SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo
Pandemic spread of a virus in naïe populations can select for mutations that alter pathogenesis, virulence, and/or transmissibility. The ancestral form of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that emerged from China has now been largely replaced by strains containing the muta...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 370; no. 6523; pp. 1464 - 1468 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
The American Association for the Advancement of Science
18.12.2020
American Association for the Advancement of Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Pandemic spread of a virus in naïe populations can select for mutations that alter pathogenesis, virulence, and/or transmissibility. The ancestral form of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that emerged from China has now been largely replaced by strains containing the mutation D614G (Asp
614
-to-Gly) in the viral spike protein. Hou
et al.
compared the characteristics of the new variant against the ancestral form in a series of experiments in human cells and animal models. The variant is better at infecting upper-airway epithelial cells and replicates in greater numbers than the ancestral virus. Evidence indicates modest, if any, significant changes to virulence in animal models. Therefore, the virus appears to have evolved for greater transmissibility in humans rather than for greater pathogenicity. The mutation renders the new virus variant more susceptible to neutralizing antisera without altering the efficacy of vaccine candidates currently under development.
Science
, this issue p.
1464
The current dominant structural variant of SARS-CoV-2 appears to have evolved from the ancestral form and enhances transmissibility.
The spike aspartic acid–614 to glycine (D614G) substitution is prevalent in global severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains, but its effects on viral pathogenesis and transmissibility remain unclear. We engineered a SARS-CoV-2 variant containing this substitution. The variant exhibits more efficient infection, replication, and competitive fitness in primary human airway epithelial cells but maintains similar morphology and in vitro neutralization properties, compared with the ancestral wild-type virus. Infection of human angiotensin-converting enzyme 2 (ACE2) transgenic mice and Syrian hamsters with both viruses resulted in similar viral titers in respiratory tissues and pulmonary disease. However, the D614G variant transmits significantly faster and displayed increased competitive fitness than the wild-type virus in hamsters. These data show that the D614G substitution enhances SARS-CoV-2 infectivity, competitive fitness, and transmission in primary human cells and animal models. |
---|---|
AbstractList | The spike aspartic acid-614 to glycine (D614G) substitution is prevalent in global severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains, but its effects on viral pathogenesis and transmissibility remain unclear. We engineered a SARS-CoV-2 variant containing this substitution. The variant exhibits more efficient infection, replication, and competitive fitness in primary human airway epithelial cells but maintains similar morphology and in vitro neutralization properties, compared with the ancestral wild-type virus. Infection of human angiotensin-converting enzyme 2 (ACE2) transgenic mice and Syrian hamsters with both viruses resulted in similar viral titers in respiratory tissues and pulmonary disease. However, the D614G variant transmits significantly faster and displayed increased competitive fitness than the wild-type virus in hamsters. These data show that the D614G substitution enhances SARS-CoV-2 infectivity, competitive fitness, and transmission in primary human cells and animal models.The spike aspartic acid-614 to glycine (D614G) substitution is prevalent in global severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains, but its effects on viral pathogenesis and transmissibility remain unclear. We engineered a SARS-CoV-2 variant containing this substitution. The variant exhibits more efficient infection, replication, and competitive fitness in primary human airway epithelial cells but maintains similar morphology and in vitro neutralization properties, compared with the ancestral wild-type virus. Infection of human angiotensin-converting enzyme 2 (ACE2) transgenic mice and Syrian hamsters with both viruses resulted in similar viral titers in respiratory tissues and pulmonary disease. However, the D614G variant transmits significantly faster and displayed increased competitive fitness than the wild-type virus in hamsters. These data show that the D614G substitution enhances SARS-CoV-2 infectivity, competitive fitness, and transmission in primary human cells and animal models. Pandemic spread of a virus in naïe populations can select for mutations that alter pathogenesis, virulence, and/or transmissibility. The ancestral form of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that emerged from China has now been largely replaced by strains containing the mutation D614G (Asp 614 -to-Gly) in the viral spike protein. Hou et al. compared the characteristics of the new variant against the ancestral form in a series of experiments in human cells and animal models. The variant is better at infecting upper-airway epithelial cells and replicates in greater numbers than the ancestral virus. Evidence indicates modest, if any, significant changes to virulence in animal models. Therefore, the virus appears to have evolved for greater transmissibility in humans rather than for greater pathogenicity. The mutation renders the new virus variant more susceptible to neutralizing antisera without altering the efficacy of vaccine candidates currently under development. Science , this issue p. 1464 The current dominant structural variant of SARS-CoV-2 appears to have evolved from the ancestral form and enhances transmissibility. The spike aspartic acid–614 to glycine (D614G) substitution is prevalent in global severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains, but its effects on viral pathogenesis and transmissibility remain unclear. We engineered a SARS-CoV-2 variant containing this substitution. The variant exhibits more efficient infection, replication, and competitive fitness in primary human airway epithelial cells but maintains similar morphology and in vitro neutralization properties, compared with the ancestral wild-type virus. Infection of human angiotensin-converting enzyme 2 (ACE2) transgenic mice and Syrian hamsters with both viruses resulted in similar viral titers in respiratory tissues and pulmonary disease. However, the D614G variant transmits significantly faster and displayed increased competitive fitness than the wild-type virus in hamsters. These data show that the D614G substitution enhances SARS-CoV-2 infectivity, competitive fitness, and transmission in primary human cells and animal models. Changing with the timesPandemic spread of a virus in naïe populations can select for mutations that alter pathogenesis, virulence, and/or transmissibility. The ancestral form of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that emerged from China has now been largely replaced by strains containing the mutation D614G (Asp614-to-Gly) in the viral spike protein. Hou et al. compared the characteristics of the new variant against the ancestral form in a series of experiments in human cells and animal models. The variant is better at infecting upper-airway epithelial cells and replicates in greater numbers than the ancestral virus. Evidence indicates modest, if any, significant changes to virulence in animal models. Therefore, the virus appears to have evolved for greater transmissibility in humans rather than for greater pathogenicity. The mutation renders the new virus variant more susceptible to neutralizing antisera without altering the efficacy of vaccine candidates currently under development.Science, this issue p. 1464The spike aspartic acid–614 to glycine (D614G) substitution is prevalent in global severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains, but its effects on viral pathogenesis and transmissibility remain unclear. We engineered a SARS-CoV-2 variant containing this substitution. The variant exhibits more efficient infection, replication, and competitive fitness in primary human airway epithelial cells but maintains similar morphology and in vitro neutralization properties, compared with the ancestral wild-type virus. Infection of human angiotensin-converting enzyme 2 (ACE2) transgenic mice and Syrian hamsters with both viruses resulted in similar viral titers in respiratory tissues and pulmonary disease. However, the D614G variant transmits significantly faster and displayed increased competitive fitness than the wild-type virus in hamsters. These data show that the D614G substitution enhances SARS-CoV-2 infectivity, competitive fitness, and transmission in primary human cells and animal models. The spike aspartic acid-614 to glycine (D614G) substitution is prevalent in global severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains, but its effects on viral pathogenesis and transmissibility remain unclear. We engineered a SARS-CoV-2 variant containing this substitution. The variant exhibits more efficient infection, replication, and competitive fitness in primary human airway epithelial cells but maintains similar morphology and in vitro neutralization properties, compared with the ancestral wild-type virus. Infection of human angiotensin-converting enzyme 2 (ACE2) transgenic mice and Syrian hamsters with both viruses resulted in similar viral titers in respiratory tissues and pulmonary disease. However, the D614G variant transmits significantly faster and displayed increased competitive fitness than the wild-type virus in hamsters. These data show that the D614G substitution enhances SARS-CoV-2 infectivity, competitive fitness, and transmission in primary human cells and animal models. Pandemic spread of a virus in naïe populations can select for mutations that alter pathogenesis, virulence, and/or transmissibility. The ancestral form of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that emerged from China has now been largely replaced by strains containing the mutation D614G (Asp 614 -to-Gly) in the viral spike protein. Hou et al. compared the characteristics of the new variant against the ancestral form in a series of experiments in human cells and animal models. The variant is better at infecting upper-airway epithelial cells and replicates in greater numbers than the ancestral virus. Evidence indicates modest, if any, significant changes to virulence in animal models. Therefore, the virus appears to have evolved for greater transmissibility in humans rather than for greater pathogenicity. The mutation renders the new virus variant more susceptible to neutralizing antisera without altering the efficacy of vaccine candidates currently under development. Science , this issue p. 1464 The current dominant structural variant of SARS-CoV-2 appears to have evolved from the ancestral form and enhances transmissibility. The spike aspartic acid–614 to glycine (D614G) substitution is prevalent in global severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains, but its effects on viral pathogenesis and transmissibility remain unclear. We engineered a SARS-CoV-2 variant containing this substitution. The variant exhibits more efficient infection, replication, and competitive fitness in primary human airway epithelial cells but maintains similar morphology and in vitro neutralization properties, compared with the ancestral wild-type virus. Infection of human angiotensin-converting enzyme 2 (ACE2) transgenic mice and Syrian hamsters with both viruses resulted in similar viral titers in respiratory tissues and pulmonary disease. However, the D614G variant transmits significantly faster and displayed increased competitive fitness than the wild-type virus in hamsters. These data show that the D614G substitution enhances SARS-CoV-2 infectivity, competitive fitness, and transmission in primary human cells and animal models. |
Author | Markmann, Alena J. Ehre, Camille Nakajima, Noriko Graham, Rachel Bartelt, Luther Tse, Longping V. Takahashi, Kenta Schäfer, Alexandra Halfmann, Peter de Silva, Aravinda Okuda, Kenichi Margolis, David M. Boucher, Richard C. Kuroda, Makoto Suzuki, Tadaki Hou, Yixuan J. Dinnon, Kenneth H. Randell, Scott H. Mascenik, Teresa M. Kawaoka, Yoshihiro Baric, Ralph S. Lee, Rhianna E. Leist, Sarah R. Edwards, Caitlin E. Gralinski, Lisa E. Chiba, Shiho |
Author_xml | – sequence: 1 givenname: Yixuan J. orcidid: 0000-0002-8323-7243 surname: Hou fullname: Hou, Yixuan J. organization: Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA – sequence: 2 givenname: Shiho orcidid: 0000-0003-0415-6013 surname: Chiba fullname: Chiba, Shiho organization: Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA – sequence: 3 givenname: Peter orcidid: 0000-0002-1648-1625 surname: Halfmann fullname: Halfmann, Peter organization: Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA – sequence: 4 givenname: Camille orcidid: 0000-0002-0046-0096 surname: Ehre fullname: Ehre, Camille organization: Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA – sequence: 5 givenname: Makoto surname: Kuroda fullname: Kuroda, Makoto organization: Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA – sequence: 6 givenname: Kenneth H. orcidid: 0000-0002-8942-1551 surname: Dinnon fullname: Dinnon, Kenneth H. organization: Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA – sequence: 7 givenname: Sarah R. orcidid: 0000-0002-4989-5381 surname: Leist fullname: Leist, Sarah R. organization: Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA – sequence: 8 givenname: Alexandra orcidid: 0000-0002-4760-4923 surname: Schäfer fullname: Schäfer, Alexandra organization: Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA – sequence: 9 givenname: Noriko orcidid: 0000-0003-1824-0603 surname: Nakajima fullname: Nakajima, Noriko organization: Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan – sequence: 10 givenname: Kenta surname: Takahashi fullname: Takahashi, Kenta organization: Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan – sequence: 11 givenname: Rhianna E. orcidid: 0000-0003-2039-1304 surname: Lee fullname: Lee, Rhianna E. organization: Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA – sequence: 12 givenname: Teresa M. orcidid: 0000-0002-9694-756X surname: Mascenik fullname: Mascenik, Teresa M. organization: Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA – sequence: 13 givenname: Rachel orcidid: 0000-0002-3143-6515 surname: Graham fullname: Graham, Rachel organization: Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA – sequence: 14 givenname: Caitlin E. orcidid: 0000-0003-4228-2192 surname: Edwards fullname: Edwards, Caitlin E. organization: Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA – sequence: 15 givenname: Longping V. orcidid: 0000-0001-7582-8396 surname: Tse fullname: Tse, Longping V. organization: Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA – sequence: 16 givenname: Kenichi orcidid: 0000-0001-9341-2730 surname: Okuda fullname: Okuda, Kenichi organization: Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA – sequence: 17 givenname: Alena J. orcidid: 0000-0003-3656-9322 surname: Markmann fullname: Markmann, Alena J. organization: Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA – sequence: 18 givenname: Luther orcidid: 0000-0002-7596-4272 surname: Bartelt fullname: Bartelt, Luther organization: Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA – sequence: 19 givenname: Aravinda orcidid: 0000-0003-3317-5950 surname: de Silva fullname: de Silva, Aravinda organization: Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA – sequence: 20 givenname: David M. orcidid: 0000-0001-5714-0002 surname: Margolis fullname: Margolis, David M. organization: Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA., Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA., Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA – sequence: 21 givenname: Richard C. surname: Boucher fullname: Boucher, Richard C. organization: Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA – sequence: 22 givenname: Scott H. orcidid: 0000-0001-5351-2841 surname: Randell fullname: Randell, Scott H. organization: Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA – sequence: 23 givenname: Tadaki orcidid: 0000-0002-3820-9542 surname: Suzuki fullname: Suzuki, Tadaki organization: Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan – sequence: 24 givenname: Lisa E. orcidid: 0000-0003-1374-8002 surname: Gralinski fullname: Gralinski, Lisa E. organization: Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA – sequence: 25 givenname: Yoshihiro orcidid: 0000-0001-5061-8296 surname: Kawaoka fullname: Kawaoka, Yoshihiro organization: Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA., Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan – sequence: 26 givenname: Ralph S. orcidid: 0000-0001-6827-8701 surname: Baric fullname: Baric, Ralph S. organization: Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA., Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33184236$$D View this record in MEDLINE/PubMed |
BookMark | eNp1Uc1LHDEcDWWlrrbn3spAL72M_vIxycylsGz9AkGorXgLSSbTjcwm22R20f_erI5iFzzl8D7y3u8doIkP3iL0BcMRxoQfJ-OsN_ZIaVuzpvmAphiaqmwI0AmaAlBe1iCqfXSQ0h1Axhr6Ee1TimtGKJ-i2-vZr-tyHm5KUvzkmJ0VGxWd8kNh7xdOuyEVtuvc9puhiHbVO6MGF3yGi43bhEL5thii8mnpUtoCzj8Bn9Bep_pkP4_vIfpzevJ7fl5eXp1dzGeXpWGsGUouCAeLeYexJlq3hFrQoqt1U4nKMKMMFjRnZbq1nFatrqsOWk6IgJYACHqIfjz7rtZ6aVuTc0bVy1V0SxUfZFBO_o94t5B_w0YKISpBeTb4PhrE8G9t0yBzE2P7Xnkb1kkSxkEIDIRk6rcd6l1YR5_rjSxG-Nbw69tEr1Fejp4Jx88EE0NK0XavFAxyO6scZ5XjrFlR7SiMG552yJVc_67uEYZJqW0 |
CitedBy_id | crossref_primary_10_1093_molbev_msac046 crossref_primary_10_1126_science_abg0821 crossref_primary_10_3390_v13061126 crossref_primary_10_1007_s00253_021_11676_2 crossref_primary_10_1038_s41392_022_01039_2 crossref_primary_10_1016_j_cossms_2021_100964 crossref_primary_10_1016_j_progpolymsci_2021_101410 crossref_primary_10_1093_bioadv_vbab013 crossref_primary_10_1016_j_ebiom_2021_103403 crossref_primary_10_3389_fimmu_2021_771242 crossref_primary_10_1128_mbio_00679_23 crossref_primary_10_3389_fpubh_2022_872698 crossref_primary_10_1093_bib_bbab375 crossref_primary_10_3390_v14020353 crossref_primary_10_14336_AD_2021_1210 crossref_primary_10_3389_fmicb_2021_803827 crossref_primary_10_1002_eji_202149374 crossref_primary_10_3389_fmed_2022_1001022 crossref_primary_10_3390_v15040856 crossref_primary_10_1038_s41467_025_55938_3 crossref_primary_10_1016_j_heliyon_2023_e17701 crossref_primary_10_1038_s41564_021_01047_y crossref_primary_10_1038_s41586_021_04352_y crossref_primary_10_1371_journal_ppat_1012757 crossref_primary_10_3390_cells13030203 crossref_primary_10_1515_mr_2021_0035 crossref_primary_10_1038_s41598_021_00267_w crossref_primary_10_3389_fimmu_2022_836232 crossref_primary_10_1128_jvi_01455_21 crossref_primary_10_1128_mBio_02315_21 crossref_primary_10_3390_microorganisms11122938 crossref_primary_10_2217_fvl_2022_0003 crossref_primary_10_1093_ve_veab104 crossref_primary_10_1016_j_meegid_2021_104971 crossref_primary_10_1038_s41598_021_96950_z crossref_primary_10_1128_JVI_00966_21 crossref_primary_10_1039_D1CS01170G crossref_primary_10_3389_fmed_2021_722219 crossref_primary_10_1128_jvi_01193_23 crossref_primary_10_3390_v13040673 crossref_primary_10_1055_a_1678_3250 crossref_primary_10_3389_fimmu_2021_654165 crossref_primary_10_1016_j_cell_2020_12_015 crossref_primary_10_1515_mr_2021_0023 crossref_primary_10_3389_fpubh_2023_1175444 crossref_primary_10_1016_j_compbiomed_2024_108688 crossref_primary_10_1016_j_ebiom_2022_103902 crossref_primary_10_1080_14756366_2022_2081847 crossref_primary_10_3390_v14081603 crossref_primary_10_1080_22221751_2021_1898291 crossref_primary_10_1016_j_isci_2022_104500 crossref_primary_10_1038_s41467_021_25156_8 crossref_primary_10_3390_life12060806 crossref_primary_10_12688_f1000research_110194_1 crossref_primary_10_1038_s41598_022_06629_2 crossref_primary_10_2217_fmb_2020_0300 crossref_primary_10_1016_j_celrep_2022_110387 crossref_primary_10_1084_jem_20202756 crossref_primary_10_1016_j_celrep_2022_110394 crossref_primary_10_1016_j_pharmthera_2022_108121 crossref_primary_10_1038_s41541_021_00301_y crossref_primary_10_3390_v14020366 crossref_primary_10_1371_journal_pone_0260438 crossref_primary_10_1021_acsomega_1c02336 crossref_primary_10_1186_s43141_021_00287_z crossref_primary_10_1016_j_isci_2022_105720 crossref_primary_10_1073_pnas_2102983118 crossref_primary_10_1093_jmcb_mjab045 crossref_primary_10_3390_ijms22116150 crossref_primary_10_1016_j_xcrm_2024_101668 crossref_primary_10_1128_JVI_00002_21 crossref_primary_10_1128_jvi_01650_22 crossref_primary_10_1007_s00253_023_12971_w crossref_primary_10_1038_s41423_021_00641_8 crossref_primary_10_1038_s41576_022_00483_8 crossref_primary_10_5662_wjm_v14_i3_89761 crossref_primary_10_3390_v13050792 crossref_primary_10_1038_s41586_021_04188_6 crossref_primary_10_1093_bib_bbab446 crossref_primary_10_1038_s41541_021_00389_2 crossref_primary_10_1089_vbz_2021_0032 crossref_primary_10_1016_j_meomic_2024_100034 crossref_primary_10_3390_idr13010013 crossref_primary_10_1080_15265161_2020_1870773 crossref_primary_10_1016_j_bcp_2021_114724 crossref_primary_10_1111_sji_13345 crossref_primary_10_3390_v13040638 crossref_primary_10_1016_j_celrep_2022_110694 crossref_primary_10_1016_j_jinf_2020_12_024 crossref_primary_10_1038_s41579_023_01003_z crossref_primary_10_3390_ijms23042172 crossref_primary_10_3390_v13040633 crossref_primary_10_1128_mbio_02493_24 crossref_primary_10_3389_fpsyg_2021_687514 crossref_primary_10_1126_scitranslmed_abl8124 crossref_primary_10_3390_vaccines11091472 crossref_primary_10_1038_s41598_022_24730_4 crossref_primary_10_1186_s12929_020_00703_5 crossref_primary_10_1016_j_heliyon_2022_e08864 crossref_primary_10_1073_pnas_2101918118 crossref_primary_10_1080_22221751_2021_1913974 crossref_primary_10_1128_spectrum_01789_21 crossref_primary_10_1016_j_celrep_2022_110336 crossref_primary_10_1038_s41563_023_01475_7 crossref_primary_10_1056_NEJMra2206573 crossref_primary_10_1126_sciadv_abo4100 crossref_primary_10_1038_s41598_022_04950_4 crossref_primary_10_1371_journal_ppat_1012704 crossref_primary_10_1016_j_heliyon_2023_e16750 crossref_primary_10_1128_aac_00840_23 crossref_primary_10_1038_s41541_022_00462_4 crossref_primary_10_1016_j_cell_2022_01_001 crossref_primary_10_1039_D2CP04349A crossref_primary_10_1007_s10822_023_00534_0 crossref_primary_10_1128_mbio_03739_21 crossref_primary_10_1038_s41541_021_00311_w crossref_primary_10_1155_2023_1879554 crossref_primary_10_1371_journal_pone_0255169 crossref_primary_10_1021_acs_jpclett_1c01548 crossref_primary_10_1016_j_bsheal_2021_12_006 crossref_primary_10_4155_tde_2021_0075 crossref_primary_10_1016_j_biologicals_2022_08_001 crossref_primary_10_1080_21645515_2021_1940652 crossref_primary_10_1128_mBio_01415_21 crossref_primary_10_2139_ssrn_4052015 crossref_primary_10_3389_fcimb_2021_690621 crossref_primary_10_1007_s13337_023_00827_w crossref_primary_10_3389_fgene_2022_886649 crossref_primary_10_1021_acs_jpcb_3c01467 crossref_primary_10_1093_bib_bbab222 crossref_primary_10_3390_life12081245 crossref_primary_10_1128_spectrum_02859_23 crossref_primary_10_1016_j_bios_2023_115228 crossref_primary_10_30699_mmlj17_4_1_19 crossref_primary_10_1016_j_cell_2022_02_025 crossref_primary_10_1016_j_clinmicnews_2021_05_004 crossref_primary_10_3389_fimmu_2021_778829 crossref_primary_10_2139_ssrn_4095175 crossref_primary_10_1021_acs_analchem_1c05567 crossref_primary_10_1111_irv_13135 crossref_primary_10_1002_alr_22975 crossref_primary_10_1016_j_xcrm_2021_100312 crossref_primary_10_1073_pnas_2203760119 crossref_primary_10_1016_j_cell_2021_05_032 crossref_primary_10_1128_mra_01255_23 crossref_primary_10_3389_fmed_2021_806641 crossref_primary_10_1128_spectrum_04248_23 crossref_primary_10_1001_jama_2021_1114 crossref_primary_10_1093_nargab_lqad010 crossref_primary_10_33611_trs_2021_012 crossref_primary_10_1016_j_isci_2022_104926 crossref_primary_10_3390_encyclopedia2020047 crossref_primary_10_3390_ijms22041913 crossref_primary_10_1002_jmv_27376 crossref_primary_10_1093_ve_vead019 crossref_primary_10_1146_annurev_med_042921_020956 crossref_primary_10_1038_s41421_021_00320_y crossref_primary_10_1038_s41392_021_00644_x crossref_primary_10_15252_embr_202153820 crossref_primary_10_1016_j_compbiomed_2022_106510 crossref_primary_10_1016_j_biopha_2021_111272 crossref_primary_10_1186_s13020_022_00598_4 crossref_primary_10_1038_s41422_021_00558_x crossref_primary_10_1007_s10616_023_00608_9 crossref_primary_10_1016_j_tibs_2021_06_001 crossref_primary_10_1016_j_virusres_2022_198688 crossref_primary_10_5363_tits_26_9_79 crossref_primary_10_3389_fimmu_2024_1339660 crossref_primary_10_3389_fimmu_2021_821538 crossref_primary_10_2139_ssrn_3879083 crossref_primary_10_1038_s41392_021_00809_8 crossref_primary_10_1371_journal_ppat_1009500 crossref_primary_10_1093_molbev_msad089 crossref_primary_10_1371_journal_ppat_1009865 crossref_primary_10_1371_journal_ppat_1010970 crossref_primary_10_1371_journal_pbio_3001006 crossref_primary_10_1016_j_cell_2020_11_020 crossref_primary_10_1186_s12987_021_00267_y crossref_primary_10_1080_07391102_2021_1908170 crossref_primary_10_1016_j_immuno_2023_100021 crossref_primary_10_1038_s41586_022_04856_1 crossref_primary_10_3390_vaccines11111641 crossref_primary_10_1126_scisignal_abe5040 crossref_primary_10_1038_s41576_021_00408_x crossref_primary_10_3390_jcm10153276 crossref_primary_10_1111_1751_7915_13800 crossref_primary_10_1128_spectrum_03301_22 crossref_primary_10_1002_jmv_28116 crossref_primary_10_15252_embj_2021108944 crossref_primary_10_1515_ntrev_2022_0515 crossref_primary_10_1016_j_scitotenv_2023_167971 crossref_primary_10_1073_pnas_2111199119 crossref_primary_10_1089_vbz_2021_0080 crossref_primary_10_3390_ijms23062928 crossref_primary_10_1080_22221751_2021_1976598 crossref_primary_10_1021_acs_jproteome_3c00182 crossref_primary_10_3389_fmicb_2023_1228128 crossref_primary_10_7326_M21_3669 crossref_primary_10_1038_s41590_022_01138_w crossref_primary_10_1073_pnas_2102957118 crossref_primary_10_7759_cureus_60015 crossref_primary_10_1016_j_jmb_2022_167800 crossref_primary_10_1371_journal_ppat_1009857 crossref_primary_10_1021_acs_jproteome_3c00068 crossref_primary_10_1093_infdis_jiab247 crossref_primary_10_3389_fmolb_2022_846996 crossref_primary_10_3390_v15081656 crossref_primary_10_1038_s41586_021_04245_0 crossref_primary_10_3390_vaccines10010072 crossref_primary_10_1371_journal_ppat_1009619 crossref_primary_10_1002_cbin_12130 crossref_primary_10_1016_j_jmb_2022_167928 crossref_primary_10_1371_journal_ppat_1011928 crossref_primary_10_1016_j_scitotenv_2023_167844 crossref_primary_10_3389_fmicb_2021_626553 crossref_primary_10_1002_jmv_29459 crossref_primary_10_3390_v13050731 crossref_primary_10_1016_j_isci_2021_103530 crossref_primary_10_1186_s44149_021_00004_w crossref_primary_10_3390_microorganisms9071389 crossref_primary_10_1002_mco2_166 crossref_primary_10_1080_07391102_2021_1933594 crossref_primary_10_3390_vaccines10101751 crossref_primary_10_4014_jmb_2411_11001 crossref_primary_10_1007_s00705_022_05621_5 crossref_primary_10_1371_journal_pone_0269774 crossref_primary_10_1128_JVI_01819_20 crossref_primary_10_1038_s41467_024_51535_y crossref_primary_10_1016_j_chom_2021_05_012 crossref_primary_10_1080_1744666X_2021_1905525 crossref_primary_10_1038_s41598_024_71349_8 crossref_primary_10_1038_s41467_021_24326_y crossref_primary_10_1038_s41467_021_22905_7 crossref_primary_10_1016_j_mayocp_2021_01_023 crossref_primary_10_1016_j_bsheal_2021_09_002 crossref_primary_10_1016_j_celrep_2021_109708 crossref_primary_10_1091_mbc_E22_02_0045 crossref_primary_10_31083_j_fbl2702065 crossref_primary_10_1016_j_ijid_2021_03_036 crossref_primary_10_1038_s41467_024_47450_x crossref_primary_10_1002_rmv_2346 crossref_primary_10_1038_s41392_021_00502_w crossref_primary_10_23939_mmc2021_02_282 crossref_primary_10_3390_genes12040531 crossref_primary_10_1038_s41576_023_00610_z crossref_primary_10_1073_pnas_2204624119 crossref_primary_10_1016_j_celrep_2024_114929 crossref_primary_10_1128_jvi_01279_23 crossref_primary_10_4103_ijmr_ijmr_2591_22 crossref_primary_10_1007_s13238_021_00871_6 crossref_primary_10_1128_Spectrum_01267_21 crossref_primary_10_1016_j_csbj_2023_10_030 crossref_primary_10_1021_acs_jcim_2c00124 crossref_primary_10_1128_mbio_01376_22 crossref_primary_10_1177_03000605221086433 crossref_primary_10_1016_j_bea_2022_100054 crossref_primary_10_1038_s44298_024_00068_8 crossref_primary_10_3389_fcimb_2021_763687 crossref_primary_10_3389_fcimb_2023_1161445 crossref_primary_10_1038_s41564_024_01655_4 crossref_primary_10_1016_j_imlet_2020_12_014 crossref_primary_10_1128_mBio_01590_21 crossref_primary_10_1371_journal_ppat_1009820 crossref_primary_10_1073_pnas_2314518121 crossref_primary_10_23939_mmc2023_02_311 crossref_primary_10_3390_v15081763 crossref_primary_10_1016_j_isci_2021_103467 crossref_primary_10_3390_vaccines9101052 crossref_primary_10_3389_fcimb_2023_1155938 crossref_primary_10_1038_s41586_021_04342_0 crossref_primary_10_1038_s41467_022_28317_5 crossref_primary_10_1186_s13059_023_02881_5 crossref_primary_10_3390_v13050942 crossref_primary_10_1002_adma_202307366 crossref_primary_10_1038_s41598_021_02904_w crossref_primary_10_3389_fimmu_2022_864775 crossref_primary_10_1126_science_adj0070 crossref_primary_10_1152_physiol_00033_2021 crossref_primary_10_1016_j_chom_2020_11_012 crossref_primary_10_3389_fimmu_2021_658519 crossref_primary_10_1126_science_abf3995 crossref_primary_10_1371_journal_ppat_1009811 crossref_primary_10_3390_vaccines11040736 crossref_primary_10_1038_s41467_022_30222_w crossref_primary_10_2174_0115680266296095240529114058 crossref_primary_10_1080_21505594_2024_2316438 crossref_primary_10_1080_22221751_2021_1942227 crossref_primary_10_1007_s41745_022_00318_9 crossref_primary_10_1038_s41467_021_24339_7 crossref_primary_10_3390_v13050935 crossref_primary_10_1093_infdis_jiab283 crossref_primary_10_1016_j_gene_2021_145843 crossref_primary_10_1038_s41591_021_01472_w crossref_primary_10_1093_jmcb_mjae004 crossref_primary_10_2139_ssrn_3964247 crossref_primary_10_3389_fimmu_2024_1412873 crossref_primary_10_1126_sciadv_abj3627 crossref_primary_10_1126_scitranslmed_adg5567 crossref_primary_10_2139_ssrn_3917167 crossref_primary_10_1246_bcsj_20210030 crossref_primary_10_1002_rmv_2358 crossref_primary_10_1007_s10123_022_00239_8 crossref_primary_10_1039_D2CP01893D crossref_primary_10_1080_22221751_2021_2012528 crossref_primary_10_1016_j_idm_2024_10_004 crossref_primary_10_1016_j_chom_2021_06_006 crossref_primary_10_1093_infdis_jiad230 crossref_primary_10_1111_tbed_14132 crossref_primary_10_1038_s41586_021_04266_9 crossref_primary_10_1016_j_jbc_2021_101151 crossref_primary_10_30802_AALAS_CM_21_000011 crossref_primary_10_1016_j_str_2022_05_006 crossref_primary_10_1093_jmcb_mjad021 crossref_primary_10_29328_journal_jprr_1001030 crossref_primary_10_1007_s12033_021_00353_4 crossref_primary_10_1016_j_celrep_2021_109771 crossref_primary_10_1016_j_isci_2023_107764 crossref_primary_10_1080_21505594_2022_2132059 crossref_primary_10_1098_rsif_2023_0187 crossref_primary_10_1007_s12033_024_01240_4 crossref_primary_10_1007_s12257_021_0327_3 crossref_primary_10_1371_journal_pcbi_1010896 crossref_primary_10_1016_j_jpba_2021_114538 crossref_primary_10_1128_mSphere_00104_21 crossref_primary_10_1016_j_immuni_2021_06_003 crossref_primary_10_1099_jgv_0_001584 crossref_primary_10_3390_microorganisms10030612 crossref_primary_10_1016_j_meegid_2021_105153 crossref_primary_10_1128_mBio_00850_21 crossref_primary_10_2174_2772574X12666211122113318 crossref_primary_10_1021_jacs_2c04835 crossref_primary_10_1038_s41467_024_50052_2 crossref_primary_10_1016_j_coviro_2021_03_009 crossref_primary_10_3389_fimmu_2022_821664 crossref_primary_10_1016_j_chom_2021_03_008 crossref_primary_10_31083_j_fbl2705157 crossref_primary_10_1016_j_cell_2021_03_028 crossref_primary_10_1128_mBio_00587_21 crossref_primary_10_1016_j_cell_2021_03_029 crossref_primary_10_3934_mbe_2023481 crossref_primary_10_1126_scitranslmed_ado2104 crossref_primary_10_1002_jmv_27416 crossref_primary_10_1016_j_chom_2021_03_002 crossref_primary_10_3390_v13112114 crossref_primary_10_7717_peerj_10575 crossref_primary_10_3390_v16050757 crossref_primary_10_1002_1873_3468_14182 crossref_primary_10_1007_s00705_021_05320_7 crossref_primary_10_1080_26895293_2025_2468334 crossref_primary_10_1039_D1SM01181B crossref_primary_10_1371_journal_pcbi_1009664 crossref_primary_10_1016_j_biomaterials_2022_121509 crossref_primary_10_3389_fimmu_2023_1066730 crossref_primary_10_1093_cid_ciac796 crossref_primary_10_1038_s41564_024_01786_8 crossref_primary_10_1016_j_cell_2021_03_013 crossref_primary_10_1186_s12879_021_06729_w crossref_primary_10_1186_s12985_021_01633_w crossref_primary_10_3390_v13010113 crossref_primary_10_1128_mBio_02687_21 crossref_primary_10_1002_mabi_202200056 crossref_primary_10_1016_j_ultras_2022_106749 crossref_primary_10_1073_pnas_2110105119 crossref_primary_10_1080_14760584_2021_1903879 crossref_primary_10_1093_jpids_piab051 crossref_primary_10_1371_journal_pone_0262170 crossref_primary_10_3390_ijerph20085503 crossref_primary_10_3390_vaccines9060639 crossref_primary_10_1016_j_celrep_2022_110829 crossref_primary_10_1016_j_antiviral_2022_105253 crossref_primary_10_1002_1873_3468_14076 crossref_primary_10_1002_advs_202402639 crossref_primary_10_1371_journal_pone_0312402 crossref_primary_10_3390_vaccines11030615 crossref_primary_10_1016_j_idc_2022_01_007 crossref_primary_10_1128_mbio_01060_21 crossref_primary_10_1016_j_chom_2021_11_005 crossref_primary_10_1371_journal_pone_0265453 crossref_primary_10_1039_D1RA04107J crossref_primary_10_1186_s13054_021_03662_x crossref_primary_10_1002_rmv_2270 crossref_primary_10_3390_v14040766 crossref_primary_10_1128_mra_01099_21 crossref_primary_10_1165_rcmb_2024_0213OC crossref_primary_10_1002_cti2_1241 crossref_primary_10_2491_jjsth_34_662 crossref_primary_10_7554_eLife_65365 crossref_primary_10_1038_s43856_022_00130_7 crossref_primary_10_1016_j_ebiom_2021_103291 crossref_primary_10_1016_j_vaccine_2023_08_054 crossref_primary_10_3389_fmicb_2022_883597 crossref_primary_10_1021_acsnano_1c01845 crossref_primary_10_3390_epidemiologia2010007 crossref_primary_10_3390_biomedicines10050996 crossref_primary_10_4049_jimmunol_2300637 crossref_primary_10_4236_crcm_2022_1111065 crossref_primary_10_1016_j_genrep_2021_101100 crossref_primary_10_3390_v13112161 crossref_primary_10_3389_fimmu_2021_752003 crossref_primary_10_3389_fmed_2022_825245 crossref_primary_10_1038_s41467_021_23779_5 crossref_primary_10_1371_journal_pcbi_1009629 crossref_primary_10_1002_jmv_70198 crossref_primary_10_1038_s41598_021_85363_7 crossref_primary_10_1371_journal_pone_0277846 crossref_primary_10_1002_advs_202403871 crossref_primary_10_1093_ofid_ofac027 crossref_primary_10_1093_ve_veae032 crossref_primary_10_1128_mSphere_00011_21 crossref_primary_10_1002_jmv_27693 crossref_primary_10_1038_s41467_021_24285_4 crossref_primary_10_3389_fmicb_2021_653399 crossref_primary_10_1016_j_cell_2021_12_032 crossref_primary_10_1038_s41591_022_01836_w crossref_primary_10_1021_acsinfecdis_1c00433 crossref_primary_10_1088_1742_6596_2110_1_012018 crossref_primary_10_3389_fmicb_2021_827799 crossref_primary_10_1186_s12920_021_00990_3 crossref_primary_10_3390_v13030394 crossref_primary_10_1021_acs_jpcb_2c02365 crossref_primary_10_3389_fcimb_2023_1268227 crossref_primary_10_1371_journal_ppat_1012158 crossref_primary_10_1016_j_cell_2021_04_025 crossref_primary_10_3389_fcimb_2021_753249 crossref_primary_10_15212_ZOONOSES_2021_1003 crossref_primary_10_3390_ijms23084376 crossref_primary_10_1002_jmv_27225 crossref_primary_10_1073_pnas_2106535118 crossref_primary_10_1177_15353702211014146 crossref_primary_10_1128_mSystems_01151_20 crossref_primary_10_1007_s11468_022_01754_0 crossref_primary_10_1038_s41598_021_95197_y crossref_primary_10_1111_febs_15871 crossref_primary_10_1128_AAC_00097_21 crossref_primary_10_11150_kansenshogakuzasshi_95_293 crossref_primary_10_3390_v13081595 crossref_primary_10_1038_s41467_023_39704_x crossref_primary_10_1016_j_isci_2023_106210 crossref_primary_10_2217_fvl_2021_0062 crossref_primary_10_1021_acs_jpcb_0c10637 crossref_primary_10_3390_biomedicines11072055 crossref_primary_10_1128_mbio_02421_22 crossref_primary_10_1016_j_tim_2021_03_013 crossref_primary_10_2174_0929867328666210902094254 crossref_primary_10_1126_scitranslmed_abo0718 crossref_primary_10_1016_j_antiviral_2023_105656 crossref_primary_10_1021_acschemneuro_1c00542 crossref_primary_10_1038_s41598_022_24519_5 crossref_primary_10_1093_infdis_jiad061 crossref_primary_10_1016_j_ijregi_2022_01_002 crossref_primary_10_3390_v13112251 crossref_primary_10_1016_j_crmeth_2022_100173 crossref_primary_10_1186_s12985_023_02154_4 crossref_primary_10_1038_s41419_024_06802_7 crossref_primary_10_1016_j_vaccine_2025_126880 crossref_primary_10_1016_j_antiviral_2024_105820 crossref_primary_10_3390_vaccines10060864 crossref_primary_10_1038_s41594_021_00653_y crossref_primary_10_3390_genes12071061 crossref_primary_10_1016_j_cell_2021_09_015 crossref_primary_10_1172_jci_insight_147386 crossref_primary_10_3390_biom13101467 crossref_primary_10_2478_jtim_2022_0026 crossref_primary_10_3389_fgene_2021_693916 crossref_primary_10_1080_17460794_2024_2362100 crossref_primary_10_3390_ijms23031646 crossref_primary_10_1016_j_isci_2024_111347 crossref_primary_10_1590_1806_9282_20210625 crossref_primary_10_3390_pathogens10020184 crossref_primary_10_1016_j_isci_2021_102908 crossref_primary_10_1002_jmv_27801 crossref_primary_10_1128_spectrum_02371_22 crossref_primary_10_1128_AAC_00772_21 crossref_primary_10_3390_microorganisms10071430 crossref_primary_10_1371_journal_ppat_1010181 crossref_primary_10_1016_j_heliyon_2022_e08799 crossref_primary_10_3390_pathogens10060633 crossref_primary_10_3390_vaccines9111337 crossref_primary_10_3390_v15091921 crossref_primary_10_1016_j_clim_2021_108699 crossref_primary_10_1016_j_isci_2022_105696 crossref_primary_10_3389_fcimb_2021_720357 crossref_primary_10_34172_bi_2024_30150 crossref_primary_10_1016_j_celrep_2021_110126 crossref_primary_10_1016_j_celrep_2023_113077 crossref_primary_10_1016_j_cell_2021_01_037 crossref_primary_10_3390_v15030658 crossref_primary_10_7883_yoken_JJID_2021_292 crossref_primary_10_3390_microorganisms9040748 crossref_primary_10_3390_jcm11010117 crossref_primary_10_1016_j_jmb_2021_167058 crossref_primary_10_1038_s41586_021_03398_2 crossref_primary_10_1002_advs_202202689 crossref_primary_10_1038_s41467_022_31929_6 crossref_primary_10_1039_D3RA00198A crossref_primary_10_3389_fmicb_2022_819745 crossref_primary_10_1017_ice_2021_415 crossref_primary_10_1007_s12015_022_10477_y crossref_primary_10_1016_j_chom_2021_01_004 crossref_primary_10_1371_journal_pone_0259277 crossref_primary_10_3389_fbioe_2022_966586 crossref_primary_10_1016_j_cell_2021_01_007 crossref_primary_10_1016_j_jcis_2022_10_129 crossref_primary_10_1021_acs_bioconjchem_1c00208 crossref_primary_10_1093_intimm_dxab061 crossref_primary_10_1016_j_medj_2022_04_013 crossref_primary_10_1021_acsnano_4c04631 crossref_primary_10_1016_j_antiviral_2024_105976 crossref_primary_10_1016_j_omtm_2022_01_015 crossref_primary_10_3390_biology10020091 crossref_primary_10_3389_fphys_2021_593223 crossref_primary_10_1038_s41598_021_97267_7 crossref_primary_10_4049_jimmunol_2001287 crossref_primary_10_3390_diseases11020064 crossref_primary_10_3390_v13122544 crossref_primary_10_1021_acs_analchem_1c01950 crossref_primary_10_1128_mbio_00683_22 crossref_primary_10_1016_j_celrep_2022_110786 crossref_primary_10_3390_biomedicines9040412 crossref_primary_10_1155_2022_3742318 crossref_primary_10_1038_s41392_021_00498_3 crossref_primary_10_1016_j_virusres_2024_199319 crossref_primary_10_1080_07391102_2021_1899050 crossref_primary_10_1128_spectrum_02524_23 crossref_primary_10_1007_s10930_021_09967_8 crossref_primary_10_1177_1721727X221095382 crossref_primary_10_2174_1871526522666220401101818 crossref_primary_10_1016_j_cell_2021_02_042 crossref_primary_10_1016_j_jmccpl_2022_100013 crossref_primary_10_1055_a_1634_2377 crossref_primary_10_1016_j_bios_2021_113857 crossref_primary_10_1126_science_abh1766 crossref_primary_10_1016_j_micres_2022_126993 crossref_primary_10_1126_sciadv_abf3671 crossref_primary_10_1002_jmv_27964 crossref_primary_10_1016_j_jinf_2024_106121 crossref_primary_10_1016_j_celrep_2022_110558 crossref_primary_10_1016_j_jiph_2022_01_007 crossref_primary_10_1080_22221751_2023_2245916 crossref_primary_10_3390_bios13020269 crossref_primary_10_3390_v14112532 crossref_primary_10_1128_mbio_00171_23 crossref_primary_10_3389_fmicb_2022_860535 crossref_primary_10_1001_jama_2021_2088 crossref_primary_10_1002_hsr2_70166 crossref_primary_10_1515_mr_2021_0004 crossref_primary_10_1016_j_isci_2023_106634 crossref_primary_10_1159_000515342 crossref_primary_10_1016_j_vaccine_2022_05_046 crossref_primary_10_1111_trf_16511 crossref_primary_10_1038_s41541_021_00313_8 crossref_primary_10_1159_000515341 crossref_primary_10_1038_s41392_021_00848_1 crossref_primary_10_1016_j_celrep_2022_110969 crossref_primary_10_15212_ZOONOSES_2024_0051 crossref_primary_10_1007_s12652_023_04589_7 crossref_primary_10_1038_s41586_021_03361_1 crossref_primary_10_1039_D2MD00009A crossref_primary_10_3389_fmolb_2022_817735 crossref_primary_10_1016_j_ijbiomac_2021_07_013 crossref_primary_10_1016_j_virs_2024_03_001 crossref_primary_10_1172_JCI166844 crossref_primary_10_1016_j_eclinm_2022_101526 crossref_primary_10_1093_bib_bbab160 crossref_primary_10_1038_s41467_022_30546_7 crossref_primary_10_1038_s41392_022_00910_6 crossref_primary_10_1128_jvi_02217_24 crossref_primary_10_1371_journal_pbio_3001609 crossref_primary_10_3390_v16030407 crossref_primary_10_1128_msystems_00440_23 crossref_primary_10_3390_ijms22168498 crossref_primary_10_3390_v15030611 crossref_primary_10_3389_fmed_2021_702066 crossref_primary_10_1038_s41598_022_05446_x crossref_primary_10_3390_vaccines10060919 crossref_primary_10_1128_jvi_00753_22 crossref_primary_10_1038_s44298_025_00092_2 crossref_primary_10_1128_mbio_03044_21 crossref_primary_10_1007_s42770_022_00743_z crossref_primary_10_1016_j_scitotenv_2024_171645 crossref_primary_10_3390_v13030439 crossref_primary_10_1093_cid_ciab701 crossref_primary_10_1038_s41564_023_01476_x crossref_primary_10_3390_bioengineering10020148 crossref_primary_10_3390_tropicalmed7050081 crossref_primary_10_1126_sciadv_adi1379 crossref_primary_10_1001_jama_2020_27124 crossref_primary_10_1016_j_jpha_2022_10_003 crossref_primary_10_21673_anadoluklin_1061232 crossref_primary_10_3389_fmed_2021_664297 crossref_primary_10_1038_s41586_021_03693_y crossref_primary_10_1038_s41579_021_00573_0 crossref_primary_10_1038_s41591_021_01301_0 crossref_primary_10_1016_j_bj_2025_100834 crossref_primary_10_1126_sciadv_ade5085 crossref_primary_10_1126_sciadv_adt5464 crossref_primary_10_1073_pnas_2119680119 crossref_primary_10_1051_e3sconf_202455305045 crossref_primary_10_1080_17445760_2022_2134369 crossref_primary_10_3390_biom12070964 crossref_primary_10_1038_s41423_023_01095_w crossref_primary_10_3389_fgene_2021_630542 crossref_primary_10_2147_IDR_S366437 crossref_primary_10_3390_jdb9040058 crossref_primary_10_1021_acschembio_2c00378 crossref_primary_10_1016_j_chom_2021_02_020 crossref_primary_10_1016_j_immuni_2022_05_005 crossref_primary_10_1038_s41579_023_00878_2 crossref_primary_10_1371_journal_pbio_3001989 crossref_primary_10_3390_molecules27072070 crossref_primary_10_3390_v15030639 crossref_primary_10_1039_D1CP02967C crossref_primary_10_1371_journal_pone_0248371 crossref_primary_10_3389_fmed_2021_781287 crossref_primary_10_1016_S2666_5247_21_00129_4 crossref_primary_10_1128_Spectrum_01096_21 crossref_primary_10_1038_s41551_022_00902_5 crossref_primary_10_1002_jmv_27643 crossref_primary_10_1007_s11684_024_1066_6 crossref_primary_10_1371_journal_ppat_1010106 crossref_primary_10_1038_s41577_021_00656_2 crossref_primary_10_1093_nsr_nwab223 crossref_primary_10_3390_microorganisms9071517 |
Cites_doi | 10.1016/j.cell.2016.10.013 10.1007/978-1-62703-125-7_8 10.1038/s41586-020-2349-y 10.1126/science.abc2241 10.1016/j.cell.2020.06.043 10.1101/2020.06.12.148726 10.1016/j.celrep.2018.07.045 10.1128/mBio.02590-20 10.1073/pnas.2009799117 10.1111/j.1420-9101.2008.01658.x 10.1101/2020.05.19.20107144 10.1126/science.1092002 10.1126/science.abd0827 10.1016/j.cell.2020.09.032 10.1038/nm.2972 10.1128/JVI.00505-07 10.1002/jcc.26383 10.1016/j.cell.2020.05.042 10.1038/s41591-020-0868-6 10.1126/science.abb7314 10.1016/j.cell.2020.07.012 10.1016/j.cell.2020.09.050 10.1371/journal.ppat.1002412 10.1038/nature10831 10.1101/2020.07.22.20159905 10.4161/rna.8.2.15013 10.1038/s41586-020-2708-8 10.1101/2020.07.26.219741 10.1073/pnas.2001046117 10.1371/journal.pmed.0030237 |
ContentType | Journal Article |
Copyright | Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works 2020 American Association for the Advancement of Science |
Copyright_xml | – notice: Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. – notice: Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works – notice: Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works 2020 American Association for the Advancement of Science |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 5PM |
DOI | 10.1126/science.abe8499 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Materials Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 1468 |
ExternalDocumentID | PMC7775736 33184236 10_1126_science_abe8499 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: HHSN272201400008C – fundername: NIAID NIH HHS grantid: R01 AI110700 – fundername: NIAID NIH HHS grantid: R01 AI069274 – fundername: NIAID NIH HHS grantid: HHSN272201700061C – fundername: NCI NIH HHS grantid: U54 CA260543 – fundername: NHLBI NIH HHS grantid: P01 HL108808 – fundername: NIAID NIH HHS grantid: R56 AI069274 – fundername: NIAID NIH HHS grantid: UM1 AI126619 – fundername: NCI NIH HHS grantid: P30 CA016086 – fundername: NIAID NIH HHS grantid: U01 AI151797 – fundername: ; grantid: HHSN272201400008C – fundername: ; grantid: JP19fk0108113 – fundername: ; grantid: AI069274 – fundername: ; grantid: HHSN272201700036I – fundername: ; grantid: JP19fm0108006 – fundername: ; grantid: AI110700 – fundername: ; grantid: JP19fk0108110 – fundername: ; grantid: JP20fk0108104 – fundername: ; grantid: AI151797 – fundername: ; grantid: CA260543 |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO AAYXX ABCQX ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADUKH ADXHL AEGBM AENEX AETEA AFBNE AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ASPBG AVWKF BKF BLC C45 CITATION CS3 DB2 DU5 EBS EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPY ISE JCF JLS JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ RHI RXW SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c449t-67260e16f11b2bbd23e0b7f8b9575c4cac1738424bde635db85f0d62270d20073 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Thu Aug 21 13:34:51 EDT 2025 Sun Aug 24 03:31:31 EDT 2025 Fri Jul 25 10:46:38 EDT 2025 Mon Jul 21 05:59:29 EDT 2025 Thu Apr 24 23:12:13 EDT 2025 Tue Jul 01 01:35:21 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6523 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. This is an open-access article distributed under the terms of the Creative Commons Attribution license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c449t-67260e16f11b2bbd23e0b7f8b9575c4cac1738424bde635db85f0d62270d20073 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0003-3317-5950 0000-0001-5714-0002 0000-0002-3143-6515 0000-0003-2039-1304 0000-0002-8323-7243 0000-0002-9694-756X 0000-0001-6827-8701 0000-0003-0415-6013 0000-0002-4989-5381 0000-0002-8942-1551 0000-0003-1374-8002 0000-0001-5061-8296 0000-0002-0046-0096 0000-0002-1648-1625 0000-0001-5351-2841 0000-0003-3656-9322 0000-0003-1824-0603 0000-0003-4228-2192 0000-0001-7582-8396 0000-0002-3820-9542 0000-0002-4760-4923 0000-0001-9341-2730 0000-0002-7596-4272 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7775736 |
PMID | 33184236 |
PQID | 2460774266 |
PQPubID | 1256 |
PageCount | 5 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7775736 proquest_miscellaneous_2460771022 proquest_journals_2460774266 pubmed_primary_33184236 crossref_primary_10_1126_science_abe8499 crossref_citationtrail_10_1126_science_abe8499 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-12-18 |
PublicationDateYYYYMMDD | 2020-12-18 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2020 |
Publisher | The American Association for the Advancement of Science American Association for the Advancement of Science |
Publisher_xml | – name: The American Association for the Advancement of Science – name: American Association for the Advancement of Science |
References | e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_28_2 e_1_3_2_29_2 e_1_3_2_20_2 Imai M. (e_1_3_2_13_2) 2020; 117 e_1_3_2_21_2 e_1_3_2_22_2 e_1_3_2_23_2 e_1_3_2_24_2 e_1_3_2_25_2 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_3_2 e_1_3_2_2_2 e_1_3_2_14_2 33024969 - bioRxiv. 2020 Sep 29 33649299 - Signal Transduct Target Ther. 2021 Mar 1;6(1):101 |
References_xml | – ident: e_1_3_2_14_2 doi: 10.1016/j.cell.2016.10.013 – ident: e_1_3_2_31_2 doi: 10.1007/978-1-62703-125-7_8 – ident: e_1_3_2_30_2 doi: 10.1038/s41586-020-2349-y – ident: e_1_3_2_28_2 doi: 10.1126/science.abc2241 – ident: e_1_3_2_5_2 doi: 10.1016/j.cell.2020.06.043 – ident: e_1_3_2_22_2 doi: 10.1101/2020.06.12.148726 – ident: e_1_3_2_19_2 doi: 10.1016/j.celrep.2018.07.045 – ident: e_1_3_2_23_2 doi: 10.1128/mBio.02590-20 – volume: 117 start-page: 16587 year: 2020 ident: e_1_3_2_13_2 article-title: Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.2009799117 – ident: e_1_3_2_27_2 doi: 10.1111/j.1420-9101.2008.01658.x – ident: e_1_3_2_4_2 doi: 10.1101/2020.05.19.20107144 – ident: e_1_3_2_16_2 doi: 10.1126/science.1092002 – ident: e_1_3_2_29_2 doi: 10.1126/science.abd0827 – ident: e_1_3_2_7_2 doi: 10.1016/j.cell.2020.09.032 – ident: e_1_3_2_3_2 doi: 10.1038/nm.2972 – ident: e_1_3_2_18_2 doi: 10.1128/JVI.00505-07 – ident: e_1_3_2_21_2 doi: 10.1002/jcc.26383 – ident: e_1_3_2_9_2 doi: 10.1016/j.cell.2020.05.042 – ident: e_1_3_2_26_2 doi: 10.1038/s41591-020-0868-6 – ident: e_1_3_2_25_2 doi: 10.1126/science.abb7314 – ident: e_1_3_2_10_2 doi: 10.1016/j.cell.2020.07.012 – ident: e_1_3_2_24_2 doi: 10.1016/j.cell.2020.09.050 – ident: e_1_3_2_15_2 doi: 10.1371/journal.ppat.1002412 – ident: e_1_3_2_12_2 doi: 10.1038/nature10831 – ident: e_1_3_2_6_2 doi: 10.1101/2020.07.22.20159905 – ident: e_1_3_2_2_2 doi: 10.4161/rna.8.2.15013 – ident: e_1_3_2_11_2 doi: 10.1038/s41586-020-2708-8 – ident: e_1_3_2_8_2 doi: 10.1101/2020.07.26.219741 – ident: e_1_3_2_20_2 doi: 10.1073/pnas.2001046117 – ident: e_1_3_2_17_2 doi: 10.1371/journal.pmed.0030237 – reference: 33024969 - bioRxiv. 2020 Sep 29;: – reference: 33649299 - Signal Transduct Target Ther. 2021 Mar 1;6(1):101 |
SSID | ssj0009593 |
Score | 2.7244732 |
Snippet | Pandemic spread of a virus in naïe populations can select for mutations that alter pathogenesis, virulence, and/or transmissibility. The ancestral form of... The spike aspartic acid-614 to glycine (D614G) substitution is prevalent in global severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains, but... Changing with the timesPandemic spread of a virus in naïe populations can select for mutations that alter pathogenesis, virulence, and/or transmissibility. The... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1464 |
SubjectTerms | ACE2 Amino Acid Substitution Angiotensin-converting enzyme 2 Angiotensin-Converting Enzyme 2 - genetics Animal models Animals Asparagine - genetics Aspartic acid Coronaviridae Coronaviruses COVID-19 COVID-19 - transmission COVID-19 - virology Cricetinae Disease transmission Fitness Genetic Fitness - genetics Glycine Glycine - genetics Hamsters Humans Mesocricetus Mice Mice, Transgenic Microbio Morphology Mutation Neutralization Pandemics Pathogenesis Pathogens Replication Respiratory diseases Respiratory Mucosa - virology Rodents SARS-CoV-2 - genetics SARS-CoV-2 - pathogenicity Severe acute respiratory syndrome coronavirus 2 Substitutes Viral diseases Virulence Virulence - genetics Virus Replication - genetics Viruses |
Title | SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33184236 https://www.proquest.com/docview/2460774266 https://www.proquest.com/docview/2460771022 https://pubmed.ncbi.nlm.nih.gov/PMC7775736 |
Volume | 370 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKJiReEBsfKwxkJB6GqlSJ7cTtY9dtVEjwQDfUtyh2HDXSSND6IeDv4g_kHDuuO1Zp8BJVOTtt_bvcl893CL3LIqn1FAuEzJOAqTgPMhGRQGacDWWcZbTZ0f30OZlcsY-zeNbp_PayllZL0Ze_7jxX8j-owj3AVZ-S_Qdk3UPhBnwGfOEKCMP1XhhPR1-mwbj-GpDeGSjAD701eL6wVD2l217rLQHVVIjQ-_03yu1UA7m3Lte1yZ7UygrAXtikR03wLdb25QdL1O3ueJi6NMWRSSZocwvsNC_QMKlXjbwvf6z0kan-JrGgFI0FO52X83ojEa-Lb7aB81YO8fncRM3HOjJjl8NGLUiTAeILWlcI2eghI3xD3TeShNSXztT0FbFsmMSEeuIWxDzzVLc-Rna3WvAaWap-JtSAmbZM2wW4bylGl67YOEokSe0DUvuAB2ifgHMC0nV_dHp2erGz2LMtKeUd1mp_w7Y19JeLcztT1zN9Lp-gx9ZnwSPDgAeoo6pD9NB0Mf15iA4s1gt8YouYv3-KZhvexA1vYsubuOVN7HgTe7wJZKxZEANvYp83cVk1hGfo6uL8cjwJbBePQDI2XAYJB5dZRUkRRYIIkROqQsGLgRiCpyCZzGTE6YARJnIF1m8uBnER5gkhPMx1IJ0-R3tVXakjhBMShYoWYaNFkpyLjMDyF4RmQxlmlHdRv13NVNoS97rTynW6A8EuOnETvpvqLruHHrfwpFYELFLCkhD8JzByu-itI8O66F23rFL1qh2jAytd9MKg6b6LgkYFfwZm8y2c3QBd_H2bUpXzpgg85zzmNHl5_3_wCj3avInHaG95s1KvwaJeijeWgf8APw3PaQ |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SARS-CoV-2+D614G+variant+exhibits+efficient+replication+ex+vivo+and+transmission+in+vivo&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Hou%2C+Yixuan+J.&rft.au=Chiba%2C+Shiho&rft.au=Halfmann%2C+Peter&rft.au=Ehre%2C+Camille&rft.date=2020-12-18&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=370&rft.issue=6523&rft.spage=1464&rft.epage=1468&rft_id=info:doi/10.1126%2Fscience.abe8499&rft.externalDBID=n%2Fa&rft.externalDocID=10_1126_science_abe8499 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |