Severe local lattice distortion in Zr- and/or Hf-containing refractory multi-principal element alloys
Whereas exceptional mechanical and radiation performances have been found in the emergent body-centered cubic (BCC) refractory multi-principal element alloys (RMPEAs), the importance of their complex atomic environment, reflecting diversity in atomic size and chemistry, has been largely unexplored a...
Saved in:
Published in | Acta materialia Vol. 183; no. C; pp. 172 - 181 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
15.01.2020
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Whereas exceptional mechanical and radiation performances have been found in the emergent body-centered cubic (BCC) refractory multi-principal element alloys (RMPEAs), the importance of their complex atomic environment, reflecting diversity in atomic size and chemistry, has been largely unexplored at the atomic level. Here, we adopt a local structure approach based on the atomic pair distribution function measurements in combination with density functional theory (DFT) calculations to investigate a series of BCC RMPEAs. Our results demonstrate that all the analyzed RMPEAs exhibit local lattice distortions (LLD) to some extent, but a severe LLD, a breakdown of the 15% atomic size difference in Hume-Rothery rules, occurs only in the Zr- and/or Hf-containing RMPEAs. In addition, through the DFT calculations we show that charge transfer among the elements profoundly reduces the size mismatch effect in average to stabilize this energy-unfavorable severe LLD. The observed competitive coexistence between LLD and charge transfer demonstrates the importance of the electronic effects on the local environments in RMPEAs.
[Display omitted] |
---|---|
AbstractList | Whereas exceptional mechanical and radiation performances have been found in the emergent body-centered cubic (BCC) refractory multi-principal element alloys (RMPEAs), the importance of their complex atomic environment, reflecting diversity in atomic size and chemistry, has been largely unexplored at the atomic level. Here, we adopt a local structure approach based on the atomic pair distribution function measurements in combination with density functional theory (DFT) calculations to investigate a series of BCC RMPEAs. Our results demonstrate that all the analyzed RMPEAs exhibit local lattice distortions (LLD) to some extent, but a severe LLD, a breakdown of the 15% atomic size difference in Hume-Rothery rules, occurs only in the Zr- and/or Hf-containing RMPEAs. In addition, through the DFT calculations we show that charge transfer among the elements profoundly reduces the size mismatch effect in average to stabilize this energy-unfavorable severe LLD. The observed competitive coexistence between LLD and charge transfer demonstrates the importance of the electronic effects on the local environments in RMPEAs.
[Display omitted] |
Author | Tong, Yang Zhao, Shijun Bei, Hongbin Egami, Takeshi Zhang, Yanwen Zhang, Fuxiang |
Author_xml | – sequence: 1 givenname: Yang orcidid: 0000-0002-4886-9982 surname: Tong fullname: Tong, Yang email: tongy1@ornl.gov, ytong1@vols.utk.edu organization: Division of Materials Science and Technology, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA – sequence: 2 givenname: Shijun orcidid: 0000-0003-0870-8153 surname: Zhao fullname: Zhao, Shijun organization: Division of Materials Science and Technology, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA – sequence: 3 givenname: Hongbin surname: Bei fullname: Bei, Hongbin email: beih@ornl.gov organization: Division of Materials Science and Technology, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA – sequence: 4 givenname: Takeshi surname: Egami fullname: Egami, Takeshi organization: Division of Materials Science and Technology, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA – sequence: 5 givenname: Yanwen orcidid: 0000-0003-1833-3885 surname: Zhang fullname: Zhang, Yanwen organization: Division of Materials Science and Technology, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA – sequence: 6 givenname: Fuxiang surname: Zhang fullname: Zhang, Fuxiang email: zhangf@ornl.gov organization: Division of Materials Science and Technology, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA |
BackLink | https://www.osti.gov/biblio/1578223$$D View this record in Osti.gov |
BookMark | eNqFkEtrHDEQhIVxwI_kJwRE7jPWc2eGHEIwSWww5JDkkovQtFqJFq1kJMWw_z4a1idffOo-dFVXfVfkPOWEhLznbOSM7272o4VmD7aNgvFl5HxkYndGLvk8yUEoLc_7LvUy7JRWF-Sq1j1jXEyKXRL8gU9YkMYMNtJoWwuA1IXacmkhJxoS_V0GapO7yYXe-QFyajakkP7Qgr7017kc6eFfbGF4LCFBeOxOGPGAqVEbYz7Wt-SNt7Hiu-d5TX59_fLz9m54-P7t_vbzwwBKLW2YvZSrYnJBJqV2q-Cr5yBWmHB2TiqrvbNaKJQePFinwHu3TDuv1xnBobwmH06-ubZgKoSG8LcHTgjNcD3NQsh-pE9HUHKtvYPpsQ-2HA1nZgNq9uYZqNmAGs5NB9p1H1_our_dILViQ3xV_emkxt7_KWDZ4mECdKFs6VwOrzj8B-hzmpA |
CitedBy_id | crossref_primary_10_1016_j_matdes_2021_110248 crossref_primary_10_1016_j_jmst_2022_06_047 crossref_primary_10_1038_s41529_024_00495_1 crossref_primary_10_1103_PhysRevLett_126_025501 crossref_primary_10_1039_D1QM00380A crossref_primary_10_1007_s42864_021_00081_x crossref_primary_10_1016_j_calphad_2023_102634 crossref_primary_10_1021_acs_jpcc_4c01845 crossref_primary_10_2139_ssrn_4148219 crossref_primary_10_1016_j_jnucmat_2022_153689 crossref_primary_10_1063_5_0157728 crossref_primary_10_1016_j_scriptamat_2020_05_049 crossref_primary_10_1016_j_actamat_2021_116800 crossref_primary_10_1002_advs_202003534 crossref_primary_10_1016_j_actamat_2023_119117 crossref_primary_10_1088_1402_4896_ad3a49 crossref_primary_10_1016_j_jallcom_2020_155970 crossref_primary_10_1016_j_intermet_2022_107751 crossref_primary_10_1016_j_est_2023_108969 crossref_primary_10_1063_5_0027462 crossref_primary_10_1016_j_jmst_2024_11_063 crossref_primary_10_1038_s41467_023_40689_w crossref_primary_10_1016_j_mtla_2022_101450 crossref_primary_10_1016_j_mtla_2021_101234 crossref_primary_10_1080_09500839_2021_1998692 crossref_primary_10_1111_jace_17600 crossref_primary_10_1016_j_jallcom_2022_166593 crossref_primary_10_1016_j_scriptamat_2020_04_025 crossref_primary_10_1016_j_ensm_2024_103954 crossref_primary_10_1002_adma_202102401 crossref_primary_10_1016_j_jallcom_2020_154099 crossref_primary_10_1016_j_matdes_2024_112925 crossref_primary_10_1016_j_matchar_2023_113385 crossref_primary_10_1016_j_jallcom_2024_175481 crossref_primary_10_1021_acs_chemrev_1c00387 crossref_primary_10_2139_ssrn_4101143 crossref_primary_10_1016_j_ijrmhm_2024_106715 crossref_primary_10_1016_j_ijmecsci_2025_110164 crossref_primary_10_1016_j_jmrt_2022_06_160 crossref_primary_10_1016_j_matchar_2024_114393 crossref_primary_10_1016_j_jnucmat_2023_154510 crossref_primary_10_2139_ssrn_4139204 crossref_primary_10_1016_j_scriptamat_2020_02_021 crossref_primary_10_1016_j_actamat_2023_119415 crossref_primary_10_1016_j_ijrmhm_2022_106067 crossref_primary_10_1016_j_isci_2023_107751 crossref_primary_10_1016_j_pmatsci_2023_101090 crossref_primary_10_1039_D1CP04151G crossref_primary_10_1126_sciadv_adr4697 crossref_primary_10_1016_j_jallcom_2022_167542 crossref_primary_10_1063_1_5136022 crossref_primary_10_1063_5_0215928 crossref_primary_10_1016_j_mtcomm_2022_104367 crossref_primary_10_1111_jace_20021 crossref_primary_10_1007_s12613_021_2257_7 crossref_primary_10_1016_j_matdes_2021_110071 crossref_primary_10_3390_met14050590 crossref_primary_10_1016_j_scriptamat_2024_116055 crossref_primary_10_1016_j_actamat_2020_08_045 crossref_primary_10_1002_adem_202100225 crossref_primary_10_1016_j_jnucmat_2023_154451 crossref_primary_10_1103_PhysRevMaterials_8_083602 crossref_primary_10_1016_j_msea_2021_142061 crossref_primary_10_1016_j_msea_2023_144923 crossref_primary_10_1016_j_actamat_2021_116958 crossref_primary_10_2139_ssrn_4022135 crossref_primary_10_1016_j_commatsci_2024_112912 crossref_primary_10_1016_j_jmrt_2025_01_001 crossref_primary_10_1016_j_actamat_2020_05_042 crossref_primary_10_1016_j_actamat_2021_117416 crossref_primary_10_1016_j_surfcoat_2024_130775 crossref_primary_10_1016_j_jallcom_2020_158128 crossref_primary_10_1016_j_jmst_2024_01_022 crossref_primary_10_1002_adma_202305453 crossref_primary_10_1016_j_jmst_2023_04_008 crossref_primary_10_1016_j_actamat_2021_117135 crossref_primary_10_1016_j_ijrmhm_2023_106292 crossref_primary_10_1016_j_commatsci_2022_111891 crossref_primary_10_1016_j_jallcom_2023_172034 crossref_primary_10_1088_1742_6596_2783_1_012065 crossref_primary_10_1016_j_vacuum_2021_110517 crossref_primary_10_1103_PhysRevMaterials_8_013604 crossref_primary_10_1016_j_xcrp_2023_101254 crossref_primary_10_1038_s41467_024_51204_0 crossref_primary_10_1016_j_scriptamat_2021_114104 crossref_primary_10_1126_sciadv_adp7670 crossref_primary_10_2139_ssrn_4141989 crossref_primary_10_1063_5_0234652 crossref_primary_10_1038_s41524_020_0306_9 crossref_primary_10_1016_j_jmrt_2023_11_008 crossref_primary_10_1103_PhysRevB_111_035120 crossref_primary_10_1016_j_jmst_2020_10_073 crossref_primary_10_1007_s11661_021_06215_7 crossref_primary_10_1016_j_rineng_2024_102780 crossref_primary_10_1016_j_jallcom_2024_177551 crossref_primary_10_1016_j_jmst_2021_07_041 crossref_primary_10_1038_s41524_023_00993_x crossref_primary_10_1016_j_matdes_2021_110177 crossref_primary_10_1016_j_jmst_2022_08_034 crossref_primary_10_1016_j_ijrmhm_2024_106597 crossref_primary_10_1103_PhysRevMaterials_4_123601 crossref_primary_10_1016_j_addma_2024_104009 crossref_primary_10_1016_j_matdes_2024_112724 crossref_primary_10_1002_adfm_202408941 crossref_primary_10_1016_j_jnucmat_2021_153023 crossref_primary_10_1016_j_jallcom_2023_169951 crossref_primary_10_1016_j_mtcomm_2021_102657 crossref_primary_10_1080_21663831_2021_2024615 crossref_primary_10_1016_j_jnucmat_2023_154706 crossref_primary_10_1021_jacs_4c10681 crossref_primary_10_1088_1742_6596_2587_1_012006 crossref_primary_10_1016_j_msea_2024_147225 crossref_primary_10_1016_j_actamat_2021_117233 crossref_primary_10_1016_j_ijmecsci_2023_108753 crossref_primary_10_1016_j_jssc_2024_125091 crossref_primary_10_1016_j_scriptamat_2022_115079 crossref_primary_10_3390_cryst15020172 crossref_primary_10_1016_j_actamat_2025_120874 crossref_primary_10_1016_j_matdes_2021_110311 crossref_primary_10_1016_j_scriptamat_2020_08_013 crossref_primary_10_1016_j_mattod_2023_03_009 crossref_primary_10_1016_j_jmst_2020_06_018 crossref_primary_10_1016_j_matlet_2021_130789 crossref_primary_10_1016_j_nimb_2022_03_009 crossref_primary_10_1038_s43246_023_00352_9 crossref_primary_10_1007_s12598_022_02094_y crossref_primary_10_1007_s11669_021_00878_w crossref_primary_10_1016_j_jallcom_2023_170084 crossref_primary_10_1016_j_jmst_2021_09_056 crossref_primary_10_3390_ma16052120 crossref_primary_10_1016_j_actamat_2021_117582 |
Cites_doi | 10.1016/S1002-0071(12)60080-X 10.1103/PhysRevB.67.104301 10.1016/0364-5916(77)90011-6 10.1016/j.scriptamat.2018.07.002 10.1107/S0021889804011744 10.1016/j.mtla.2018.06.008 10.1016/j.matlet.2017.09.094 10.1103/PhysRevLett.65.353 10.1107/S0021889801002242 10.1002/adem.200700240 10.1107/S010876739600089X 10.1002/adem.200300567 10.1038/s41586-018-0685-y 10.1016/j.jallcom.2015.07.209 10.1007/s11661-012-1474-0 10.1016/0927-0256(96)00008-0 10.1524/zkri.2000.215.11.661 10.1016/j.intermet.2011.01.004 10.1103/PhysRevB.50.17953 10.1088/0953-8984/19/33/335219 10.1038/s41524-017-0037-8 10.1016/j.actamat.2015.06.025 10.1016/0168-9002(94)90720-X 10.1007/s11837-013-0761-6 10.1103/PhysRevLett.77.3865 10.1007/s11661-018-4646-8 10.1016/j.actamat.2019.01.023 10.1021/ed037p231 10.1016/j.actamat.2016.08.081 10.1016/j.scriptamat.2018.08.032 10.1038/ncomms7529 10.1557/jmr.2018.153 10.1016/0364-5916(83)90030-5 |
ContentType | Journal Article |
Copyright | 2019 |
Copyright_xml | – notice: 2019 |
CorporateAuthor | Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS) Energy Frontier Research Centers (EFRC) (United States). Energy Dissipation to Defect Evolution (EDDE) |
CorporateAuthor_xml | – name: Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS) – name: Energy Frontier Research Centers (EFRC) (United States). Energy Dissipation to Defect Evolution (EDDE) |
DBID | AAYXX CITATION OTOTI |
DOI | 10.1016/j.actamat.2019.11.026 |
DatabaseName | CrossRef OSTI.GOV |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-2453 |
EndPage | 181 |
ExternalDocumentID | 1578223 10_1016_j_actamat_2019_11_026 S1359645419307578 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABNEU ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MAGPM N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSM SSQ SSZ T5K TN5 XPP ZMT ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FGOYB R2- SEW SSH T9H ZY4 AALMO ABPIF ABPTK OTOTI |
ID | FETCH-LOGICAL-c449t-8f33b4039e0335db21bf1c2bc7e8dd34a5fda524e3fcfcad4cffd976f5b8ecde3 |
IEDL.DBID | .~1 |
ISSN | 1359-6454 |
IngestDate | Thu May 18 22:41:35 EDT 2023 Thu Apr 24 22:59:38 EDT 2025 Tue Jul 01 01:20:48 EDT 2025 Fri Feb 23 02:40:19 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | C |
Keywords | Density functional theory calculation Local lattice distortion Multi-principal element alloys Charge transfer |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c449t-8f33b4039e0335db21bf1c2bc7e8dd34a5fda524e3fcfcad4cffd976f5b8ecde3 |
Notes | DOE - BASIC ENERGY SCIENCES |
ORCID | 0000-0003-0870-8153 0000-0002-4886-9982 0000-0003-1833-3885 0000000308708153 0000000248869982 0000000318333885 |
OpenAccessLink | https://www.osti.gov/biblio/1779565 |
PageCount | 10 |
ParticipantIDs | osti_scitechconnect_1578223 crossref_primary_10_1016_j_actamat_2019_11_026 crossref_citationtrail_10_1016_j_actamat_2019_11_026 elsevier_sciencedirect_doi_10_1016_j_actamat_2019_11_026 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-01-15 |
PublicationDateYYYYMMDD | 2020-01-15 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Acta materialia |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Senkov, Miracle, Chaput, Couzinie (bib0006) 2018; 33 Kube, Sohn, Uhl, Datye, Mehta, Schroers (bib0014) 2019; 166 Perdew, Burke, Ernzerhof (bib0022) 1996; 77 Guo, Liu (bib0026) 2011; 21 Egami, Billinge (bib0019) 2012 Song, Tian, Hu, Vitos, Wang, Shen, Chen (bib0032) 2017; 1 Stepanov, Yurchenko, Zherebtsov, Tikhonovsky, Salishchev (bib0012) 2018; 211 Yeh (bib0002) 2013; 65 Toby (bib0017) 2001; 34 Hammersley, Svensson, Thompson (bib0016) 1994; 346 Miracle, Senkov (bib0004) 2017; 122 Blöchl (bib0023) 1994; 50 Little, Jones (bib0036) 1960; 37 Senkov, Pilchak, Semiatin (bib0011) 2018; 49 Morinaga (bib0035) 2018 Yeh, Chen, Lin, Gan, Chin, Shun, Tsau, Chang (bib0001) 2004; 6 Niessen, de Boer, Boom, de Châtel, Mattens, Miedema (bib0034) 1983; 7 Senkov, Semiatin (bib0010) 2015; 649 Tong, Zhao, Jin, Bei, Ko, Zhang, Zhang (bib0029) 2018; 156 Zhang, Zhou, Lin, Chen, Liaw (bib0037) 2008; 10 Miedema, de Boer, Boom (bib0033) 1977; 1 Chen, Tong, Tseng, Yeh, Poplawsky, Wen, Gao, Kim, Chen, Ren, Feng, Li, Liaw (bib0013) 2019; 158 Young (bib0025) 1995 Tong, Velisa, Zhao, Guo, Yang, Jin, Lu, Bei, Ko, Pagan, Zhang, Wang, Zhang (bib0030) 2018; 2 Körmann, Ikeda, Grabowski, Sluiter (bib0008) 2017; 3 Kresse, Furthmüller (bib0021) 1996; 6 Jeong, Heffner, Graf, Billinge (bib0028) 2003; 67 Peng, Ren, Dudarev, Whelan (bib0027) 1996; 52 Schuh, Mendez-Martin, Völker, George, Clemens, Pippan, Hohenwarter (bib0009) 2015; 96 Guo, Dmowski, Noh, Rack, Liaw, Egami (bib0015) 2013; 44 Qiu, Thompson, Billinge (bib0018) 2004; 37 Farrow, Juhas, Liu, Bryndin, Božin, Bloch, Th, Billinge (bib0020) 2007; 19 Senkov, Wilks, Scott, Miracle (bib0005) 2011; 19 Proffen (bib0031) 2000; 215 Zunger, Wei, Ferreira, Bernard (bib0024) 1990; 65 Senkov, Miller, Miracle, Woodward (bib0003) 2015; 6 Lei, Liu, Wu, Wang, Jiang, Wang, Hui, Wu, Gault, Kontis, Raabe, Gu, Zhang, Chen, Wang, Liu, An, Zeng, Nieh, Lu (bib0007) 2018; 563 Egami (10.1016/j.actamat.2019.11.026_bib0019) 2012 Senkov (10.1016/j.actamat.2019.11.026_bib0003) 2015; 6 Proffen (10.1016/j.actamat.2019.11.026_bib0031) 2000; 215 Körmann (10.1016/j.actamat.2019.11.026_bib0008) 2017; 3 Yeh (10.1016/j.actamat.2019.11.026_bib0002) 2013; 65 Chen (10.1016/j.actamat.2019.11.026_bib0013) 2019; 158 Toby (10.1016/j.actamat.2019.11.026_bib0017) 2001; 34 Zunger (10.1016/j.actamat.2019.11.026_bib0024) 1990; 65 Tong (10.1016/j.actamat.2019.11.026_bib0029) 2018; 156 Jeong (10.1016/j.actamat.2019.11.026_bib0028) 2003; 67 Young (10.1016/j.actamat.2019.11.026_bib0025) 1995 Schuh (10.1016/j.actamat.2019.11.026_bib0009) 2015; 96 Lei (10.1016/j.actamat.2019.11.026_bib0007) 2018; 563 Kube (10.1016/j.actamat.2019.11.026_bib0014) 2019; 166 Yeh (10.1016/j.actamat.2019.11.026_bib0001) 2004; 6 Peng (10.1016/j.actamat.2019.11.026_bib0027) 1996; 52 Senkov (10.1016/j.actamat.2019.11.026_bib0005) 2011; 19 Guo (10.1016/j.actamat.2019.11.026_bib0015) 2013; 44 Perdew (10.1016/j.actamat.2019.11.026_bib0022) 1996; 77 Morinaga (10.1016/j.actamat.2019.11.026_bib0035) 2018 Senkov (10.1016/j.actamat.2019.11.026_bib0010) 2015; 649 Miedema (10.1016/j.actamat.2019.11.026_bib0033) 1977; 1 Farrow (10.1016/j.actamat.2019.11.026_bib0020) 2007; 19 Qiu (10.1016/j.actamat.2019.11.026_bib0018) 2004; 37 Senkov (10.1016/j.actamat.2019.11.026_bib0006) 2018; 33 Miracle (10.1016/j.actamat.2019.11.026_bib0004) 2017; 122 Senkov (10.1016/j.actamat.2019.11.026_bib0011) 2018; 49 Little (10.1016/j.actamat.2019.11.026_bib0036) 1960; 37 Hammersley (10.1016/j.actamat.2019.11.026_bib0016) 1994; 346 Niessen (10.1016/j.actamat.2019.11.026_bib0034) 1983; 7 Zhang (10.1016/j.actamat.2019.11.026_bib0037) 2008; 10 Stepanov (10.1016/j.actamat.2019.11.026_bib0012) 2018; 211 Song (10.1016/j.actamat.2019.11.026_bib0032) 2017; 1 Tong (10.1016/j.actamat.2019.11.026_bib0030) 2018; 2 Kresse (10.1016/j.actamat.2019.11.026_bib0021) 1996; 6 Guo (10.1016/j.actamat.2019.11.026_bib0026) 2011; 21 Blöchl (10.1016/j.actamat.2019.11.026_bib0023) 1994; 50 |
References_xml | – volume: 166 start-page: 677 year: 2019 end-page: 686 ident: bib0014 article-title: Phase selection motifs in high entropy alloys revealed through combinatorial methods: large atomic size difference favors BCC over FCC publication-title: Acta Mater. – volume: 19 start-page: 698 year: 2011 end-page: 706 ident: bib0005 article-title: Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys publication-title: Intermetallics – volume: 21 start-page: 433 year: 2011 end-page: 446 ident: bib0026 article-title: Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase publication-title: Prog. Nat. Sci. Mater. Int. – volume: 156 start-page: 14 year: 2018 end-page: 18 ident: bib0029 article-title: A comparison study of local lattice distortion in Ni80Pd20 binary alloy and FeCoNiCrPd high-entropy alloy publication-title: Scr. Mater. – year: 2012 ident: bib0019 article-title: Underneath The Bragg Peaks: Structural Analysis of Complex Materials – volume: 37 start-page: 231 year: 1960 ident: bib0036 article-title: A complete table of electronegativities publication-title: J. Chem. Educ. – volume: 3 start-page: 36 year: 2017 ident: bib0008 article-title: Phonon broadening in high entropy alloys publication-title: NPJ Comput. Mater. – volume: 34 start-page: 210 year: 2001 end-page: 213 ident: bib0017 article-title: EXPGUI, a graphical user interface for GSAS publication-title: J. Appl. Crystal. – year: 1995 ident: bib0025 article-title: The Rietveld Method – volume: 52 start-page: 456 year: 1996 end-page: 470 ident: bib0027 article-title: Debye–Waller factors and absorptive scattering factors of elemental crystals publication-title: Acta Crystal. A – volume: 6 start-page: 15 year: 1996 end-page: 50 ident: bib0021 article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set publication-title: Comput. Mater. Sci. – volume: 33 start-page: 3092 year: 2018 end-page: 3128 ident: bib0006 article-title: Development and exploration of refractory high entropy alloys—a review publication-title: J. Mater. Res. – volume: 158 start-page: 50 year: 2019 end-page: 56 ident: bib0013 article-title: Phase transformations of HfNbTaTiZr high-entropy alloy at intermediate temperatures publication-title: Scr. Mater. – volume: 122 start-page: 448 year: 2017 end-page: 511 ident: bib0004 article-title: A critical review of high entropy alloys and related concepts publication-title: Acta Mater. – volume: 346 start-page: 312 year: 1994 end-page: 321 ident: bib0016 article-title: Calibration and correction of spatial distortions in 2D detector systems publication-title: Nucl. Instrum. Methods A – volume: 96 start-page: 258 year: 2015 end-page: 268 ident: bib0009 article-title: Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation publication-title: Acta Mater. – volume: 649 start-page: 1110 year: 2015 end-page: 1123 ident: bib0010 article-title: Microstructure and properties of a refractory high-entropy alloy after cold working publication-title: J. Alloys Compd. – year: 2018 ident: bib0035 article-title: A Quantum Approach to Alloy Design: An Exploration of Material Design and Development Based Upon Alloy Design Theory and Atomization Energy Method – volume: 6 start-page: 299 year: 2004 end-page: 303 ident: bib0001 article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes publication-title: Adv. Eng. Mater. – volume: 67 year: 2003 ident: bib0028 article-title: Lattice dynamics and correlated atomic motion from the atomic pair distribution function publication-title: Phys. Rev. B – volume: 563 start-page: 546 year: 2018 end-page: 550 ident: bib0007 article-title: Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes publication-title: Nature – volume: 65 start-page: 1759 year: 2013 end-page: 1771 ident: bib0002 article-title: Alloy design strategies and future trends in high-entropy alloys publication-title: JOM – volume: 49 start-page: 2876 year: 2018 end-page: 2892 ident: bib0011 article-title: Effect of cold deformation and annealing on the microstructure and tensile properties of a hfnbtatizr refractory high entropy alloy publication-title: Metall. Mater. Trans. A – volume: 37 start-page: 678 year: 2004 ident: bib0018 article-title: PDFgetX2: a GUI-driven program to obtain the pair distribution function from X-ray powder diffraction data publication-title: J. Appl. Crystal. – volume: 10 start-page: 534 year: 2008 end-page: 538 ident: bib0037 article-title: Solid-solution phase formation rules for multi-component alloys publication-title: Adv. Eng. Mater. – volume: 6 start-page: 6529 year: 2015 ident: bib0003 article-title: Accelerated exploration of multi-principal element alloys with solid solution phases publication-title: Nat. Commun. – volume: 211 start-page: 87 year: 2018 end-page: 90 ident: bib0012 article-title: Aging behavior of the HfNbTaTiZr high entropy alloy publication-title: Mater. Lett. – volume: 50 start-page: 17953 year: 1994 end-page: 17979 ident: bib0023 article-title: Projector augmented-wave method publication-title: Phys. Rev. B – volume: 65 start-page: 353 year: 1990 end-page: 356 ident: bib0024 article-title: Special quasirandom structures publication-title: Phys. Rev. Lett. – volume: 1 start-page: 341 year: 1977 end-page: 359 ident: bib0033 article-title: Model predictions for the enthalpy of formation of transition metal alloys publication-title: Calphad – volume: 77 start-page: 3865 year: 1996 end-page: 3868 ident: bib0022 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. – volume: 1 year: 2017 ident: bib0032 article-title: Local lattice distortion in high-entropy alloys publication-title: Phys. Rev. Mater. – volume: 2 start-page: 73 year: 2018 end-page: 81 ident: bib0030 article-title: Evolution of local lattice distortion under irradiation in medium- and high-entropy alloys publication-title: Materialia – volume: 7 start-page: 51 year: 1983 end-page: 70 ident: bib0034 article-title: Model predictions for the enthalpy of formation of transition metal alloys II publication-title: Calphad – volume: 19 year: 2007 ident: bib0020 article-title: PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals publication-title: J. Phys. Condens. Matter. – volume: 44 start-page: 1994 year: 2013 end-page: 1997 ident: bib0015 article-title: Local atomic structure of a high-entropy alloy: an X-Ray and neutron scattering study publication-title: Metall. Mater. Trans. A – volume: 215 start-page: 661 year: 2000 end-page: 668 ident: bib0031 article-title: Analysis of occupational and displacive disorder using the atomic pair distribution function: a systematic investigation publication-title: Z. Kristallogr. Cryst. Mater. – volume: 21 start-page: 433 year: 2011 ident: 10.1016/j.actamat.2019.11.026_bib0026 article-title: Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase publication-title: Prog. Nat. Sci. Mater. Int. doi: 10.1016/S1002-0071(12)60080-X – year: 2012 ident: 10.1016/j.actamat.2019.11.026_bib0019 – volume: 67 year: 2003 ident: 10.1016/j.actamat.2019.11.026_bib0028 article-title: Lattice dynamics and correlated atomic motion from the atomic pair distribution function publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.67.104301 – year: 2018 ident: 10.1016/j.actamat.2019.11.026_bib0035 – volume: 1 start-page: 341 year: 1977 ident: 10.1016/j.actamat.2019.11.026_bib0033 article-title: Model predictions for the enthalpy of formation of transition metal alloys publication-title: Calphad doi: 10.1016/0364-5916(77)90011-6 – volume: 156 start-page: 14 year: 2018 ident: 10.1016/j.actamat.2019.11.026_bib0029 article-title: A comparison study of local lattice distortion in Ni80Pd20 binary alloy and FeCoNiCrPd high-entropy alloy publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2018.07.002 – volume: 37 start-page: 678 year: 2004 ident: 10.1016/j.actamat.2019.11.026_bib0018 article-title: PDFgetX2: a GUI-driven program to obtain the pair distribution function from X-ray powder diffraction data publication-title: J. Appl. Crystal. doi: 10.1107/S0021889804011744 – volume: 2 start-page: 73 year: 2018 ident: 10.1016/j.actamat.2019.11.026_bib0030 article-title: Evolution of local lattice distortion under irradiation in medium- and high-entropy alloys publication-title: Materialia doi: 10.1016/j.mtla.2018.06.008 – volume: 211 start-page: 87 year: 2018 ident: 10.1016/j.actamat.2019.11.026_bib0012 article-title: Aging behavior of the HfNbTaTiZr high entropy alloy publication-title: Mater. Lett. doi: 10.1016/j.matlet.2017.09.094 – volume: 65 start-page: 353 year: 1990 ident: 10.1016/j.actamat.2019.11.026_bib0024 article-title: Special quasirandom structures publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.65.353 – volume: 34 start-page: 210 year: 2001 ident: 10.1016/j.actamat.2019.11.026_bib0017 article-title: EXPGUI, a graphical user interface for GSAS publication-title: J. Appl. Crystal. doi: 10.1107/S0021889801002242 – volume: 10 start-page: 534 year: 2008 ident: 10.1016/j.actamat.2019.11.026_bib0037 article-title: Solid-solution phase formation rules for multi-component alloys publication-title: Adv. Eng. Mater. doi: 10.1002/adem.200700240 – volume: 52 start-page: 456 year: 1996 ident: 10.1016/j.actamat.2019.11.026_bib0027 article-title: Debye–Waller factors and absorptive scattering factors of elemental crystals publication-title: Acta Crystal. A doi: 10.1107/S010876739600089X – volume: 6 start-page: 299 year: 2004 ident: 10.1016/j.actamat.2019.11.026_bib0001 article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes publication-title: Adv. Eng. Mater. doi: 10.1002/adem.200300567 – volume: 563 start-page: 546 year: 2018 ident: 10.1016/j.actamat.2019.11.026_bib0007 article-title: Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes publication-title: Nature doi: 10.1038/s41586-018-0685-y – volume: 649 start-page: 1110 year: 2015 ident: 10.1016/j.actamat.2019.11.026_bib0010 article-title: Microstructure and properties of a refractory high-entropy alloy after cold working publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2015.07.209 – volume: 44 start-page: 1994 year: 2013 ident: 10.1016/j.actamat.2019.11.026_bib0015 article-title: Local atomic structure of a high-entropy alloy: an X-Ray and neutron scattering study publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-012-1474-0 – volume: 6 start-page: 15 year: 1996 ident: 10.1016/j.actamat.2019.11.026_bib0021 article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 215 start-page: 661 year: 2000 ident: 10.1016/j.actamat.2019.11.026_bib0031 article-title: Analysis of occupational and displacive disorder using the atomic pair distribution function: a systematic investigation publication-title: Z. Kristallogr. Cryst. Mater. doi: 10.1524/zkri.2000.215.11.661 – volume: 19 start-page: 698 year: 2011 ident: 10.1016/j.actamat.2019.11.026_bib0005 article-title: Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys publication-title: Intermetallics doi: 10.1016/j.intermet.2011.01.004 – volume: 50 start-page: 17953 year: 1994 ident: 10.1016/j.actamat.2019.11.026_bib0023 article-title: Projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 19 year: 2007 ident: 10.1016/j.actamat.2019.11.026_bib0020 article-title: PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals publication-title: J. Phys. Condens. Matter. doi: 10.1088/0953-8984/19/33/335219 – volume: 3 start-page: 36 year: 2017 ident: 10.1016/j.actamat.2019.11.026_bib0008 article-title: Phonon broadening in high entropy alloys publication-title: NPJ Comput. Mater. doi: 10.1038/s41524-017-0037-8 – volume: 96 start-page: 258 year: 2015 ident: 10.1016/j.actamat.2019.11.026_bib0009 article-title: Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation publication-title: Acta Mater. doi: 10.1016/j.actamat.2015.06.025 – volume: 346 start-page: 312 year: 1994 ident: 10.1016/j.actamat.2019.11.026_bib0016 article-title: Calibration and correction of spatial distortions in 2D detector systems publication-title: Nucl. Instrum. Methods A doi: 10.1016/0168-9002(94)90720-X – volume: 65 start-page: 1759 year: 2013 ident: 10.1016/j.actamat.2019.11.026_bib0002 article-title: Alloy design strategies and future trends in high-entropy alloys publication-title: JOM doi: 10.1007/s11837-013-0761-6 – volume: 77 start-page: 3865 year: 1996 ident: 10.1016/j.actamat.2019.11.026_bib0022 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – year: 1995 ident: 10.1016/j.actamat.2019.11.026_bib0025 – volume: 49 start-page: 2876 year: 2018 ident: 10.1016/j.actamat.2019.11.026_bib0011 article-title: Effect of cold deformation and annealing on the microstructure and tensile properties of a hfnbtatizr refractory high entropy alloy publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-018-4646-8 – volume: 1 year: 2017 ident: 10.1016/j.actamat.2019.11.026_bib0032 article-title: Local lattice distortion in high-entropy alloys publication-title: Phys. Rev. Mater. – volume: 166 start-page: 677 year: 2019 ident: 10.1016/j.actamat.2019.11.026_bib0014 article-title: Phase selection motifs in high entropy alloys revealed through combinatorial methods: large atomic size difference favors BCC over FCC publication-title: Acta Mater. doi: 10.1016/j.actamat.2019.01.023 – volume: 37 start-page: 231 year: 1960 ident: 10.1016/j.actamat.2019.11.026_bib0036 article-title: A complete table of electronegativities publication-title: J. Chem. Educ. doi: 10.1021/ed037p231 – volume: 122 start-page: 448 year: 2017 ident: 10.1016/j.actamat.2019.11.026_bib0004 article-title: A critical review of high entropy alloys and related concepts publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.08.081 – volume: 158 start-page: 50 year: 2019 ident: 10.1016/j.actamat.2019.11.026_bib0013 article-title: Phase transformations of HfNbTaTiZr high-entropy alloy at intermediate temperatures publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2018.08.032 – volume: 6 start-page: 6529 year: 2015 ident: 10.1016/j.actamat.2019.11.026_bib0003 article-title: Accelerated exploration of multi-principal element alloys with solid solution phases publication-title: Nat. Commun. doi: 10.1038/ncomms7529 – volume: 33 start-page: 3092 year: 2018 ident: 10.1016/j.actamat.2019.11.026_bib0006 article-title: Development and exploration of refractory high entropy alloys—a review publication-title: J. Mater. Res. doi: 10.1557/jmr.2018.153 – volume: 7 start-page: 51 year: 1983 ident: 10.1016/j.actamat.2019.11.026_bib0034 article-title: Model predictions for the enthalpy of formation of transition metal alloys II publication-title: Calphad doi: 10.1016/0364-5916(83)90030-5 |
SSID | ssj0012740 |
Score | 2.6216452 |
Snippet | Whereas exceptional mechanical and radiation performances have been found in the emergent body-centered cubic (BCC) refractory multi-principal element alloys... |
SourceID | osti crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 172 |
SubjectTerms | Charge transfer Density functional theory calculation Local lattice distortion Multi-principal element alloys |
Title | Severe local lattice distortion in Zr- and/or Hf-containing refractory multi-principal element alloys |
URI | https://dx.doi.org/10.1016/j.actamat.2019.11.026 https://www.osti.gov/biblio/1578223 |
Volume | 183 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kXvQgPvHNHrxu083uptmjiKUq9FKF4iXsEyqSlhoPXvztziRprSAIXkNmWWZn55F88w0hV04aH63JWIBamYH3C0xDdsQcghq4CFLYGm0xyoZP8n6iJhvkZtkLg7DK1vc3Pr321u2TpNVmMp9OkzEXSiMfFaQgPWRlxw522Ucr736uYB4cqq6mU1hphm9_d_EkL7DlykBiiAgv3UUyT-RY-D0-dWZw5dZCz2CX7LQ5I71utrVHNkK5T7bXmAQPSBgHsMlA69BEX02FmDbqaw4QVD2dlvR5wagpfTJb0GFkiFFvpkNQ2MSiHrvzQWt8IZs3X-BhpdCgyyn-nv94OyRPg9vHmyFrJygwJ6WuWB6FsLIndOgJobxNuY3cpdb1Q-69kEZFb1Qqg4guOuOli9FDghKVzYPzQRyRTjkrwzGh3GWpzoKGgitKo6WF0JeZXNkIQTBqfULkUm-Fa-nFccrFa7HEkb0UrboLVDeUHgWo-4R0V2Lzhl_jL4F8eSjFD0MpIAb8JXqGh4hiSJDrEEkEchwZ_VNx-v-Fz8hWimV4jzOuzkmnWryHC8hVKntZG-Ml2by-exiOvgAibuuS |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66HtSD-MS3OXjNdtMktTnKoqzPiwripeQJK9Jd1nrw4m93pu2uCoLgtXRCmEzm0X7zDSHHThofrclYgFqZgfcLTEN2xByCGrgIUtgabXGbDR7k5aN6nCP9aS8Mwipb39_49Npbt0-SVpvJeDhM7rhQGvmoIAXpISv7PFmQcH1xjEH3Y4bz4FB2Na3CSjN8_auNJ3mGPVcGMkOEeOkusnkiycLvAaozgjv3Lfacr5KVNmmkp82-1shcKNfJ8jcqwQ0S7gIYZaB1bKIvpkJQG_U1CQjqng5L-jRh1JQ-GU3oIDIEqTfjIShsYlLP3XmnNcCQjZtP8LBSaODlFP_Pv79ukofzs_v-gLUjFJiTUlcsj0JY2RM69IRQ3qbcRu5S605C7r2QRkVvVCqDiC4646WL0UOGEpXNg_NBbJFOOSrDNqHcZanOgoaKK0qjpYXYl5lc2QhRMGq9Q-RUb4Vr-cVxzMVLMQWSPRetugtUN9QeBah7h3RnYuOGYOMvgXx6KMUPSykgCPwluoeHiGLIkOsQSgRyHCn9U7H7_4WPyOLg_ua6uL64vdojSynW5D3OuNonnWryFg4gcansYW2Yn43V7SA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Severe+local+lattice+distortion+in+Zr-+and%2For+Hf-containing+refractory+multi-principal+element+alloys&rft.jtitle=Acta+materialia&rft.au=Tong%2C+Yang&rft.au=Zhao%2C+Shijun&rft.au=Bei%2C+Hongbin&rft.au=Egami%2C+Takeshi&rft.date=2020-01-15&rft.pub=Elsevier&rft.issn=1359-6454&rft.eissn=1873-2453&rft.volume=183&rft.issue=C&rft_id=info:doi/10.1016%2Fj.actamat.2019.11.026&rft.externalDocID=1578223 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-6454&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-6454&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-6454&client=summon |