Interface shape design of multi-material structures for delamination strength

This paper deals with interface shape optimum design of multi-material structures for the delamination strength problem. The optimum design problem is formulated as a non-parametric shape optimization problem in which the interface variation in the normal direction is considered as a design variable...

Full description

Saved in:
Bibliographic Details
Published inMechanical Engineering Journal Vol. 3; no. 1; p. 15-00360
Main Authors LIU, Yang, MATSUNAKA, Daisuke, SHIBUTANI, Yoji, SHIMODA, Masatoshi
Format Journal Article
LanguageEnglish
Published The Japan Society of Mechanical Engineers 2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper deals with interface shape optimum design of multi-material structures for the delamination strength problem. The optimum design problem is formulated as a non-parametric shape optimization problem in which the interface variation in the normal direction is considered as a design variable. The maximum value of a delamination function, an index of the delamination strength, is defined as an objective function subject to a volume constraint. The shape sensitivity, called shape gradient function, is derived by using the material derivative method and the adjoint variable method, and is applied to the H1 gradient method to determine the optimal interface shape. With this method, the maximum value of the delamination function can be minimized while the smooth optimal interface shape can be obtained without any shape design parametrization. Several interface shape design examples are presented to verify the validity and practical utility of the proposed method.
AbstractList This paper deals with interface shape optimum design of multi-material structures for the delamination strength problem. The optimum design problem is formulated as a non-parametric shape optimization problem in which the interface variation in the normal direction is considered as a design variable. The maximum value of a delamination function, an index of the delamination strength, is defined as an objective function subject to a volume constraint. The shape sensitivity, called shape gradient function, is derived by using the material derivative method and the adjoint variable method, and is applied to the H1 gradient method to determine the optimal interface shape. With this method, the maximum value of the delamination function can be minimized while the smooth optimal interface shape can be obtained without any shape design parametrization. Several interface shape design examples are presented to verify the validity and practical utility of the proposed method.
Author SHIMODA, Masatoshi
SHIBUTANI, Yoji
MATSUNAKA, Daisuke
LIU, Yang
Author_xml – sequence: 1
  fullname: LIU, Yang
  organization: Department of Mechanical Engineering, Sojo University
– sequence: 1
  fullname: MATSUNAKA, Daisuke
  organization: Department of Mechanical Systems Engineering, Shinshu University
– sequence: 1
  fullname: SHIBUTANI, Yoji
  organization: Department of Mechanical Engineering, Osaka University
– sequence: 1
  fullname: SHIMODA, Masatoshi
  organization: Department of Advanced Science and Technology, Toyota Technological Institute
BookMark eNp1UEtLAzEQDqJgrd78AfsDXM2zu7kp4qOgeNFzmE0mbco-SpIe_PduWy0ieBhmmO8xw3dGjvuhR0IuGb1mXOubDlfXTJWUihk9IhPO6qrUlVTHv-ZTcpHSilLKa8ZEVU_I67zPGD1YLNIS1lg4TGHRF4Mvuk2bQ9nBiAdoi5TjxuZNxFT4IY68FrrQQw5Dv8WwX-TlOTnx0Ca8-O5T8vH48H7_XL68Pc3v715KK6XOZSUEUO85cqmUdM56FJWVFVZcA4JzM6u5aBpHJZ957ShTTUMtMjtjCqUTUzLf-7oBVmYdQwfx0wwQzG4xxIWBmINt0ShNZWWtQFBOsqbRQlBJpZR13ehG16PX1d7LxiGliP7gx6jZJmvGZA1TZpfsSOd_6DbkXQo5Qmj_E93uRauUYYGHCz9PbsnCsG19Sw6QXUI02Isvh9SWzA
CitedBy_id crossref_primary_10_1016_j_tws_2020_106603
crossref_primary_10_1299_transjsme_18_00409
crossref_primary_10_1007_s00158_019_02435_z
crossref_primary_10_1002_nme_6279
Cites_doi 10.1016/S0022-5096(99)00043-5
10.1016/j.compstruc.2014.08.003
10.1016/j.compstruc.2014.07.020
10.1007/s00158-012-0822-4
10.1088/0964-1726/8/3/308
10.1299/kikaia.60.1479
10.1142/S0219876206000709
10.1007/s00158-014-1059-1
10.1016/B978-813120376-7/50010-5
10.1007/s00158-006-0035-9
10.1177/002199838802201205
10.1080/17415977.2013.793322
10.1063/1.117961
10.1007/978-3-642-87722-3
10.1007/s00158-013-0954-1
10.1016/j.cma.2003.10.008
ContentType Journal Article
Copyright 2016 The Japan Society of Mechanical Engineers
Copyright_xml – notice: 2016 The Japan Society of Mechanical Engineers
DBID AAYXX
CITATION
DOA
DOI 10.1299/mej.15-00360
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ - Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2187-9745
EndPage 15-00360
ExternalDocumentID oai_doaj_org_article_59047cc3ea5d41bb93304044488b9b98
10_1299_mej_15_00360
article_mej_3_1_3_15_00360_article_char_en
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
GROUPED_DOAJ
JSF
JSH
KQ8
M~E
OK1
RJT
RZJ
AAYXX
CITATION
ID FETCH-LOGICAL-c449t-733a0ff2e24554ddcfe37c47e729aeadd6c923bbd0426f9d015bb0ce1c615e4d3
IEDL.DBID DOA
ISSN 2187-9745
IngestDate Wed Aug 27 01:23:02 EDT 2025
Tue Jul 01 01:54:57 EDT 2025
Thu Apr 24 22:58:50 EDT 2025
Wed Sep 03 06:28:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c449t-733a0ff2e24554ddcfe37c47e729aeadd6c923bbd0426f9d015bb0ce1c615e4d3
OpenAccessLink https://doaj.org/article/59047cc3ea5d41bb93304044488b9b98
ParticipantIDs doaj_primary_oai_doaj_org_article_59047cc3ea5d41bb93304044488b9b98
crossref_primary_10_1299_mej_15_00360
crossref_citationtrail_10_1299_mej_15_00360
jstage_primary_article_mej_3_1_3_15_00360_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016
2016-00-00
2016-01-01
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016
PublicationDecade 2010
PublicationTitle Mechanical Engineering Journal
PublicationYear 2016
Publisher The Japan Society of Mechanical Engineers
Publisher_xml – name: The Japan Society of Mechanical Engineers
References Pironneau, O., Optimal Shape Design for Elliptic Systems(1984), Springer-Verlag, New York.
Liu, Y. and Shimoda, M., Two-step shape optimization methodology for designing free-form shells, Inverse Problems in Science and Engineering, Vol.23, No.1(2015a), pp.1-15.
Haug, E. J., Choi, K. K. and Komkov, V., Design Sensitivity Analysis of Structural Systems(1986), Academic Press, INC.
Azegami, H., Kaizu, S., Shimoda, M. and Katamine, E., Irregularity of shape optimization problems and an improvement technique, Computer Aided Optimum Design of Structures, V(1997), pp.309-326.
Azegami, H., Fukumoto, S. and Aoyama, T., Shape optimization of continua using NURBS as basis functions, Structural and Multidisciplinary Optimization, Vol.47, No.2(2013), pp.247-258.
Wang, M. Y. and Wang, X., “Color” level sets: a multi-phase method for structural topology optimization with multiple materials, Computer Methods in Applied Mechanics and Engineering, Vol.193, No.6 (2004), pp.469-496.
Brewer, J. C. and Lagace, P. A., Quadratic stress criterion for initiation of delamination, Journal of Composite Materials, Vol.22, No.12(1988), pp.1141-1155.
Sigmund, O. and Torquato, S., Design of smart composite materials using topology optimization, Smart Materials and Structures, Vol.8, No.3 (1999), pp.365-379.
Azegami, H., Solution to domain optimization problems, Transactions of the Japan Society of Mechanical Engineers, Series A, Vol.60, No.574(1994), pp.1479-1486. (in Japanese)
Choi, K. K. and Kim, N. H., Structural Sensitivity Analysis and Optimization(2005), Springer, New York.
Gibiansky, L. V. and Sigmund, O., Multiphase composites with extremal bulk modulus, Journal of the Mechanics and Physics of Solids, Vol.48, No.3 (2000), pp. 461-498.
Ladyzhenskaya, O. A. and Ural'tseva, N. N., Linear and quasilinear elliptic equations(1968), Academic Press, New York.
Liu, Y. and Shimoda, M., A non-parametric solution to shape identification problem of free-form shells for desired deformation mode, Computers and Structures, Vol.144(2014a), pp.1-11.
Sigmund, O. and Torquato, S., Composites with extremal thermal expansion coefficients, Applied Physics Letters, Vol.69, No.21 (1996), pp.3203-3205.
Zhou, S. and Wang, M. Y., Multimaterial structural topology optimization with a generalized cahnhilliard model of multiphase transition, Structural and Multidisciplinary Optimization, Vol.33, No.2(2007), pp.89-111.
Sahr, C., Concept tools and simulation for lightweight body design, International conference proceedings of innovative developments for lightweight vehicle structures, Volkswagen Group, (2009), pp.41-50.
Sinha, S. M., Mathematical Programming: Theory and Methods, Elsevier(2006), pp.94.
Kreisselmeier, G. and Steinhauser, R., Systematic control design by optimizing a vector performance index, Proceedings of IFAC Symposium on Computer aided Design of Control Systems (held in Zurich, Switzerland)(1979), pp.113-117.
Liu, Y. and Shimoda, M, Parameter-free optimum design method of stiffeners on thin-walled structures, Structural and Multidisciplinary Optimization, Vol.49, No.1(2014b), pp.39-47.
Azegami, H. and Takeuchi, K., A smoothing method for shape optimization: Traction method using the robin condition, International Journal of Computational Methods, Vol.3, No.1(2006), pp.21-33.
Zhou, S. and Wang, M. Y., 3d multi-material structural topology optimization with the generalized cahn-hilliard equations, Computer Modeling in Engineering and Sciences, Vol.16, No.2 (2006), pp.83-101.
Shimoda, M. and Liu, Y., A non-parametric free-form optimization method for shell structures, Structural and Multidisciplinary Optimization, Vol.50, No.3(2014), pp.409-423.
Liu, Y. and Shimoda, M., Non-parametric shape optimization method for natural vibration design of stiffened shells, Computers and Structures, Vol.146(2015b), pp.20-31.
Lesemann, D.-I. M. and Brockerhoff, I. M., The prospects of multi-material design for a compact-class front section, ATZ Autotechnology, Vol.8, No.7(2008), pp.16-20.
11
22
12
23
13
24
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
10
21
References_xml – reference: Azegami, H., Fukumoto, S. and Aoyama, T., Shape optimization of continua using NURBS as basis functions, Structural and Multidisciplinary Optimization, Vol.47, No.2(2013), pp.247-258.
– reference: Liu, Y. and Shimoda, M, Parameter-free optimum design method of stiffeners on thin-walled structures, Structural and Multidisciplinary Optimization, Vol.49, No.1(2014b), pp.39-47.
– reference: Kreisselmeier, G. and Steinhauser, R., Systematic control design by optimizing a vector performance index, Proceedings of IFAC Symposium on Computer aided Design of Control Systems (held in Zurich, Switzerland)(1979), pp.113-117.
– reference: Liu, Y. and Shimoda, M., Non-parametric shape optimization method for natural vibration design of stiffened shells, Computers and Structures, Vol.146(2015b), pp.20-31.
– reference: Azegami, H., Solution to domain optimization problems, Transactions of the Japan Society of Mechanical Engineers, Series A, Vol.60, No.574(1994), pp.1479-1486. (in Japanese)
– reference: Shimoda, M. and Liu, Y., A non-parametric free-form optimization method for shell structures, Structural and Multidisciplinary Optimization, Vol.50, No.3(2014), pp.409-423.
– reference: Lesemann, D.-I. M. and Brockerhoff, I. M., The prospects of multi-material design for a compact-class front section, ATZ Autotechnology, Vol.8, No.7(2008), pp.16-20.
– reference: Wang, M. Y. and Wang, X., “Color” level sets: a multi-phase method for structural topology optimization with multiple materials, Computer Methods in Applied Mechanics and Engineering, Vol.193, No.6 (2004), pp.469-496.
– reference: Haug, E. J., Choi, K. K. and Komkov, V., Design Sensitivity Analysis of Structural Systems(1986), Academic Press, INC.
– reference: Choi, K. K. and Kim, N. H., Structural Sensitivity Analysis and Optimization(2005), Springer, New York.
– reference: Sinha, S. M., Mathematical Programming: Theory and Methods, Elsevier(2006), pp.94.
– reference: Brewer, J. C. and Lagace, P. A., Quadratic stress criterion for initiation of delamination, Journal of Composite Materials, Vol.22, No.12(1988), pp.1141-1155.
– reference: Gibiansky, L. V. and Sigmund, O., Multiphase composites with extremal bulk modulus, Journal of the Mechanics and Physics of Solids, Vol.48, No.3 (2000), pp. 461-498.
– reference: Ladyzhenskaya, O. A. and Ural'tseva, N. N., Linear and quasilinear elliptic equations(1968), Academic Press, New York.
– reference: Sigmund, O. and Torquato, S., Composites with extremal thermal expansion coefficients, Applied Physics Letters, Vol.69, No.21 (1996), pp.3203-3205.
– reference: Liu, Y. and Shimoda, M., Two-step shape optimization methodology for designing free-form shells, Inverse Problems in Science and Engineering, Vol.23, No.1(2015a), pp.1-15.
– reference: Sahr, C., Concept tools and simulation for lightweight body design, International conference proceedings of innovative developments for lightweight vehicle structures, Volkswagen Group, (2009), pp.41-50.
– reference: Pironneau, O., Optimal Shape Design for Elliptic Systems(1984), Springer-Verlag, New York.
– reference: Zhou, S. and Wang, M. Y., Multimaterial structural topology optimization with a generalized cahnhilliard model of multiphase transition, Structural and Multidisciplinary Optimization, Vol.33, No.2(2007), pp.89-111.
– reference: Sigmund, O. and Torquato, S., Design of smart composite materials using topology optimization, Smart Materials and Structures, Vol.8, No.3 (1999), pp.365-379.
– reference: Azegami, H., Kaizu, S., Shimoda, M. and Katamine, E., Irregularity of shape optimization problems and an improvement technique, Computer Aided Optimum Design of Structures, V(1997), pp.309-326.
– reference: Azegami, H. and Takeuchi, K., A smoothing method for shape optimization: Traction method using the robin condition, International Journal of Computational Methods, Vol.3, No.1(2006), pp.21-33.
– reference: Zhou, S. and Wang, M. Y., 3d multi-material structural topology optimization with the generalized cahn-hilliard equations, Computer Modeling in Engineering and Sciences, Vol.16, No.2 (2006), pp.83-101.
– reference: Liu, Y. and Shimoda, M., A non-parametric solution to shape identification problem of free-form shells for desired deformation mode, Computers and Structures, Vol.144(2014a), pp.1-11.
– ident: 2
– ident: 7
  doi: 10.1016/S0022-5096(99)00043-5
– ident: 17
– ident: 15
  doi: 10.1016/j.compstruc.2014.08.003
– ident: 12
  doi: 10.1016/j.compstruc.2014.07.020
– ident: 4
  doi: 10.1007/s00158-012-0822-4
– ident: 11
– ident: 20
  doi: 10.1088/0964-1726/8/3/308
– ident: 1
  doi: 10.1299/kikaia.60.1479
– ident: 10
– ident: 3
  doi: 10.1142/S0219876206000709
– ident: 18
  doi: 10.1007/s00158-014-1059-1
– ident: 21
  doi: 10.1016/B978-813120376-7/50010-5
– ident: 24
  doi: 10.1007/s00158-006-0035-9
– ident: 5
  doi: 10.1177/002199838802201205
– ident: 14
  doi: 10.1080/17415977.2013.793322
– ident: 19
  doi: 10.1063/1.117961
– ident: 6
– ident: 9
– ident: 8
– ident: 16
  doi: 10.1007/978-3-642-87722-3
– ident: 13
  doi: 10.1007/s00158-013-0954-1
– ident: 22
  doi: 10.1016/j.cma.2003.10.008
– ident: 23
SSID ssj0002811378
Score 2.0146403
Snippet This paper deals with interface shape optimum design of multi-material structures for the delamination strength problem. The optimum design problem is...
SourceID doaj
crossref
jstage
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 15-00360
SubjectTerms Delamination function
Interface shape
Joint strength
Multi-material structures
Optimum design
Title Interface shape design of multi-material structures for delamination strength
URI https://www.jstage.jst.go.jp/article/mej/3/1/3_15-00360/_article/-char/en
https://doaj.org/article/59047cc3ea5d41bb93304044488b9b98
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Mechanical Engineering Journal, 2016, Vol.3(1), pp.15-00360-15-00360
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8gATshonzsMjIKoKqUxU6mbF9pmqgrQS5f9z56RVGRALQ5bYjq07y_d9zvkzYzdZhUE96FTUMhT0mzEIW0AqCldBiYBZBkXnnccvxWiinqf5dOuqL8oJa-WBW8MNcp2o0rkM6twraW0k4CRyVlVWWx2P-WLM2yJT87hlJGVWVl2mOy65gw_AVSEXpL-S_IhBUaof488c0dg6kysGl-EB2-9QIb9vR3PIdqA5YntbWoHHbBz37kLtgH_O6iVwH3Mv-CLwmBQoEHrG2cRbSdgv5NEcESknGUjKdyEPUBk0b6vZCZsMn14fR6K7C0E4pfRKlFlWJyGkkCoEAN67AFnpVAkIjmucDb5wCNWs9cSJgvYY5a1NHEiHkAWUz05Zr1k0cMa4L0E5ZClpLbXKIakCtkfg6JHpVcpDn92trWNcJxRO91W8GyIMaEuDtjQyN9GWfXa7qb1sBTJ-qfdAht7UIVnr-AKdbTpnm7-c3We6ddPmM-uW1FVmJD1dh5siOr6Ga8D5fwzggu0iYur2YC5ZDx0KV4hKVvY6TsBvnCng2w
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interface+shape+design+of+multi-material+structures+for+delamination+strength&rft.jtitle=Mechanical+Engineering+Journal&rft.au=LIU%2C+Yang&rft.au=MATSUNAKA%2C+Daisuke&rft.au=SHIBUTANI%2C+Yoji&rft.au=SHIMODA%2C+Masatoshi&rft.date=2016&rft.pub=The+Japan+Society+of+Mechanical+Engineers&rft.eissn=2187-9745&rft.volume=3&rft.issue=1&rft.spage=15-00360&rft.epage=15-00360&rft_id=info:doi/10.1299%2Fmej.15-00360&rft.externalDocID=article_mej_3_1_3_15_00360_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2187-9745&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2187-9745&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2187-9745&client=summon