Pressure drop and flow distribution in parallel-channel configurations of fuel cells: U-type arrangement

An analytical model based on mass and momentum conservation has been developed to solve the flow and pressure distribution in fuel cell stacks. While existing models neglected either friction effect or inertial effect, the present model takes both of them into account. The analytical solutions are f...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of hydrogen energy Vol. 33; no. 21; pp. 6339 - 6350
Main Author Wang, Junye
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.11.2008
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An analytical model based on mass and momentum conservation has been developed to solve the flow and pressure distribution in fuel cell stacks. While existing models neglected either friction effect or inertial effect, the present model takes both of them into account. The analytical solutions are fully explicit so that the velocity and pressure distribution in fuel cell stacks are directly correlated with the geometrical parameters of fuel cell stacks. Parameter Sensitivity is also analysed to determine the influence of geometrical structures and parameters on flow performance of fuel cell stacks. It is found that friction and momentum effects work in opposite directions, the former tending to produce a pressure drop and the latter a pressure rise. The proper balance of the two effects can result in less non-uniformity and an optimal design. Furthermore, the existing solution by Bassiouny and Martin [Flow distribution and pressure drop in plate heat exchanges. Part I. U-type arrangement. Chem Eng Sci 1984;39(4):693–700] is a special case of the present solutions without the friction effect and those by Kee et al. [A generalized model of the flow distribution in channel networks of planar fuel cells. J Power Sources 2002;109:148–59] and Maharudrayya et al. [Flow distribution and pressure drop in parallel-channel configurations of planar fuel cells. J Power Sources 2005;144:94–106] are another special case without inertial effect.
AbstractList An analytical model based on mass and momentum conservation has been developed to solve the flow and pressure distribution in fuel cell stacks. While existing models neglected either friction effect or inertial effect, the present model takes both of them into account. The analytical solutions are fully explicit so that the velocity and pressure distribution in fuel cell stacks are directly correlated with the geometrical parameters of fuel cell stacks. Parameter Sensitivity is also analysed to determine the influence of geometrical structures and parameters on flow performance of fuel cell stacks. It is found that friction and momentum effects work in opposite directions, the former tending to produce a pressure drop and the latter a pressure rise. The proper balance of the two effects can result in less non-uniformity and an optimal design. Furthermore, the existing solution by Bassiouny and Martin [Flow distribution and pressure drop in plate heat exchanges. Part I. U-type arrangement. Chem Eng Sci 1984;39(4):693–700] is a special case of the present solutions without the friction effect and those by Kee et al. [A generalized model of the flow distribution in channel networks of planar fuel cells. J Power Sources 2002;109:148–59] and Maharudrayya et al. [Flow distribution and pressure drop in parallel-channel configurations of planar fuel cells. J Power Sources 2005;144:94–106] are another special case without inertial effect.
Author Wang, Junye
Author_xml – sequence: 1
  givenname: Junye
  surname: Wang
  fullname: Wang, Junye
  email: junye.wang@bbsrc.ac.uk
  organization: North Wyke Research, North Wyke, Okehampton, Devon EX20 2SB, UK
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20859389$$DView record in Pascal Francis
BookMark eNqFkE9rHDEMxU1JoZu0X6H4kuNs5fH8sUsOCSFpA4H20JyN1pazXhzPYM8m7LfvTLe55BIQCMR7T9LvlJ2kIRFjXwWsBYju224ddtuDo0TrGkCtl6rhA1sJ1etKNqo_YSuQHVRSaP2JnZayAxA9NHrFtr8zlbLPxF0eRo7JcR-HF-5CmXLY7KcwJB4SHzFjjBQru8WUKHI7JB8e9xkXReGD536_jCnG8p0_VNNhJI45Y3qkJ0rTZ_bRYyz05X8_Yw-3N3-uf1b3v37cXV_dV7Zp9FR13aYF51WjN67tJbiusa1VHWoPKJ3uwCqgtoceUSDJXrZeaVFrcDjre3nGzo-5IxaL0c8H2FDMmMMT5oOpQbVaKj3rLo46m4dSMnljw_TvmSljiEaAWeianXmlaxa6ZqkaZnv3xv664V3j5dFIM4TnQNkUGyhZciGTnYwbwnsRfwE945x-
CODEN IJHEDX
CitedBy_id crossref_primary_10_3390_en11051077
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124778
crossref_primary_10_1088_1748_3190_ab6fb8
crossref_primary_10_1016_j_csite_2022_102537
crossref_primary_10_1007_s11581_016_1644_y
crossref_primary_10_1016_j_energy_2017_07_091
crossref_primary_10_1016_j_applthermaleng_2015_06_082
crossref_primary_10_1016_j_ref_2019_05_002
crossref_primary_10_1016_j_applthermaleng_2018_03_033
crossref_primary_10_1002_er_8566
crossref_primary_10_1016_j_ijheatmasstransfer_2015_10_006
crossref_primary_10_1016_j_ijhydene_2019_09_140
crossref_primary_10_1115_1_4038395
crossref_primary_10_1115_1_4004081
crossref_primary_10_1002_fuce_201200074
crossref_primary_10_1016_j_ces_2011_03_003
crossref_primary_10_1051_jnwpu_20193710001
crossref_primary_10_1016_j_ijhydene_2016_01_073
crossref_primary_10_1016_j_apenergy_2019_03_188
crossref_primary_10_1016_j_applthermaleng_2015_06_069
crossref_primary_10_1016_j_ces_2011_07_027
crossref_primary_10_1002_cjce_22099
crossref_primary_10_1016_j_cep_2022_109047
crossref_primary_10_1016_j_applthermaleng_2024_123250
crossref_primary_10_1016_j_desal_2022_115691
crossref_primary_10_1016_j_cej_2011_07_060
crossref_primary_10_1016_j_enconman_2017_10_055
crossref_primary_10_1016_j_cej_2011_02_050
crossref_primary_10_20964_2019_09_58
crossref_primary_10_1016_j_seppur_2012_10_030
crossref_primary_10_1016_j_rser_2024_114905
crossref_primary_10_1016_j_ijheatmasstransfer_2020_119471
crossref_primary_10_1016_j_enconman_2024_118150
crossref_primary_10_1016_j_nucengdes_2010_09_004
crossref_primary_10_1016_j_energy_2020_116897
crossref_primary_10_1016_j_energy_2020_118955
crossref_primary_10_1016_j_seppur_2013_01_038
crossref_primary_10_1016_j_eng_2018_05_007
crossref_primary_10_1016_j_jpowsour_2009_11_127
crossref_primary_10_1016_j_seppur_2014_01_057
crossref_primary_10_1016_j_anucene_2022_109478
crossref_primary_10_1016_j_applthermaleng_2016_08_177
crossref_primary_10_1016_j_jpowsour_2024_235441
crossref_primary_10_1016_j_ijhydene_2012_05_164
crossref_primary_10_1016_j_apenergy_2016_12_083
crossref_primary_10_1016_j_seppur_2020_117901
crossref_primary_10_1299_transjsme_17_00395
crossref_primary_10_1155_2022_5555759
crossref_primary_10_1016_j_apenergy_2025_125368
crossref_primary_10_2139_ssrn_4143313
crossref_primary_10_1002_cjce_22034
crossref_primary_10_1088_1742_6596_395_1_012060
crossref_primary_10_1016_j_expthermflusci_2018_07_014
crossref_primary_10_3390_ijerph191811395
crossref_primary_10_1016_j_jpowsour_2009_01_091
crossref_primary_10_1016_j_fuel_2024_132335
crossref_primary_10_1016_j_seppur_2015_06_028
crossref_primary_10_1016_j_heliyon_2018_e00845
crossref_primary_10_1016_j_ijhydene_2011_05_052
crossref_primary_10_1016_j_rser_2017_01_074
crossref_primary_10_1016_j_ijhydene_2019_03_217
crossref_primary_10_2298_TSCI200926168D
crossref_primary_10_1016_j_apenergy_2016_04_064
crossref_primary_10_1016_j_tsep_2018_08_013
crossref_primary_10_1016_j_energy_2014_12_007
crossref_primary_10_1016_j_jpowsour_2014_06_136
crossref_primary_10_1016_j_jpowsour_2020_228724
crossref_primary_10_1002_ese3_826
crossref_primary_10_1299_transjsme_15_00089
crossref_primary_10_1080_15435075_2011_576288
crossref_primary_10_1016_j_ijhydene_2013_01_022
crossref_primary_10_7316_KHNES_2013_24_5_386
crossref_primary_10_1002_apj_516
crossref_primary_10_1016_j_apenergy_2015_01_032
crossref_primary_10_1016_j_jpowsour_2016_10_060
crossref_primary_10_1016_j_ijhydene_2022_10_037
crossref_primary_10_1007_s40430_019_2140_x
crossref_primary_10_1016_j_apenergy_2023_121389
crossref_primary_10_1299_jfst_2022jfst0012
crossref_primary_10_1002_ente_201900416
crossref_primary_10_1016_j_egyr_2023_04_131
crossref_primary_10_1016_j_ijhydene_2016_12_009
crossref_primary_10_1299_transjsme_20_00041
crossref_primary_10_1088_1742_6596_2766_1_012057
crossref_primary_10_1016_j_applthermaleng_2017_11_005
crossref_primary_10_1088_1741_4326_ab96f2
crossref_primary_10_1016_j_euromechflu_2024_07_004
crossref_primary_10_1016_j_ces_2015_06_034
crossref_primary_10_1002_fuce_201400076
crossref_primary_10_1016_j_applthermaleng_2022_119465
crossref_primary_10_1016_j_applthermaleng_2024_124619
crossref_primary_10_3390_e20120979
crossref_primary_10_1016_j_ijheatmasstransfer_2015_01_093
crossref_primary_10_1016_j_jpowsour_2022_231000
crossref_primary_10_1016_j_ijhydene_2015_12_076
crossref_primary_10_1299_transjsme_14_00605
crossref_primary_10_1115_1_4034876
crossref_primary_10_1016_j_ijrefrig_2021_01_026
crossref_primary_10_1016_j_fuel_2015_08_015
crossref_primary_10_1002_er_5358
crossref_primary_10_1002_er_6047
crossref_primary_10_1016_j_ijhydene_2012_04_034
crossref_primary_10_1016_j_ijhydene_2020_08_150
crossref_primary_10_1016_j_applthermaleng_2017_10_170
crossref_primary_10_1016_j_applthermaleng_2023_122008
crossref_primary_10_4271_2015_01_1209
crossref_primary_10_1016_j_cherd_2012_10_003
crossref_primary_10_1016_j_jpowsour_2020_229115
crossref_primary_10_1016_j_enconman_2022_116143
crossref_primary_10_1016_j_jaecs_2023_100244
crossref_primary_10_1021_acs_iecr_0c05221
crossref_primary_10_1016_j_ijhydene_2012_07_076
crossref_primary_10_1016_j_applthermaleng_2011_04_015
crossref_primary_10_1088_1748_3190_abc493
crossref_primary_10_1016_j_renene_2021_03_140
crossref_primary_10_1016_j_ijheatmasstransfer_2019_07_054
crossref_primary_10_1016_j_jpowsour_2019_227546
crossref_primary_10_1016_j_solener_2021_11_048
crossref_primary_10_1016_j_ijhydene_2017_06_057
crossref_primary_10_1016_j_ijhydene_2024_10_337
crossref_primary_10_1016_j_ijhydene_2019_03_222
crossref_primary_10_1063_1_4963864
crossref_primary_10_1016_j_applthermaleng_2015_02_028
crossref_primary_10_3795_KSME_B_2014_38_7_581
crossref_primary_10_1155_2014_672451
ContentType Journal Article
Copyright 2008 International Association for Hydrogen Energy
2009 INIST-CNRS
Copyright_xml – notice: 2008 International Association for Hydrogen Energy
– notice: 2009 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1016/j.ijhydene.2008.08.020
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1879-3487
EndPage 6350
ExternalDocumentID 20859389
10_1016_j_ijhydene_2008_08_020
S0360319908009877
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SCB
SCC
SDF
SDG
SES
SEW
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
T9H
TN5
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
ID FETCH-LOGICAL-c449t-66b50df849bd5730d64c5c86a9f0a3d960c80e5707aa1ae3735f891290da57373
IEDL.DBID .~1
ISSN 0360-3199
IngestDate Mon Jul 21 09:17:05 EDT 2025
Tue Jul 01 03:38:59 EDT 2025
Thu Apr 24 23:12:16 EDT 2025
Fri Feb 23 02:27:26 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords Parallel channels
Manifold
Pressure drop
Mal-distribution
Fuel cell stack
Flow distribution
Sensitivity analysis
U shape
Conservation equation
Modeling
Performance
Pressure loss
Fuel cell
Heat transfer
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c449t-66b50df849bd5730d64c5c86a9f0a3d960c80e5707aa1ae3735f891290da57373
PageCount 12
ParticipantIDs pascalfrancis_primary_20859389
crossref_citationtrail_10_1016_j_ijhydene_2008_08_020
crossref_primary_10_1016_j_ijhydene_2008_08_020
elsevier_sciencedirect_doi_10_1016_j_ijhydene_2008_08_020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-11-01
PublicationDateYYYYMMDD 2008-11-01
PublicationDate_xml – month: 11
  year: 2008
  text: 2008-11-01
  day: 01
PublicationDecade 2000
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle International journal of hydrogen energy
PublicationYear 2008
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Haerter (bib8) 1963; 5
Tori, Baleztena, Peralta, Calzada, Jorge, Barsellini (bib1) 2008; 33
Yang, Shi (bib5) 2008; 33
Miao, Xu (bib11) 2006; 26
Boersma, Sammes (bib19) 1996; 63
Speziale, Younis, Berger (bib24) 2000; 407
Bajura, Jones (bib6) 1976; 98
Liu, Guo, Ye, Ma (bib13) 2008; 33
Jang, Yan, Li, Tsai (bib15) 2008; 33
Wang, Priestman, Wu (bib29) 2001; 123
Chen, Jung, Yen (bib17) 2007; 173
Su, Weng, Hsu, Chen (bib2) 2006; 31
Tonomura, Tanaka, Noda, Kano, Hasebe, Hashimoto (bib12) 2004; 101
Maharudrayya, Jayanti, Deshpande (bib3) 2006; 157
Koh, Seo, Lee, Yoo, Lim (bib21) 2003; 115
Bassiouny, Martin (bib7) 1984; 39
Yuan, Rokni, Sunsen (bib14) 2001; 44
Kulkarni, Roy, Joshi (bib30) 2007; 133
Mohan, Roa, Das, Pandiyan, Rajalakshmi, Dhathathreyan (bib18) 2004; 126
Jiao, Zhou, Quan (bib16) 2006; 157
Kunusch, Husar, Puleston, Mayosky, Moré (bib4) 2008; 33
Wang, Priestman, Tippetts (bib26) 2006; 16
Leschziner (bib27) 2006; 38
Wang, Ge, Wu (bib10) 1998; 28
Kee, Korada, Walters, Pavol (bib22) 2002; 109
Chang, St-Pierre, Stumper, Wetton (bib20) 2006; 162
Shen (bib9) 1992; 114
Maharudrayya, Jayanti, Deshpande (bib23) 2005; 144
Jakirlic, Hanjalic, Tropea (bib25) 2002; 40
Wang, Gao, Gan, Wu (bib28) 2001; 84
References_xml – volume: 123
  start-page: 472
  year: 2001
  end-page: 475
  ident: bib29
  article-title: A theoretical analysis of uniform flow distribution for the admission of high-energy fluids to steam surface condenser
  publication-title: J Eng Gas Turbine Power Trans ASME
– volume: 26
  start-page: 396
  year: 2006
  end-page: 402
  ident: bib11
  article-title: Single phase flow characteristics in the headers and connecting tube of parallel tube platen systems
  publication-title: Appl Therm Eng
– volume: 114
  start-page: 121
  year: 1992
  end-page: 123
  ident: bib9
  article-title: The effect of friction on flow distribution in dividing and combining flow manifolds
  publication-title: J Fluid Eng Trans ASME
– volume: 33
  start-page: 2795
  year: 2008
  end-page: 2801
  ident: bib5
  article-title: A preliminary study of a six-cell stack with dead-end anode and open-slits cathode
  publication-title: Int J Hydrogen Energy
– volume: 98
  start-page: 654
  year: 1976
  end-page: 665
  ident: bib6
  article-title: Flow distribution manifolds
  publication-title: J Fluid Eng Trans ASME
– volume: 28
  start-page: 392
  year: 1998
  end-page: 401
  ident: bib10
  article-title: Progress of flow in manifolds
  publication-title: Adv Mech
– volume: 101
  start-page: 397
  year: 2004
  end-page: 402
  ident: bib12
  article-title: CFD-based optimal design of manifold in plate-fin microdevices
  publication-title: Chem Eng J
– volume: 16
  start-page: 910
  year: 2006
  end-page: 926
  ident: bib26
  article-title: Modelling of strongly swirling flows in a complex geometry using unstructured meshes
  publication-title: Int J Numer Meth Heat Fluid Flow
– volume: 33
  start-page: 3588
  year: 2008
  end-page: 3591
  ident: bib1
  article-title: Advances in the development of a hydrogen/oxygen PEM fuel cell stack
  publication-title: Int J Hydrogen Energy
– volume: 157
  start-page: 226
  year: 2006
  end-page: 243
  ident: bib16
  article-title: Liquid water transport in straight micro-parallel-channels with manifolds for PEM fuel cell cathode
  publication-title: J Power Sources
– volume: 39
  start-page: 693
  year: 1984
  end-page: 700
  ident: bib7
  article-title: Flow distribution and pressure drop in plate heat exchanges. Part I. U-type arrangement
  publication-title: Chem Eng Sci
– volume: 5
  start-page: 47
  year: 1963
  end-page: 59
  ident: bib8
  article-title: Flow distribution and pressure change along slotted or branched ducts
  publication-title: J ASHRAE
– volume: 33
  start-page: 156
  year: 2008
  end-page: 164
  ident: bib15
  article-title: Three-dimensional numerical study on cell performance and transport phenomena of PEM fuel cells with conventional flow fields
  publication-title: Int J Hydrogen Energy
– volume: 133
  start-page: 173
  year: 2007
  end-page: 186
  ident: bib30
  article-title: Pressure and flow distribution in pipe and ring spargers: experimental measurements and CFD simulation
  publication-title: Chem Eng J
– volume: 40
  start-page: 1984
  year: 2002
  end-page: 1996
  ident: bib25
  article-title: Modeling rotating and swirling turbulent flows: a perpetual challenge
  publication-title: AIAA J
– volume: 115
  start-page: 54
  year: 2003
  end-page: 65
  ident: bib21
  article-title: Pressure and flow distribution in internal gas manifolds of a fuel cell stack
  publication-title: J Power Sources
– volume: 109
  start-page: 148
  year: 2002
  end-page: 159
  ident: bib22
  article-title: A generalized model of the flow distribution in channel networks of planar fuel cells
  publication-title: J Power Sources
– volume: 173
  start-page: 249
  year: 2007
  end-page: 263
  ident: bib17
  article-title: Flow distribution in the manifold of PEM fuel cell stack
  publication-title: J Power Sources
– volume: 126
  start-page: 262
  year: 2004
  end-page: 270
  ident: bib18
  article-title: Analysis of flow maldistribution of fuel and oxidant in a PEMFC
  publication-title: J Energy Resources Technol Trans ASME
– volume: 84
  start-page: 1
  year: 2001
  end-page: 6
  ident: bib28
  article-title: Analytical solution of flow coefficients for a uniformly distributed porous channel
  publication-title: Chem Eng J
– volume: 31
  start-page: 1031
  year: 2006
  end-page: 1039
  ident: bib2
  article-title: Studies on flooding in PEM fuel cell cathode channels
  publication-title: Int J Hydrogen Energy
– volume: 157
  start-page: 358
  year: 2006
  end-page: 367
  ident: bib3
  article-title: Pressure drop and flow distribution in multiple parallel-channel configurations used in proton-exchange membrane fuel cell stacks
  publication-title: J Power Sources
– volume: 38
  start-page: 174
  year: 2006
  end-page: 210
  ident: bib27
  article-title: Modelling turbulent separated flow in the context of aerodynamic applications
  publication-title: Fluid Dynam Res
– volume: 407
  start-page: 1
  year: 2000
  end-page: 26
  ident: bib24
  article-title: Analysis and modelling of turbulent flow in an axially rotating pipe
  publication-title: J Fluid Mech
– volume: 144
  start-page: 94
  year: 2005
  end-page: 106
  ident: bib23
  article-title: Flow distribution and pressure drop in parallel-channel configurations of planar fuel cells
  publication-title: J Power Sources
– volume: 33
  start-page: 1040
  year: 2008
  end-page: 1051
  ident: bib13
  article-title: Flow dynamic characteristics in flow field of proton exchange membrane fuel cells
  publication-title: Int J Hydrogen Energy
– volume: 44
  start-page: 4047
  year: 2001
  end-page: 4058
  ident: bib14
  article-title: Simulation of fully developed laminar heat and mass transfer in fuel cell ducts with different cross-sections
  publication-title: Int J Heat Mass Transfer
– volume: 63
  start-page: 215
  year: 1996
  end-page: 219
  ident: bib19
  article-title: Computational analysis of the gas-flow distribution in solid oxide fuel cell stacks
  publication-title: J Power Sources
– volume: 162
  start-page: 340
  year: 2006
  end-page: 355
  ident: bib20
  article-title: Flow distribution in proton exchange membrane fuel cell stacks
  publication-title: J Power Sources
– volume: 33
  start-page: 3581
  year: 2008
  end-page: 3587
  ident: bib4
  article-title: Linear identification and model adjustment of a PEM fuel cell stack
  publication-title: Int J Hydrogen Energy
SSID ssj0017049
Score 2.3236308
Snippet An analytical model based on mass and momentum conservation has been developed to solve the flow and pressure distribution in fuel cell stacks. While existing...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 6339
SubjectTerms Applied sciences
Energy
Energy. Thermal use of fuels
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Flow distribution
Fuel cell stack
Fuel cells
Mal-distribution
Manifold
Parallel channels
Pressure drop
Title Pressure drop and flow distribution in parallel-channel configurations of fuel cells: U-type arrangement
URI https://dx.doi.org/10.1016/j.ijhydene.2008.08.020
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na8IwFA_iLhtj7JO5D8lh12rV9CO7iUzcxrxsgreSNsmslFaqMnbZ37732lQUBh4GOYWkLS8v76vv9x4hD1z4Drc1_lYXocW0jUkAIbc8H9SdDAUoFUQjv43d0YS9TJ1pjQwqLAymVRrZX8r0QlqbmbahZnsRx-13kL0IweFo84DnjIhyxjzk8tbPJs2j4xkTGBZbuHoLJTxvxfPZN1xvZXIqYWDf778V1PFCLIFsuux3saWEhqfkxFiPtF9-4BmpqfScHG3VFLwgsxLwlysq82xBRSqpTrIvKrFCrmluReOUYs3vJFGJhdDfVCUUHGMdf65LjljSTFO9xmmVJMtHOrEwWEtFniMaAUOKl2QyfPoYjCzTTsGKGOMry3VDx5baZzyUDlxs6bLIiXxXcG2LngRXJvJt5Xi2J0RHqJ7Xc7TPMU4lBaz3eleknmapuiZUM6mwNryQDBw0qcHJArNAsBCMB6Y9t0GcioZBZGqNY8uLJKiSyuZBRXvTCBNG126Q9mbfoqy2sXcHr44o2OGbAFTC3r3NnTPdvLJbVIHz-c0_Hn5LDovUkgK2eEfqq3yt7sF-WYXNgkGb5KD__Doa_wJc6PFM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA9zHlRE_MTPmYPXrtWlH_EmwzE_L26wW0mbxHWUrnQb4sW_3ffadEwQPAg5haQtL8n7SN_v_Qi54iJwuaPxt7qILKYdTAKIuOUHYO5kJMCoIBr55dXrD9njyB01SLfGwmBapdH9lU4vtbXpsY007TxJ7DfQvQjB4ejzQOTsr5F1BscXaQzaX8s8j2vf-MAw2sLhKzDhSTuZjD_hfCuTVAkNib9_t1DbuZiB3HRFeLFihXq7ZMe4j_Su-sI90lDZPtlaKSp4QMYV4q9QVBbTnIpMUp1OP6jEErmG3YomGcWi32mqUguxv5lKKUTGOnlfVFtiRqea6gV2qzSd3dKhhbe1VBQFwhHwTvGQDHv3g27fMnwKVswYn1ueF7mO1AHjkXThZEuPxW4ceIJrR3QkxDJx4CjXd3whroXq-B1XBxwvqqSA8X7niDSzaaaOCdVMKiwOLySDCE1qiLLALxAsAu-Bad87IW4twzA2xcaR8yIN66yySVjL3jBhQrtxToi9nJdX5Tb-nMHrJQp_bJwQbMKfc1s_1nT5ypuyDFzAT__x8Euy0R-8PIfPD69PZ2SzzDMpMYznpDkvFuoCnJl51Co36zfis_La
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pressure+drop+and+flow+distribution+in+parallel-channel+configurations+of+fuel+cells+%3A+U-type+arrangement&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=JUNYE+WANG&rft.date=2008-11-01&rft.pub=Elsevier&rft.issn=0360-3199&rft.volume=33&rft.issue=21&rft.spage=6339&rft.epage=6350&rft_id=info:doi/10.1016%2Fj.ijhydene.2008.08.020&rft.externalDBID=n%2Fa&rft.externalDocID=20859389
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon