An Evolutionary Algorithm for Global Optimization Based on Level-Set Evolution and Latin Squares
In this paper, the level-set evolution is exploited in the design of a novel evolutionary algorithm (EA) for global optimization. An application of Latin squares leads to a new and effective crossover operator. This crossover operator can generate a set of uniformly scattered offspring around their...
Saved in:
Published in | IEEE transactions on evolutionary computation Vol. 11; no. 5; pp. 579 - 595 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.10.2007
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, the level-set evolution is exploited in the design of a novel evolutionary algorithm (EA) for global optimization. An application of Latin squares leads to a new and effective crossover operator. This crossover operator can generate a set of uniformly scattered offspring around their parents, has the ability to search locally, and can explore the search space efficiently. To compute a globally optimal solution, the level set of the objective function is successively evolved by crossover and mutation operators so that it gradually approaches the globally optimal solution set. As a result, the level set can be efficiently improved. Based on these skills, a new EA is developed to solve a global optimization problem by successively evolving the level set of the objective function such that it becomes smaller and smaller until all of its points are optimal solutions. Furthermore, we can prove that the proposed algorithm converges to a global optimizer with probability one. Numerical simulations are conducted for 20 standard test functions. The performance of the proposed algorithm is compared with that of eight EAs that have been published recently and the Monte Carlo implementation of the mean-value-level-set method. The results indicate that the proposed algorithm is effective and efficient. |
---|---|
AbstractList | In this paper, the level-set evolution is exploited in the design of a novel evolutionary algorithm (EA) for global optimization. An application of Latin squares leads to a new and effective crossover operator. This crossover operator can generate a set of uniformly scattered offspring around their parents, has the ability to search locally, and can explore the search space efficiently. To compute a globally optimal solution, the level set of the objective function is successively evolved by crossover and mutation operators so that it gradually approaches the globally optimal solution set. As a result, the level set can be efficiently improved. Based on these skills, a new EA is developed to solve a global optimization problem by successively evolving the level set of the objective function such that it becomes smaller and smaller until all of its points are optimal solutions. Furthermore, we can prove that the proposed algorithm converges to a global optimizer with probability one. Numerical simulations are conducted for 20 standard test functions. The performance of the proposed algorithm is compared with that of eight EAs that have been published recently and the Monte Carlo implementation of the mean-value-level-set method. The results indicate that the proposed algorithm is effective and efficient. Based on these skills, a new EA is developed to solve a global optimization problem by successively evolving the level set of the objective function such that it becomes smaller and smaller until all of its points are optimal solutions. |
Author | Chuangyin Dang Yuping Wang |
Author_xml | – sequence: 1 givenname: Yuping surname: Wang fullname: Wang, Yuping – sequence: 2 givenname: Chuangyin surname: Dang fullname: Dang, Chuangyin |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19133523$$DView record in Pascal Francis |
BookMark | eNp9kc1r3DAUxEVJoPnovdCLKLQ5eftkfVg6bpZNUljIIWnpTZUtqVXQWhvJDrR_fe1sSCHQnt4cfjPwZo7RQZ96h9BbAgtCQH26XX9dLWoAsZBSSKhfoSOiGKkAanEwaZCqahr57TU6LuUOgDBO1BH6vuzx-iHFcQipN_kXXsYfKYfh5xb7lPFlTK2J-Ho3hG34bWYIn5viLJ7Exj24WN244W8CNr3Fm4nr8c39aLIrp-jQm1jcm6d7gr5crG9XV9Xm-vLzarmpOsbUUDHru5ZbJgjvoOGWKEUtNcw7qoQS3rRQt00LTesFo8AJp8xb25raMm4opSfobJ-7y-l-dGXQ21A6F6PpXRqLlhIEl0TM5Mf_knRqRnKYwfcvwLs05n76QkvBQNBGqgn68ASZ0pnos-m7UPQuh-1UpyaKUMrrOUzsuS6nUrLzugvDY6FDNiFqAnreUc876nlHvd9xMsIL43P2vy3v9pbgnHvGGaWC1Ir-AdgeqaE |
CODEN | ITEVF5 |
CitedBy_id | crossref_primary_10_1155_2015_451627 crossref_primary_10_4304_jcp_8_6_1536_1543 crossref_primary_10_1016_j_amc_2008_08_053 crossref_primary_10_1142_S0218001415500196 crossref_primary_10_1016_j_ins_2011_09_001 crossref_primary_10_1007_s10462_024_10802_6 crossref_primary_10_3724_SP_J_1001_2010_03484 crossref_primary_10_1080_00207217_2010_512020 crossref_primary_10_1080_03052150802056188 crossref_primary_10_1142_S0218001415590028 crossref_primary_10_3390_app14051838 crossref_primary_10_1016_j_asoc_2018_10_024 crossref_primary_10_1155_2015_452042 crossref_primary_10_1587_transfun_E92_A_2275 crossref_primary_10_1142_S0218001416590114 crossref_primary_10_1155_2015_481919 crossref_primary_10_1142_S0218001409007004 crossref_primary_10_1109_TFUZZ_2018_2856120 crossref_primary_10_1109_TSMCB_2010_2046035 crossref_primary_10_1016_j_asoc_2011_09_020 crossref_primary_10_4304_jcp_9_4_859_866 crossref_primary_10_1109_TCYB_2018_2870487 crossref_primary_10_3724_SP_J_1001_2010_03592 crossref_primary_10_1142_S0218001415590041 crossref_primary_10_3724_SP_J_1016_2010_00855 crossref_primary_10_1287_ijoc_1100_0430 crossref_primary_10_1155_2017_3572365 crossref_primary_10_1016_j_trit_2016_11_002 crossref_primary_10_1155_2015_573894 crossref_primary_10_1109_TEVC_2021_3056514 crossref_primary_10_1109_TSMCB_2011_2164245 crossref_primary_10_3233_HIS_160229 crossref_primary_10_1155_2014_820747 crossref_primary_10_1142_S0218001414590095 crossref_primary_10_1007_s00521_009_0274_y crossref_primary_10_1016_j_swevo_2017_12_004 crossref_primary_10_1155_2014_737515 crossref_primary_10_1007_s00607_021_00906_0 crossref_primary_10_1142_S0218001416590060 crossref_primary_10_1155_2014_541292 crossref_primary_10_1016_j_ins_2014_11_001 crossref_primary_10_1142_S0218001416590023 crossref_primary_10_1142_S021800141859019X crossref_primary_10_1142_S0218001421590564 crossref_primary_10_1016_j_amc_2015_09_019 crossref_primary_10_1142_S0218001418510059 crossref_primary_10_1155_2014_202748 crossref_primary_10_1051_jnwpu_20213920278 crossref_primary_10_1155_2014_702973 crossref_primary_10_1177_1550147716664245 crossref_primary_10_1016_j_ins_2015_04_006 crossref_primary_10_1162_EVCO_a_00068 crossref_primary_10_1016_j_neucom_2014_07_001 crossref_primary_10_1109_TCYB_2014_2387067 crossref_primary_10_1142_S0218001417590042 crossref_primary_10_1142_S0218001415550046 crossref_primary_10_4304_jcp_9_5_1282_1290 crossref_primary_10_1080_00207721_2017_1390702 crossref_primary_10_3390_pr10010098 crossref_primary_10_1007_s00521_013_1354_6 crossref_primary_10_1007_s00500_017_2632_5 crossref_primary_10_1016_j_engappai_2020_104115 crossref_primary_10_1016_j_asoc_2010_04_008 crossref_primary_10_1016_j_ins_2012_09_012 crossref_primary_10_1155_2018_3102628 crossref_primary_10_1016_j_asoc_2013_05_012 crossref_primary_10_1109_TVT_2015_2508504 crossref_primary_10_1108_17563781111136702 crossref_primary_10_1109_TSMCB_2012_2222373 crossref_primary_10_1007_s10489_018_1183_5 crossref_primary_10_1142_S0218001416590126 crossref_primary_10_1016_j_asoc_2017_01_031 crossref_primary_10_1109_TPWRS_2011_2168833 crossref_primary_10_1155_2014_820203 crossref_primary_10_1142_S0218001418590061 crossref_primary_10_1109_ACCESS_2019_2894718 |
Cites_doi | 10.1126/science.220.4598.671 10.1145/264029.264043 10.1109/TEVC.2004.826895 10.1109/TEVC.2003.820663 10.1109/4235.771163 10.1016/0893-6080(90)90029-K 10.1109/TEVC.2005.857610 10.1093/oso/9780195099713.001.0001 10.1007/978-3-662-07418-3 10.1109/ICEC.1994.349948 10.1007/978-1-4899-3095-8 10.1023/A:1011265010691 10.1109/4235.752920 10.1109/TEVC.2004.826069 10.1007/BFb0040811 10.1109/TEVC.2005.843751 10.1109/ICEC.1996.542673 10.1109/4235.735431 10.1109/4235.910464 10.1023/A:1020243720794 10.3233/FI-1998-35123405 10.1109/TEVC.2003.816583 10.1109/TEVC.2005.859371 10.1108/02644400410511864 10.1109/TEVC.2005.860765 10.4324/9780203451519 10.1007/978-3-662-04378-3 10.1109/TEVC.2004.826071 10.1016/0096-3003(90)90114-I |
ContentType | Journal Article |
Copyright | 2008 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007 |
Copyright_xml | – notice: 2008 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007 |
DBID | 97E RIA RIE AAYXX CITATION IQODW 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
DOI | 10.1109/TEVC.2006.886802 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) CrossRef Pascal-Francis Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Technology Research Database Technology Research Database Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science Applied Sciences |
EISSN | 1941-0026 |
EndPage | 595 |
ExternalDocumentID | 2333454101 19133523 10_1109_TEVC_2006_886802 4336129 |
Genre | orig-research |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IF 6IK 6IL 6IN 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ADZIZ AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 EBS EJD HZ~ H~9 IEGSK IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIL RNS TN5 VH1 AAYOK AAYXX CITATION RIG IQODW 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
ID | FETCH-LOGICAL-c449t-4dfcb5d4615c075d1993d3a4fe39696fab02b7b07bf643051534fddba2d45a333 |
IEDL.DBID | RIE |
ISSN | 1089-778X |
IngestDate | Thu Jul 10 18:24:35 EDT 2025 Thu Jul 10 22:30:24 EDT 2025 Sun Jun 29 15:43:23 EDT 2025 Mon Jul 21 09:16:17 EDT 2025 Tue Jul 01 01:56:19 EDT 2025 Thu Apr 24 23:02:23 EDT 2025 Tue Aug 26 16:43:56 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Monte Carlo method Probabilistic approach Information system Evolutionary algorithm (EA) Evolutionary algorithm Contour line Global optimum Mean value Modeling global optimization Image segmentation level-set evolution Genetic algorithm Optimal solution Latin squares Objective function Mathematical programming |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c449t-4dfcb5d4615c075d1993d3a4fe39696fab02b7b07bf643051534fddba2d45a333 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
PQID | 864063789 |
PQPubID | 23500 |
PageCount | 17 |
ParticipantIDs | proquest_journals_864063789 crossref_citationtrail_10_1109_TEVC_2006_886802 crossref_primary_10_1109_TEVC_2006_886802 proquest_miscellaneous_880658163 pascalfrancis_primary_19133523 proquest_miscellaneous_34518503 ieee_primary_4336129 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-10-01 |
PublicationDateYYYYMMDD | 2007-10-01 |
PublicationDate_xml | – month: 10 year: 2007 text: 2007-10-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY – name: New York |
PublicationTitle | IEEE transactions on evolutionary computation |
PublicationTitleAbbrev | TEVC |
PublicationYear | 2007 |
Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref34 ref12 ref14 ref11 ref32 ref10 fogel (ref16) 1995 ref2 ref1 goldberg (ref13) 1989 ref18 beyer (ref15) 2001 rudolph (ref27) 1998; 35 yen (ref31) 1991 ref24 ref23 ref26 schwefel (ref33) 1995 ref20 ref22 ref21 kirkpatrick (ref19) 1983; 220 ref28 ref29 ref8 yao (ref30) 1997 ref7 ref9 ref4 ref3 ref6 ref5 powell (ref36) 2002 bck (ref17) 1996 hong (ref25) 1988 |
References_xml | – volume: 220 start-page: 671 year: 1983 ident: ref19 article-title: optimization by simulated annealing publication-title: Science doi: 10.1126/science.220.4598.671 – ident: ref29 doi: 10.1145/264029.264043 – ident: ref22 doi: 10.1109/TEVC.2004.826895 – ident: ref23 doi: 10.1109/TEVC.2003.820663 – ident: ref12 doi: 10.1109/4235.771163 – ident: ref28 doi: 10.1016/0893-6080(90)90029-K – year: 1995 ident: ref33 publication-title: Evolution and Optimization Seeking – ident: ref4 doi: 10.1109/TEVC.2005.857610 – year: 1996 ident: ref17 publication-title: Evolutionary Algorithms in Theory and Practice doi: 10.1093/oso/9780195099713.001.0001 – ident: ref14 doi: 10.1007/978-3-662-07418-3 – year: 2002 ident: ref36 publication-title: On trust region methods for unconstrained optimization without derivatives – ident: ref32 doi: 10.1109/ICEC.1994.349948 – ident: ref26 doi: 10.1007/978-1-4899-3095-8 – year: 1995 ident: ref16 publication-title: Evolutionary Computation Toward a New Philosophy of Machine Intelligence – ident: ref3 doi: 10.1023/A:1011265010691 – ident: ref20 doi: 10.1109/4235.752920 – ident: ref10 doi: 10.1109/TEVC.2004.826069 – year: 1989 ident: ref13 publication-title: Genetic Algorithms in Search Optimization and Machine Learning – start-page: 151 year: 1997 ident: ref30 publication-title: Evolutionary Programming VI – ident: ref34 doi: 10.1007/BFb0040811 – ident: ref7 doi: 10.1109/TEVC.2005.843751 – ident: ref21 doi: 10.1109/ICEC.1996.542673 – ident: ref35 doi: 10.1109/4235.735431 – ident: ref11 doi: 10.1109/4235.910464 – ident: ref1 doi: 10.1023/A:1020243720794 – volume: 35 start-page: 67 year: 1998 ident: ref27 article-title: finite markov chain results in evolutionary computation: a tour d'horizon publication-title: Fundamenta Informaticae doi: 10.3233/FI-1998-35123405 – ident: ref8 doi: 10.1109/TEVC.2003.816583 – ident: ref6 doi: 10.1109/TEVC.2005.859371 – ident: ref24 doi: 10.1108/02644400410511864 – ident: ref5 doi: 10.1109/TEVC.2005.860765 – ident: ref18 doi: 10.4324/9780203451519 – year: 2001 ident: ref15 publication-title: The Theory of Evolution Strategies doi: 10.1007/978-3-662-04378-3 – ident: ref9 doi: 10.1109/TEVC.2004.826071 – year: 1988 ident: ref25 publication-title: Integral Global Optimization Theory Implementation and Applications – start-page: 175 year: 1991 ident: ref31 article-title: a simplex genetic algorithm hybrid publication-title: Proc IEEE Int Conf Evol Comput – ident: ref2 doi: 10.1016/0096-3003(90)90114-I |
SSID | ssj0014519 |
Score | 2.2612085 |
Snippet | In this paper, the level-set evolution is exploited in the design of a novel evolutionary algorithm (EA) for global optimization. An application of Latin... Based on these skills, a new EA is developed to solve a global optimization problem by successively evolving the level set of the objective function such that... |
SourceID | proquest pascalfrancis crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 579 |
SubjectTerms | Algorithm design and analysis Algorithms Applied sciences Artificial intelligence Computer science; control theory; systems Computer simulation Crossovers Design optimization Evolutionary algorithm (EA) Evolutionary algorithms Evolutionary computation Exact sciences and technology Genetic mutations global optimization Latin squares Learning and adaptive systems Level set level-set evolution Mathematical analysis Mathematical models Monte Carlo methods Numerical simulation Operators Optimization Scattering Space exploration Studies Testing |
Title | An Evolutionary Algorithm for Global Optimization Based on Level-Set Evolution and Latin Squares |
URI | https://ieeexplore.ieee.org/document/4336129 https://www.proquest.com/docview/864063789 https://www.proquest.com/docview/34518503 https://www.proquest.com/docview/880658163 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9RAFH8BTngQAY0rCnPwYmKX7s60nTmuZAkxoAfA7K3OV9EIXd1tTeSv581Hi4gYb036ZjLte2_eb-Z9AbyuCmS04TLJmEoThiKUKJSTJGVUamE0K3xJoZMP-dE5ez_LZivwts-Fsdb64DM7dI_el2_munVXZa4XHBpksQqreHALuVq9x8CVSQnB9AIRI591LslU7J9NPx0EtwPnOY8XKJ0J8j1VXESkXOJPqUI3i3sbs7c2hxtw0q0zBJl8G7aNGurrP0o4_u-HPIHHEXaSSZCTTVix9RZsdC0dSNTwLXj0W33Cbfg8qcn0ZxROufhFJpcX88XX5ssVQaxLQr8A8hF3nauYzkneoVU0BB-OXTRScmqb2xmIrA05RrqanP5oXeLTUzg_nJ4dHCWxJUOiGRNNwkylVWYY4iCNYMO48D9DJassdWV2KqnSsSpUWqgqd8XEcD9llTFKjg3LJKX0GazV89o-B8LZyJhsZLjgmimTi2KcjbmVlOcWQV8-gP2OS6WO9cpd24zL0p9bUlE6vro2mnkZ-DqAN_2I76FWxz9otx1berrIkQHs3hGE23nEyGWn0QHsdJJRRm1fljxHWEQLjsP3-reops73Ims7b5clRfnkWYrjyQMU3Lm4OcLjF39f2g6s-3tlH0j4EtaaRWtfISBq1K7XhBucPwbf |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3LbtQwFL2qygJYUGhBDIXWC1iwyDSTOIm9YDGUqaZ0WhadotmlfgUQbQZmElD5Fn6Ff-M6dlLeu0rsIsW2Evvch-8T4HGR4UFrJoKEyjCgCKFAIk6CkMZCca1o1pQUOjxKxyf05SyZrcDXLhfGGNMEn5m-fWx8-Xquamsqs73gUCBzH0J5YC4-4wVt-Wz_BZ7mkyjaG013x4HvIRAoSnkVUF0omWiKgluhdNQ2Xk3HghYmtnVhCiHDSGYyzGSR2upXyABoobUUkaaJiK25Exn8NdQzkshlh3U-CluYxYXvc9RR2ax1goZ8Zzp6vescHYylzJtsWqHXdHGxMZhiicdQuP4Zv4mCRr7trcG3dmdcWMv7fl3JvvryS9HI_3XrbsMtr1iToaOEO7BiynVYa5tWEM_D1uHmDxUYN-B0WJLRJ09-YnFBhmdv5ot31dtzgto8cR0RyCvkq-c-YZU8R7mvCT5MbLxVcGyqyxWIKDWZ4LiSHH-sbWrXXTi5kr--B6vlvDT3gTA60DoZaMaZolKnPIuSiBkRs9SgWpv2YKdFRa58RXbbGOQsb25mIc8tjmyj0DR3OOrB027GB1eN5B9jNywMunEeAT3Y-gl4l-vwgc2_i3uw2SIx9_xsmbMUFb84Yzh9u3uLjMh6l0Rp5vUyj5EeWBLifPKXEcw68RleAB78-dO24fp4ejjJJ_tHB5two7GiN2GTD2G1WtTmEap_ldxqqJDA6VVj9zuDOWSC |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Evolutionary+Algorithm+for+Global+Optimization+Based+on+Level-Set+Evolution+and+Latin+Squares&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Wang%2C+Yuping&rft.au=Dang%2C+Chuangyin&rft.date=2007-10-01&rft.issn=1089-778X&rft.volume=11&rft.issue=5&rft_id=info:doi/10.1109%2FTEVC.2006.886802&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |