Mixed-dimensional membranes: chemistry and structure-property relationships
Tremendous progress in two-dimensional (2D) nanomaterial chemistry affords abundant opportunities for the sustainable development of membranes and membrane processes. In this review, we propose the concept of mixed dimensional membranes (MDMs), which are fabricated through the integration of 2D mate...
Saved in:
Published in | Chemical Society reviews Vol. 5; no. 21; pp. 11747 - 11765 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Royal Society of Chemistry
01.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Tremendous progress in two-dimensional (2D) nanomaterial chemistry affords abundant opportunities for the sustainable development of membranes and membrane processes. In this review, we propose the concept of mixed dimensional membranes (MDMs), which are fabricated through the integration of 2D materials with nanomaterials of different dimensionality and chemistry. Complementing mixed matrix membranes or hybrid membranes, MDMs stimulate different conceptual thinking about designing advanced membranes from the angle of the dimensions of the building blocks as well as the final structures, including the nanochannels and the bulk structures. In this review, we survey MDMs (denoted
n
D/2D, where
n
is 0, 1 or 3) in terms of the dimensions of membrane-forming nanomaterials, as well as their fabrication methods. Subsequently, we highlight three kinds of nanochannels, which are 1D nanochannels within 1D/2D membranes, 2D nanochannels within 0D/2D membranes, and 3D nanochannels within 3D/2D membranes. Strategies to tune the physical and chemical microenvironments of the nanochannels as well as the bulk structures based on the size, type, structure and chemical character of nanomaterials are discussed. Some representative applications of MDMs are illustrated for gas molecular separations, liquid molecular separations, ionic separations and oil/water separation. Finally, current challenges and a future perspective on MDMs are presented.
This review highlights the design and construction of mixed-dimensional membranes (MDMs) and their applications in molecular separations, ionic separations and oil/water separations. |
---|---|
AbstractList | Tremendous progress in two-dimensional (2D) nanomaterial chemistry affords abundant opportunities for the sustainable development of membranes and membrane processes. In this review, we propose the concept of mixed dimensional membranes (MDMs), which are fabricated through the integration of 2D materials with nanomaterials of different dimensionality and chemistry. Complementing mixed matrix membranes or hybrid membranes, MDMs stimulate different conceptual thinking about designing advanced membranes from the angle of the dimensions of the building blocks as well as the final structures, including the nanochannels and the bulk structures. In this review, we survey MDMs (denoted
n
D/2D, where
n
is 0, 1 or 3) in terms of the dimensions of membrane-forming nanomaterials, as well as their fabrication methods. Subsequently, we highlight three kinds of nanochannels, which are 1D nanochannels within 1D/2D membranes, 2D nanochannels within 0D/2D membranes, and 3D nanochannels within 3D/2D membranes. Strategies to tune the physical and chemical microenvironments of the nanochannels as well as the bulk structures based on the size, type, structure and chemical character of nanomaterials are discussed. Some representative applications of MDMs are illustrated for gas molecular separations, liquid molecular separations, ionic separations and oil/water separation. Finally, current challenges and a future perspective on MDMs are presented. Tremendous progress in two-dimensional (2D) nanomaterial chemistry affords abundant opportunities for the sustainable development of membranes and membrane processes. In this review, we propose the concept of mixed dimensional membranes (MDMs), which are fabricated through the integration of 2D materials with nanomaterials of different dimensionality and chemistry. Complementing mixed matrix membranes or hybrid membranes, MDMs stimulate different conceptual thinking about designing advanced membranes from the angle of the dimensions of the building blocks as well as the final structures, including the nanochannels and the bulk structures. In this review, we survey MDMs (denoted n D/2D, where n is 0, 1 or 3) in terms of the dimensions of membrane-forming nanomaterials, as well as their fabrication methods. Subsequently, we highlight three kinds of nanochannels, which are 1D nanochannels within 1D/2D membranes, 2D nanochannels within 0D/2D membranes, and 3D nanochannels within 3D/2D membranes. Strategies to tune the physical and chemical microenvironments of the nanochannels as well as the bulk structures based on the size, type, structure and chemical character of nanomaterials are discussed. Some representative applications of MDMs are illustrated for gas molecular separations, liquid molecular separations, ionic separations and oil/water separation. Finally, current challenges and a future perspective on MDMs are presented. This review highlights the design and construction of mixed-dimensional membranes (MDMs) and their applications in molecular separations, ionic separations and oil/water separations. Tremendous progress in two-dimensional (2D) nanomaterial chemistry affords abundant opportunities for the sustainable development of membranes and membrane processes. In this review, we propose the concept of mixed dimensional membranes (MDMs), which are fabricated through the integration of 2D materials with nanomaterials of different dimensionality and chemistry. Complementing mixed matrix membranes or hybrid membranes, MDMs stimulate different conceptual thinking about designing advanced membranes from the angle of the dimensions of the building blocks as well as the final structures, including the nanochannels and the bulk structures. In this review, we survey MDMs (denoted nD/2D, where n is 0, 1 or 3) in terms of the dimensions of membrane-forming nanomaterials, as well as their fabrication methods. Subsequently, we highlight three kinds of nanochannels, which are 1D nanochannels within 1D/2D membranes, 2D nanochannels within 0D/2D membranes, and 3D nanochannels within 3D/2D membranes. Strategies to tune the physical and chemical microenvironments of the nanochannels as well as the bulk structures based on the size, type, structure and chemical character of nanomaterials are discussed. Some representative applications of MDMs are illustrated for gas molecular separations, liquid molecular separations, ionic separations and oil/water separation. Finally, current challenges and a future perspective on MDMs are presented. Tremendous progress in two-dimensional (2D) nanomaterial chemistry affords abundant opportunities for the sustainable development of membranes and membrane processes. In this review, we propose the concept of mixed dimensional membranes (MDMs), which are fabricated through the integration of 2D materials with nanomaterials of different dimensionality and chemistry. Complementing mixed matrix membranes or hybrid membranes, MDMs stimulate different conceptual thinking about designing advanced membranes from the angle of the dimensions of the building blocks as well as the final structures, including the nanochannels and the bulk structures. In this review, we survey MDMs (denoted nD/2D, where n is 0, 1 or 3) in terms of the dimensions of membrane-forming nanomaterials, as well as their fabrication methods. Subsequently, we highlight three kinds of nanochannels, which are 1D nanochannels within 1D/2D membranes, 2D nanochannels within 0D/2D membranes, and 3D nanochannels within 3D/2D membranes. Strategies to tune the physical and chemical microenvironments of the nanochannels as well as the bulk structures based on the size, type, structure and chemical character of nanomaterials are discussed. Some representative applications of MDMs are illustrated for gas molecular separations, liquid molecular separations, ionic separations and oil/water separation. Finally, current challenges and a future perspective on MDMs are presented.Tremendous progress in two-dimensional (2D) nanomaterial chemistry affords abundant opportunities for the sustainable development of membranes and membrane processes. In this review, we propose the concept of mixed dimensional membranes (MDMs), which are fabricated through the integration of 2D materials with nanomaterials of different dimensionality and chemistry. Complementing mixed matrix membranes or hybrid membranes, MDMs stimulate different conceptual thinking about designing advanced membranes from the angle of the dimensions of the building blocks as well as the final structures, including the nanochannels and the bulk structures. In this review, we survey MDMs (denoted nD/2D, where n is 0, 1 or 3) in terms of the dimensions of membrane-forming nanomaterials, as well as their fabrication methods. Subsequently, we highlight three kinds of nanochannels, which are 1D nanochannels within 1D/2D membranes, 2D nanochannels within 0D/2D membranes, and 3D nanochannels within 3D/2D membranes. Strategies to tune the physical and chemical microenvironments of the nanochannels as well as the bulk structures based on the size, type, structure and chemical character of nanomaterials are discussed. Some representative applications of MDMs are illustrated for gas molecular separations, liquid molecular separations, ionic separations and oil/water separation. Finally, current challenges and a future perspective on MDMs are presented. |
Author | Liu, Yanan Coppens, Marc-Olivier Jiang, Zhongyi |
AuthorAffiliation | University College London Key Laboratory for Green Chemical Technology of Ministry of Education Tianjin University EPSRC "Frontier Engineering" Centre for Nature Inspired Engineering & Department of Chemical Engineering School of Chemical Engineering and Technology |
AuthorAffiliation_xml | – name: Tianjin University – name: EPSRC "Frontier Engineering" Centre for Nature Inspired Engineering & Department of Chemical Engineering – name: Key Laboratory for Green Chemical Technology of Ministry of Education – name: School of Chemical Engineering and Technology – name: University College London |
Author_xml | – sequence: 1 givenname: Yanan surname: Liu fullname: Liu, Yanan – sequence: 2 givenname: Marc-Olivier surname: Coppens fullname: Coppens, Marc-Olivier – sequence: 3 givenname: Zhongyi surname: Jiang fullname: Jiang, Zhongyi |
BookMark | eNqFkc1LAzEQxYNUsK1evAsLXkRYTbLZZNeb1E-seFDPSzaZpSn7UZMs2P_ebCsKRfA0A_N7w-O9CRq1XQsIHRN8QXCSX2qiHMYiEYs9NCaM45gJxkZojBPMY4wJPUAT55ZhI4LTMXp6Np-gY20aaJ3pWllHDTSllS24q0gtoDHO23UkWx2FpVe-txCvbLcC69eRhVr6IHMLs3KHaL-StYOj7zlF73e3b7OHeP5y_zi7nseKsdzHGWHBIGWQEU24VKJMNAamyoyrSipNwoGXVFKthMgkkzhLeYlVTsuUQUWTKTrb_g02PnpwvggmFdR1MN31rqA84TzLMyH-R1NBMMsZG9DTHXTZ9TYEMlA5JiljdKDwllK2c85CVSjjNxF4K01dEFwMRRQ3ZPa6KeIhSM53JCtrGmnXf8MnW9g69cP9tpp8AUZTlL0 |
CitedBy_id | crossref_primary_10_1039_D3RA07094H crossref_primary_10_1002_smtd_202300737 crossref_primary_10_1016_j_seppur_2022_122004 crossref_primary_10_1038_s41467_023_39851_1 crossref_primary_10_1039_D4SC02801E crossref_primary_10_1039_D2SM00451H crossref_primary_10_1016_j_gee_2022_04_001 crossref_primary_10_1016_j_seppur_2025_131762 crossref_primary_10_1016_j_memsci_2024_122843 crossref_primary_10_1016_j_cej_2024_155872 crossref_primary_10_1016_j_seppur_2023_126163 crossref_primary_10_1093_nsr_nwae482 crossref_primary_10_1016_j_fuel_2023_130477 crossref_primary_10_1016_j_seppur_2023_123774 crossref_primary_10_1002_adfm_202312452 crossref_primary_10_1016_j_seppur_2023_125727 crossref_primary_10_1021_acs_iecr_3c02048 crossref_primary_10_1002_adma_202307849 crossref_primary_10_1002_anie_202218321 crossref_primary_10_1016_j_cej_2023_144600 crossref_primary_10_1002_adom_202400706 crossref_primary_10_1016_j_cej_2023_145579 crossref_primary_10_1016_j_memsci_2023_121727 crossref_primary_10_1039_D4CC05149A crossref_primary_10_1016_j_cej_2022_140989 crossref_primary_10_1039_D1CS01061A crossref_primary_10_1016_j_memsci_2024_122760 crossref_primary_10_1021_acs_iecr_5c00121 crossref_primary_10_1002_ange_202218321 crossref_primary_10_1016_j_jece_2022_108980 crossref_primary_10_1021_acs_nanolett_3c00004 crossref_primary_10_1021_acsaelm_2c01784 crossref_primary_10_1016_j_fuel_2024_134242 crossref_primary_10_1016_j_desal_2023_116545 crossref_primary_10_1002_adfm_202211983 crossref_primary_10_1021_acsnano_4c10274 crossref_primary_10_1002_ange_202114230 crossref_primary_10_1021_acs_jchemed_3c01019 crossref_primary_10_3390_molecules29122829 crossref_primary_10_1021_acsnano_3c06080 crossref_primary_10_1002_smll_202310681 crossref_primary_10_3390_molecules27134110 crossref_primary_10_1016_j_cej_2024_153355 crossref_primary_10_1016_j_cej_2022_138711 crossref_primary_10_1016_j_desal_2024_117945 crossref_primary_10_1002_adsu_202300597 crossref_primary_10_1016_j_ces_2023_118998 crossref_primary_10_1016_j_jcis_2021_11_017 crossref_primary_10_1002_anie_202114230 crossref_primary_10_1016_j_memsci_2022_120957 crossref_primary_10_1039_D4MH00482E crossref_primary_10_1016_j_memsci_2022_120832 crossref_primary_10_1002_adma_202206354 crossref_primary_10_1016_j_efmat_2024_06_001 crossref_primary_10_3390_membranes13020220 crossref_primary_10_1002_admt_202202014 crossref_primary_10_1016_j_jece_2022_109178 crossref_primary_10_1021_acsapm_4c00354 crossref_primary_10_1016_j_jcis_2022_07_162 crossref_primary_10_1016_j_jhazmat_2023_132515 crossref_primary_10_1039_D3CS00382E crossref_primary_10_1016_j_jiec_2025_03_004 crossref_primary_10_1038_s44221_024_00348_w crossref_primary_10_1021_acs_nanolett_2c00874 crossref_primary_10_3390_membranes13070677 crossref_primary_10_1016_j_apsusc_2025_162290 crossref_primary_10_1021_acs_iecr_2c02042 |
Cites_doi | 10.1002/ange.201708835 10.1126/science.277.5330.1232 10.1021/acs.nanolett.9b01577 10.1016/j.memsci.2020.119033 10.1038/nmat4703 10.1021/acsami.6b15752 10.1002/anie.201708048 10.1038/ncomms10891 10.1039/C6EE01984F 10.1039/C9TA05909A 10.1038/s41467-018-07882-8 10.1002/adma.201705944 10.1039/C7CS00880E 10.1126/sciadv.1501272 10.1002/anie.201701288 10.1126/science.1245711 10.1039/C5TA00366K 10.1039/C7TA10814A 10.1039/C7TA11003K 10.1126/science.1236098 10.1021/am5040945 10.1039/C8TA02193G 10.1002/anie.200906623 10.1038/s41467-016-0009-6 10.1007/s10450-021-00314-y 10.1021/acsnano.9b04156 10.1016/j.memsci.2014.12.039 10.1002/anie.201609306 10.1038/nmat5025 10.1016/j.memsci.2015.03.073 10.1126/science.aat4123 10.1021/acsami.5b00986 10.1039/C9TA09685J 10.1039/C8TA09070J 10.1038/nature24035 10.1002/adma.201605898 10.1126/science.aab0530 10.1002/anie.201814349 10.1039/C9CS00751B 10.1021/acsami.5b12876 10.1021/acsami.6b14371 10.1039/C6TA09362K 10.1002/adfm.201902014 10.1126/science.aaa2491 10.1039/C8TA10872B 10.1002/adfm.201706545 10.1038/s41467-017-02088-w 10.1038/nnano.2017.208 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2021 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2021 |
DBID | AAYXX CITATION 7SP 7SR 8BQ 8FD JG9 L7M 7X8 7S9 L.6 |
DOI | 10.1039/d1cs00737h |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX Electronics & Communications Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef AGRICOLA Materials Research Database MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1460-4744 |
EndPage | 11765 |
ExternalDocumentID | 10_1039_D1CS00737H d1cs00737h |
GroupedDBID | - 0-7 02 0R 29B 4.4 53G 5GY 70 705 70J 7~J 85S AAEMU AAGNR AAIWI AANOJ ABDVN ABFLS ABGFH ABPTK ABRYZ ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AENEX AFVBQ AGKEF AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX COF CS3 DU5 DZ EBS ECGLT EE0 EF- F5P GNO HZ H~N IDZ J3I JG M4U N9A O9- OK1 P2P R7B R7D RCNCU RIG RNS RPMJG RRA RRC RSCEA SKA SKH SLH TN5 TWZ UPT VH6 WH7 X --- -DZ -~X 0R~ 2WC 6J9 70~ AAHBH AAJAE AAMEH AAWGC AAXHV AAXPP AAYXX ABASK ABEMK ABJNI ABPDG ABXOH ACGFO AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AGRSR AHGCF AKMSF ALUYA ANUXI APEMP CITATION GGIMP H13 HZ~ R56 RAOCF ~02 7SP 7SR 8BQ 8FD JG9 L7M 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c449t-81473724e81d16ac7b3d0e4cb86cfacd1e816b2a2dc778a4a0856b0c92b54ef23 |
ISSN | 0306-0012 1460-4744 |
IngestDate | Fri Jul 11 01:06:48 EDT 2025 Thu Jul 10 22:39:03 EDT 2025 Mon Jun 30 05:37:50 EDT 2025 Thu Apr 24 23:05:16 EDT 2025 Tue Jul 01 04:18:46 EDT 2025 Sat Jan 08 03:52:30 EST 2022 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c449t-81473724e81d16ac7b3d0e4cb86cfacd1e816b2a2dc778a4a0856b0c92b54ef23 |
Notes | Marc-Olivier Coppens is Ramsay Memorial Professor in Chemical Engineering at UCL, since 2012, after professorships at Rensselaer and TUDelft. He is also Vice-Dean for Engineering (Interdisciplinarity, Innovation). He directs the Centre for Nature-Inspired Engineering, which was granted EPSRC "Frontier Engineering" (2013) and "Progression" (2019) Awards. He is most recognised for pioneering nature-inspired chemical engineering (NICE): learning from fundamental mechanisms underpinning desirable traits in nature to develop innovative solutions to engineering challenges. He is Fellow of AIChE, IChemE, Corresponding Member of the Saxon Academy of Sciences (Germany), Qiushi Professor at Zhejiang University, and has delivered >50 named lectures, plenaries and keynotes. Zhongyi Jiang is a Professor of School of Chemical Engineering and Technology, Tianjin University, Changjiang Scholars, the winner of National Science Fund for Distinguished Young Scholars. He received his PhD from Tianjin University in 1994. He served as a visiting scholar of University of Minnesota in 1996-1998 and California Institute of technology in 2009. His research interest includes membranes and membrane processes and enzymatic catalysis. Till now, he has published more than 600 SCI papers with total citations over 25 000 times (H index = 85). He is an associate editor for Advanced Membranes, a member of the editorial board for Journal of Membrane Science, Research, Green Chemical Engineering, etc. Yanan Liu is currently working as a postdoc with Prof. Marc-Olivier Coppens in the Department of Chemical Engineering at University College London. She received her PhD degree in Chemical Technology from Tianjin University in 2019 under the tutelage of Prof. Zhongyi Jiang. Her research interests include nanomaterials, membrane technology for water treatment and nature-inspired methodology for membrane technology. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-1810-2537 0000-0002-0048-8849 |
OpenAccessLink | http://pubs.rsc.org/en/content/articlepdf/2021/CS/D1CS00737H |
PQID | 2590154427 |
PQPubID | 2047503 |
PageCount | 19 |
ParticipantIDs | proquest_journals_2590154427 rsc_primary_d1cs00737h proquest_miscellaneous_2571049447 crossref_primary_10_1039_D1CS00737H crossref_citationtrail_10_1039_D1CS00737H proquest_miscellaneous_2636689877 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-01 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Chemical Society reviews |
PublicationYear | 2021 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Baker (D1CS00737H/cit36) 2010; 49 Shi (D1CS00737H/cit37) 2019; 13 Humphrey (D1CS00737H/cit44) 1997 Cheng (D1CS00737H/cit10) 2016; 2 Wang (D1CS00737H/cit13) 2020; 49 Ding (D1CS00737H/cit19) 2018; 9 Decher (D1CS00737H/cit27) 1997; 277 Ying (D1CS00737H/cit43) 2017; 9 Chen (D1CS00737H/cit11) 2017; 550 Huang (D1CS00737H/cit4) 2017; 12 Shao (D1CS00737H/cit34) 2021; 623 Jariwala (D1CS00737H/cit7) 2017; 16 Wang (D1CS00737H/cit35) 2017; 56 He (D1CS00737H/cit14) 2017; 29 Yang (D1CS00737H/cit30) 2019; 10 Yang (D1CS00737H/cit15) 2017; 16 Wang (D1CS00737H/cit12) 2016; 9 Li (D1CS00737H/cit18) 2019; 19 Han (D1CS00737H/cit31) 2015; 7 Park (D1CS00737H/cit2) 2017; 356 Zhu (D1CS00737H/cit8) 2018; 6 Zhao (D1CS00737H/cit22) 2016; 8 Liu (D1CS00737H/cit5) 2018; 6 He (D1CS00737H/cit17) 2018; 6 Wang (D1CS00737H/cit47) 2019; 7 Frisenda (D1CS00737H/cit6) 2018; 47 Zhou (D1CS00737H/cit45) 2017; 8 Tsou (D1CS00737H/cit25) 2015; 477 Ma (D1CS00737H/cit42) 2018; 361 Liu (D1CS00737H/cit3) 2018; 28 Song (D1CS00737H/cit46) 2019; 7 Joshi (D1CS00737H/cit16) 2014; 343 Lee (D1CS00737H/cit48) 2018; 30 Kim (D1CS00737H/cit40) 2018; 130 Li (D1CS00737H/cit39) 2016; 4 Li (D1CS00737H/cit20) 2017; 9 Bukowski (D1CS00737H/cit50) 2021; 27 Wang (D1CS00737H/cit21) 2017; 56 Richardson (D1CS00737H/cit29) 2015; 348 Ding (D1CS00737H/cit26) 2017; 56 Liu (D1CS00737H/cit41) 2019; 7 Zhao (D1CS00737H/cit28) 2015; 487 Akbari (D1CS00737H/cit24) 2016; 7 Xu (D1CS00737H/cit38) 2014; 6 Hu (D1CS00737H/cit49) 2018; 6 Kim (D1CS00737H/cit1) 2019; 58 Huang (D1CS00737H/cit32) 2013; 4 Kang (D1CS00737H/cit9) 2019; 29 Kim (D1CS00737H/cit23) 2013; 342 Gao (D1CS00737H/cit33) 2015; 3 |
References_xml | – issn: 1997 publication-title: Separation process technology doi: Humphrey – volume: 130 start-page: 489 year: 2018 ident: D1CS00737H/cit40 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.201708835 – volume: 277 start-page: 1232 year: 1997 ident: D1CS00737H/cit27 publication-title: Science doi: 10.1126/science.277.5330.1232 – volume: 19 start-page: 5194 year: 2019 ident: D1CS00737H/cit18 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b01577 – volume: 623 start-page: 119033 year: 2021 ident: D1CS00737H/cit34 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2020.119033 – volume: 16 start-page: 170 year: 2017 ident: D1CS00737H/cit7 publication-title: Nat. Mater. doi: 10.1038/nmat4703 – volume: 9 start-page: 8433 year: 2017 ident: D1CS00737H/cit20 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b15752 – volume: 56 start-page: 14246 year: 2017 ident: D1CS00737H/cit35 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201708048 – volume: 7 start-page: 1 year: 2016 ident: D1CS00737H/cit24 publication-title: Nat. Commun. doi: 10.1038/ncomms10891 – volume: 9 start-page: 3107 year: 2016 ident: D1CS00737H/cit12 publication-title: Energy Environ. Sci. doi: 10.1039/C6EE01984F – volume: 7 start-page: 18642 year: 2019 ident: D1CS00737H/cit46 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA05909A – volume: 10 start-page: 1 year: 2019 ident: D1CS00737H/cit30 publication-title: Nat. Commun. doi: 10.1038/s41467-018-07882-8 – volume: 30 start-page: 1705944 year: 2018 ident: D1CS00737H/cit48 publication-title: Adv. Mater. doi: 10.1002/adma.201705944 – volume: 47 start-page: 3339 year: 2018 ident: D1CS00737H/cit6 publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00880E – volume: 2 start-page: e1501272 year: 2016 ident: D1CS00737H/cit10 publication-title: Sci. Adv. doi: 10.1126/sciadv.1501272 – volume: 56 start-page: 8974 year: 2017 ident: D1CS00737H/cit21 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201701288 – volume: 343 start-page: 752 year: 2014 ident: D1CS00737H/cit16 publication-title: Science doi: 10.1126/science.1245711 – volume: 3 start-page: 6649 year: 2015 ident: D1CS00737H/cit33 publication-title: J. Mater. Chem. A doi: 10.1039/C5TA00366K – volume: 6 start-page: 3773 year: 2018 ident: D1CS00737H/cit8 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA10814A – volume: 6 start-page: 4737 year: 2018 ident: D1CS00737H/cit49 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA11003K – volume: 342 start-page: 91 year: 2013 ident: D1CS00737H/cit23 publication-title: Science doi: 10.1126/science.1236098 – volume: 6 start-page: 16117 year: 2014 ident: D1CS00737H/cit38 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am5040945 – volume: 6 start-page: 10277 year: 2018 ident: D1CS00737H/cit17 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA02193G – volume: 49 start-page: 6726 year: 2010 ident: D1CS00737H/cit36 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200906623 – volume: 8 start-page: 1 year: 2017 ident: D1CS00737H/cit45 publication-title: Nat. Commun. doi: 10.1038/s41467-016-0009-6 – volume: 27 start-page: 1 year: 2021 ident: D1CS00737H/cit50 publication-title: Adsorption doi: 10.1007/s10450-021-00314-y – volume: 13 start-page: 10366 year: 2019 ident: D1CS00737H/cit37 publication-title: ACS Nano doi: 10.1021/acsnano.9b04156 – volume: 477 start-page: 93 year: 2015 ident: D1CS00737H/cit25 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2014.12.039 – volume: 56 start-page: 1825 year: 2017 ident: D1CS00737H/cit26 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201609306 – volume: 16 start-page: 1198 year: 2017 ident: D1CS00737H/cit15 publication-title: Nat. Mater. doi: 10.1038/nmat5025 – volume: 487 start-page: 162 year: 2015 ident: D1CS00737H/cit28 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2015.03.073 – volume: 361 start-page: 1008 year: 2018 ident: D1CS00737H/cit42 publication-title: Science doi: 10.1126/science.aat4123 – volume: 7 start-page: 8147 year: 2015 ident: D1CS00737H/cit31 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b00986 – volume: 7 start-page: 25458 year: 2019 ident: D1CS00737H/cit41 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA09685J – volume: 6 start-page: 23169 year: 2018 ident: D1CS00737H/cit5 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA09070J – volume: 550 start-page: 415 year: 2017 ident: D1CS00737H/cit11 publication-title: Nature doi: 10.1038/nature24035 – volume: 29 start-page: 1605898 year: 2017 ident: D1CS00737H/cit14 publication-title: Adv. Mater. doi: 10.1002/adma.201605898 – volume: 356 start-page: eaab0530 year: 2017 ident: D1CS00737H/cit2 publication-title: Science doi: 10.1126/science.aab0530 – volume: 58 start-page: 17512 year: 2019 ident: D1CS00737H/cit1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201814349 – volume: 49 start-page: 1071 year: 2020 ident: D1CS00737H/cit13 publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00751B – volume: 8 start-page: 8247 year: 2016 ident: D1CS00737H/cit22 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b12876 – volume: 9 start-page: 1710 year: 2017 ident: D1CS00737H/cit43 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b14371 – volume: 4 start-page: 18747 year: 2016 ident: D1CS00737H/cit39 publication-title: J. Mater. Chem. A doi: 10.1039/C6TA09362K – volume-title: Separation process technology year: 1997 ident: D1CS00737H/cit44 – volume: 4 start-page: 1 year: 2013 ident: D1CS00737H/cit32 publication-title: Nat. Commun. – volume: 29 start-page: 1902014 year: 2019 ident: D1CS00737H/cit9 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201902014 – volume: 348 start-page: aaa2491 year: 2015 ident: D1CS00737H/cit29 publication-title: Science doi: 10.1126/science.aaa2491 – volume: 7 start-page: 11673 year: 2019 ident: D1CS00737H/cit47 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA10872B – volume: 28 start-page: 1706545 year: 2018 ident: D1CS00737H/cit3 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201706545 – volume: 9 start-page: 1 year: 2018 ident: D1CS00737H/cit19 publication-title: Nat. Commun. doi: 10.1038/s41467-017-02088-w – volume: 12 start-page: 1148 year: 2017 ident: D1CS00737H/cit4 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.208 |
SSID | ssj0011762 |
Score | 2.606218 |
SecondaryResourceType | review_article |
Snippet | Tremendous progress in two-dimensional (2D) nanomaterial chemistry affords abundant opportunities for the sustainable development of membranes and membrane... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 11747 |
SubjectTerms | Chemistry liquids Membrane processes Membranes Nanochannels Nanomaterials oils Sustainable development Two dimensional materials |
Title | Mixed-dimensional membranes: chemistry and structure-property relationships |
URI | https://www.proquest.com/docview/2590154427 https://www.proquest.com/docview/2571049447 https://www.proquest.com/docview/2636689877 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZY9wAviNtE2UBB8IJQILEdJ-ZtKkMFUXigkyZeKttx10hbGvUiDZ74D_xDfgnH8SUdndDgJWoTp0l9jo_P9TsIPWcsIURwEpc8lcZ1k8VcUBrnIstKrGg6zUyh8OgTGx7TDyfZSZcS1FaXrOQr9f3KupL_oSqcA7qaKtl_oGz4UTgBn4G-cAQKw_FaNB5VF7qMSwPQb8E1Xp7rczB_a5vopnwztzZCYJFi1wvt8xtIYxzxC9DCFz4jblY1y011NcAJ-OROB14a0niqdSvDRd0x2WDeNNo5sWEVxZ_PKrP3hlSdynmov87m9em3atPtgFNXf9dJJ2JcEYnLgdZWelKWAL0toKMXrxZX1rGRrYZ2wjIFayjf2Hnhu-0bsSXWE2JQUd-mgy8mspgPu83LB-z_2NNCpmEbYyd80t27g3YxmBS4h3YPj8bvP4aYEzzdxZzsH_NgtoS_7u6-rL50NsnOwjeMaRWT8R1021kU0aFlj7vohq7voZsDT_v7aLTFJlFgkzdRYJIImCQKTPLrx0_PHtEl9niAjt8djQfD2HXRiBWlfGV8vKYVEdVgmaRMqFySMtFUyYKpqVBlCheYxAKXKs8LQQUo4UwmimOZUT3FZA_16nmtH6KIkYQnygD8i4LCHUUuGaEZVpLyKeO4j174yZkoBzFvOp2cTbbJ0EfPwtjGAqtcOerAz_HELbzlBJt66YxSnPfR03AZ5srEumDu5mszBlRnyin92xhGGCt4kcOYPaBfeI8yVcv2-bNH13rLfXSrWyIHqAek0o9BV13JJ47JfgNPaJN3 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mixed-dimensional+membranes%3A+chemistry+and+structure%E2%80%93property+relationships&rft.jtitle=Chemical+Society+reviews&rft.au=Liu%2C+Yanan&rft.au=Coppens%2C+Marc-Olivier&rft.au=Jiang%2C+Zhongyi&rft.date=2021-11-01&rft.issn=0306-0012&rft.eissn=1460-4744&rft.volume=50&rft.issue=21&rft.spage=11747&rft.epage=11765&rft_id=info:doi/10.1039%2FD1CS00737H&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D1CS00737H |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-0012&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-0012&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-0012&client=summon |