TRAVIS—A free analyzer for trajectories from molecular simulation

TRAVIS (“Trajectory Analyzer and Visualizer”) is a program package for post-processing and analyzing trajectories from molecular dynamics and Monte Carlo simulations, mostly focused on molecular condensed phase systems. It is an open source free software licensed under the GNU GPL, is platform indep...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of chemical physics Vol. 152; no. 16; pp. 164105 - 164124
Main Authors Brehm, M., Thomas, M., Gehrke, S., Kirchner, B.
Format Journal Article
LanguageEnglish
Published United States American Institute of Physics 30.04.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:TRAVIS (“Trajectory Analyzer and Visualizer”) is a program package for post-processing and analyzing trajectories from molecular dynamics and Monte Carlo simulations, mostly focused on molecular condensed phase systems. It is an open source free software licensed under the GNU GPL, is platform independent, and does not require any external libraries. Nine years after the original publication of TRAVIS, we highlight some of the recent new functions and features in this article. At the same time, we shortly present some of the underlying algorithms in TRAVIS, which contribute to make trajectory analysis more efficient. Some modern visualization techniques such as Sankey diagrams are also demonstrated. Many analysis functions are implemented, covering structural analyses, dynamical analyses, and functions for predicting vibrational spectra from molecular dynamics simulations. While some of the analyses are known since several decades, others are very recent. For example, TRAVIS has been used to compute the first ab initio predictions in the literature of bulk phase vibrational circular dichroism spectra, bulk phase Raman optical activity spectra, and bulk phase resonance Raman spectra within the last few years.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0021-9606
1089-7690
1089-7690
DOI:10.1063/5.0005078