SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo

Pandemic spread of a virus in naïe populations can select for mutations that alter pathogenesis, virulence, and/or transmissibility. The ancestral form of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that emerged from China has now been largely replaced by strains containing the muta...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 370; no. 6523; pp. 1464 - 1468
Main Authors Hou, Yixuan J., Chiba, Shiho, Halfmann, Peter, Ehre, Camille, Kuroda, Makoto, Dinnon, Kenneth H., Leist, Sarah R., Schäfer, Alexandra, Nakajima, Noriko, Takahashi, Kenta, Lee, Rhianna E., Mascenik, Teresa M., Graham, Rachel, Edwards, Caitlin E., Tse, Longping V., Okuda, Kenichi, Markmann, Alena J., Bartelt, Luther, de Silva, Aravinda, Margolis, David M., Boucher, Richard C., Randell, Scott H., Suzuki, Tadaki, Gralinski, Lisa E., Kawaoka, Yoshihiro, Baric, Ralph S.
Format Journal Article
LanguageEnglish
Published United States The American Association for the Advancement of Science 18.12.2020
American Association for the Advancement of Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Pandemic spread of a virus in naïe populations can select for mutations that alter pathogenesis, virulence, and/or transmissibility. The ancestral form of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that emerged from China has now been largely replaced by strains containing the mutation D614G (Asp 614 -to-Gly) in the viral spike protein. Hou et al. compared the characteristics of the new variant against the ancestral form in a series of experiments in human cells and animal models. The variant is better at infecting upper-airway epithelial cells and replicates in greater numbers than the ancestral virus. Evidence indicates modest, if any, significant changes to virulence in animal models. Therefore, the virus appears to have evolved for greater transmissibility in humans rather than for greater pathogenicity. The mutation renders the new virus variant more susceptible to neutralizing antisera without altering the efficacy of vaccine candidates currently under development. Science , this issue p. 1464 The current dominant structural variant of SARS-CoV-2 appears to have evolved from the ancestral form and enhances transmissibility. The spike aspartic acid–614 to glycine (D614G) substitution is prevalent in global severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains, but its effects on viral pathogenesis and transmissibility remain unclear. We engineered a SARS-CoV-2 variant containing this substitution. The variant exhibits more efficient infection, replication, and competitive fitness in primary human airway epithelial cells but maintains similar morphology and in vitro neutralization properties, compared with the ancestral wild-type virus. Infection of human angiotensin-converting enzyme 2 (ACE2) transgenic mice and Syrian hamsters with both viruses resulted in similar viral titers in respiratory tissues and pulmonary disease. However, the D614G variant transmits significantly faster and displayed increased competitive fitness than the wild-type virus in hamsters. These data show that the D614G substitution enhances SARS-CoV-2 infectivity, competitive fitness, and transmission in primary human cells and animal models.
AbstractList The spike aspartic acid-614 to glycine (D614G) substitution is prevalent in global severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains, but its effects on viral pathogenesis and transmissibility remain unclear. We engineered a SARS-CoV-2 variant containing this substitution. The variant exhibits more efficient infection, replication, and competitive fitness in primary human airway epithelial cells but maintains similar morphology and in vitro neutralization properties, compared with the ancestral wild-type virus. Infection of human angiotensin-converting enzyme 2 (ACE2) transgenic mice and Syrian hamsters with both viruses resulted in similar viral titers in respiratory tissues and pulmonary disease. However, the D614G variant transmits significantly faster and displayed increased competitive fitness than the wild-type virus in hamsters. These data show that the D614G substitution enhances SARS-CoV-2 infectivity, competitive fitness, and transmission in primary human cells and animal models.The spike aspartic acid-614 to glycine (D614G) substitution is prevalent in global severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains, but its effects on viral pathogenesis and transmissibility remain unclear. We engineered a SARS-CoV-2 variant containing this substitution. The variant exhibits more efficient infection, replication, and competitive fitness in primary human airway epithelial cells but maintains similar morphology and in vitro neutralization properties, compared with the ancestral wild-type virus. Infection of human angiotensin-converting enzyme 2 (ACE2) transgenic mice and Syrian hamsters with both viruses resulted in similar viral titers in respiratory tissues and pulmonary disease. However, the D614G variant transmits significantly faster and displayed increased competitive fitness than the wild-type virus in hamsters. These data show that the D614G substitution enhances SARS-CoV-2 infectivity, competitive fitness, and transmission in primary human cells and animal models.
Pandemic spread of a virus in naïe populations can select for mutations that alter pathogenesis, virulence, and/or transmissibility. The ancestral form of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that emerged from China has now been largely replaced by strains containing the mutation D614G (Asp 614 -to-Gly) in the viral spike protein. Hou et al. compared the characteristics of the new variant against the ancestral form in a series of experiments in human cells and animal models. The variant is better at infecting upper-airway epithelial cells and replicates in greater numbers than the ancestral virus. Evidence indicates modest, if any, significant changes to virulence in animal models. Therefore, the virus appears to have evolved for greater transmissibility in humans rather than for greater pathogenicity. The mutation renders the new virus variant more susceptible to neutralizing antisera without altering the efficacy of vaccine candidates currently under development. Science , this issue p. 1464 The current dominant structural variant of SARS-CoV-2 appears to have evolved from the ancestral form and enhances transmissibility. The spike aspartic acid–614 to glycine (D614G) substitution is prevalent in global severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains, but its effects on viral pathogenesis and transmissibility remain unclear. We engineered a SARS-CoV-2 variant containing this substitution. The variant exhibits more efficient infection, replication, and competitive fitness in primary human airway epithelial cells but maintains similar morphology and in vitro neutralization properties, compared with the ancestral wild-type virus. Infection of human angiotensin-converting enzyme 2 (ACE2) transgenic mice and Syrian hamsters with both viruses resulted in similar viral titers in respiratory tissues and pulmonary disease. However, the D614G variant transmits significantly faster and displayed increased competitive fitness than the wild-type virus in hamsters. These data show that the D614G substitution enhances SARS-CoV-2 infectivity, competitive fitness, and transmission in primary human cells and animal models.
Changing with the timesPandemic spread of a virus in naïe populations can select for mutations that alter pathogenesis, virulence, and/or transmissibility. The ancestral form of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that emerged from China has now been largely replaced by strains containing the mutation D614G (Asp614-to-Gly) in the viral spike protein. Hou et al. compared the characteristics of the new variant against the ancestral form in a series of experiments in human cells and animal models. The variant is better at infecting upper-airway epithelial cells and replicates in greater numbers than the ancestral virus. Evidence indicates modest, if any, significant changes to virulence in animal models. Therefore, the virus appears to have evolved for greater transmissibility in humans rather than for greater pathogenicity. The mutation renders the new virus variant more susceptible to neutralizing antisera without altering the efficacy of vaccine candidates currently under development.Science, this issue p. 1464The spike aspartic acid–614 to glycine (D614G) substitution is prevalent in global severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains, but its effects on viral pathogenesis and transmissibility remain unclear. We engineered a SARS-CoV-2 variant containing this substitution. The variant exhibits more efficient infection, replication, and competitive fitness in primary human airway epithelial cells but maintains similar morphology and in vitro neutralization properties, compared with the ancestral wild-type virus. Infection of human angiotensin-converting enzyme 2 (ACE2) transgenic mice and Syrian hamsters with both viruses resulted in similar viral titers in respiratory tissues and pulmonary disease. However, the D614G variant transmits significantly faster and displayed increased competitive fitness than the wild-type virus in hamsters. These data show that the D614G substitution enhances SARS-CoV-2 infectivity, competitive fitness, and transmission in primary human cells and animal models.
The spike aspartic acid-614 to glycine (D614G) substitution is prevalent in global severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains, but its effects on viral pathogenesis and transmissibility remain unclear. We engineered a SARS-CoV-2 variant containing this substitution. The variant exhibits more efficient infection, replication, and competitive fitness in primary human airway epithelial cells but maintains similar morphology and in vitro neutralization properties, compared with the ancestral wild-type virus. Infection of human angiotensin-converting enzyme 2 (ACE2) transgenic mice and Syrian hamsters with both viruses resulted in similar viral titers in respiratory tissues and pulmonary disease. However, the D614G variant transmits significantly faster and displayed increased competitive fitness than the wild-type virus in hamsters. These data show that the D614G substitution enhances SARS-CoV-2 infectivity, competitive fitness, and transmission in primary human cells and animal models.
Pandemic spread of a virus in naïe populations can select for mutations that alter pathogenesis, virulence, and/or transmissibility. The ancestral form of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that emerged from China has now been largely replaced by strains containing the mutation D614G (Asp 614 -to-Gly) in the viral spike protein. Hou et al. compared the characteristics of the new variant against the ancestral form in a series of experiments in human cells and animal models. The variant is better at infecting upper-airway epithelial cells and replicates in greater numbers than the ancestral virus. Evidence indicates modest, if any, significant changes to virulence in animal models. Therefore, the virus appears to have evolved for greater transmissibility in humans rather than for greater pathogenicity. The mutation renders the new virus variant more susceptible to neutralizing antisera without altering the efficacy of vaccine candidates currently under development. Science , this issue p. 1464 The current dominant structural variant of SARS-CoV-2 appears to have evolved from the ancestral form and enhances transmissibility. The spike aspartic acid–614 to glycine (D614G) substitution is prevalent in global severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains, but its effects on viral pathogenesis and transmissibility remain unclear. We engineered a SARS-CoV-2 variant containing this substitution. The variant exhibits more efficient infection, replication, and competitive fitness in primary human airway epithelial cells but maintains similar morphology and in vitro neutralization properties, compared with the ancestral wild-type virus. Infection of human angiotensin-converting enzyme 2 (ACE2) transgenic mice and Syrian hamsters with both viruses resulted in similar viral titers in respiratory tissues and pulmonary disease. However, the D614G variant transmits significantly faster and displayed increased competitive fitness than the wild-type virus in hamsters. These data show that the D614G substitution enhances SARS-CoV-2 infectivity, competitive fitness, and transmission in primary human cells and animal models.
Author Markmann, Alena J.
Ehre, Camille
Nakajima, Noriko
Graham, Rachel
Bartelt, Luther
Tse, Longping V.
Takahashi, Kenta
Schäfer, Alexandra
Halfmann, Peter
de Silva, Aravinda
Okuda, Kenichi
Margolis, David M.
Boucher, Richard C.
Kuroda, Makoto
Suzuki, Tadaki
Hou, Yixuan J.
Dinnon, Kenneth H.
Randell, Scott H.
Mascenik, Teresa M.
Kawaoka, Yoshihiro
Baric, Ralph S.
Lee, Rhianna E.
Leist, Sarah R.
Edwards, Caitlin E.
Gralinski, Lisa E.
Chiba, Shiho
Author_xml – sequence: 1
  givenname: Yixuan J.
  orcidid: 0000-0002-8323-7243
  surname: Hou
  fullname: Hou, Yixuan J.
  organization: Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
– sequence: 2
  givenname: Shiho
  orcidid: 0000-0003-0415-6013
  surname: Chiba
  fullname: Chiba, Shiho
  organization: Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
– sequence: 3
  givenname: Peter
  orcidid: 0000-0002-1648-1625
  surname: Halfmann
  fullname: Halfmann, Peter
  organization: Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
– sequence: 4
  givenname: Camille
  orcidid: 0000-0002-0046-0096
  surname: Ehre
  fullname: Ehre, Camille
  organization: Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
– sequence: 5
  givenname: Makoto
  surname: Kuroda
  fullname: Kuroda, Makoto
  organization: Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
– sequence: 6
  givenname: Kenneth H.
  orcidid: 0000-0002-8942-1551
  surname: Dinnon
  fullname: Dinnon, Kenneth H.
  organization: Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
– sequence: 7
  givenname: Sarah R.
  orcidid: 0000-0002-4989-5381
  surname: Leist
  fullname: Leist, Sarah R.
  organization: Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
– sequence: 8
  givenname: Alexandra
  orcidid: 0000-0002-4760-4923
  surname: Schäfer
  fullname: Schäfer, Alexandra
  organization: Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
– sequence: 9
  givenname: Noriko
  orcidid: 0000-0003-1824-0603
  surname: Nakajima
  fullname: Nakajima, Noriko
  organization: Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
– sequence: 10
  givenname: Kenta
  surname: Takahashi
  fullname: Takahashi, Kenta
  organization: Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
– sequence: 11
  givenname: Rhianna E.
  orcidid: 0000-0003-2039-1304
  surname: Lee
  fullname: Lee, Rhianna E.
  organization: Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
– sequence: 12
  givenname: Teresa M.
  orcidid: 0000-0002-9694-756X
  surname: Mascenik
  fullname: Mascenik, Teresa M.
  organization: Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
– sequence: 13
  givenname: Rachel
  orcidid: 0000-0002-3143-6515
  surname: Graham
  fullname: Graham, Rachel
  organization: Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
– sequence: 14
  givenname: Caitlin E.
  orcidid: 0000-0003-4228-2192
  surname: Edwards
  fullname: Edwards, Caitlin E.
  organization: Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
– sequence: 15
  givenname: Longping V.
  orcidid: 0000-0001-7582-8396
  surname: Tse
  fullname: Tse, Longping V.
  organization: Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
– sequence: 16
  givenname: Kenichi
  orcidid: 0000-0001-9341-2730
  surname: Okuda
  fullname: Okuda, Kenichi
  organization: Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
– sequence: 17
  givenname: Alena J.
  orcidid: 0000-0003-3656-9322
  surname: Markmann
  fullname: Markmann, Alena J.
  organization: Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
– sequence: 18
  givenname: Luther
  orcidid: 0000-0002-7596-4272
  surname: Bartelt
  fullname: Bartelt, Luther
  organization: Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
– sequence: 19
  givenname: Aravinda
  orcidid: 0000-0003-3317-5950
  surname: de Silva
  fullname: de Silva, Aravinda
  organization: Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
– sequence: 20
  givenname: David M.
  orcidid: 0000-0001-5714-0002
  surname: Margolis
  fullname: Margolis, David M.
  organization: Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA., Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA., Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
– sequence: 21
  givenname: Richard C.
  surname: Boucher
  fullname: Boucher, Richard C.
  organization: Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
– sequence: 22
  givenname: Scott H.
  orcidid: 0000-0001-5351-2841
  surname: Randell
  fullname: Randell, Scott H.
  organization: Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
– sequence: 23
  givenname: Tadaki
  orcidid: 0000-0002-3820-9542
  surname: Suzuki
  fullname: Suzuki, Tadaki
  organization: Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
– sequence: 24
  givenname: Lisa E.
  orcidid: 0000-0003-1374-8002
  surname: Gralinski
  fullname: Gralinski, Lisa E.
  organization: Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
– sequence: 25
  givenname: Yoshihiro
  orcidid: 0000-0001-5061-8296
  surname: Kawaoka
  fullname: Kawaoka, Yoshihiro
  organization: Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA., Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
– sequence: 26
  givenname: Ralph S.
  orcidid: 0000-0001-6827-8701
  surname: Baric
  fullname: Baric, Ralph S.
  organization: Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA., Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33184236$$D View this record in MEDLINE/PubMed
BookMark eNp1Uc1LHDEcDWWlrrbn3spAL72M_vIxycylsGz9AkGorXgLSSbTjcwm22R20f_erI5iFzzl8D7y3u8doIkP3iL0BcMRxoQfJ-OsN_ZIaVuzpvmAphiaqmwI0AmaAlBe1iCqfXSQ0h1Axhr6Ee1TimtGKJ-i2-vZr-tyHm5KUvzkmJ0VGxWd8kNh7xdOuyEVtuvc9puhiHbVO6MGF3yGi43bhEL5thii8mnpUtoCzj8Bn9Bep_pkP4_vIfpzevJ7fl5eXp1dzGeXpWGsGUouCAeLeYexJlq3hFrQoqt1U4nKMKMMFjRnZbq1nFatrqsOWk6IgJYACHqIfjz7rtZ6aVuTc0bVy1V0SxUfZFBO_o94t5B_w0YKISpBeTb4PhrE8G9t0yBzE2P7Xnkb1kkSxkEIDIRk6rcd6l1YR5_rjSxG-Nbw69tEr1Fejp4Jx88EE0NK0XavFAxyO6scZ5XjrFlR7SiMG552yJVc_67uEYZJqW0
CitedBy_id crossref_primary_10_1093_molbev_msac046
crossref_primary_10_1126_science_abg0821
crossref_primary_10_3390_v13061126
crossref_primary_10_1007_s00253_021_11676_2
crossref_primary_10_1038_s41392_022_01039_2
crossref_primary_10_1016_j_cossms_2021_100964
crossref_primary_10_1016_j_progpolymsci_2021_101410
crossref_primary_10_1093_bioadv_vbab013
crossref_primary_10_1016_j_ebiom_2021_103403
crossref_primary_10_3389_fimmu_2021_771242
crossref_primary_10_1128_mbio_00679_23
crossref_primary_10_3389_fpubh_2022_872698
crossref_primary_10_1093_bib_bbab375
crossref_primary_10_3390_v14020353
crossref_primary_10_14336_AD_2021_1210
crossref_primary_10_3389_fmicb_2021_803827
crossref_primary_10_1002_eji_202149374
crossref_primary_10_3389_fmed_2022_1001022
crossref_primary_10_3390_v15040856
crossref_primary_10_1038_s41467_025_55938_3
crossref_primary_10_1016_j_heliyon_2023_e17701
crossref_primary_10_1038_s41564_021_01047_y
crossref_primary_10_1038_s41586_021_04352_y
crossref_primary_10_1371_journal_ppat_1012757
crossref_primary_10_3390_cells13030203
crossref_primary_10_1515_mr_2021_0035
crossref_primary_10_1038_s41598_021_00267_w
crossref_primary_10_3389_fimmu_2022_836232
crossref_primary_10_1128_jvi_01455_21
crossref_primary_10_1128_mBio_02315_21
crossref_primary_10_3390_microorganisms11122938
crossref_primary_10_2217_fvl_2022_0003
crossref_primary_10_1093_ve_veab104
crossref_primary_10_1016_j_meegid_2021_104971
crossref_primary_10_1038_s41598_021_96950_z
crossref_primary_10_1128_JVI_00966_21
crossref_primary_10_1039_D1CS01170G
crossref_primary_10_3389_fmed_2021_722219
crossref_primary_10_1128_jvi_01193_23
crossref_primary_10_3390_v13040673
crossref_primary_10_1055_a_1678_3250
crossref_primary_10_3389_fimmu_2021_654165
crossref_primary_10_1016_j_cell_2020_12_015
crossref_primary_10_1515_mr_2021_0023
crossref_primary_10_3389_fpubh_2023_1175444
crossref_primary_10_1016_j_compbiomed_2024_108688
crossref_primary_10_1016_j_ebiom_2022_103902
crossref_primary_10_1080_14756366_2022_2081847
crossref_primary_10_3390_v14081603
crossref_primary_10_1080_22221751_2021_1898291
crossref_primary_10_1016_j_isci_2022_104500
crossref_primary_10_1038_s41467_021_25156_8
crossref_primary_10_3390_life12060806
crossref_primary_10_12688_f1000research_110194_1
crossref_primary_10_1038_s41598_022_06629_2
crossref_primary_10_2217_fmb_2020_0300
crossref_primary_10_1016_j_celrep_2022_110387
crossref_primary_10_1084_jem_20202756
crossref_primary_10_1016_j_celrep_2022_110394
crossref_primary_10_1016_j_pharmthera_2022_108121
crossref_primary_10_1038_s41541_021_00301_y
crossref_primary_10_3390_v14020366
crossref_primary_10_1371_journal_pone_0260438
crossref_primary_10_1021_acsomega_1c02336
crossref_primary_10_1186_s43141_021_00287_z
crossref_primary_10_1016_j_isci_2022_105720
crossref_primary_10_1073_pnas_2102983118
crossref_primary_10_1093_jmcb_mjab045
crossref_primary_10_3390_ijms22116150
crossref_primary_10_1016_j_xcrm_2024_101668
crossref_primary_10_1128_JVI_00002_21
crossref_primary_10_1128_jvi_01650_22
crossref_primary_10_1007_s00253_023_12971_w
crossref_primary_10_1038_s41423_021_00641_8
crossref_primary_10_1038_s41576_022_00483_8
crossref_primary_10_5662_wjm_v14_i3_89761
crossref_primary_10_3390_v13050792
crossref_primary_10_1038_s41586_021_04188_6
crossref_primary_10_1093_bib_bbab446
crossref_primary_10_1038_s41541_021_00389_2
crossref_primary_10_1089_vbz_2021_0032
crossref_primary_10_1016_j_meomic_2024_100034
crossref_primary_10_3390_idr13010013
crossref_primary_10_1080_15265161_2020_1870773
crossref_primary_10_1016_j_bcp_2021_114724
crossref_primary_10_1111_sji_13345
crossref_primary_10_3390_v13040638
crossref_primary_10_1016_j_celrep_2022_110694
crossref_primary_10_1016_j_jinf_2020_12_024
crossref_primary_10_1038_s41579_023_01003_z
crossref_primary_10_3390_ijms23042172
crossref_primary_10_3390_v13040633
crossref_primary_10_1128_mbio_02493_24
crossref_primary_10_3389_fpsyg_2021_687514
crossref_primary_10_1126_scitranslmed_abl8124
crossref_primary_10_3390_vaccines11091472
crossref_primary_10_1038_s41598_022_24730_4
crossref_primary_10_1186_s12929_020_00703_5
crossref_primary_10_1016_j_heliyon_2022_e08864
crossref_primary_10_1073_pnas_2101918118
crossref_primary_10_1080_22221751_2021_1913974
crossref_primary_10_1128_spectrum_01789_21
crossref_primary_10_1016_j_celrep_2022_110336
crossref_primary_10_1038_s41563_023_01475_7
crossref_primary_10_1056_NEJMra2206573
crossref_primary_10_1126_sciadv_abo4100
crossref_primary_10_1038_s41598_022_04950_4
crossref_primary_10_1371_journal_ppat_1012704
crossref_primary_10_1016_j_heliyon_2023_e16750
crossref_primary_10_1128_aac_00840_23
crossref_primary_10_1038_s41541_022_00462_4
crossref_primary_10_1016_j_cell_2022_01_001
crossref_primary_10_1039_D2CP04349A
crossref_primary_10_1007_s10822_023_00534_0
crossref_primary_10_1128_mbio_03739_21
crossref_primary_10_1038_s41541_021_00311_w
crossref_primary_10_1155_2023_1879554
crossref_primary_10_1371_journal_pone_0255169
crossref_primary_10_1021_acs_jpclett_1c01548
crossref_primary_10_1016_j_bsheal_2021_12_006
crossref_primary_10_4155_tde_2021_0075
crossref_primary_10_1016_j_biologicals_2022_08_001
crossref_primary_10_1080_21645515_2021_1940652
crossref_primary_10_1128_mBio_01415_21
crossref_primary_10_2139_ssrn_4052015
crossref_primary_10_3389_fcimb_2021_690621
crossref_primary_10_1007_s13337_023_00827_w
crossref_primary_10_3389_fgene_2022_886649
crossref_primary_10_1021_acs_jpcb_3c01467
crossref_primary_10_1093_bib_bbab222
crossref_primary_10_3390_life12081245
crossref_primary_10_1128_spectrum_02859_23
crossref_primary_10_1016_j_bios_2023_115228
crossref_primary_10_30699_mmlj17_4_1_19
crossref_primary_10_1016_j_cell_2022_02_025
crossref_primary_10_1016_j_clinmicnews_2021_05_004
crossref_primary_10_3389_fimmu_2021_778829
crossref_primary_10_2139_ssrn_4095175
crossref_primary_10_1021_acs_analchem_1c05567
crossref_primary_10_1111_irv_13135
crossref_primary_10_1002_alr_22975
crossref_primary_10_1016_j_xcrm_2021_100312
crossref_primary_10_1073_pnas_2203760119
crossref_primary_10_1016_j_cell_2021_05_032
crossref_primary_10_1128_mra_01255_23
crossref_primary_10_3389_fmed_2021_806641
crossref_primary_10_1128_spectrum_04248_23
crossref_primary_10_1001_jama_2021_1114
crossref_primary_10_1093_nargab_lqad010
crossref_primary_10_33611_trs_2021_012
crossref_primary_10_1016_j_isci_2022_104926
crossref_primary_10_3390_encyclopedia2020047
crossref_primary_10_3390_ijms22041913
crossref_primary_10_1002_jmv_27376
crossref_primary_10_1093_ve_vead019
crossref_primary_10_1146_annurev_med_042921_020956
crossref_primary_10_1038_s41421_021_00320_y
crossref_primary_10_1038_s41392_021_00644_x
crossref_primary_10_15252_embr_202153820
crossref_primary_10_1016_j_compbiomed_2022_106510
crossref_primary_10_1016_j_biopha_2021_111272
crossref_primary_10_1186_s13020_022_00598_4
crossref_primary_10_1038_s41422_021_00558_x
crossref_primary_10_1007_s10616_023_00608_9
crossref_primary_10_1016_j_tibs_2021_06_001
crossref_primary_10_1016_j_virusres_2022_198688
crossref_primary_10_5363_tits_26_9_79
crossref_primary_10_3389_fimmu_2024_1339660
crossref_primary_10_3389_fimmu_2021_821538
crossref_primary_10_2139_ssrn_3879083
crossref_primary_10_1038_s41392_021_00809_8
crossref_primary_10_1371_journal_ppat_1009500
crossref_primary_10_1093_molbev_msad089
crossref_primary_10_1371_journal_ppat_1009865
crossref_primary_10_1371_journal_ppat_1010970
crossref_primary_10_1371_journal_pbio_3001006
crossref_primary_10_1016_j_cell_2020_11_020
crossref_primary_10_1186_s12987_021_00267_y
crossref_primary_10_1080_07391102_2021_1908170
crossref_primary_10_1016_j_immuno_2023_100021
crossref_primary_10_1038_s41586_022_04856_1
crossref_primary_10_3390_vaccines11111641
crossref_primary_10_1126_scisignal_abe5040
crossref_primary_10_1038_s41576_021_00408_x
crossref_primary_10_3390_jcm10153276
crossref_primary_10_1111_1751_7915_13800
crossref_primary_10_1128_spectrum_03301_22
crossref_primary_10_1002_jmv_28116
crossref_primary_10_15252_embj_2021108944
crossref_primary_10_1515_ntrev_2022_0515
crossref_primary_10_1016_j_scitotenv_2023_167971
crossref_primary_10_1073_pnas_2111199119
crossref_primary_10_1089_vbz_2021_0080
crossref_primary_10_3390_ijms23062928
crossref_primary_10_1080_22221751_2021_1976598
crossref_primary_10_1021_acs_jproteome_3c00182
crossref_primary_10_3389_fmicb_2023_1228128
crossref_primary_10_7326_M21_3669
crossref_primary_10_1038_s41590_022_01138_w
crossref_primary_10_1073_pnas_2102957118
crossref_primary_10_7759_cureus_60015
crossref_primary_10_1016_j_jmb_2022_167800
crossref_primary_10_1371_journal_ppat_1009857
crossref_primary_10_1021_acs_jproteome_3c00068
crossref_primary_10_1093_infdis_jiab247
crossref_primary_10_3389_fmolb_2022_846996
crossref_primary_10_3390_v15081656
crossref_primary_10_1038_s41586_021_04245_0
crossref_primary_10_3390_vaccines10010072
crossref_primary_10_1371_journal_ppat_1009619
crossref_primary_10_1002_cbin_12130
crossref_primary_10_1016_j_jmb_2022_167928
crossref_primary_10_1371_journal_ppat_1011928
crossref_primary_10_1016_j_scitotenv_2023_167844
crossref_primary_10_3389_fmicb_2021_626553
crossref_primary_10_1002_jmv_29459
crossref_primary_10_3390_v13050731
crossref_primary_10_1016_j_isci_2021_103530
crossref_primary_10_1186_s44149_021_00004_w
crossref_primary_10_3390_microorganisms9071389
crossref_primary_10_1002_mco2_166
crossref_primary_10_1080_07391102_2021_1933594
crossref_primary_10_3390_vaccines10101751
crossref_primary_10_4014_jmb_2411_11001
crossref_primary_10_1007_s00705_022_05621_5
crossref_primary_10_1371_journal_pone_0269774
crossref_primary_10_1128_JVI_01819_20
crossref_primary_10_1038_s41467_024_51535_y
crossref_primary_10_1016_j_chom_2021_05_012
crossref_primary_10_1080_1744666X_2021_1905525
crossref_primary_10_1038_s41598_024_71349_8
crossref_primary_10_1038_s41467_021_24326_y
crossref_primary_10_1038_s41467_021_22905_7
crossref_primary_10_1016_j_mayocp_2021_01_023
crossref_primary_10_1016_j_bsheal_2021_09_002
crossref_primary_10_1016_j_celrep_2021_109708
crossref_primary_10_1091_mbc_E22_02_0045
crossref_primary_10_31083_j_fbl2702065
crossref_primary_10_1016_j_ijid_2021_03_036
crossref_primary_10_1038_s41467_024_47450_x
crossref_primary_10_1002_rmv_2346
crossref_primary_10_1038_s41392_021_00502_w
crossref_primary_10_23939_mmc2021_02_282
crossref_primary_10_3390_genes12040531
crossref_primary_10_1038_s41576_023_00610_z
crossref_primary_10_1073_pnas_2204624119
crossref_primary_10_1016_j_celrep_2024_114929
crossref_primary_10_1128_jvi_01279_23
crossref_primary_10_4103_ijmr_ijmr_2591_22
crossref_primary_10_1007_s13238_021_00871_6
crossref_primary_10_1128_Spectrum_01267_21
crossref_primary_10_1016_j_csbj_2023_10_030
crossref_primary_10_1021_acs_jcim_2c00124
crossref_primary_10_1128_mbio_01376_22
crossref_primary_10_1177_03000605221086433
crossref_primary_10_1016_j_bea_2022_100054
crossref_primary_10_1038_s44298_024_00068_8
crossref_primary_10_3389_fcimb_2021_763687
crossref_primary_10_3389_fcimb_2023_1161445
crossref_primary_10_1038_s41564_024_01655_4
crossref_primary_10_1016_j_imlet_2020_12_014
crossref_primary_10_1128_mBio_01590_21
crossref_primary_10_1371_journal_ppat_1009820
crossref_primary_10_1073_pnas_2314518121
crossref_primary_10_23939_mmc2023_02_311
crossref_primary_10_3390_v15081763
crossref_primary_10_1016_j_isci_2021_103467
crossref_primary_10_3390_vaccines9101052
crossref_primary_10_3389_fcimb_2023_1155938
crossref_primary_10_1038_s41586_021_04342_0
crossref_primary_10_1038_s41467_022_28317_5
crossref_primary_10_1186_s13059_023_02881_5
crossref_primary_10_3390_v13050942
crossref_primary_10_1002_adma_202307366
crossref_primary_10_1038_s41598_021_02904_w
crossref_primary_10_3389_fimmu_2022_864775
crossref_primary_10_1126_science_adj0070
crossref_primary_10_1152_physiol_00033_2021
crossref_primary_10_1016_j_chom_2020_11_012
crossref_primary_10_3389_fimmu_2021_658519
crossref_primary_10_1126_science_abf3995
crossref_primary_10_1371_journal_ppat_1009811
crossref_primary_10_3390_vaccines11040736
crossref_primary_10_1038_s41467_022_30222_w
crossref_primary_10_2174_0115680266296095240529114058
crossref_primary_10_1080_21505594_2024_2316438
crossref_primary_10_1080_22221751_2021_1942227
crossref_primary_10_1007_s41745_022_00318_9
crossref_primary_10_1038_s41467_021_24339_7
crossref_primary_10_3390_v13050935
crossref_primary_10_1093_infdis_jiab283
crossref_primary_10_1016_j_gene_2021_145843
crossref_primary_10_1038_s41591_021_01472_w
crossref_primary_10_1093_jmcb_mjae004
crossref_primary_10_2139_ssrn_3964247
crossref_primary_10_3389_fimmu_2024_1412873
crossref_primary_10_1126_sciadv_abj3627
crossref_primary_10_1126_scitranslmed_adg5567
crossref_primary_10_2139_ssrn_3917167
crossref_primary_10_1246_bcsj_20210030
crossref_primary_10_1002_rmv_2358
crossref_primary_10_1007_s10123_022_00239_8
crossref_primary_10_1039_D2CP01893D
crossref_primary_10_1080_22221751_2021_2012528
crossref_primary_10_1016_j_idm_2024_10_004
crossref_primary_10_1016_j_chom_2021_06_006
crossref_primary_10_1093_infdis_jiad230
crossref_primary_10_1111_tbed_14132
crossref_primary_10_1038_s41586_021_04266_9
crossref_primary_10_1016_j_jbc_2021_101151
crossref_primary_10_30802_AALAS_CM_21_000011
crossref_primary_10_1016_j_str_2022_05_006
crossref_primary_10_1093_jmcb_mjad021
crossref_primary_10_29328_journal_jprr_1001030
crossref_primary_10_1007_s12033_021_00353_4
crossref_primary_10_1016_j_celrep_2021_109771
crossref_primary_10_1016_j_isci_2023_107764
crossref_primary_10_1080_21505594_2022_2132059
crossref_primary_10_1098_rsif_2023_0187
crossref_primary_10_1007_s12033_024_01240_4
crossref_primary_10_1007_s12257_021_0327_3
crossref_primary_10_1371_journal_pcbi_1010896
crossref_primary_10_1016_j_jpba_2021_114538
crossref_primary_10_1128_mSphere_00104_21
crossref_primary_10_1016_j_immuni_2021_06_003
crossref_primary_10_1099_jgv_0_001584
crossref_primary_10_3390_microorganisms10030612
crossref_primary_10_1016_j_meegid_2021_105153
crossref_primary_10_1128_mBio_00850_21
crossref_primary_10_2174_2772574X12666211122113318
crossref_primary_10_1021_jacs_2c04835
crossref_primary_10_1038_s41467_024_50052_2
crossref_primary_10_1016_j_coviro_2021_03_009
crossref_primary_10_3389_fimmu_2022_821664
crossref_primary_10_1016_j_chom_2021_03_008
crossref_primary_10_31083_j_fbl2705157
crossref_primary_10_1016_j_cell_2021_03_028
crossref_primary_10_1128_mBio_00587_21
crossref_primary_10_1016_j_cell_2021_03_029
crossref_primary_10_3934_mbe_2023481
crossref_primary_10_1126_scitranslmed_ado2104
crossref_primary_10_1002_jmv_27416
crossref_primary_10_1016_j_chom_2021_03_002
crossref_primary_10_3390_v13112114
crossref_primary_10_7717_peerj_10575
crossref_primary_10_3390_v16050757
crossref_primary_10_1002_1873_3468_14182
crossref_primary_10_1007_s00705_021_05320_7
crossref_primary_10_1080_26895293_2025_2468334
crossref_primary_10_1039_D1SM01181B
crossref_primary_10_1371_journal_pcbi_1009664
crossref_primary_10_1016_j_biomaterials_2022_121509
crossref_primary_10_3389_fimmu_2023_1066730
crossref_primary_10_1093_cid_ciac796
crossref_primary_10_1038_s41564_024_01786_8
crossref_primary_10_1016_j_cell_2021_03_013
crossref_primary_10_1186_s12879_021_06729_w
crossref_primary_10_1186_s12985_021_01633_w
crossref_primary_10_3390_v13010113
crossref_primary_10_1128_mBio_02687_21
crossref_primary_10_1002_mabi_202200056
crossref_primary_10_1016_j_ultras_2022_106749
crossref_primary_10_1073_pnas_2110105119
crossref_primary_10_1080_14760584_2021_1903879
crossref_primary_10_1093_jpids_piab051
crossref_primary_10_1371_journal_pone_0262170
crossref_primary_10_3390_ijerph20085503
crossref_primary_10_3390_vaccines9060639
crossref_primary_10_1016_j_celrep_2022_110829
crossref_primary_10_1016_j_antiviral_2022_105253
crossref_primary_10_1002_1873_3468_14076
crossref_primary_10_1002_advs_202402639
crossref_primary_10_1371_journal_pone_0312402
crossref_primary_10_3390_vaccines11030615
crossref_primary_10_1016_j_idc_2022_01_007
crossref_primary_10_1128_mbio_01060_21
crossref_primary_10_1016_j_chom_2021_11_005
crossref_primary_10_1371_journal_pone_0265453
crossref_primary_10_1039_D1RA04107J
crossref_primary_10_1186_s13054_021_03662_x
crossref_primary_10_1002_rmv_2270
crossref_primary_10_3390_v14040766
crossref_primary_10_1128_mra_01099_21
crossref_primary_10_1165_rcmb_2024_0213OC
crossref_primary_10_1002_cti2_1241
crossref_primary_10_2491_jjsth_34_662
crossref_primary_10_7554_eLife_65365
crossref_primary_10_1038_s43856_022_00130_7
crossref_primary_10_1016_j_ebiom_2021_103291
crossref_primary_10_1016_j_vaccine_2023_08_054
crossref_primary_10_3389_fmicb_2022_883597
crossref_primary_10_1021_acsnano_1c01845
crossref_primary_10_3390_epidemiologia2010007
crossref_primary_10_3390_biomedicines10050996
crossref_primary_10_4049_jimmunol_2300637
crossref_primary_10_4236_crcm_2022_1111065
crossref_primary_10_1016_j_genrep_2021_101100
crossref_primary_10_3390_v13112161
crossref_primary_10_3389_fimmu_2021_752003
crossref_primary_10_3389_fmed_2022_825245
crossref_primary_10_1038_s41467_021_23779_5
crossref_primary_10_1371_journal_pcbi_1009629
crossref_primary_10_1002_jmv_70198
crossref_primary_10_1038_s41598_021_85363_7
crossref_primary_10_1371_journal_pone_0277846
crossref_primary_10_1002_advs_202403871
crossref_primary_10_1093_ofid_ofac027
crossref_primary_10_1093_ve_veae032
crossref_primary_10_1128_mSphere_00011_21
crossref_primary_10_1002_jmv_27693
crossref_primary_10_1038_s41467_021_24285_4
crossref_primary_10_3389_fmicb_2021_653399
crossref_primary_10_1016_j_cell_2021_12_032
crossref_primary_10_1038_s41591_022_01836_w
crossref_primary_10_1021_acsinfecdis_1c00433
crossref_primary_10_1088_1742_6596_2110_1_012018
crossref_primary_10_3389_fmicb_2021_827799
crossref_primary_10_1186_s12920_021_00990_3
crossref_primary_10_3390_v13030394
crossref_primary_10_1021_acs_jpcb_2c02365
crossref_primary_10_3389_fcimb_2023_1268227
crossref_primary_10_1371_journal_ppat_1012158
crossref_primary_10_1016_j_cell_2021_04_025
crossref_primary_10_3389_fcimb_2021_753249
crossref_primary_10_15212_ZOONOSES_2021_1003
crossref_primary_10_3390_ijms23084376
crossref_primary_10_1002_jmv_27225
crossref_primary_10_1073_pnas_2106535118
crossref_primary_10_1177_15353702211014146
crossref_primary_10_1128_mSystems_01151_20
crossref_primary_10_1007_s11468_022_01754_0
crossref_primary_10_1038_s41598_021_95197_y
crossref_primary_10_1111_febs_15871
crossref_primary_10_1128_AAC_00097_21
crossref_primary_10_11150_kansenshogakuzasshi_95_293
crossref_primary_10_3390_v13081595
crossref_primary_10_1038_s41467_023_39704_x
crossref_primary_10_1016_j_isci_2023_106210
crossref_primary_10_2217_fvl_2021_0062
crossref_primary_10_1021_acs_jpcb_0c10637
crossref_primary_10_3390_biomedicines11072055
crossref_primary_10_1128_mbio_02421_22
crossref_primary_10_1016_j_tim_2021_03_013
crossref_primary_10_2174_0929867328666210902094254
crossref_primary_10_1126_scitranslmed_abo0718
crossref_primary_10_1016_j_antiviral_2023_105656
crossref_primary_10_1021_acschemneuro_1c00542
crossref_primary_10_1038_s41598_022_24519_5
crossref_primary_10_1093_infdis_jiad061
crossref_primary_10_1016_j_ijregi_2022_01_002
crossref_primary_10_3390_v13112251
crossref_primary_10_1016_j_crmeth_2022_100173
crossref_primary_10_1186_s12985_023_02154_4
crossref_primary_10_1038_s41419_024_06802_7
crossref_primary_10_1016_j_vaccine_2025_126880
crossref_primary_10_1016_j_antiviral_2024_105820
crossref_primary_10_3390_vaccines10060864
crossref_primary_10_1038_s41594_021_00653_y
crossref_primary_10_3390_genes12071061
crossref_primary_10_1016_j_cell_2021_09_015
crossref_primary_10_1172_jci_insight_147386
crossref_primary_10_3390_biom13101467
crossref_primary_10_2478_jtim_2022_0026
crossref_primary_10_3389_fgene_2021_693916
crossref_primary_10_1080_17460794_2024_2362100
crossref_primary_10_3390_ijms23031646
crossref_primary_10_1016_j_isci_2024_111347
crossref_primary_10_1590_1806_9282_20210625
crossref_primary_10_3390_pathogens10020184
crossref_primary_10_1016_j_isci_2021_102908
crossref_primary_10_1002_jmv_27801
crossref_primary_10_1128_spectrum_02371_22
crossref_primary_10_1128_AAC_00772_21
crossref_primary_10_3390_microorganisms10071430
crossref_primary_10_1371_journal_ppat_1010181
crossref_primary_10_1016_j_heliyon_2022_e08799
crossref_primary_10_3390_pathogens10060633
crossref_primary_10_3390_vaccines9111337
crossref_primary_10_3390_v15091921
crossref_primary_10_1016_j_clim_2021_108699
crossref_primary_10_1016_j_isci_2022_105696
crossref_primary_10_3389_fcimb_2021_720357
crossref_primary_10_34172_bi_2024_30150
crossref_primary_10_1016_j_celrep_2021_110126
crossref_primary_10_1016_j_celrep_2023_113077
crossref_primary_10_1016_j_cell_2021_01_037
crossref_primary_10_3390_v15030658
crossref_primary_10_7883_yoken_JJID_2021_292
crossref_primary_10_3390_microorganisms9040748
crossref_primary_10_3390_jcm11010117
crossref_primary_10_1016_j_jmb_2021_167058
crossref_primary_10_1038_s41586_021_03398_2
crossref_primary_10_1002_advs_202202689
crossref_primary_10_1038_s41467_022_31929_6
crossref_primary_10_1039_D3RA00198A
crossref_primary_10_3389_fmicb_2022_819745
crossref_primary_10_1017_ice_2021_415
crossref_primary_10_1007_s12015_022_10477_y
crossref_primary_10_1016_j_chom_2021_01_004
crossref_primary_10_1371_journal_pone_0259277
crossref_primary_10_3389_fbioe_2022_966586
crossref_primary_10_1016_j_cell_2021_01_007
crossref_primary_10_1016_j_jcis_2022_10_129
crossref_primary_10_1021_acs_bioconjchem_1c00208
crossref_primary_10_1093_intimm_dxab061
crossref_primary_10_1016_j_medj_2022_04_013
crossref_primary_10_1021_acsnano_4c04631
crossref_primary_10_1016_j_antiviral_2024_105976
crossref_primary_10_1016_j_omtm_2022_01_015
crossref_primary_10_3390_biology10020091
crossref_primary_10_3389_fphys_2021_593223
crossref_primary_10_1038_s41598_021_97267_7
crossref_primary_10_4049_jimmunol_2001287
crossref_primary_10_3390_diseases11020064
crossref_primary_10_3390_v13122544
crossref_primary_10_1021_acs_analchem_1c01950
crossref_primary_10_1128_mbio_00683_22
crossref_primary_10_1016_j_celrep_2022_110786
crossref_primary_10_3390_biomedicines9040412
crossref_primary_10_1155_2022_3742318
crossref_primary_10_1038_s41392_021_00498_3
crossref_primary_10_1016_j_virusres_2024_199319
crossref_primary_10_1080_07391102_2021_1899050
crossref_primary_10_1128_spectrum_02524_23
crossref_primary_10_1007_s10930_021_09967_8
crossref_primary_10_1177_1721727X221095382
crossref_primary_10_2174_1871526522666220401101818
crossref_primary_10_1016_j_cell_2021_02_042
crossref_primary_10_1016_j_jmccpl_2022_100013
crossref_primary_10_1055_a_1634_2377
crossref_primary_10_1016_j_bios_2021_113857
crossref_primary_10_1126_science_abh1766
crossref_primary_10_1016_j_micres_2022_126993
crossref_primary_10_1126_sciadv_abf3671
crossref_primary_10_1002_jmv_27964
crossref_primary_10_1016_j_jinf_2024_106121
crossref_primary_10_1016_j_celrep_2022_110558
crossref_primary_10_1016_j_jiph_2022_01_007
crossref_primary_10_1080_22221751_2023_2245916
crossref_primary_10_3390_bios13020269
crossref_primary_10_3390_v14112532
crossref_primary_10_1128_mbio_00171_23
crossref_primary_10_3389_fmicb_2022_860535
crossref_primary_10_1001_jama_2021_2088
crossref_primary_10_1002_hsr2_70166
crossref_primary_10_1515_mr_2021_0004
crossref_primary_10_1016_j_isci_2023_106634
crossref_primary_10_1159_000515342
crossref_primary_10_1016_j_vaccine_2022_05_046
crossref_primary_10_1111_trf_16511
crossref_primary_10_1038_s41541_021_00313_8
crossref_primary_10_1159_000515341
crossref_primary_10_1038_s41392_021_00848_1
crossref_primary_10_1016_j_celrep_2022_110969
crossref_primary_10_15212_ZOONOSES_2024_0051
crossref_primary_10_1007_s12652_023_04589_7
crossref_primary_10_1038_s41586_021_03361_1
crossref_primary_10_1039_D2MD00009A
crossref_primary_10_3389_fmolb_2022_817735
crossref_primary_10_1016_j_ijbiomac_2021_07_013
crossref_primary_10_1016_j_virs_2024_03_001
crossref_primary_10_1172_JCI166844
crossref_primary_10_1016_j_eclinm_2022_101526
crossref_primary_10_1093_bib_bbab160
crossref_primary_10_1038_s41467_022_30546_7
crossref_primary_10_1038_s41392_022_00910_6
crossref_primary_10_1128_jvi_02217_24
crossref_primary_10_1371_journal_pbio_3001609
crossref_primary_10_3390_v16030407
crossref_primary_10_1128_msystems_00440_23
crossref_primary_10_3390_ijms22168498
crossref_primary_10_3390_v15030611
crossref_primary_10_3389_fmed_2021_702066
crossref_primary_10_1038_s41598_022_05446_x
crossref_primary_10_3390_vaccines10060919
crossref_primary_10_1128_jvi_00753_22
crossref_primary_10_1038_s44298_025_00092_2
crossref_primary_10_1128_mbio_03044_21
crossref_primary_10_1007_s42770_022_00743_z
crossref_primary_10_1016_j_scitotenv_2024_171645
crossref_primary_10_3390_v13030439
crossref_primary_10_1093_cid_ciab701
crossref_primary_10_1038_s41564_023_01476_x
crossref_primary_10_3390_bioengineering10020148
crossref_primary_10_3390_tropicalmed7050081
crossref_primary_10_1126_sciadv_adi1379
crossref_primary_10_1001_jama_2020_27124
crossref_primary_10_1016_j_jpha_2022_10_003
crossref_primary_10_21673_anadoluklin_1061232
crossref_primary_10_3389_fmed_2021_664297
crossref_primary_10_1038_s41586_021_03693_y
crossref_primary_10_1038_s41579_021_00573_0
crossref_primary_10_1038_s41591_021_01301_0
crossref_primary_10_1016_j_bj_2025_100834
crossref_primary_10_1126_sciadv_ade5085
crossref_primary_10_1126_sciadv_adt5464
crossref_primary_10_1073_pnas_2119680119
crossref_primary_10_1051_e3sconf_202455305045
crossref_primary_10_1080_17445760_2022_2134369
crossref_primary_10_3390_biom12070964
crossref_primary_10_1038_s41423_023_01095_w
crossref_primary_10_3389_fgene_2021_630542
crossref_primary_10_2147_IDR_S366437
crossref_primary_10_3390_jdb9040058
crossref_primary_10_1021_acschembio_2c00378
crossref_primary_10_1016_j_chom_2021_02_020
crossref_primary_10_1016_j_immuni_2022_05_005
crossref_primary_10_1038_s41579_023_00878_2
crossref_primary_10_1371_journal_pbio_3001989
crossref_primary_10_3390_molecules27072070
crossref_primary_10_3390_v15030639
crossref_primary_10_1039_D1CP02967C
crossref_primary_10_1371_journal_pone_0248371
crossref_primary_10_3389_fmed_2021_781287
crossref_primary_10_1016_S2666_5247_21_00129_4
crossref_primary_10_1128_Spectrum_01096_21
crossref_primary_10_1038_s41551_022_00902_5
crossref_primary_10_1002_jmv_27643
crossref_primary_10_1007_s11684_024_1066_6
crossref_primary_10_1371_journal_ppat_1010106
crossref_primary_10_1038_s41577_021_00656_2
crossref_primary_10_1093_nsr_nwab223
crossref_primary_10_3390_microorganisms9071517
Cites_doi 10.1016/j.cell.2016.10.013
10.1007/978-1-62703-125-7_8
10.1038/s41586-020-2349-y
10.1126/science.abc2241
10.1016/j.cell.2020.06.043
10.1101/2020.06.12.148726
10.1016/j.celrep.2018.07.045
10.1128/mBio.02590-20
10.1073/pnas.2009799117
10.1111/j.1420-9101.2008.01658.x
10.1101/2020.05.19.20107144
10.1126/science.1092002
10.1126/science.abd0827
10.1016/j.cell.2020.09.032
10.1038/nm.2972
10.1128/JVI.00505-07
10.1002/jcc.26383
10.1016/j.cell.2020.05.042
10.1038/s41591-020-0868-6
10.1126/science.abb7314
10.1016/j.cell.2020.07.012
10.1016/j.cell.2020.09.050
10.1371/journal.ppat.1002412
10.1038/nature10831
10.1101/2020.07.22.20159905
10.4161/rna.8.2.15013
10.1038/s41586-020-2708-8
10.1101/2020.07.26.219741
10.1073/pnas.2001046117
10.1371/journal.pmed.0030237
ContentType Journal Article
Copyright Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works 2020 American Association for the Advancement of Science
Copyright_xml – notice: Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
– notice: Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
– notice: Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works 2020 American Association for the Advancement of Science
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
5PM
DOI 10.1126/science.abe8499
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
Materials Research Database
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 1468
ExternalDocumentID PMC7775736
33184236
10_1126_science_abe8499
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: HHSN272201400008C
– fundername: NIAID NIH HHS
  grantid: R01 AI110700
– fundername: NIAID NIH HHS
  grantid: R01 AI069274
– fundername: NIAID NIH HHS
  grantid: HHSN272201700061C
– fundername: NCI NIH HHS
  grantid: U54 CA260543
– fundername: NHLBI NIH HHS
  grantid: P01 HL108808
– fundername: NIAID NIH HHS
  grantid: R56 AI069274
– fundername: NIAID NIH HHS
  grantid: UM1 AI126619
– fundername: NCI NIH HHS
  grantid: P30 CA016086
– fundername: NIAID NIH HHS
  grantid: U01 AI151797
– fundername: ;
  grantid: HHSN272201400008C
– fundername: ;
  grantid: JP19fk0108113
– fundername: ;
  grantid: AI069274
– fundername: ;
  grantid: HHSN272201700036I
– fundername: ;
  grantid: JP19fm0108006
– fundername: ;
  grantid: AI110700
– fundername: ;
  grantid: JP19fk0108110
– fundername: ;
  grantid: JP20fk0108104
– fundername: ;
  grantid: AI151797
– fundername: ;
  grantid: CA260543
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
AAYXX
ABCQX
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADUKH
ADXHL
AEGBM
AENEX
AETEA
AFBNE
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ASPBG
AVWKF
BKF
BLC
C45
CITATION
CS3
DB2
DU5
EBS
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPY
ISE
JCF
JLS
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
RHI
RXW
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c449t-67260e16f11b2bbd23e0b7f8b9575c4cac1738424bde635db85f0d62270d20073
ISSN 0036-8075
1095-9203
IngestDate Thu Aug 21 13:34:51 EDT 2025
Sun Aug 24 03:31:31 EDT 2025
Fri Jul 25 10:46:38 EDT 2025
Mon Jul 21 05:59:29 EDT 2025
Thu Apr 24 23:12:13 EDT 2025
Tue Jul 01 01:35:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6523
Language English
License https://creativecommons.org/licenses/by/4.0
Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
This is an open-access article distributed under the terms of the Creative Commons Attribution license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c449t-67260e16f11b2bbd23e0b7f8b9575c4cac1738424bde635db85f0d62270d20073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
ORCID 0000-0003-3317-5950
0000-0001-5714-0002
0000-0002-3143-6515
0000-0003-2039-1304
0000-0002-8323-7243
0000-0002-9694-756X
0000-0001-6827-8701
0000-0003-0415-6013
0000-0002-4989-5381
0000-0002-8942-1551
0000-0003-1374-8002
0000-0001-5061-8296
0000-0002-0046-0096
0000-0002-1648-1625
0000-0001-5351-2841
0000-0003-3656-9322
0000-0003-1824-0603
0000-0003-4228-2192
0000-0001-7582-8396
0000-0002-3820-9542
0000-0002-4760-4923
0000-0001-9341-2730
0000-0002-7596-4272
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7775736
PMID 33184236
PQID 2460774266
PQPubID 1256
PageCount 5
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7775736
proquest_miscellaneous_2460771022
proquest_journals_2460774266
pubmed_primary_33184236
crossref_primary_10_1126_science_abe8499
crossref_citationtrail_10_1126_science_abe8499
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-18
PublicationDateYYYYMMDD 2020-12-18
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-18
  day: 18
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2020
Publisher The American Association for the Advancement of Science
American Association for the Advancement of Science
Publisher_xml – name: The American Association for the Advancement of Science
– name: American Association for the Advancement of Science
References e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_20_2
Imai M. (e_1_3_2_13_2) 2020; 117
e_1_3_2_21_2
e_1_3_2_22_2
e_1_3_2_23_2
e_1_3_2_24_2
e_1_3_2_25_2
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_3_2
e_1_3_2_2_2
e_1_3_2_14_2
33024969 - bioRxiv. 2020 Sep 29
33649299 - Signal Transduct Target Ther. 2021 Mar 1;6(1):101
References_xml – ident: e_1_3_2_14_2
  doi: 10.1016/j.cell.2016.10.013
– ident: e_1_3_2_31_2
  doi: 10.1007/978-1-62703-125-7_8
– ident: e_1_3_2_30_2
  doi: 10.1038/s41586-020-2349-y
– ident: e_1_3_2_28_2
  doi: 10.1126/science.abc2241
– ident: e_1_3_2_5_2
  doi: 10.1016/j.cell.2020.06.043
– ident: e_1_3_2_22_2
  doi: 10.1101/2020.06.12.148726
– ident: e_1_3_2_19_2
  doi: 10.1016/j.celrep.2018.07.045
– ident: e_1_3_2_23_2
  doi: 10.1128/mBio.02590-20
– volume: 117
  start-page: 16587
  year: 2020
  ident: e_1_3_2_13_2
  article-title: Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.2009799117
– ident: e_1_3_2_27_2
  doi: 10.1111/j.1420-9101.2008.01658.x
– ident: e_1_3_2_4_2
  doi: 10.1101/2020.05.19.20107144
– ident: e_1_3_2_16_2
  doi: 10.1126/science.1092002
– ident: e_1_3_2_29_2
  doi: 10.1126/science.abd0827
– ident: e_1_3_2_7_2
  doi: 10.1016/j.cell.2020.09.032
– ident: e_1_3_2_3_2
  doi: 10.1038/nm.2972
– ident: e_1_3_2_18_2
  doi: 10.1128/JVI.00505-07
– ident: e_1_3_2_21_2
  doi: 10.1002/jcc.26383
– ident: e_1_3_2_9_2
  doi: 10.1016/j.cell.2020.05.042
– ident: e_1_3_2_26_2
  doi: 10.1038/s41591-020-0868-6
– ident: e_1_3_2_25_2
  doi: 10.1126/science.abb7314
– ident: e_1_3_2_10_2
  doi: 10.1016/j.cell.2020.07.012
– ident: e_1_3_2_24_2
  doi: 10.1016/j.cell.2020.09.050
– ident: e_1_3_2_15_2
  doi: 10.1371/journal.ppat.1002412
– ident: e_1_3_2_12_2
  doi: 10.1038/nature10831
– ident: e_1_3_2_6_2
  doi: 10.1101/2020.07.22.20159905
– ident: e_1_3_2_2_2
  doi: 10.4161/rna.8.2.15013
– ident: e_1_3_2_11_2
  doi: 10.1038/s41586-020-2708-8
– ident: e_1_3_2_8_2
  doi: 10.1101/2020.07.26.219741
– ident: e_1_3_2_20_2
  doi: 10.1073/pnas.2001046117
– ident: e_1_3_2_17_2
  doi: 10.1371/journal.pmed.0030237
– reference: 33024969 - bioRxiv. 2020 Sep 29;:
– reference: 33649299 - Signal Transduct Target Ther. 2021 Mar 1;6(1):101
SSID ssj0009593
Score 2.7244732
Snippet Pandemic spread of a virus in naïe populations can select for mutations that alter pathogenesis, virulence, and/or transmissibility. The ancestral form of...
The spike aspartic acid-614 to glycine (D614G) substitution is prevalent in global severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains, but...
Changing with the timesPandemic spread of a virus in naïe populations can select for mutations that alter pathogenesis, virulence, and/or transmissibility. The...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1464
SubjectTerms ACE2
Amino Acid Substitution
Angiotensin-converting enzyme 2
Angiotensin-Converting Enzyme 2 - genetics
Animal models
Animals
Asparagine - genetics
Aspartic acid
Coronaviridae
Coronaviruses
COVID-19
COVID-19 - transmission
COVID-19 - virology
Cricetinae
Disease transmission
Fitness
Genetic Fitness - genetics
Glycine
Glycine - genetics
Hamsters
Humans
Mesocricetus
Mice
Mice, Transgenic
Microbio
Morphology
Mutation
Neutralization
Pandemics
Pathogenesis
Pathogens
Replication
Respiratory diseases
Respiratory Mucosa - virology
Rodents
SARS-CoV-2 - genetics
SARS-CoV-2 - pathogenicity
Severe acute respiratory syndrome coronavirus 2
Substitutes
Viral diseases
Virulence
Virulence - genetics
Virus Replication - genetics
Viruses
Title SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo
URI https://www.ncbi.nlm.nih.gov/pubmed/33184236
https://www.proquest.com/docview/2460774266
https://www.proquest.com/docview/2460771022
https://pubmed.ncbi.nlm.nih.gov/PMC7775736
Volume 370
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKJiReEBsfKwxkJB6GqlSJ7cTtY9dtVEjwQDfUtyh2HDXSSND6IeDv4g_kHDuuO1Zp8BJVOTtt_bvcl893CL3LIqn1FAuEzJOAqTgPMhGRQGacDWWcZbTZ0f30OZlcsY-zeNbp_PayllZL0Ze_7jxX8j-owj3AVZ-S_Qdk3UPhBnwGfOEKCMP1XhhPR1-mwbj-GpDeGSjAD701eL6wVD2l217rLQHVVIjQ-_03yu1UA7m3Lte1yZ7UygrAXtikR03wLdb25QdL1O3ueJi6NMWRSSZocwvsNC_QMKlXjbwvf6z0kan-JrGgFI0FO52X83ojEa-Lb7aB81YO8fncRM3HOjJjl8NGLUiTAeILWlcI2eghI3xD3TeShNSXztT0FbFsmMSEeuIWxDzzVLc-Rna3WvAaWap-JtSAmbZM2wW4bylGl67YOEokSe0DUvuAB2ifgHMC0nV_dHp2erGz2LMtKeUd1mp_w7Y19JeLcztT1zN9Lp-gx9ZnwSPDgAeoo6pD9NB0Mf15iA4s1gt8YouYv3-KZhvexA1vYsubuOVN7HgTe7wJZKxZEANvYp83cVk1hGfo6uL8cjwJbBePQDI2XAYJB5dZRUkRRYIIkROqQsGLgRiCpyCZzGTE6YARJnIF1m8uBnER5gkhPMx1IJ0-R3tVXakjhBMShYoWYaNFkpyLjMDyF4RmQxlmlHdRv13NVNoS97rTynW6A8EuOnETvpvqLruHHrfwpFYELFLCkhD8JzByu-itI8O66F23rFL1qh2jAytd9MKg6b6LgkYFfwZm8y2c3QBd_H2bUpXzpgg85zzmNHl5_3_wCj3avInHaG95s1KvwaJeijeWgf8APw3PaQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SARS-CoV-2+D614G+variant+exhibits+efficient+replication+ex+vivo+and+transmission+in+vivo&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Hou%2C+Yixuan+J.&rft.au=Chiba%2C+Shiho&rft.au=Halfmann%2C+Peter&rft.au=Ehre%2C+Camille&rft.date=2020-12-18&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=370&rft.issue=6523&rft.spage=1464&rft.epage=1468&rft_id=info:doi/10.1126%2Fscience.abe8499&rft.externalDBID=n%2Fa&rft.externalDocID=10_1126_science_abe8499
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon