Mixed-dimensional membranes: chemistry and structure-property relationships

Tremendous progress in two-dimensional (2D) nanomaterial chemistry affords abundant opportunities for the sustainable development of membranes and membrane processes. In this review, we propose the concept of mixed dimensional membranes (MDMs), which are fabricated through the integration of 2D mate...

Full description

Saved in:
Bibliographic Details
Published inChemical Society reviews Vol. 5; no. 21; pp. 11747 - 11765
Main Authors Liu, Yanan, Coppens, Marc-Olivier, Jiang, Zhongyi
Format Journal Article
LanguageEnglish
Published London Royal Society of Chemistry 01.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Tremendous progress in two-dimensional (2D) nanomaterial chemistry affords abundant opportunities for the sustainable development of membranes and membrane processes. In this review, we propose the concept of mixed dimensional membranes (MDMs), which are fabricated through the integration of 2D materials with nanomaterials of different dimensionality and chemistry. Complementing mixed matrix membranes or hybrid membranes, MDMs stimulate different conceptual thinking about designing advanced membranes from the angle of the dimensions of the building blocks as well as the final structures, including the nanochannels and the bulk structures. In this review, we survey MDMs (denoted n D/2D, where n is 0, 1 or 3) in terms of the dimensions of membrane-forming nanomaterials, as well as their fabrication methods. Subsequently, we highlight three kinds of nanochannels, which are 1D nanochannels within 1D/2D membranes, 2D nanochannels within 0D/2D membranes, and 3D nanochannels within 3D/2D membranes. Strategies to tune the physical and chemical microenvironments of the nanochannels as well as the bulk structures based on the size, type, structure and chemical character of nanomaterials are discussed. Some representative applications of MDMs are illustrated for gas molecular separations, liquid molecular separations, ionic separations and oil/water separation. Finally, current challenges and a future perspective on MDMs are presented. This review highlights the design and construction of mixed-dimensional membranes (MDMs) and their applications in molecular separations, ionic separations and oil/water separations.
AbstractList Tremendous progress in two-dimensional (2D) nanomaterial chemistry affords abundant opportunities for the sustainable development of membranes and membrane processes. In this review, we propose the concept of mixed dimensional membranes (MDMs), which are fabricated through the integration of 2D materials with nanomaterials of different dimensionality and chemistry. Complementing mixed matrix membranes or hybrid membranes, MDMs stimulate different conceptual thinking about designing advanced membranes from the angle of the dimensions of the building blocks as well as the final structures, including the nanochannels and the bulk structures. In this review, we survey MDMs (denoted n D/2D, where n is 0, 1 or 3) in terms of the dimensions of membrane-forming nanomaterials, as well as their fabrication methods. Subsequently, we highlight three kinds of nanochannels, which are 1D nanochannels within 1D/2D membranes, 2D nanochannels within 0D/2D membranes, and 3D nanochannels within 3D/2D membranes. Strategies to tune the physical and chemical microenvironments of the nanochannels as well as the bulk structures based on the size, type, structure and chemical character of nanomaterials are discussed. Some representative applications of MDMs are illustrated for gas molecular separations, liquid molecular separations, ionic separations and oil/water separation. Finally, current challenges and a future perspective on MDMs are presented.
Tremendous progress in two-dimensional (2D) nanomaterial chemistry affords abundant opportunities for the sustainable development of membranes and membrane processes. In this review, we propose the concept of mixed dimensional membranes (MDMs), which are fabricated through the integration of 2D materials with nanomaterials of different dimensionality and chemistry. Complementing mixed matrix membranes or hybrid membranes, MDMs stimulate different conceptual thinking about designing advanced membranes from the angle of the dimensions of the building blocks as well as the final structures, including the nanochannels and the bulk structures. In this review, we survey MDMs (denoted n D/2D, where n is 0, 1 or 3) in terms of the dimensions of membrane-forming nanomaterials, as well as their fabrication methods. Subsequently, we highlight three kinds of nanochannels, which are 1D nanochannels within 1D/2D membranes, 2D nanochannels within 0D/2D membranes, and 3D nanochannels within 3D/2D membranes. Strategies to tune the physical and chemical microenvironments of the nanochannels as well as the bulk structures based on the size, type, structure and chemical character of nanomaterials are discussed. Some representative applications of MDMs are illustrated for gas molecular separations, liquid molecular separations, ionic separations and oil/water separation. Finally, current challenges and a future perspective on MDMs are presented. This review highlights the design and construction of mixed-dimensional membranes (MDMs) and their applications in molecular separations, ionic separations and oil/water separations.
Tremendous progress in two-dimensional (2D) nanomaterial chemistry affords abundant opportunities for the sustainable development of membranes and membrane processes. In this review, we propose the concept of mixed dimensional membranes (MDMs), which are fabricated through the integration of 2D materials with nanomaterials of different dimensionality and chemistry. Complementing mixed matrix membranes or hybrid membranes, MDMs stimulate different conceptual thinking about designing advanced membranes from the angle of the dimensions of the building blocks as well as the final structures, including the nanochannels and the bulk structures. In this review, we survey MDMs (denoted nD/2D, where n is 0, 1 or 3) in terms of the dimensions of membrane-forming nanomaterials, as well as their fabrication methods. Subsequently, we highlight three kinds of nanochannels, which are 1D nanochannels within 1D/2D membranes, 2D nanochannels within 0D/2D membranes, and 3D nanochannels within 3D/2D membranes. Strategies to tune the physical and chemical microenvironments of the nanochannels as well as the bulk structures based on the size, type, structure and chemical character of nanomaterials are discussed. Some representative applications of MDMs are illustrated for gas molecular separations, liquid molecular separations, ionic separations and oil/water separation. Finally, current challenges and a future perspective on MDMs are presented.
Tremendous progress in two-dimensional (2D) nanomaterial chemistry affords abundant opportunities for the sustainable development of membranes and membrane processes. In this review, we propose the concept of mixed dimensional membranes (MDMs), which are fabricated through the integration of 2D materials with nanomaterials of different dimensionality and chemistry. Complementing mixed matrix membranes or hybrid membranes, MDMs stimulate different conceptual thinking about designing advanced membranes from the angle of the dimensions of the building blocks as well as the final structures, including the nanochannels and the bulk structures. In this review, we survey MDMs (denoted nD/2D, where n is 0, 1 or 3) in terms of the dimensions of membrane-forming nanomaterials, as well as their fabrication methods. Subsequently, we highlight three kinds of nanochannels, which are 1D nanochannels within 1D/2D membranes, 2D nanochannels within 0D/2D membranes, and 3D nanochannels within 3D/2D membranes. Strategies to tune the physical and chemical microenvironments of the nanochannels as well as the bulk structures based on the size, type, structure and chemical character of nanomaterials are discussed. Some representative applications of MDMs are illustrated for gas molecular separations, liquid molecular separations, ionic separations and oil/water separation. Finally, current challenges and a future perspective on MDMs are presented.Tremendous progress in two-dimensional (2D) nanomaterial chemistry affords abundant opportunities for the sustainable development of membranes and membrane processes. In this review, we propose the concept of mixed dimensional membranes (MDMs), which are fabricated through the integration of 2D materials with nanomaterials of different dimensionality and chemistry. Complementing mixed matrix membranes or hybrid membranes, MDMs stimulate different conceptual thinking about designing advanced membranes from the angle of the dimensions of the building blocks as well as the final structures, including the nanochannels and the bulk structures. In this review, we survey MDMs (denoted nD/2D, where n is 0, 1 or 3) in terms of the dimensions of membrane-forming nanomaterials, as well as their fabrication methods. Subsequently, we highlight three kinds of nanochannels, which are 1D nanochannels within 1D/2D membranes, 2D nanochannels within 0D/2D membranes, and 3D nanochannels within 3D/2D membranes. Strategies to tune the physical and chemical microenvironments of the nanochannels as well as the bulk structures based on the size, type, structure and chemical character of nanomaterials are discussed. Some representative applications of MDMs are illustrated for gas molecular separations, liquid molecular separations, ionic separations and oil/water separation. Finally, current challenges and a future perspective on MDMs are presented.
Author Liu, Yanan
Coppens, Marc-Olivier
Jiang, Zhongyi
AuthorAffiliation University College London
Key Laboratory for Green Chemical Technology of Ministry of Education
Tianjin University
EPSRC "Frontier Engineering" Centre for Nature Inspired Engineering & Department of Chemical Engineering
School of Chemical Engineering and Technology
AuthorAffiliation_xml – name: Tianjin University
– name: EPSRC "Frontier Engineering" Centre for Nature Inspired Engineering & Department of Chemical Engineering
– name: Key Laboratory for Green Chemical Technology of Ministry of Education
– name: School of Chemical Engineering and Technology
– name: University College London
Author_xml – sequence: 1
  givenname: Yanan
  surname: Liu
  fullname: Liu, Yanan
– sequence: 2
  givenname: Marc-Olivier
  surname: Coppens
  fullname: Coppens, Marc-Olivier
– sequence: 3
  givenname: Zhongyi
  surname: Jiang
  fullname: Jiang, Zhongyi
BookMark eNqFkc1LAzEQxYNUsK1evAsLXkRYTbLZZNeb1E-seFDPSzaZpSn7UZMs2P_ebCsKRfA0A_N7w-O9CRq1XQsIHRN8QXCSX2qiHMYiEYs9NCaM45gJxkZojBPMY4wJPUAT55ZhI4LTMXp6Np-gY20aaJ3pWllHDTSllS24q0gtoDHO23UkWx2FpVe-txCvbLcC69eRhVr6IHMLs3KHaL-StYOj7zlF73e3b7OHeP5y_zi7nseKsdzHGWHBIGWQEU24VKJMNAamyoyrSipNwoGXVFKthMgkkzhLeYlVTsuUQUWTKTrb_g02PnpwvggmFdR1MN31rqA84TzLMyH-R1NBMMsZG9DTHXTZ9TYEMlA5JiljdKDwllK2c85CVSjjNxF4K01dEFwMRRQ3ZPa6KeIhSM53JCtrGmnXf8MnW9g69cP9tpp8AUZTlL0
CitedBy_id crossref_primary_10_1039_D3RA07094H
crossref_primary_10_1002_smtd_202300737
crossref_primary_10_1016_j_seppur_2022_122004
crossref_primary_10_1038_s41467_023_39851_1
crossref_primary_10_1039_D4SC02801E
crossref_primary_10_1039_D2SM00451H
crossref_primary_10_1016_j_gee_2022_04_001
crossref_primary_10_1016_j_seppur_2025_131762
crossref_primary_10_1016_j_memsci_2024_122843
crossref_primary_10_1016_j_cej_2024_155872
crossref_primary_10_1016_j_seppur_2023_126163
crossref_primary_10_1093_nsr_nwae482
crossref_primary_10_1016_j_fuel_2023_130477
crossref_primary_10_1016_j_seppur_2023_123774
crossref_primary_10_1002_adfm_202312452
crossref_primary_10_1016_j_seppur_2023_125727
crossref_primary_10_1021_acs_iecr_3c02048
crossref_primary_10_1002_adma_202307849
crossref_primary_10_1002_anie_202218321
crossref_primary_10_1016_j_cej_2023_144600
crossref_primary_10_1002_adom_202400706
crossref_primary_10_1016_j_cej_2023_145579
crossref_primary_10_1016_j_memsci_2023_121727
crossref_primary_10_1039_D4CC05149A
crossref_primary_10_1016_j_cej_2022_140989
crossref_primary_10_1039_D1CS01061A
crossref_primary_10_1016_j_memsci_2024_122760
crossref_primary_10_1021_acs_iecr_5c00121
crossref_primary_10_1002_ange_202218321
crossref_primary_10_1016_j_jece_2022_108980
crossref_primary_10_1021_acs_nanolett_3c00004
crossref_primary_10_1021_acsaelm_2c01784
crossref_primary_10_1016_j_fuel_2024_134242
crossref_primary_10_1016_j_desal_2023_116545
crossref_primary_10_1002_adfm_202211983
crossref_primary_10_1021_acsnano_4c10274
crossref_primary_10_1002_ange_202114230
crossref_primary_10_1021_acs_jchemed_3c01019
crossref_primary_10_3390_molecules29122829
crossref_primary_10_1021_acsnano_3c06080
crossref_primary_10_1002_smll_202310681
crossref_primary_10_3390_molecules27134110
crossref_primary_10_1016_j_cej_2024_153355
crossref_primary_10_1016_j_cej_2022_138711
crossref_primary_10_1016_j_desal_2024_117945
crossref_primary_10_1002_adsu_202300597
crossref_primary_10_1016_j_ces_2023_118998
crossref_primary_10_1016_j_jcis_2021_11_017
crossref_primary_10_1002_anie_202114230
crossref_primary_10_1016_j_memsci_2022_120957
crossref_primary_10_1039_D4MH00482E
crossref_primary_10_1016_j_memsci_2022_120832
crossref_primary_10_1002_adma_202206354
crossref_primary_10_1016_j_efmat_2024_06_001
crossref_primary_10_3390_membranes13020220
crossref_primary_10_1002_admt_202202014
crossref_primary_10_1016_j_jece_2022_109178
crossref_primary_10_1021_acsapm_4c00354
crossref_primary_10_1016_j_jcis_2022_07_162
crossref_primary_10_1016_j_jhazmat_2023_132515
crossref_primary_10_1039_D3CS00382E
crossref_primary_10_1016_j_jiec_2025_03_004
crossref_primary_10_1038_s44221_024_00348_w
crossref_primary_10_1021_acs_nanolett_2c00874
crossref_primary_10_3390_membranes13070677
crossref_primary_10_1016_j_apsusc_2025_162290
crossref_primary_10_1021_acs_iecr_2c02042
Cites_doi 10.1002/ange.201708835
10.1126/science.277.5330.1232
10.1021/acs.nanolett.9b01577
10.1016/j.memsci.2020.119033
10.1038/nmat4703
10.1021/acsami.6b15752
10.1002/anie.201708048
10.1038/ncomms10891
10.1039/C6EE01984F
10.1039/C9TA05909A
10.1038/s41467-018-07882-8
10.1002/adma.201705944
10.1039/C7CS00880E
10.1126/sciadv.1501272
10.1002/anie.201701288
10.1126/science.1245711
10.1039/C5TA00366K
10.1039/C7TA10814A
10.1039/C7TA11003K
10.1126/science.1236098
10.1021/am5040945
10.1039/C8TA02193G
10.1002/anie.200906623
10.1038/s41467-016-0009-6
10.1007/s10450-021-00314-y
10.1021/acsnano.9b04156
10.1016/j.memsci.2014.12.039
10.1002/anie.201609306
10.1038/nmat5025
10.1016/j.memsci.2015.03.073
10.1126/science.aat4123
10.1021/acsami.5b00986
10.1039/C9TA09685J
10.1039/C8TA09070J
10.1038/nature24035
10.1002/adma.201605898
10.1126/science.aab0530
10.1002/anie.201814349
10.1039/C9CS00751B
10.1021/acsami.5b12876
10.1021/acsami.6b14371
10.1039/C6TA09362K
10.1002/adfm.201902014
10.1126/science.aaa2491
10.1039/C8TA10872B
10.1002/adfm.201706545
10.1038/s41467-017-02088-w
10.1038/nnano.2017.208
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2021
Copyright_xml – notice: Copyright Royal Society of Chemistry 2021
DBID AAYXX
CITATION
7SP
7SR
8BQ
8FD
JG9
L7M
7X8
7S9
L.6
DOI 10.1039/d1cs00737h
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
Electronics & Communications Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef

AGRICOLA
Materials Research Database
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1460-4744
EndPage 11765
ExternalDocumentID 10_1039_D1CS00737H
d1cs00737h
GroupedDBID -
0-7
02
0R
29B
4.4
53G
5GY
70
705
70J
7~J
85S
AAEMU
AAGNR
AAIWI
AANOJ
ABDVN
ABFLS
ABGFH
ABPTK
ABRYZ
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AENEX
AFVBQ
AGKEF
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
COF
CS3
DU5
DZ
EBS
ECGLT
EE0
EF-
F5P
GNO
HZ
H~N
IDZ
J3I
JG
M4U
N9A
O9-
OK1
P2P
R7B
R7D
RCNCU
RIG
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKH
SLH
TN5
TWZ
UPT
VH6
WH7
X
---
-DZ
-~X
0R~
2WC
6J9
70~
AAHBH
AAJAE
AAMEH
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
ACGFO
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AGRSR
AHGCF
AKMSF
ALUYA
ANUXI
APEMP
CITATION
GGIMP
H13
HZ~
R56
RAOCF
~02
7SP
7SR
8BQ
8FD
JG9
L7M
7X8
7S9
L.6
ID FETCH-LOGICAL-c449t-81473724e81d16ac7b3d0e4cb86cfacd1e816b2a2dc778a4a0856b0c92b54ef23
ISSN 0306-0012
1460-4744
IngestDate Fri Jul 11 01:06:48 EDT 2025
Thu Jul 10 22:39:03 EDT 2025
Mon Jun 30 05:37:50 EDT 2025
Thu Apr 24 23:05:16 EDT 2025
Tue Jul 01 04:18:46 EDT 2025
Sat Jan 08 03:52:30 EST 2022
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c449t-81473724e81d16ac7b3d0e4cb86cfacd1e816b2a2dc778a4a0856b0c92b54ef23
Notes Marc-Olivier Coppens is Ramsay Memorial Professor in Chemical Engineering at UCL, since 2012, after professorships at Rensselaer and TUDelft. He is also Vice-Dean for Engineering (Interdisciplinarity, Innovation). He directs the Centre for Nature-Inspired Engineering, which was granted EPSRC "Frontier Engineering" (2013) and "Progression" (2019) Awards. He is most recognised for pioneering nature-inspired chemical engineering (NICE): learning from fundamental mechanisms underpinning desirable traits in nature to develop innovative solutions to engineering challenges. He is Fellow of AIChE, IChemE, Corresponding Member of the Saxon Academy of Sciences (Germany), Qiushi Professor at Zhejiang University, and has delivered >50 named lectures, plenaries and keynotes.
Zhongyi Jiang is a Professor of School of Chemical Engineering and Technology, Tianjin University, Changjiang Scholars, the winner of National Science Fund for Distinguished Young Scholars. He received his PhD from Tianjin University in 1994. He served as a visiting scholar of University of Minnesota in 1996-1998 and California Institute of technology in 2009. His research interest includes membranes and membrane processes and enzymatic catalysis. Till now, he has published more than 600 SCI papers with total citations over 25 000 times (H index = 85). He is an associate editor for Advanced Membranes, a member of the editorial board for Journal of Membrane Science, Research, Green Chemical Engineering, etc.
Yanan Liu is currently working as a postdoc with Prof. Marc-Olivier Coppens in the Department of Chemical Engineering at University College London. She received her PhD degree in Chemical Technology from Tianjin University in 2019 under the tutelage of Prof. Zhongyi Jiang. Her research interests include nanomaterials, membrane technology for water treatment and nature-inspired methodology for membrane technology.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-1810-2537
0000-0002-0048-8849
OpenAccessLink http://pubs.rsc.org/en/content/articlepdf/2021/CS/D1CS00737H
PQID 2590154427
PQPubID 2047503
PageCount 19
ParticipantIDs proquest_journals_2590154427
rsc_primary_d1cs00737h
proquest_miscellaneous_2571049447
crossref_primary_10_1039_D1CS00737H
crossref_citationtrail_10_1039_D1CS00737H
proquest_miscellaneous_2636689877
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Chemical Society reviews
PublicationYear 2021
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Baker (D1CS00737H/cit36) 2010; 49
Shi (D1CS00737H/cit37) 2019; 13
Humphrey (D1CS00737H/cit44) 1997
Cheng (D1CS00737H/cit10) 2016; 2
Wang (D1CS00737H/cit13) 2020; 49
Ding (D1CS00737H/cit19) 2018; 9
Decher (D1CS00737H/cit27) 1997; 277
Ying (D1CS00737H/cit43) 2017; 9
Chen (D1CS00737H/cit11) 2017; 550
Huang (D1CS00737H/cit4) 2017; 12
Shao (D1CS00737H/cit34) 2021; 623
Jariwala (D1CS00737H/cit7) 2017; 16
Wang (D1CS00737H/cit35) 2017; 56
He (D1CS00737H/cit14) 2017; 29
Yang (D1CS00737H/cit30) 2019; 10
Yang (D1CS00737H/cit15) 2017; 16
Wang (D1CS00737H/cit12) 2016; 9
Li (D1CS00737H/cit18) 2019; 19
Han (D1CS00737H/cit31) 2015; 7
Park (D1CS00737H/cit2) 2017; 356
Zhu (D1CS00737H/cit8) 2018; 6
Zhao (D1CS00737H/cit22) 2016; 8
Liu (D1CS00737H/cit5) 2018; 6
He (D1CS00737H/cit17) 2018; 6
Wang (D1CS00737H/cit47) 2019; 7
Frisenda (D1CS00737H/cit6) 2018; 47
Zhou (D1CS00737H/cit45) 2017; 8
Tsou (D1CS00737H/cit25) 2015; 477
Ma (D1CS00737H/cit42) 2018; 361
Liu (D1CS00737H/cit3) 2018; 28
Song (D1CS00737H/cit46) 2019; 7
Joshi (D1CS00737H/cit16) 2014; 343
Lee (D1CS00737H/cit48) 2018; 30
Kim (D1CS00737H/cit40) 2018; 130
Li (D1CS00737H/cit39) 2016; 4
Li (D1CS00737H/cit20) 2017; 9
Bukowski (D1CS00737H/cit50) 2021; 27
Wang (D1CS00737H/cit21) 2017; 56
Richardson (D1CS00737H/cit29) 2015; 348
Ding (D1CS00737H/cit26) 2017; 56
Liu (D1CS00737H/cit41) 2019; 7
Zhao (D1CS00737H/cit28) 2015; 487
Akbari (D1CS00737H/cit24) 2016; 7
Xu (D1CS00737H/cit38) 2014; 6
Hu (D1CS00737H/cit49) 2018; 6
Kim (D1CS00737H/cit1) 2019; 58
Huang (D1CS00737H/cit32) 2013; 4
Kang (D1CS00737H/cit9) 2019; 29
Kim (D1CS00737H/cit23) 2013; 342
Gao (D1CS00737H/cit33) 2015; 3
References_xml – issn: 1997
  publication-title: Separation process technology
  doi: Humphrey
– volume: 130
  start-page: 489
  year: 2018
  ident: D1CS00737H/cit40
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.201708835
– volume: 277
  start-page: 1232
  year: 1997
  ident: D1CS00737H/cit27
  publication-title: Science
  doi: 10.1126/science.277.5330.1232
– volume: 19
  start-page: 5194
  year: 2019
  ident: D1CS00737H/cit18
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b01577
– volume: 623
  start-page: 119033
  year: 2021
  ident: D1CS00737H/cit34
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2020.119033
– volume: 16
  start-page: 170
  year: 2017
  ident: D1CS00737H/cit7
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4703
– volume: 9
  start-page: 8433
  year: 2017
  ident: D1CS00737H/cit20
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b15752
– volume: 56
  start-page: 14246
  year: 2017
  ident: D1CS00737H/cit35
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201708048
– volume: 7
  start-page: 1
  year: 2016
  ident: D1CS00737H/cit24
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10891
– volume: 9
  start-page: 3107
  year: 2016
  ident: D1CS00737H/cit12
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE01984F
– volume: 7
  start-page: 18642
  year: 2019
  ident: D1CS00737H/cit46
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA05909A
– volume: 10
  start-page: 1
  year: 2019
  ident: D1CS00737H/cit30
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07882-8
– volume: 30
  start-page: 1705944
  year: 2018
  ident: D1CS00737H/cit48
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705944
– volume: 47
  start-page: 3339
  year: 2018
  ident: D1CS00737H/cit6
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00880E
– volume: 2
  start-page: e1501272
  year: 2016
  ident: D1CS00737H/cit10
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1501272
– volume: 56
  start-page: 8974
  year: 2017
  ident: D1CS00737H/cit21
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201701288
– volume: 343
  start-page: 752
  year: 2014
  ident: D1CS00737H/cit16
  publication-title: Science
  doi: 10.1126/science.1245711
– volume: 3
  start-page: 6649
  year: 2015
  ident: D1CS00737H/cit33
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA00366K
– volume: 6
  start-page: 3773
  year: 2018
  ident: D1CS00737H/cit8
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA10814A
– volume: 6
  start-page: 4737
  year: 2018
  ident: D1CS00737H/cit49
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA11003K
– volume: 342
  start-page: 91
  year: 2013
  ident: D1CS00737H/cit23
  publication-title: Science
  doi: 10.1126/science.1236098
– volume: 6
  start-page: 16117
  year: 2014
  ident: D1CS00737H/cit38
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am5040945
– volume: 6
  start-page: 10277
  year: 2018
  ident: D1CS00737H/cit17
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA02193G
– volume: 49
  start-page: 6726
  year: 2010
  ident: D1CS00737H/cit36
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200906623
– volume: 8
  start-page: 1
  year: 2017
  ident: D1CS00737H/cit45
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-016-0009-6
– volume: 27
  start-page: 1
  year: 2021
  ident: D1CS00737H/cit50
  publication-title: Adsorption
  doi: 10.1007/s10450-021-00314-y
– volume: 13
  start-page: 10366
  year: 2019
  ident: D1CS00737H/cit37
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b04156
– volume: 477
  start-page: 93
  year: 2015
  ident: D1CS00737H/cit25
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2014.12.039
– volume: 56
  start-page: 1825
  year: 2017
  ident: D1CS00737H/cit26
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201609306
– volume: 16
  start-page: 1198
  year: 2017
  ident: D1CS00737H/cit15
  publication-title: Nat. Mater.
  doi: 10.1038/nmat5025
– volume: 487
  start-page: 162
  year: 2015
  ident: D1CS00737H/cit28
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2015.03.073
– volume: 361
  start-page: 1008
  year: 2018
  ident: D1CS00737H/cit42
  publication-title: Science
  doi: 10.1126/science.aat4123
– volume: 7
  start-page: 8147
  year: 2015
  ident: D1CS00737H/cit31
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b00986
– volume: 7
  start-page: 25458
  year: 2019
  ident: D1CS00737H/cit41
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA09685J
– volume: 6
  start-page: 23169
  year: 2018
  ident: D1CS00737H/cit5
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA09070J
– volume: 550
  start-page: 415
  year: 2017
  ident: D1CS00737H/cit11
  publication-title: Nature
  doi: 10.1038/nature24035
– volume: 29
  start-page: 1605898
  year: 2017
  ident: D1CS00737H/cit14
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201605898
– volume: 356
  start-page: eaab0530
  year: 2017
  ident: D1CS00737H/cit2
  publication-title: Science
  doi: 10.1126/science.aab0530
– volume: 58
  start-page: 17512
  year: 2019
  ident: D1CS00737H/cit1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201814349
– volume: 49
  start-page: 1071
  year: 2020
  ident: D1CS00737H/cit13
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00751B
– volume: 8
  start-page: 8247
  year: 2016
  ident: D1CS00737H/cit22
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b12876
– volume: 9
  start-page: 1710
  year: 2017
  ident: D1CS00737H/cit43
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b14371
– volume: 4
  start-page: 18747
  year: 2016
  ident: D1CS00737H/cit39
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA09362K
– volume-title: Separation process technology
  year: 1997
  ident: D1CS00737H/cit44
– volume: 4
  start-page: 1
  year: 2013
  ident: D1CS00737H/cit32
  publication-title: Nat. Commun.
– volume: 29
  start-page: 1902014
  year: 2019
  ident: D1CS00737H/cit9
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201902014
– volume: 348
  start-page: aaa2491
  year: 2015
  ident: D1CS00737H/cit29
  publication-title: Science
  doi: 10.1126/science.aaa2491
– volume: 7
  start-page: 11673
  year: 2019
  ident: D1CS00737H/cit47
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA10872B
– volume: 28
  start-page: 1706545
  year: 2018
  ident: D1CS00737H/cit3
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201706545
– volume: 9
  start-page: 1
  year: 2018
  ident: D1CS00737H/cit19
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02088-w
– volume: 12
  start-page: 1148
  year: 2017
  ident: D1CS00737H/cit4
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.208
SSID ssj0011762
Score 2.606218
SecondaryResourceType review_article
Snippet Tremendous progress in two-dimensional (2D) nanomaterial chemistry affords abundant opportunities for the sustainable development of membranes and membrane...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 11747
SubjectTerms Chemistry
liquids
Membrane processes
Membranes
Nanochannels
Nanomaterials
oils
Sustainable development
Two dimensional materials
Title Mixed-dimensional membranes: chemistry and structure-property relationships
URI https://www.proquest.com/docview/2590154427
https://www.proquest.com/docview/2571049447
https://www.proquest.com/docview/2636689877
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZY9wAviNtE2UBB8IJQILEdJ-ZtKkMFUXigkyZeKttx10hbGvUiDZ74D_xDfgnH8SUdndDgJWoTp0l9jo_P9TsIPWcsIURwEpc8lcZ1k8VcUBrnIstKrGg6zUyh8OgTGx7TDyfZSZcS1FaXrOQr9f3KupL_oSqcA7qaKtl_oGz4UTgBn4G-cAQKw_FaNB5VF7qMSwPQb8E1Xp7rczB_a5vopnwztzZCYJFi1wvt8xtIYxzxC9DCFz4jblY1y011NcAJ-OROB14a0niqdSvDRd0x2WDeNNo5sWEVxZ_PKrP3hlSdynmov87m9em3atPtgFNXf9dJJ2JcEYnLgdZWelKWAL0toKMXrxZX1rGRrYZ2wjIFayjf2Hnhu-0bsSXWE2JQUd-mgy8mspgPu83LB-z_2NNCpmEbYyd80t27g3YxmBS4h3YPj8bvP4aYEzzdxZzsH_NgtoS_7u6-rL50NsnOwjeMaRWT8R1021kU0aFlj7vohq7voZsDT_v7aLTFJlFgkzdRYJIImCQKTPLrx0_PHtEl9niAjt8djQfD2HXRiBWlfGV8vKYVEdVgmaRMqFySMtFUyYKpqVBlCheYxAKXKs8LQQUo4UwmimOZUT3FZA_16nmtH6KIkYQnygD8i4LCHUUuGaEZVpLyKeO4j174yZkoBzFvOp2cTbbJ0EfPwtjGAqtcOerAz_HELbzlBJt66YxSnPfR03AZ5srEumDu5mszBlRnyin92xhGGCt4kcOYPaBfeI8yVcv2-bNH13rLfXSrWyIHqAek0o9BV13JJ47JfgNPaJN3
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mixed-dimensional+membranes%3A+chemistry+and+structure%E2%80%93property+relationships&rft.jtitle=Chemical+Society+reviews&rft.au=Liu%2C+Yanan&rft.au=Coppens%2C+Marc-Olivier&rft.au=Jiang%2C+Zhongyi&rft.date=2021-11-01&rft.issn=0306-0012&rft.eissn=1460-4744&rft.volume=50&rft.issue=21&rft.spage=11747&rft.epage=11765&rft_id=info:doi/10.1039%2FD1CS00737H&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D1CS00737H
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-0012&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-0012&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-0012&client=summon