Interface shape design of multi-material structures for delamination strength
This paper deals with interface shape optimum design of multi-material structures for the delamination strength problem. The optimum design problem is formulated as a non-parametric shape optimization problem in which the interface variation in the normal direction is considered as a design variable...
Saved in:
Published in | Mechanical Engineering Journal Vol. 3; no. 1; p. 15-00360 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
The Japan Society of Mechanical Engineers
2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper deals with interface shape optimum design of multi-material structures for the delamination strength problem. The optimum design problem is formulated as a non-parametric shape optimization problem in which the interface variation in the normal direction is considered as a design variable. The maximum value of a delamination function, an index of the delamination strength, is defined as an objective function subject to a volume constraint. The shape sensitivity, called shape gradient function, is derived by using the material derivative method and the adjoint variable method, and is applied to the H1 gradient method to determine the optimal interface shape. With this method, the maximum value of the delamination function can be minimized while the smooth optimal interface shape can be obtained without any shape design parametrization. Several interface shape design examples are presented to verify the validity and practical utility of the proposed method. |
---|---|
AbstractList | This paper deals with interface shape optimum design of multi-material structures for the delamination strength problem. The optimum design problem is formulated as a non-parametric shape optimization problem in which the interface variation in the normal direction is considered as a design variable. The maximum value of a delamination function, an index of the delamination strength, is defined as an objective function subject to a volume constraint. The shape sensitivity, called shape gradient function, is derived by using the material derivative method and the adjoint variable method, and is applied to the H1 gradient method to determine the optimal interface shape. With this method, the maximum value of the delamination function can be minimized while the smooth optimal interface shape can be obtained without any shape design parametrization. Several interface shape design examples are presented to verify the validity and practical utility of the proposed method. |
Author | SHIMODA, Masatoshi SHIBUTANI, Yoji MATSUNAKA, Daisuke LIU, Yang |
Author_xml | – sequence: 1 fullname: LIU, Yang organization: Department of Mechanical Engineering, Sojo University – sequence: 1 fullname: MATSUNAKA, Daisuke organization: Department of Mechanical Systems Engineering, Shinshu University – sequence: 1 fullname: SHIBUTANI, Yoji organization: Department of Mechanical Engineering, Osaka University – sequence: 1 fullname: SHIMODA, Masatoshi organization: Department of Advanced Science and Technology, Toyota Technological Institute |
BookMark | eNp1UEtLAzEQDqJgrd78AfsDXM2zu7kp4qOgeNFzmE0mbco-SpIe_PduWy0ieBhmmO8xw3dGjvuhR0IuGb1mXOubDlfXTJWUihk9IhPO6qrUlVTHv-ZTcpHSilLKa8ZEVU_I67zPGD1YLNIS1lg4TGHRF4Mvuk2bQ9nBiAdoi5TjxuZNxFT4IY68FrrQQw5Dv8WwX-TlOTnx0Ca8-O5T8vH48H7_XL68Pc3v715KK6XOZSUEUO85cqmUdM56FJWVFVZcA4JzM6u5aBpHJZ957ShTTUMtMjtjCqUTUzLf-7oBVmYdQwfx0wwQzG4xxIWBmINt0ShNZWWtQFBOsqbRQlBJpZR13ehG16PX1d7LxiGliP7gx6jZJmvGZA1TZpfsSOd_6DbkXQo5Qmj_E93uRauUYYGHCz9PbsnCsG19Sw6QXUI02Isvh9SWzA |
CitedBy_id | crossref_primary_10_1016_j_tws_2020_106603 crossref_primary_10_1299_transjsme_18_00409 crossref_primary_10_1007_s00158_019_02435_z crossref_primary_10_1002_nme_6279 |
Cites_doi | 10.1016/S0022-5096(99)00043-5 10.1016/j.compstruc.2014.08.003 10.1016/j.compstruc.2014.07.020 10.1007/s00158-012-0822-4 10.1088/0964-1726/8/3/308 10.1299/kikaia.60.1479 10.1142/S0219876206000709 10.1007/s00158-014-1059-1 10.1016/B978-813120376-7/50010-5 10.1007/s00158-006-0035-9 10.1177/002199838802201205 10.1080/17415977.2013.793322 10.1063/1.117961 10.1007/978-3-642-87722-3 10.1007/s00158-013-0954-1 10.1016/j.cma.2003.10.008 |
ContentType | Journal Article |
Copyright | 2016 The Japan Society of Mechanical Engineers |
Copyright_xml | – notice: 2016 The Japan Society of Mechanical Engineers |
DBID | AAYXX CITATION DOA |
DOI | 10.1299/mej.15-00360 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ - Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2187-9745 |
EndPage | 15-00360 |
ExternalDocumentID | oai_doaj_org_article_59047cc3ea5d41bb93304044488b9b98 10_1299_mej_15_00360 article_mej_3_1_3_15_00360_article_char_en |
GroupedDBID | ALMA_UNASSIGNED_HOLDINGS GROUPED_DOAJ JSF JSH KQ8 M~E OK1 RJT RZJ AAYXX CITATION |
ID | FETCH-LOGICAL-c449t-733a0ff2e24554ddcfe37c47e729aeadd6c923bbd0426f9d015bb0ce1c615e4d3 |
IEDL.DBID | DOA |
ISSN | 2187-9745 |
IngestDate | Wed Aug 27 01:23:02 EDT 2025 Tue Jul 01 01:54:57 EDT 2025 Thu Apr 24 22:58:50 EDT 2025 Wed Sep 03 06:28:49 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c449t-733a0ff2e24554ddcfe37c47e729aeadd6c923bbd0426f9d015bb0ce1c615e4d3 |
OpenAccessLink | https://doaj.org/article/59047cc3ea5d41bb93304044488b9b98 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_59047cc3ea5d41bb93304044488b9b98 crossref_primary_10_1299_mej_15_00360 crossref_citationtrail_10_1299_mej_15_00360 jstage_primary_article_mej_3_1_3_15_00360_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016 2016-00-00 2016-01-01 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – year: 2016 text: 2016 |
PublicationDecade | 2010 |
PublicationTitle | Mechanical Engineering Journal |
PublicationYear | 2016 |
Publisher | The Japan Society of Mechanical Engineers |
Publisher_xml | – name: The Japan Society of Mechanical Engineers |
References | Pironneau, O., Optimal Shape Design for Elliptic Systems(1984), Springer-Verlag, New York. Liu, Y. and Shimoda, M., Two-step shape optimization methodology for designing free-form shells, Inverse Problems in Science and Engineering, Vol.23, No.1(2015a), pp.1-15. Haug, E. J., Choi, K. K. and Komkov, V., Design Sensitivity Analysis of Structural Systems(1986), Academic Press, INC. Azegami, H., Kaizu, S., Shimoda, M. and Katamine, E., Irregularity of shape optimization problems and an improvement technique, Computer Aided Optimum Design of Structures, V(1997), pp.309-326. Azegami, H., Fukumoto, S. and Aoyama, T., Shape optimization of continua using NURBS as basis functions, Structural and Multidisciplinary Optimization, Vol.47, No.2(2013), pp.247-258. Wang, M. Y. and Wang, X., “Color” level sets: a multi-phase method for structural topology optimization with multiple materials, Computer Methods in Applied Mechanics and Engineering, Vol.193, No.6 (2004), pp.469-496. Brewer, J. C. and Lagace, P. A., Quadratic stress criterion for initiation of delamination, Journal of Composite Materials, Vol.22, No.12(1988), pp.1141-1155. Sigmund, O. and Torquato, S., Design of smart composite materials using topology optimization, Smart Materials and Structures, Vol.8, No.3 (1999), pp.365-379. Azegami, H., Solution to domain optimization problems, Transactions of the Japan Society of Mechanical Engineers, Series A, Vol.60, No.574(1994), pp.1479-1486. (in Japanese) Choi, K. K. and Kim, N. H., Structural Sensitivity Analysis and Optimization(2005), Springer, New York. Gibiansky, L. V. and Sigmund, O., Multiphase composites with extremal bulk modulus, Journal of the Mechanics and Physics of Solids, Vol.48, No.3 (2000), pp. 461-498. Ladyzhenskaya, O. A. and Ural'tseva, N. N., Linear and quasilinear elliptic equations(1968), Academic Press, New York. Liu, Y. and Shimoda, M., A non-parametric solution to shape identification problem of free-form shells for desired deformation mode, Computers and Structures, Vol.144(2014a), pp.1-11. Sigmund, O. and Torquato, S., Composites with extremal thermal expansion coefficients, Applied Physics Letters, Vol.69, No.21 (1996), pp.3203-3205. Zhou, S. and Wang, M. Y., Multimaterial structural topology optimization with a generalized cahnhilliard model of multiphase transition, Structural and Multidisciplinary Optimization, Vol.33, No.2(2007), pp.89-111. Sahr, C., Concept tools and simulation for lightweight body design, International conference proceedings of innovative developments for lightweight vehicle structures, Volkswagen Group, (2009), pp.41-50. Sinha, S. M., Mathematical Programming: Theory and Methods, Elsevier(2006), pp.94. Kreisselmeier, G. and Steinhauser, R., Systematic control design by optimizing a vector performance index, Proceedings of IFAC Symposium on Computer aided Design of Control Systems (held in Zurich, Switzerland)(1979), pp.113-117. Liu, Y. and Shimoda, M, Parameter-free optimum design method of stiffeners on thin-walled structures, Structural and Multidisciplinary Optimization, Vol.49, No.1(2014b), pp.39-47. Azegami, H. and Takeuchi, K., A smoothing method for shape optimization: Traction method using the robin condition, International Journal of Computational Methods, Vol.3, No.1(2006), pp.21-33. Zhou, S. and Wang, M. Y., 3d multi-material structural topology optimization with the generalized cahn-hilliard equations, Computer Modeling in Engineering and Sciences, Vol.16, No.2 (2006), pp.83-101. Shimoda, M. and Liu, Y., A non-parametric free-form optimization method for shell structures, Structural and Multidisciplinary Optimization, Vol.50, No.3(2014), pp.409-423. Liu, Y. and Shimoda, M., Non-parametric shape optimization method for natural vibration design of stiffened shells, Computers and Structures, Vol.146(2015b), pp.20-31. Lesemann, D.-I. M. and Brockerhoff, I. M., The prospects of multi-material design for a compact-class front section, ATZ Autotechnology, Vol.8, No.7(2008), pp.16-20. 11 22 12 23 13 24 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 10 21 |
References_xml | – reference: Azegami, H., Fukumoto, S. and Aoyama, T., Shape optimization of continua using NURBS as basis functions, Structural and Multidisciplinary Optimization, Vol.47, No.2(2013), pp.247-258. – reference: Liu, Y. and Shimoda, M, Parameter-free optimum design method of stiffeners on thin-walled structures, Structural and Multidisciplinary Optimization, Vol.49, No.1(2014b), pp.39-47. – reference: Kreisselmeier, G. and Steinhauser, R., Systematic control design by optimizing a vector performance index, Proceedings of IFAC Symposium on Computer aided Design of Control Systems (held in Zurich, Switzerland)(1979), pp.113-117. – reference: Liu, Y. and Shimoda, M., Non-parametric shape optimization method for natural vibration design of stiffened shells, Computers and Structures, Vol.146(2015b), pp.20-31. – reference: Azegami, H., Solution to domain optimization problems, Transactions of the Japan Society of Mechanical Engineers, Series A, Vol.60, No.574(1994), pp.1479-1486. (in Japanese) – reference: Shimoda, M. and Liu, Y., A non-parametric free-form optimization method for shell structures, Structural and Multidisciplinary Optimization, Vol.50, No.3(2014), pp.409-423. – reference: Lesemann, D.-I. M. and Brockerhoff, I. M., The prospects of multi-material design for a compact-class front section, ATZ Autotechnology, Vol.8, No.7(2008), pp.16-20. – reference: Wang, M. Y. and Wang, X., “Color” level sets: a multi-phase method for structural topology optimization with multiple materials, Computer Methods in Applied Mechanics and Engineering, Vol.193, No.6 (2004), pp.469-496. – reference: Haug, E. J., Choi, K. K. and Komkov, V., Design Sensitivity Analysis of Structural Systems(1986), Academic Press, INC. – reference: Choi, K. K. and Kim, N. H., Structural Sensitivity Analysis and Optimization(2005), Springer, New York. – reference: Sinha, S. M., Mathematical Programming: Theory and Methods, Elsevier(2006), pp.94. – reference: Brewer, J. C. and Lagace, P. A., Quadratic stress criterion for initiation of delamination, Journal of Composite Materials, Vol.22, No.12(1988), pp.1141-1155. – reference: Gibiansky, L. V. and Sigmund, O., Multiphase composites with extremal bulk modulus, Journal of the Mechanics and Physics of Solids, Vol.48, No.3 (2000), pp. 461-498. – reference: Ladyzhenskaya, O. A. and Ural'tseva, N. N., Linear and quasilinear elliptic equations(1968), Academic Press, New York. – reference: Sigmund, O. and Torquato, S., Composites with extremal thermal expansion coefficients, Applied Physics Letters, Vol.69, No.21 (1996), pp.3203-3205. – reference: Liu, Y. and Shimoda, M., Two-step shape optimization methodology for designing free-form shells, Inverse Problems in Science and Engineering, Vol.23, No.1(2015a), pp.1-15. – reference: Sahr, C., Concept tools and simulation for lightweight body design, International conference proceedings of innovative developments for lightweight vehicle structures, Volkswagen Group, (2009), pp.41-50. – reference: Pironneau, O., Optimal Shape Design for Elliptic Systems(1984), Springer-Verlag, New York. – reference: Zhou, S. and Wang, M. Y., Multimaterial structural topology optimization with a generalized cahnhilliard model of multiphase transition, Structural and Multidisciplinary Optimization, Vol.33, No.2(2007), pp.89-111. – reference: Sigmund, O. and Torquato, S., Design of smart composite materials using topology optimization, Smart Materials and Structures, Vol.8, No.3 (1999), pp.365-379. – reference: Azegami, H., Kaizu, S., Shimoda, M. and Katamine, E., Irregularity of shape optimization problems and an improvement technique, Computer Aided Optimum Design of Structures, V(1997), pp.309-326. – reference: Azegami, H. and Takeuchi, K., A smoothing method for shape optimization: Traction method using the robin condition, International Journal of Computational Methods, Vol.3, No.1(2006), pp.21-33. – reference: Zhou, S. and Wang, M. Y., 3d multi-material structural topology optimization with the generalized cahn-hilliard equations, Computer Modeling in Engineering and Sciences, Vol.16, No.2 (2006), pp.83-101. – reference: Liu, Y. and Shimoda, M., A non-parametric solution to shape identification problem of free-form shells for desired deformation mode, Computers and Structures, Vol.144(2014a), pp.1-11. – ident: 2 – ident: 7 doi: 10.1016/S0022-5096(99)00043-5 – ident: 17 – ident: 15 doi: 10.1016/j.compstruc.2014.08.003 – ident: 12 doi: 10.1016/j.compstruc.2014.07.020 – ident: 4 doi: 10.1007/s00158-012-0822-4 – ident: 11 – ident: 20 doi: 10.1088/0964-1726/8/3/308 – ident: 1 doi: 10.1299/kikaia.60.1479 – ident: 10 – ident: 3 doi: 10.1142/S0219876206000709 – ident: 18 doi: 10.1007/s00158-014-1059-1 – ident: 21 doi: 10.1016/B978-813120376-7/50010-5 – ident: 24 doi: 10.1007/s00158-006-0035-9 – ident: 5 doi: 10.1177/002199838802201205 – ident: 14 doi: 10.1080/17415977.2013.793322 – ident: 19 doi: 10.1063/1.117961 – ident: 6 – ident: 9 – ident: 8 – ident: 16 doi: 10.1007/978-3-642-87722-3 – ident: 13 doi: 10.1007/s00158-013-0954-1 – ident: 22 doi: 10.1016/j.cma.2003.10.008 – ident: 23 |
SSID | ssj0002811378 |
Score | 2.0146403 |
Snippet | This paper deals with interface shape optimum design of multi-material structures for the delamination strength problem. The optimum design problem is... |
SourceID | doaj crossref jstage |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 15-00360 |
SubjectTerms | Delamination function Interface shape Joint strength Multi-material structures Optimum design |
Title | Interface shape design of multi-material structures for delamination strength |
URI | https://www.jstage.jst.go.jp/article/mej/3/1/3_15-00360/_article/-char/en https://doaj.org/article/59047cc3ea5d41bb93304044488b9b98 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Mechanical Engineering Journal, 2016, Vol.3(1), pp.15-00360-15-00360 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8gATshonzsMjIKoKqUxU6mbF9pmqgrQS5f9z56RVGRALQ5bYjq07y_d9zvkzYzdZhUE96FTUMhT0mzEIW0AqCldBiYBZBkXnnccvxWiinqf5dOuqL8oJa-WBW8MNcp2o0rkM6twraW0k4CRyVlVWWx2P-WLM2yJT87hlJGVWVl2mOy65gw_AVSEXpL-S_IhBUaof488c0dg6kysGl-EB2-9QIb9vR3PIdqA5YntbWoHHbBz37kLtgH_O6iVwH3Mv-CLwmBQoEHrG2cRbSdgv5NEcESknGUjKdyEPUBk0b6vZCZsMn14fR6K7C0E4pfRKlFlWJyGkkCoEAN67AFnpVAkIjmucDb5wCNWs9cSJgvYY5a1NHEiHkAWUz05Zr1k0cMa4L0E5ZClpLbXKIakCtkfg6JHpVcpDn92trWNcJxRO91W8GyIMaEuDtjQyN9GWfXa7qb1sBTJ-qfdAht7UIVnr-AKdbTpnm7-c3We6ddPmM-uW1FVmJD1dh5siOr6Ga8D5fwzggu0iYur2YC5ZDx0KV4hKVvY6TsBvnCng2w |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interface+shape+design+of+multi-material+structures+for+delamination+strength&rft.jtitle=Mechanical+Engineering+Journal&rft.au=LIU%2C+Yang&rft.au=MATSUNAKA%2C+Daisuke&rft.au=SHIBUTANI%2C+Yoji&rft.au=SHIMODA%2C+Masatoshi&rft.date=2016&rft.pub=The+Japan+Society+of+Mechanical+Engineers&rft.eissn=2187-9745&rft.volume=3&rft.issue=1&rft.spage=15-00360&rft.epage=15-00360&rft_id=info:doi/10.1299%2Fmej.15-00360&rft.externalDocID=article_mej_3_1_3_15_00360_article_char_en |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2187-9745&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2187-9745&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2187-9745&client=summon |