95
  article-title: Evolving spiking neural networks for personalised modelling, classification and prediction of spatio-temporal patterns with a case study on stroke
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.09.049
– start-page: 1
  year: 2015
  ident: 10.1016/j.neunet.2018.12.002_b4
  article-title: Normad-normalized approximate descent based supervised learning rule for spiking neurons
– start-page: 299
  year: 2016
  ident: 10.1016/j.neunet.2018.12.002_b174
  article-title: Unsupervised regenerative learning of hierarchical features in spiking deep networks for object recognition
– volume: 148
  start-page: 574
  issue: 3
  year: 1959
  ident: 10.1016/j.neunet.2018.12.002_b79
  article-title: Receptive fields of single neurones in the cat’s striate cortex
  publication-title: The Journal of Physiology
  doi: 10.1113/jphysiol.1959.sp006308
– volume: 54
  start-page: 95
  issue: 10
  year: 2011
  ident: 10.1016/j.neunet.2018.12.002_b121
  article-title: Unsupervised learning of hierarchical representations with convolutional deep belief networks
  publication-title: Communications of the ACM
  doi: 10.1145/2001269.2001295
– volume: 22
  start-page: 2621
  issue: 12
  year: 2014
  ident: 10.1016/j.neunet.2018.12.002_b162
  article-title: Minitaur, an event-driven FPGA-based spiking network accelerator
  publication-title: IEEE Transactions on Very Large Scale Integration (VLSI) Systems
  doi: 10.1109/TVLSI.2013.2294916
– start-page: 631
  year: 2017
  ident: 10.1016/j.neunet.2018.12.002_b205
  article-title: A spike-based long short-term memory on a neurosynaptic processor
– volume: 9
  start-page: 1
  year: 2015
  ident: 10.1016/j.neunet.2018.12.002_b213
  article-title: Robustness of spiking deep belief networks to noise and reduced bit precision of neuro-inspired hardware platforms
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2015.00222
– volume: 17
  start-page: 859
  issue: 4
  year: 2005
  ident: 10.1016/j.neunet.2018.12.002_b65
  article-title: Neurons tune to the earliest spikes through STDP
  publication-title: Neural Computation
  doi: 10.1162/0899766053429390
– volume: 30
  start-page: 1514
  issue: 6
  year: 2017
  ident: 10.1016/j.neunet.2018.12.002_b246
  article-title: SuperSpike: Supervised learning in multi-layer spiking neural networks
  publication-title: Neural Computation
  doi: 10.1162/neco_a_01086
– volume: 117
  start-page: 500
  issue: 4
  year: 1952
  ident: 10.1016/j.neunet.2018.12.002_b76
  article-title: A quantitative description of membrane current and its application to conduction and excitation in nerve
  publication-title: The Journal of Physiology
  doi: 10.1113/jphysiol.1952.sp004764
– start-page: 899
  year: 2017
  ident: 10.1016/j.neunet.2018.12.002_b223
  article-title: Bio-inspired multi-layer spiking neural network extracts discriminative features from speech signals
– volume: 34
  start-page: 1537
  issue: 10
  year: 2015
  ident: 10.1016/j.neunet.2018.12.002_b3
  article-title: Truenorth: Design and tool flow of a 65 mw 1 million neuron programmable neurosynaptic chip
  publication-title: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
  doi: 10.1109/TCAD.2015.2474396
– ident: 10.1016/j.neunet.2018.12.002_b81
– volume: 18
  start-page: 851
  issue: 5
  year: 2017
  ident: 10.1016/j.neunet.2018.12.002_b148
  article-title: Deep learning in bioinformatics
  publication-title: Briefings in Bioinformatics
– volume: 37
  start-page: 3327
  issue: 23
  year: 1997
  ident: 10.1016/j.neunet.2018.12.002_b9
  article-title: The “independent components” of natural scenes are edge filters
  publication-title: Vision Research
  doi: 10.1016/S0042-6989(97)00121-1
– volume: 22
  start-page: 79
  issue: 1
  year: 1951
  ident: 10.1016/j.neunet.2018.12.002_b109
  article-title: On information and sufficiency
  publication-title: The Annals of Mathematical Statistics
  doi: 10.1214/aoms/1177729694
– volume: 449
  start-page: 92
  issue: 7158
  year: 2007
  ident: 10.1016/j.neunet.2018.12.002_b25
  article-title: Temporal precision in the neural code and the timescales of natural vision
  publication-title: Nature
  doi: 10.1038/nature06105
– volume: Vol. 656
  year: 2007
  ident: 10.1016/j.neunet.2018.12.002_b71
  article-title: How to do backpropagation in a brain
– start-page: 1
  year: 2018
  ident: 10.1016/j.neunet.2018.12.002_b219
  article-title: Training spiking convnets by STDP and Gradient Descent
– volume: 391
  start-page: 245
  year: 1998
  ident: 10.1016/j.neunet.2018.12.002_b34
  article-title: Constrains on cortical and thalamic projections: The no-strong-loops hypothesis
  publication-title: Nature
  doi: 10.1038/34584
– ident: 10.1016/j.neunet.2018.12.002_b106
– volume: 144
  start-page: 526
  year: 2014
  ident: 10.1016/j.neunet.2018.12.002_b239
  article-title: An online supervised learning method for spiking neural networks with adaptive structure
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.04.017
– volume: 14
  start-page: 187
  issue: 3
  year: 2007
  ident: 10.1016/j.neunet.2018.12.002_b56
  article-title: Improved spiking neural networks for EEG classification and epilepsy and seizure detection
  publication-title: Integrated Computer-Aided Engineering
  doi: 10.3233/ICA-2007-14301
– volume: 9
  issue: 4
  year: 2013
  ident: 10.1016/j.neunet.2018.12.002_b166
  article-title: Bayesian computation emerges in generic cortical microcircuits through spike-timing-dependent plasticity
  publication-title: PLoS Computational Biology
  doi: 10.1371/journal.pcbi.1003037
– volume: 118
  issue: 1
  year: 2017
  ident: 10.1016/j.neunet.2018.12.002_b182
  article-title: Spatiotemporal dynamics and reliable computations in recurrent spiking neural networks
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.118.018103
– ident: 10.1016/j.neunet.2018.12.002_b118
– volume: 137
  start-page: 47
  year: 2014
  ident: 10.1016/j.neunet.2018.12.002_b110
  article-title: Time series forecasting using a deep belief network with restricted Boltzmann machines
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.03.047
– ident: 10.1016/j.neunet.2018.12.002_b112
– volume: 40
  start-page: 1063
  issue: 6
  year: 2003
  ident: 10.1016/j.neunet.2018.12.002_b204
  article-title: Learning in spiking neural networks by reinforcement of stochastic synaptic transmission
  publication-title: Neuron
  doi: 10.1016/S0896-6273(03)00761-X
– volume: 38
  start-page: 1346
  issue: 7
  year: 2017
  ident: 10.1016/j.neunet.2018.12.002_b111
  article-title: HOTS: A hierarchy of event-based time-surfaces for pattern recognition
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2016.2574707
– volume: 44
  start-page: 937
  year: 2002
  ident: 10.1016/j.neunet.2018.12.002_b159
  article-title: Speech recognition with spiking neurons and dynamic synapses: A model motivated by the human auditory pathway
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(02)00494-0
– year: 2011
  ident: 10.1016/j.neunet.2018.12.002_b192
– volume: 115
  start-page: 211
  issue: 3
  year: 2015
  ident: 10.1016/j.neunet.2018.12.002_b195
  article-title: ImageNet large scale visual recognition challenge
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-015-0816-y
– volume: 7
  issue: 10
  year: 2011
  ident: 10.1016/j.neunet.2018.12.002_b248
  article-title: A sparse coding model with synaptically local plasticity and spiking neurons can account for the diverse shapes of V1 simple cell receptive fields
  publication-title: PLoS Computational Biology
  doi: 10.1371/journal.pcbi.1002250
– start-page: 1
  year: 2015
  ident: 10.1016/j.neunet.2018.12.002_b40
  article-title: Fast-classifying, high-accuracy spiking deep networks through weight and threshold balancing
– year: 2008
  ident: 10.1016/j.neunet.2018.12.002_b215
  article-title: Generating facial expressions with deep belief nets
– volume: 103
  start-page: 2219
  issue: 12
  year: 2015
  ident: 10.1016/j.neunet.2018.12.002_b134
  article-title: To spike or not to spike: That is the question
  publication-title: Proceedings of the IEEE
  doi: 10.1109/JPROC.2015.2496679
– volume: 48
  start-page: 17
  issue: 1
  year: 2002
  ident: 10.1016/j.neunet.2018.12.002_b18
  article-title: Error-backpropagation in temporally encoded networks of spiking neurons
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(01)00658-0
– start-page: 873
  year: 2008
  ident: 10.1016/j.neunet.2018.12.002_b120
  article-title: Sparse deep belief net model for visual area V2
– year: 2007
  ident: 10.1016/j.neunet.2018.12.002_b43
– start-page: 1
  year: 2016
  ident: 10.1016/j.neunet.2018.12.002_b229
  article-title: Acquisition of visual features through probabilistic spike timing dependent plasticity
– volume: 15
  start-page: 585
  issue: 5
  year: 2005
  ident: 10.1016/j.neunet.2018.12.002_b235
  article-title: Spike train metrics
  publication-title: Current Opinion in Neurobiology
  doi: 10.1016/j.conb.2005.08.002
– volume: Vol. 3
  start-page: 2175
  year: 1998
  ident: 10.1016/j.neunet.2018.12.002_b123
  article-title: Robust speech recognition with dynamic synapses
– start-page: 846
  year: 2003
  ident: 10.1016/j.neunet.2018.12.002_b87
  article-title: The spike response model: A framework to predict neuronal spike trains
– ident: 10.1016/j.neunet.2018.12.002_b31
– volume: 61
  start-page: 85
  year: 2015
  ident: 10.1016/j.neunet.2018.12.002_b200
  article-title: Deep learning in neural networks: An overview
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2014.09.003
– start-page: 8012
  year: 2013
  ident: 10.1016/j.neunet.2018.12.002_b89
  article-title: Multi-distribution deep belief network for speech synthesis
– volume: 20
  start-page: 5392
  issue: 14
  year: 2000
  ident: 10.1016/j.neunet.2018.12.002_b188
  article-title: Temporal coding of visual information in the thalamus
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.20-14-05392.2000
– ident: 10.1016/j.neunet.2018.12.002_b117
– volume: 44
  issue: 11
  year: 2016
  ident: 10.1016/j.neunet.2018.12.002_b183
  article-title: DanQ: A hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkw226
– volume: 9
  start-page: 437
  year: 2015
  ident: 10.1016/j.neunet.2018.12.002_b172
  article-title: Converting static image datasets to spiking neuromorphic datasets using saccades
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2015.00437
– ident: 10.1016/j.neunet.2018.12.002_b222
– volume: 18
  start-page: 1527
  issue: 7
  year: 2006
  ident: 10.1016/j.neunet.2018.12.002_b73
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Computation
  doi: 10.1162/neco.2006.18.7.1527
– volume: 32
  start-page: i121
  issue: 12
  year: 2016
  ident: 10.1016/j.neunet.2018.12.002_b245
  article-title: Convolutional neural network architectures for predicting DNA–protein binding
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw255
– volume: 52
  start-page: 62
  year: 2014
  ident: 10.1016/j.neunet.2018.12.002_b92
  article-title: NeuCube: A spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2014.01.006
– year: 1999
  ident: 10.1016/j.neunet.2018.12.002_b190
– start-page: 1
  year: 2014
  ident: 10.1016/j.neunet.2018.12.002_b203
  article-title: Hierarchical models of the visual system
– start-page: 1
  year: 2015
  ident: 10.1016/j.neunet.2018.12.002_b212
  article-title: Scalable energy-efficient, low-latency implementations of trained spiking deep belief networks on spinnaker
– start-page: 272
  year: 2017
  ident: 10.1016/j.neunet.2018.12.002_b33
  article-title: Cortical microcircuits as gated-recurrent neural networks
– year: 2016
  ident: 10.1016/j.neunet.2018.12.002_b48
  article-title: Convolutional networks for fast, energy-efficient neuromorphic computing
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1604850113
– volume: 22
  start-page: 1419
  issue: 10
  year: 2009
  ident: 10.1016/j.neunet.2018.12.002_b57
  article-title: A new supervised learning algorithm for multiple spiking neural networks with application in epilepsy and seizure detection
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2009.04.003
– start-page: 1117
  year: 2015
  ident: 10.1016/j.neunet.2018.12.002_b47
  article-title: Backpropagation for energy-efficient neuromorphic computing
– volume: 4
  start-page: 1
  issue: 7
  year: 2015
  ident: 10.1016/j.neunet.2018.12.002_b220
  article-title: A minimal spiking neural network to rapidly train and classify handwritten digits in binary and 10-digit tasks
  publication-title: International Journal of Advanced Research in Artificial Intelligence
  doi: 10.14569/IJARAI.2015.040701
– volume: 240
  start-page: 191
  year: 2017
  ident: 10.1016/j.neunet.2018.12.002_b224
  article-title: A spiking network that learns to extract spike signatures from speech signals
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.01.088
– ident: 10.1016/j.neunet.2018.12.002_b156
– volume: 6
  year: 2016
  ident: 10.1016/j.neunet.2018.12.002_b100
  article-title: Deep networks can resemble human feed-forward vision in invariant object recognition
  publication-title: Scientific Reports
  doi: 10.1038/srep32672
– volume: 41
  start-page: 188
  year: 2013
  ident: 10.1016/j.neunet.2018.12.002_b94
  article-title: Dynamic evolving spiking neural networks for on-line spatio-and spectro-temporal pattern recognition
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2012.11.014
– volume: 11
  issue: 23–63
  year: 1987
  ident: 10.1016/j.neunet.2018.12.002_b62
  article-title: Competitive learning: From interactive activation to adaptive resonance
  publication-title: Cognitive Science
– year: 2014
  ident: 10.1016/j.neunet.2018.12.002_b55
– year: 2003
  ident: 10.1016/j.neunet.2018.12.002_b237
– start-page: 555
  year: 2017
  ident: 10.1016/j.neunet.2018.12.002_b13
  article-title: STDP-compatible approximation of backpropagation in an energy-based model
  publication-title: Neural Computation
  doi: 10.1162/NECO_a_00934
– start-page: 400
  year: 2015
  ident: 10.1016/j.neunet.2018.12.002_b149
  article-title: Rough deep belief network-application to incomplete handwritten digits pattern classification
– volume: 23
  start-page: 819
  issue: 7
  year: 2010
  ident: 10.1016/j.neunet.2018.12.002_b242
  article-title: Evolving spiking neural networks for audiovisual information processing
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2010.04.009
– volume: 8
  start-page: 142
  year: 2017
  ident: 10.1016/j.neunet.2018.12.002_b233
  article-title: Perception science in the age of deep neural networks
  publication-title: Frontiers in Psychology
  doi: 10.3389/fpsyg.2017.00142
– volume: 96
  issue: 4
  year: 2017
  ident: 10.1016/j.neunet.2018.12.002_b7
  article-title: Phase transitions in restricted Boltzmann machines with generic priors
  publication-title: Physical Review E
  doi: 10.1103/PhysRevE.96.042156
– volume: 22
  start-page: 135
  issue: 2
  year: 2007
  ident: 10.1016/j.neunet.2018.12.002_b187
  article-title: A network that uses few active neurones to code visual input predicts the diverse shapes of cortical receptive fields
  publication-title: Journal of Computational Neuroscience
  doi: 10.1007/s10827-006-0003-9
– year: 2017
  ident: 10.1016/j.neunet.2018.12.002_b234
  article-title: A novel data-driven model for real-time influenza forecasting
  publication-title: bioRxiv
– year: 2013
  ident: 10.1016/j.neunet.2018.12.002_b88
– volume: 18
  start-page: 1318
  issue: 6
  year: 2006
  ident: 10.1016/j.neunet.2018.12.002_b180
  article-title: Optimal spike-timing-dependent plasticity for precise action potential firing in supervised learning
  publication-title: Neural Computation
  doi: 10.1162/neco.2006.18.6.1318
– volume: 7
  issue: 8
  year: 2012
  ident: 10.1016/j.neunet.2018.12.002_b50
  article-title: The chronotron: A neuron that learns to fire temporally precise spike patterns
  publication-title: PloS One
  doi: 10.1371/journal.pone.0040233
– volume: 107
  start-page: 3
  year: 2013
  ident: 10.1016/j.neunet.2018.12.002_b153
  article-title: Training spiking neural networks to associate spatio-temporal input-output spike patterns
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.08.034
– volume: 8
  start-page: 127
  issue: 2
  year: 1997
  ident: 10.1016/j.neunet.2018.12.002_b236
  article-title: Metric-space analysis of spike trains: Theory, algorithms and application
  publication-title: Network. Computation in Neural Systems
  doi: 10.1088/0954-898X_8_2_003
– volume: 330
  start-page: 845
  issue: 6005
  year: 2010
  ident: 10.1016/j.neunet.2018.12.002_b52
  article-title: Functional compartmentalization and viewpoint generalization within the macaque face-processing system
  publication-title: Science
  doi: 10.1126/science.1194908
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.neunet.2018.12.002_b115
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: 10.1016/j.neunet.2018.12.002_b68
  doi: 10.1109/CVPR.2016.90
– start-page: 1
  year: 2018
  ident: 10.1016/j.neunet.2018.12.002_b157
  article-title: First-spike based visual categorization using reward-modulated STDP
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– start-page: 1
  year: 2016
  ident: 10.1016/j.neunet.2018.12.002_b124
  article-title: Randome synaptic feedback weights support error backpropagation for deep learning
  publication-title: Nature Communications
– volume: 3
  start-page: 1
  year: 2011
  ident: 10.1016/j.neunet.2018.12.002_b139
  article-title: A history of spike-timing-dependent plasticity
  publication-title: Frontiers in Synaptic Neuroscience
  doi: 10.3389/fnsyn.2011.00004
– start-page: 4277
  year: 2012
  ident: 10.1016/j.neunet.2018.12.002_b2
  article-title: Applying convolutional neural networks concepts to hybrid nn-hmm model for speech recognition
– volume: 70
  start-page: 1297
  issue: 11
  year: 1980
  ident: 10.1016/j.neunet.2018.12.002_b138
  article-title: Mathematical description of the responses of simple cortical cells
  publication-title: Journal of the Optical Society of America
  doi: 10.1364/JOSA.70.001297
– start-page: 1097
  year: 2012
  ident: 10.1016/j.neunet.2018.12.002_b107
  article-title: Imagenet classification with deep convolutional neural networks
– start-page: 1
  year: 2011
  ident: 10.1016/j.neunet.2018.12.002_b146
  article-title: A digital neurosynaptic core using embedded crossbar memory with 45pj per spike in 45nm
– year: 2002
  ident: 10.1016/j.neunet.2018.12.002_b54
– ident: 10.1016/j.neunet.2018.12.002_b10
– ident: 10.1016/j.neunet.2018.12.002_b59
  doi: 10.1109/CVPR.2014.81
– volume: 20
  start-page: 14
  issue: 1
  year: 2012
  ident: 10.1016/j.neunet.2018.12.002_b151
  article-title: Acoustic modeling using deep belief networks
  publication-title: IEEE Transactions on Audio, Speech, and Language Processing
  doi: 10.1109/TASL.2011.2109382
– start-page: 136
  year: 2011
  ident: 10.1016/j.neunet.2018.12.002_b189
  article-title: Variational learning for recurrent spiking networks
– volume: 33
  start-page: 11515
  issue: 28
  year: 2013
  ident: 10.1016/j.neunet.2018.12.002_b103
  article-title: Emergence of dynamic memory traces in cortical microcircuit models through STDP
  publication-title: The Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.5044-12.2013
– start-page: 1
  year: 2017
  ident: 10.1016/j.neunet.2018.12.002_b155
  article-title: Supervised learning based on temporal coding in spiking neural networks
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2017.2726060
– volume: 19
  start-page: 295
  issue: 04
  year: 2009
  ident: 10.1016/j.neunet.2018.12.002_b58
  article-title: Spiking neural networks
  publication-title: International Journal of Neural Systems
  doi: 10.1142/S0129065709002002
– year: 1995
  ident: 10.1016/j.neunet.2018.12.002_b16
– start-page: 450
  year: 2017
  ident: 10.1016/j.neunet.2018.12.002_b126
  article-title: MT-spike: A multilayer time-based spiking neuromorphic architecture with temporal error backpropagation
– volume: 376
  start-page: 33
  issue: 6535
  year: 1995
  ident: 10.1016/j.neunet.2018.12.002_b78
  article-title: Pattern recognition computation using action potential timing for stimulus representation
  publication-title: Nature
  doi: 10.1038/376033a0
– volume: 5
  start-page: 157
  issue: 2
  year: 1994
  ident: 10.1016/j.neunet.2018.12.002_b14
  article-title: Learning long-term dependencies with gradient descent is difficult
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.279181
– volume: 35
  start-page: 2706
  year: 2013
  ident: 10.1016/j.neunet.2018.12.002_b177
  article-title: Mapping from frame-driven to frame-free event-driven vision systems by low-rate rate-coding and coincidence processing. application to feed forward convnets
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2013.71
– volume: 118
  issue: 13
  year: 2017
  ident: 10.1016/j.neunet.2018.12.002_b232
  article-title: Emergence of compositional representations in restricted Boltzmann machines
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.118.138301
– volume: 86
  start-page: 1033
  issue: 3
  year: 2006
  ident: 10.1016/j.neunet.2018.12.002_b35
  article-title: Spike timing-dependent plasticity: From synapse to perception
  publication-title: Physiological Reviews
  doi: 10.1152/physrev.00030.2005
– volume: 33
  start-page: 42
  year: 2012
  ident: 10.1016/j.neunet.2018.12.002_b29
  article-title: Advancing interconnect density for spiking neural network hardware implementations using traffic-aware adaptive network-on-chip routers
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2012.04.004
– start-page: 473
  year: 2010
  ident: 10.1016/j.neunet.2018.12.002_b197
  article-title: Deep belief network for clustering and classification of a continuous data
– start-page: 1
  year: 2018
  ident: 10.1016/j.neunet.2018.12.002_b226
  article-title: BP-STDP: Approximating Backpropagation using spike timing dependent plasticity
  publication-title: Neurocomputing
– start-page: 1
  year: 2011
  ident: 10.1016/j.neunet.2018.12.002_b202
  article-title: A 45nm cmos neuromorphic chip with a scalable architecture for learning in networks of spiking neurons
– volume: 3
  start-page: 919
  issue: 9
  year: 2000
  ident: 10.1016/j.neunet.2018.12.002_b208
  article-title: Competitive Hebbian learning through spike-timing-dependent synaptic plasticity
  publication-title: Nature Neuroscience
  doi: 10.1038/78829
– volume: 427
  start-page: 244
  issue: 6971
  year: 2004
  ident: 10.1016/j.neunet.2018.12.002_b104
  article-title: Bayesian integration in sensorimotor learning
  publication-title: Nature
  doi: 10.1038/nature02169
– volume: 10
  issue: 3
  year: 2014
  ident: 10.1016/j.neunet.2018.12.002_b90
  article-title: STDP installs in winner-take-all circuits an online approximation to hidden Markov model learning
  publication-title: PLoS Computational Biology
  doi: 10.1371/journal.pcbi.1003511
– ident: 10.1016/j.neunet.2018.12.002_b169
– volume: 160
  start-page: 106
  issue: 1
  year: 1962
  ident: 10.1016/j.neunet.2018.12.002_b80
  article-title: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex
  publication-title: The Journal of Physiology
  doi: 10.1113/jphysiol.1962.sp006837
– volume: 7
  issue: 11
  year: 2011
  ident: 10.1016/j.neunet.2018.12.002_b23
  article-title: Neural dynamics as sampling: A model for stochastic computation in recurrent networks of spiking neurons
  publication-title: PLoS Computational Biology
  doi: 10.1371/journal.pcbi.1002211
– volume: 268
  start-page: 1503
  year: 1995
  ident: 10.1016/j.neunet.2018.12.002_b136
  article-title: Reliability of spike timing in neocortical neurons
  publication-title: Science
  doi: 10.1126/science.7770778
– volume: 26
  start-page: 9673
  issue: 38
  year: 2006
  ident: 10.1016/j.neunet.2018.12.002_b179
  article-title: Triplets of spikes in a model of spike timing-dependent plasticity
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.1425-06.2006
– ident: 10.1016/j.neunet.2018.12.002_b32
– year: 2016
  ident: 10.1016/j.neunet.2018.12.002_b61
– volume: 10
  start-page: 92
  year: 2016
  ident: 10.1016/j.neunet.2018.12.002_b99
  article-title: Humans and deep networks largely agree on which kinds of variation make object recognition harder
  publication-title: Frontiers in Computational Neuroscience
  doi: 10.3389/fncom.2016.00092
– volume: 8
  start-page: 1
  year: 2014
  ident: 10.1016/j.neunet.2018.12.002_b161
  article-title: Event-driven contrastive divergence for spiking neuromorphic systems
  publication-title: Frontiers in Neuroscience
– volume: 12
  start-page: 1
  issue: 774
  year: 2018
  ident: 10.1016/j.neunet.2018.12.002_b178
  article-title: Deep learning with spiking neurons: Opportunities and challenges
  publication-title: Frontiers in Neuroscience
– volume: 99
  start-page: 56
  year: 2018
  ident: 10.1016/j.neunet.2018.12.002_b98
  article-title: STDP-based spiking deep convolutional neural networks for object recognition
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2017.12.005
– volume: 19
  start-page: 2881
  issue: 11
  year: 2007
  ident: 10.1016/j.neunet.2018.12.002_b21
  article-title: Learning real-world stimuli in a neural network with spike-driven synaptic dynamics
  publication-title: Neural Computation
  doi: 10.1162/neco.2007.19.11.2881
– volume: 1
  start-page: 1
  issue: 1
  year: 1991
  ident: 10.1016/j.neunet.2018.12.002_b49
  article-title: Distributed hierarchical processing in the primate cerebral cortex
  publication-title: Cerebral Cortex
  doi: 10.1093/cercor/1.1.1
– start-page: 2352
  year: 2017
  ident: 10.1016/j.neunet.2018.12.002_b186
  article-title: Deep convolutional neural networks for image classification: A comprehensive review
  publication-title: Neural Computation
  doi: 10.1162/neco_a_00990
– volume: 14
  start-page: 2531
  issue: 11
  year: 2002
  ident: 10.1016/j.neunet.2018.12.002_b135
  article-title: Real-time computing without stable states: A new framework for neural computation based on perturbations
  publication-title: Neural Computation
  doi: 10.1162/089976602760407955
– volume: 8
  start-page: 8912
  issue: 1
  year: 2018
  ident: 10.1016/j.neunet.2018.12.002_b42
  article-title: Modelling peri-perceptual brain processes in a deep learning spiking neural network architecture
  publication-title: Scientific Reports
  doi: 10.1038/s41598-018-27169-8
– volume: 20
  start-page: 1631
  issue: 6
  year: 2008
  ident: 10.1016/j.neunet.2018.12.002_b113
  article-title: Representational power of restricted boltzmann machines and deep belief networks
  publication-title: Neural Computation
  doi: 10.1162/neco.2008.04-07-510
– volume: 79
  start-page: 633
  issue: 3
  year: 1990
  ident: 10.1016/j.neunet.2018.12.002_b30
  article-title: A decrease in firing threshold observed after induction of the EPSP-spike (ES) component of long-term potentiation in rat hippocampal slices
  publication-title: Experimental Brain Research
  doi: 10.1007/BF00229331
– volume: 345
  start-page: 668
  issue: 6197
  year: 2014
  ident: 10.1016/j.neunet.2018.12.002_b147
  article-title: A million spiking-neuron integrated circuit with a scalable communication network and interface
  publication-title: Science
  doi: 10.1126/science.1254642
– start-page: 1609
  year: 2004
  ident: 10.1016/j.neunet.2018.12.002_b244
  article-title: Probabilistic computation in spiking populations
– volume: 8
  start-page: 1
  issue: 1
  year: 1996
  ident: 10.1016/j.neunet.2018.12.002_b132
  article-title: Lower bounds for the computational power of networks of spiking neurons
  publication-title: Neural Computation
  doi: 10.1162/neco.1996.8.1.1
– ident: 10.1016/j.neunet.2018.12.002_b201
– start-page: 1357
  year: 2009
  ident: 10.1016/j.neunet.2018.12.002_b167
  article-title: STDP enables spiking neurons to detect hidden causes of their inputs
– volume: 3
  issue: 1
  year: 2008
  ident: 10.1016/j.neunet.2018.12.002_b140
  article-title: Spike timing dependent plasticity finds the start of repeating patterns in continuous spike trains
  publication-title: PloS One
  doi: 10.1371/journal.pone.0001377
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.neunet.2018.12.002_b74
  article-title: Long short-term memory
  publication-title: Neural Computation
  doi: 10.1162/neco.1997.9.8.1735
– ident: 10.1016/j.neunet.2018.12.002_b125
  doi: 10.1109/CVPR.2014.233
– year: 2015
  ident: 10.1016/j.neunet.2018.12.002_b84
  article-title: Neuromorphic architectures for spiking deep neural networks
– volume: 6
  issue: 4
  year: 2010
  ident: 10.1016/j.neunet.2018.12.002_b198
  article-title: Independent component analysis in spiking neurons
  publication-title: PLoS Computational Biology
  doi: 10.1371/journal.pcbi.1000757
– year: 2018
  ident: 10.1016/j.neunet.2018.12.002_b211
– volume: 82
  start-page: 284
  issue: 3
  year: 2009
  ident: 10.1016/j.neunet.2018.12.002_b46
  article-title: Action recognition using a bio-inspired feedforward spiking network
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-008-0201-1
– start-page: 1
  year: 2015
  ident: 10.1016/j.neunet.2018.12.002_b221
  article-title: Studying the interaction of a hidden Markov model with a Bayesian spiking neural network
– volume: 8
  start-page: 1185
  issue: 6
  year: 1996
  ident: 10.1016/j.neunet.2018.12.002_b5
  article-title: Temporal precision of spike trains in extrastriate cortex of the behaving macaque monkey
  publication-title: Neural Computation
  doi: 10.1162/neco.1996.8.6.1185
– volume: 31
  start-page: 15844
  issue: 44
  year: 2011
  ident: 10.1016/j.neunet.2018.12.002_b69
  article-title: Natural movies evoke spike trains with low spike time variability in cat primary visual cortex
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.5153-10.2011
– volume: 10
  start-page: 508
  year: 2016
  ident: 10.1016/j.neunet.2018.12.002_b119
  article-title: Training deep spiking neural networks using backpropagation
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2016.00508
– volume: 21
  start-page: 1259
  issue: 5
  year: 2009
  ident: 10.1016/j.neunet.2018.12.002_b141
  article-title: Competitive STDP-based spike pattern learning
  publication-title: Neural computation
  doi: 10.1162/neco.2008.06-08-804
– volume: 381
  start-page: 607
  issue: 6583
  year: 1996
  ident: 10.1016/j.neunet.2018.12.002_b170
  article-title: Emergence of simple-cell receptive field properties by learning a sparse code for natural images
  publication-title: Nature
  doi: 10.1038/381607a0
– start-page: 3366
  year: 2013
  ident: 10.1016/j.neunet.2018.12.002_b1
  article-title: Exploring convolutional neural network structures and optimization techniques for speech recognition
– ident: 10.1016/j.neunet.2018.12.002_b164
– start-page: 8614
  year: 2013
  ident: 10.1016/j.neunet.2018.12.002_b196
  article-title: Deep convolutional neural networks for LVCSR
– volume: 219
  start-page: 197
  year: 2013
  ident: 10.1016/j.neunet.2018.12.002_b209
  article-title: Asynchronous spiking neural P systems with local synchronization
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2012.07.023
– volume: 95
  start-page: 245
  issue: 2
  year: 2017
  ident: 10.1016/j.neunet.2018.12.002_b67
  article-title: Neuroscience-inspired artificial intelligence
  publication-title: Neuron
  doi: 10.1016/j.neuron.2017.06.011
– volume: 14
  start-page: 1569
  issue: 6
  year: 2003
  ident: 10.1016/j.neunet.2018.12.002_b85
  article-title: Simple model of spiking neurons
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2003.820440
– volume: 22
  start-page: 2192
  issue: 8
  year: 2010
  ident: 10.1016/j.neunet.2018.12.002_b114
  article-title: Deep belief networks are compact universal approximators
  publication-title: Neural Computation
  doi: 10.1162/neco.2010.08-09-1081
– volume: 24
  start-page: 2451
  issue: 12
  year: 2013
  ident: 10.1016/j.neunet.2018.12.002_b28
  article-title: Scalable hierarchical network-on-chip architecture for spiking neural network hardware implementations
  publication-title: IEEE Transactions on Parallel and Distributed Systems
  doi: 10.1109/TPDS.2012.289
– start-page: 1
  year: 2014
  ident: 10.1016/j.neunet.2018.12.002_b53
  article-title: Variability-tolerant convolutional neural network for pattern recognition applications based on oxram synapses
– start-page: 234
  year: 2012
  ident: 10.1016/j.neunet.2018.12.002_b91
  article-title: Evolving spiking neural networks and neurogenetic systems for spatio-and spectro-temporal data modelling and pattern recognition
– volume: 10
  start-page: 1659
  issue: 9
  year: 1997
  ident: 10.1016/j.neunet.2018.12.002_b133
  article-title: Networks of spiking neurons: The third generation of neural network models
  publication-title: Neural networks
  doi: 10.1016/S0893-6080(97)00011-7
– volume: 33
  start-page: 5475
  issue: 13
  year: 2013
  ident: 10.1016/j.neunet.2018.12.002_b101
  article-title: Inhibitory interneurons decorrelate excitatory cells to drive sparse code formation in a spiking model of V1
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.4188-12.2013
– volume: 22
  issue: 04
  year: 2012
  ident: 10.1016/j.neunet.2018.12.002_b152
  article-title: Span: Spike pattern association neuron for learning spatio-temporal spike patterns
  publication-title: International Journal of Neural Systems
  doi: 10.1142/S0129065712500128
– volume: 319
  start-page: 1108
  issue: 5866
  year: 2008
  ident: 10.1016/j.neunet.2018.12.002_b60
  article-title: Rapid neural coding in the retina with relative spike latencies
  publication-title: Science
  doi: 10.1126/science.1149639
– volume: 12
  start-page: 1
  year: 2018
  ident: 10.1016/j.neunet.2018.12.002_b231
  article-title: Event-based, timescale invariant unsupervised online learning with STDP
  publication-title: Frontiers in Computational Neuroscience
  doi: 10.3389/fncom.2018.00046
– ident: 10.1016/j.neunet.2018.12.002_b142
– volume: 12
  start-page: 42
  year: 2018
  ident: 10.1016/j.neunet.2018.12.002_b175
  article-title: A retinotopic spiking neural network system for accurate recognition of moving objects using NeuCube and dynamic vision sensors
  publication-title: Frontiers in Computational Neuroscience
  doi: 10.3389/fncom.2018.00042
– volume: 16
  start-page: 101
  issue: 1
  year: 2006
  ident: 10.1016/j.neunet.2018.12.002_b96
  article-title: Comparison of supervised learning platforms for spike time coding in spiking neural networks
  publication-title: International Journal of Applied Mathematics and Computer Science
– start-page: 1422
  year: 2011
  ident: 10.1016/j.neunet.2018.12.002_b22
  article-title: Sequence learning with hidden units in spiking neural networks
– start-page: 1
  year: 2009
  ident: 10.1016/j.neunet.2018.12.002_b105
– volume: 13
  start-page: 1445
  issue: 5
  year: 2016
  ident: 10.1016/j.neunet.2018.12.002_b137
  article-title: Applications of deep learning in biomedicine
  publication-title: Molecular Pharmaceutics
  doi: 10.1021/acs.molpharmaceut.5b00982
– start-page: 248
  year: 2009
  ident: 10.1016/j.neunet.2018.12.002_b38
  article-title: Imagenet: A large-scale hierarchical image database
– volume: 338
  start-page: 1202
  issue: 6111
  year: 2012
  ident: 10.1016/j.neunet.2018.12.002_b44
  article-title: A large-scale model of the functioning brain
  publication-title: Science
  doi: 10.1126/science.1225266
– volume: 9
  start-page: 1
  year: 2015
  ident: 10.1016/j.neunet.2018.12.002_b39
  article-title: Unsupervised learning of digit recognition using spike-timing-dependent plasticity
  publication-title: Frontiers in Computational Neuroscience
  doi: 10.3389/fncom.2015.00099
– volume: 205
  start-page: 382
  year: 2016
  ident: 10.1016/j.neunet.2018.12.002_b97
  article-title: Bio-inspired unsupervised learning of visual features leads to robust invariant object recognition
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.04.029
– volume: 90
  start-page: 211
  issue: 2
  year: 2018
  ident: 10.1016/j.neunet.2018.12.002_b227
  article-title: Training a hidden Markov model with a Bayesian spiking neural network
  publication-title: Journal of Signal Processing Systems
  doi: 10.1007/s11265-016-1153-2
– volume: 105
  start-page: 294
  year: 2018
  ident: 10.1016/j.neunet.2018.12.002_b230
  article-title: Representation learning using event-based STDP
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2018.05.018
– volume: 12
  start-page: 288
  issue: 3
  year: 2013
  ident: 10.1016/j.neunet.2018.12.002_b184
  article-title: Immunity to device variations in a spiking neural network with memristive nanodevices
  publication-title: IEEE Transactions on Nanotechnology
  doi: 10.1109/TNANO.2013.2250995
– volume: Vol. 4
  start-page: 2076
  year: 2005
  ident: 10.1016/j.neunet.2018.12.002_b128
  article-title: Exploration of rank order coding with spiking neural networks for speech recognition
– volume: 3
  issue: 2
  year: 2007
  ident: 10.1016/j.neunet.2018.12.002_b143
  article-title: Unsupervised learning of visual features through spike timing dependent plasticity
  publication-title: PLoS Computational Biology
  doi: 10.1371/journal.pcbi.0030031
– volume: 71
  start-page: 2563
  issue: 13
  year: 2008
  ident: 10.1016/j.neunet.2018.12.002_b241
  article-title: Fast and adaptive network of spiking neurons for multi-view visual pattern recognition
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2007.12.038
– year: 2018
  ident: 10.1016/j.neunet.2018.12.002_b93
– volume: Vol. 10
  start-page: 339
  year: 2010
  ident: 10.1016/j.neunet.2018.12.002_b66
  article-title: Learning features from music audio with deep belief networks
– volume: 168
  start-page: 413
  issue: 3
  year: 2017
  ident: 10.1016/j.neunet.2018.12.002_b207
  article-title: Cellular and circuit mechanisms shaping the perceptual properties of the primate fovea
  publication-title: Cell
  doi: 10.1016/j.cell.2017.01.005
– year: 2002
  ident: 10.1016/j.neunet.2018.12.002_b185
– volume: 34
  start-page: 1
  year: 2012
  ident: 10.1016/j.neunet.2018.12.002_b6
  article-title: On the equivalence of Hopfield networks and Boltzmann machines
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2012.06.003
– volume: 11
  start-page: 324
  year: 2017
  ident: 10.1016/j.neunet.2018.12.002_b160
  article-title: Event-driven random back-propagation: Enabling neuromorphic deep learning machines
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2017.00324
– volume: 11
  start-page: 682
  year: 2017
  ident: 10.1016/j.neunet.2018.12.002_b193
  article-title: Conversion of continuous-valued deep networks to efficient event-driven networks for image classification
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2017.00682
– volume: 12
  issue: 12
  year: 2014
  ident: 10.1016/j.neunet.2018.12.002_b218
  article-title: Millisecond-scale motor encoding in a cortical vocal area
  publication-title: PLoS Biology
  doi: 10.1371/journal.pbio.1002018
– volume: 5
  year: 2015
  ident: 10.1016/j.neunet.2018.12.002_b86
  article-title: Improving protein fold recognition by deep learning networks
  publication-title: Scientific Reports
  doi: 10.1038/srep17573
– start-page: 293
  year: 2016
  ident: 10.1016/j.neunet.2018.12.002_b165
  article-title: Learning to be efficient: Algorithms for training low-latency, low-compute deep spiking neural networks
– volume: 97
  issue: 2
  year: 2018
  ident: 10.1016/j.neunet.2018.12.002_b8
  article-title: Phase diagram of restricted Boltzmann machines and generalized Hopfield networks with arbitrary priors
  publication-title: Physical Review E
  doi: 10.1103/PhysRevE.97.022310
– start-page: ENEURO
  year: 2016
  ident: 10.1016/j.neunet.2018.12.002_b176
  article-title: Learning probabilistic inference through STDP
  publication-title: eneuro
– volume: 21
  start-page: 1817
  issue: 11
  year: 2010
  ident: 10.1016/j.neunet.2018.12.002_b238
  article-title: SWAT: A spiking neural network training algorithm for classification problems
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2010.2074212
– start-page: 87
  year: 2001
  ident: 10.1016/j.neunet.2018.12.002_b75
  article-title: Learning to learn using gradient descent
SSID ssj0006843
Score 2.6993084
SecondaryResourceType review_article
Snippet In recent years, deep learning has revolutionized the field of machine learning, for computer vision in particular. In this approach, a deep (multilayer)...
SourceID hal
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 47
SubjectTerms Action Potentials - physiology
Algorithms
Biological plausibility
Brain - physiology
Computer Science
Deep learning
Deep Learning - trends
Humans
Machine Learning
Machine Learning - trends
Models, Neurological
Neural and Evolutionary Computing
Neural Networks (Computer)
Neurons - physiology
Power-efficient architecture
Spiking neural network
Title Deep learning in spiking neural networks
URI https://dx.doi.org/10.1016/j.neunet.2018.12.002
https://www.ncbi.nlm.nih.gov/pubmed/30682710
https://www.proquest.com/docview/2179416239
https://hal.science/hal-02341924
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8QgEJ74uHjx_VhfqcaDF9y2UFqOGx9Znxc18UbKFnSNqRt316O_3ZmWrjHRmHgsAUqGYeYDPmYADlQY256VOYuddEzwNGXGpQnL8zQrOM9j6eg18vWN7N6Li4fkYQqOm7cwRKv0tr-26ZW19iVtL832oN9v34boaiUCHlTKkHNOdliIlLT86OOL5iGzmjmHlRnVbp7PVRyv0o5LS4zKKKsOBf3hyg_uafqJeJK_gdDKGZ0twrxHkUGnHugSTNlyGRaaDA2BX7ArcHhi7SDwmSEeg34ZDAd9OhwPKI4l9lDWLPDhKtyfnd4dd5nPjcB6QqgRU8LY0HCHACvnmROmMEWMmycijwmFnk9lOQUepLznRliZGJvYIskjFFmqcGe6BjPla2k3IMAtSxGHqUyKnhOFzVSkEqeclcKZIhSmBbwRie75wOGUv-JFNwyxZ10LUpMgdRRrFGQL2KTVoA6c8Uf9tJG2_qYAGm37Hy33cXImP6F42d3OlaYyBCR0yy3eoxbsNXOncQHRrUhe2tfxUMdkkiJEgaoF6_WkTvrC_VQWIwbb_PfgtmAOv1TNWtuGmdHb2O4gjBmZ3UpPd2G2c37ZvfkEdJPvmA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB5Be1gusMtrA_sIqz1wsZrEjhMfK9gqXUovCxI3K25sKFqlFW339-9M41RCAiFxdWzHGtsz39ifZwB-qiixEytLljjpmOBZxozLUlaWWV5xXibS0Wvk67EsbsXvu_RuCy7atzBEq_S6v9Hpa23tS3pemr35dNr7E6GplQh4cFFGnHPUw12KTpV2oNsfXhXjjUKWeUOew_qMGrQv6NY0r9quakukyjhfnwv685UXLNT2A1ElX8Oha3s0-Ai7HkiG_Wasn2DL1vuw1yZpCP2ePYDzS2vnoU8OcR9O63Axn9L5eEihLLGHuiGCLw7hdvDr5qJgPj0CmwihlkwJYyPDHWKskudOmMpUCfpPxB8TCo2fykuKPUipz42wMjU2tVVaxii1TKFzegSdelbbzxCi11IlUSbTauJEZXMVq9QpZ6VwpoqECYC3ItETHzucUlj81S1J7FE3gtQkSB0nGgUZANu0mjexM96on7XS1s_WgEb1_kbLHzg5m59QyOyiP9JUhpiELrrFvziAs3buNO4huhgpaztbLXRCWilGIKgCOG4mddMXulR5gjDs5N2D-w4fipvrkR4Nx1ensINfVENi-wKd5dPKfkVUszTf_Kr9D7MZ8kk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+in+spiking+neural+networks&rft.jtitle=Neural+networks&rft.au=Tavanaei%2C+Amirhossein&rft.au=Ghodrati%2C+Masoud&rft.au=Kheradpisheh%2C+Saeed+Reza&rft.au=Masquelier%2C+Timoth%C3%A9e&rft.date=2019-03-01&rft.issn=0893-6080&rft.volume=111&rft.spage=47&rft.epage=63&rft_id=info:doi/10.1016%2Fj.neunet.2018.12.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neunet_2018_12_002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon