An Evolutionary Algorithm for Global Optimization Based on Level-Set Evolution and Latin Squares

In this paper, the level-set evolution is exploited in the design of a novel evolutionary algorithm (EA) for global optimization. An application of Latin squares leads to a new and effective crossover operator. This crossover operator can generate a set of uniformly scattered offspring around their...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on evolutionary computation Vol. 11; no. 5; pp. 579 - 595
Main Authors Wang, Yuping, Dang, Chuangyin
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.10.2007
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, the level-set evolution is exploited in the design of a novel evolutionary algorithm (EA) for global optimization. An application of Latin squares leads to a new and effective crossover operator. This crossover operator can generate a set of uniformly scattered offspring around their parents, has the ability to search locally, and can explore the search space efficiently. To compute a globally optimal solution, the level set of the objective function is successively evolved by crossover and mutation operators so that it gradually approaches the globally optimal solution set. As a result, the level set can be efficiently improved. Based on these skills, a new EA is developed to solve a global optimization problem by successively evolving the level set of the objective function such that it becomes smaller and smaller until all of its points are optimal solutions. Furthermore, we can prove that the proposed algorithm converges to a global optimizer with probability one. Numerical simulations are conducted for 20 standard test functions. The performance of the proposed algorithm is compared with that of eight EAs that have been published recently and the Monte Carlo implementation of the mean-value-level-set method. The results indicate that the proposed algorithm is effective and efficient.
AbstractList In this paper, the level-set evolution is exploited in the design of a novel evolutionary algorithm (EA) for global optimization. An application of Latin squares leads to a new and effective crossover operator. This crossover operator can generate a set of uniformly scattered offspring around their parents, has the ability to search locally, and can explore the search space efficiently. To compute a globally optimal solution, the level set of the objective function is successively evolved by crossover and mutation operators so that it gradually approaches the globally optimal solution set. As a result, the level set can be efficiently improved. Based on these skills, a new EA is developed to solve a global optimization problem by successively evolving the level set of the objective function such that it becomes smaller and smaller until all of its points are optimal solutions. Furthermore, we can prove that the proposed algorithm converges to a global optimizer with probability one. Numerical simulations are conducted for 20 standard test functions. The performance of the proposed algorithm is compared with that of eight EAs that have been published recently and the Monte Carlo implementation of the mean-value-level-set method. The results indicate that the proposed algorithm is effective and efficient.
Based on these skills, a new EA is developed to solve a global optimization problem by successively evolving the level set of the objective function such that it becomes smaller and smaller until all of its points are optimal solutions.
Author Chuangyin Dang
Yuping Wang
Author_xml – sequence: 1
  givenname: Yuping
  surname: Wang
  fullname: Wang, Yuping
– sequence: 2
  givenname: Chuangyin
  surname: Dang
  fullname: Dang, Chuangyin
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19133523$$DView record in Pascal Francis
BookMark eNp9kc1r3DAUxEVJoPnovdCLKLQ5eftkfVg6bpZNUljIIWnpTZUtqVXQWhvJDrR_fe1sSCHQnt4cfjPwZo7RQZ96h9BbAgtCQH26XX9dLWoAsZBSSKhfoSOiGKkAanEwaZCqahr57TU6LuUOgDBO1BH6vuzx-iHFcQipN_kXXsYfKYfh5xb7lPFlTK2J-Ho3hG34bWYIn5viLJ7Exj24WN244W8CNr3Fm4nr8c39aLIrp-jQm1jcm6d7gr5crG9XV9Xm-vLzarmpOsbUUDHru5ZbJgjvoOGWKEUtNcw7qoQS3rRQt00LTesFo8AJp8xb25raMm4opSfobJ-7y-l-dGXQ21A6F6PpXRqLlhIEl0TM5Mf_knRqRnKYwfcvwLs05n76QkvBQNBGqgn68ASZ0pnos-m7UPQuh-1UpyaKUMrrOUzsuS6nUrLzugvDY6FDNiFqAnreUc876nlHvd9xMsIL43P2vy3v9pbgnHvGGaWC1Ir-AdgeqaE
CODEN ITEVF5
CitedBy_id crossref_primary_10_1155_2015_451627
crossref_primary_10_4304_jcp_8_6_1536_1543
crossref_primary_10_1016_j_amc_2008_08_053
crossref_primary_10_1142_S0218001415500196
crossref_primary_10_1016_j_ins_2011_09_001
crossref_primary_10_1007_s10462_024_10802_6
crossref_primary_10_3724_SP_J_1001_2010_03484
crossref_primary_10_1080_00207217_2010_512020
crossref_primary_10_1080_03052150802056188
crossref_primary_10_1142_S0218001415590028
crossref_primary_10_3390_app14051838
crossref_primary_10_1016_j_asoc_2018_10_024
crossref_primary_10_1155_2015_452042
crossref_primary_10_1587_transfun_E92_A_2275
crossref_primary_10_1142_S0218001416590114
crossref_primary_10_1155_2015_481919
crossref_primary_10_1142_S0218001409007004
crossref_primary_10_1109_TFUZZ_2018_2856120
crossref_primary_10_1109_TSMCB_2010_2046035
crossref_primary_10_1016_j_asoc_2011_09_020
crossref_primary_10_4304_jcp_9_4_859_866
crossref_primary_10_1109_TCYB_2018_2870487
crossref_primary_10_3724_SP_J_1001_2010_03592
crossref_primary_10_1142_S0218001415590041
crossref_primary_10_3724_SP_J_1016_2010_00855
crossref_primary_10_1287_ijoc_1100_0430
crossref_primary_10_1155_2017_3572365
crossref_primary_10_1016_j_trit_2016_11_002
crossref_primary_10_1155_2015_573894
crossref_primary_10_1109_TEVC_2021_3056514
crossref_primary_10_1109_TSMCB_2011_2164245
crossref_primary_10_3233_HIS_160229
crossref_primary_10_1155_2014_820747
crossref_primary_10_1142_S0218001414590095
crossref_primary_10_1007_s00521_009_0274_y
crossref_primary_10_1016_j_swevo_2017_12_004
crossref_primary_10_1155_2014_737515
crossref_primary_10_1007_s00607_021_00906_0
crossref_primary_10_1142_S0218001416590060
crossref_primary_10_1155_2014_541292
crossref_primary_10_1016_j_ins_2014_11_001
crossref_primary_10_1142_S0218001416590023
crossref_primary_10_1142_S021800141859019X
crossref_primary_10_1142_S0218001421590564
crossref_primary_10_1016_j_amc_2015_09_019
crossref_primary_10_1142_S0218001418510059
crossref_primary_10_1155_2014_202748
crossref_primary_10_1051_jnwpu_20213920278
crossref_primary_10_1155_2014_702973
crossref_primary_10_1177_1550147716664245
crossref_primary_10_1016_j_ins_2015_04_006
crossref_primary_10_1162_EVCO_a_00068
crossref_primary_10_1016_j_neucom_2014_07_001
crossref_primary_10_1109_TCYB_2014_2387067
crossref_primary_10_1142_S0218001417590042
crossref_primary_10_1142_S0218001415550046
crossref_primary_10_4304_jcp_9_5_1282_1290
crossref_primary_10_1080_00207721_2017_1390702
crossref_primary_10_3390_pr10010098
crossref_primary_10_1007_s00521_013_1354_6
crossref_primary_10_1007_s00500_017_2632_5
crossref_primary_10_1016_j_engappai_2020_104115
crossref_primary_10_1016_j_asoc_2010_04_008
crossref_primary_10_1016_j_ins_2012_09_012
crossref_primary_10_1155_2018_3102628
crossref_primary_10_1016_j_asoc_2013_05_012
crossref_primary_10_1109_TVT_2015_2508504
crossref_primary_10_1108_17563781111136702
crossref_primary_10_1109_TSMCB_2012_2222373
crossref_primary_10_1007_s10489_018_1183_5
crossref_primary_10_1142_S0218001416590126
crossref_primary_10_1016_j_asoc_2017_01_031
crossref_primary_10_1109_TPWRS_2011_2168833
crossref_primary_10_1155_2014_820203
crossref_primary_10_1142_S0218001418590061
crossref_primary_10_1109_ACCESS_2019_2894718
Cites_doi 10.1126/science.220.4598.671
10.1145/264029.264043
10.1109/TEVC.2004.826895
10.1109/TEVC.2003.820663
10.1109/4235.771163
10.1016/0893-6080(90)90029-K
10.1109/TEVC.2005.857610
10.1093/oso/9780195099713.001.0001
10.1007/978-3-662-07418-3
10.1109/ICEC.1994.349948
10.1007/978-1-4899-3095-8
10.1023/A:1011265010691
10.1109/4235.752920
10.1109/TEVC.2004.826069
10.1007/BFb0040811
10.1109/TEVC.2005.843751
10.1109/ICEC.1996.542673
10.1109/4235.735431
10.1109/4235.910464
10.1023/A:1020243720794
10.3233/FI-1998-35123405
10.1109/TEVC.2003.816583
10.1109/TEVC.2005.859371
10.1108/02644400410511864
10.1109/TEVC.2005.860765
10.4324/9780203451519
10.1007/978-3-662-04378-3
10.1109/TEVC.2004.826071
10.1016/0096-3003(90)90114-I
ContentType Journal Article
Copyright 2008 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007
Copyright_xml – notice: 2008 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/TEVC.2006.886802
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL)
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Technology Research Database
Technology Research Database
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
EISSN 1941-0026
EndPage 595
ExternalDocumentID 2333454101
19133523
10_1109_TEVC_2006_886802
4336129
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
IQODW
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c449t-4dfcb5d4615c075d1993d3a4fe39696fab02b7b07bf643051534fddba2d45a333
IEDL.DBID RIE
ISSN 1089-778X
IngestDate Thu Jul 10 18:24:35 EDT 2025
Thu Jul 10 22:30:24 EDT 2025
Sun Jun 29 15:43:23 EDT 2025
Mon Jul 21 09:16:17 EDT 2025
Tue Jul 01 01:56:19 EDT 2025
Thu Apr 24 23:02:23 EDT 2025
Tue Aug 26 16:43:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Monte Carlo method
Probabilistic approach
Information system
Evolutionary algorithm (EA)
Evolutionary algorithm
Contour line
Global optimum
Mean value
Modeling
global optimization
Image segmentation
level-set evolution
Genetic algorithm
Optimal solution
Latin squares
Objective function
Mathematical programming
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c449t-4dfcb5d4615c075d1993d3a4fe39696fab02b7b07bf643051534fddba2d45a333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 864063789
PQPubID 23500
PageCount 17
ParticipantIDs proquest_journals_864063789
crossref_citationtrail_10_1109_TEVC_2006_886802
crossref_primary_10_1109_TEVC_2006_886802
proquest_miscellaneous_880658163
pascalfrancis_primary_19133523
proquest_miscellaneous_34518503
ieee_primary_4336129
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-10-01
PublicationDateYYYYMMDD 2007-10-01
PublicationDate_xml – month: 10
  year: 2007
  text: 2007-10-01
  day: 01
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2007
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref34
ref12
ref14
ref11
ref32
ref10
fogel (ref16) 1995
ref2
ref1
goldberg (ref13) 1989
ref18
beyer (ref15) 2001
rudolph (ref27) 1998; 35
yen (ref31) 1991
ref24
ref23
ref26
schwefel (ref33) 1995
ref20
ref22
ref21
kirkpatrick (ref19) 1983; 220
ref28
ref29
ref8
yao (ref30) 1997
ref7
ref9
ref4
ref3
ref6
ref5
powell (ref36) 2002
bck (ref17) 1996
hong (ref25) 1988
References_xml – volume: 220
  start-page: 671
  year: 1983
  ident: ref19
  article-title: optimization by simulated annealing
  publication-title: Science
  doi: 10.1126/science.220.4598.671
– ident: ref29
  doi: 10.1145/264029.264043
– ident: ref22
  doi: 10.1109/TEVC.2004.826895
– ident: ref23
  doi: 10.1109/TEVC.2003.820663
– ident: ref12
  doi: 10.1109/4235.771163
– ident: ref28
  doi: 10.1016/0893-6080(90)90029-K
– year: 1995
  ident: ref33
  publication-title: Evolution and Optimization Seeking
– ident: ref4
  doi: 10.1109/TEVC.2005.857610
– year: 1996
  ident: ref17
  publication-title: Evolutionary Algorithms in Theory and Practice
  doi: 10.1093/oso/9780195099713.001.0001
– ident: ref14
  doi: 10.1007/978-3-662-07418-3
– year: 2002
  ident: ref36
  publication-title: On trust region methods for unconstrained optimization without derivatives
– ident: ref32
  doi: 10.1109/ICEC.1994.349948
– ident: ref26
  doi: 10.1007/978-1-4899-3095-8
– year: 1995
  ident: ref16
  publication-title: Evolutionary Computation Toward a New Philosophy of Machine Intelligence
– ident: ref3
  doi: 10.1023/A:1011265010691
– ident: ref20
  doi: 10.1109/4235.752920
– ident: ref10
  doi: 10.1109/TEVC.2004.826069
– year: 1989
  ident: ref13
  publication-title: Genetic Algorithms in Search Optimization and Machine Learning
– start-page: 151
  year: 1997
  ident: ref30
  publication-title: Evolutionary Programming VI
– ident: ref34
  doi: 10.1007/BFb0040811
– ident: ref7
  doi: 10.1109/TEVC.2005.843751
– ident: ref21
  doi: 10.1109/ICEC.1996.542673
– ident: ref35
  doi: 10.1109/4235.735431
– ident: ref11
  doi: 10.1109/4235.910464
– ident: ref1
  doi: 10.1023/A:1020243720794
– volume: 35
  start-page: 67
  year: 1998
  ident: ref27
  article-title: finite markov chain results in evolutionary computation: a tour d'horizon
  publication-title: Fundamenta Informaticae
  doi: 10.3233/FI-1998-35123405
– ident: ref8
  doi: 10.1109/TEVC.2003.816583
– ident: ref6
  doi: 10.1109/TEVC.2005.859371
– ident: ref24
  doi: 10.1108/02644400410511864
– ident: ref5
  doi: 10.1109/TEVC.2005.860765
– ident: ref18
  doi: 10.4324/9780203451519
– year: 2001
  ident: ref15
  publication-title: The Theory of Evolution Strategies
  doi: 10.1007/978-3-662-04378-3
– ident: ref9
  doi: 10.1109/TEVC.2004.826071
– year: 1988
  ident: ref25
  publication-title: Integral Global Optimization Theory Implementation and Applications
– start-page: 175
  year: 1991
  ident: ref31
  article-title: a simplex genetic algorithm hybrid
  publication-title: Proc IEEE Int Conf Evol Comput
– ident: ref2
  doi: 10.1016/0096-3003(90)90114-I
SSID ssj0014519
Score 2.2612085
Snippet In this paper, the level-set evolution is exploited in the design of a novel evolutionary algorithm (EA) for global optimization. An application of Latin...
Based on these skills, a new EA is developed to solve a global optimization problem by successively evolving the level set of the objective function such that...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 579
SubjectTerms Algorithm design and analysis
Algorithms
Applied sciences
Artificial intelligence
Computer science; control theory; systems
Computer simulation
Crossovers
Design optimization
Evolutionary algorithm (EA)
Evolutionary algorithms
Evolutionary computation
Exact sciences and technology
Genetic mutations
global optimization
Latin squares
Learning and adaptive systems
Level set
level-set evolution
Mathematical analysis
Mathematical models
Monte Carlo methods
Numerical simulation
Operators
Optimization
Scattering
Space exploration
Studies
Testing
Title An Evolutionary Algorithm for Global Optimization Based on Level-Set Evolution and Latin Squares
URI https://ieeexplore.ieee.org/document/4336129
https://www.proquest.com/docview/864063789
https://www.proquest.com/docview/34518503
https://www.proquest.com/docview/880658163
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9RAFH8BTngQAY0rCnPwYmKX7s60nTmuZAkxoAfA7K3OV9EIXd1tTeSv581Hi4gYb036ZjLte2_eb-Z9AbyuCmS04TLJmEoThiKUKJSTJGVUamE0K3xJoZMP-dE5ez_LZivwts-Fsdb64DM7dI_el2_munVXZa4XHBpksQqreHALuVq9x8CVSQnB9AIRI591LslU7J9NPx0EtwPnOY8XKJ0J8j1VXESkXOJPqUI3i3sbs7c2hxtw0q0zBJl8G7aNGurrP0o4_u-HPIHHEXaSSZCTTVix9RZsdC0dSNTwLXj0W33Cbfg8qcn0ZxROufhFJpcX88XX5ssVQaxLQr8A8hF3nauYzkneoVU0BB-OXTRScmqb2xmIrA05RrqanP5oXeLTUzg_nJ4dHCWxJUOiGRNNwkylVWYY4iCNYMO48D9DJassdWV2KqnSsSpUWqgqd8XEcD9llTFKjg3LJKX0GazV89o-B8LZyJhsZLjgmimTi2KcjbmVlOcWQV8-gP2OS6WO9cpd24zL0p9bUlE6vro2mnkZ-DqAN_2I76FWxz9otx1berrIkQHs3hGE23nEyGWn0QHsdJJRRm1fljxHWEQLjsP3-reops73Ims7b5clRfnkWYrjyQMU3Lm4OcLjF39f2g6s-3tlH0j4EtaaRWtfISBq1K7XhBucPwbf
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3LbtQwFL2qygJYUGhBDIXWC1iwyDSTOIm9YDGUqaZ0WhadotmlfgUQbQZmElD5Fn6Ff-M6dlLeu0rsIsW2Evvch-8T4HGR4UFrJoKEyjCgCKFAIk6CkMZCca1o1pQUOjxKxyf05SyZrcDXLhfGGNMEn5m-fWx8-Xquamsqs73gUCBzH0J5YC4-4wVt-Wz_BZ7mkyjaG013x4HvIRAoSnkVUF0omWiKgluhdNQ2Xk3HghYmtnVhCiHDSGYyzGSR2upXyABoobUUkaaJiK25Exn8NdQzkshlh3U-CluYxYXvc9RR2ax1goZ8Zzp6vescHYylzJtsWqHXdHGxMZhiicdQuP4Zv4mCRr7trcG3dmdcWMv7fl3JvvryS9HI_3XrbsMtr1iToaOEO7BiynVYa5tWEM_D1uHmDxUYN-B0WJLRJ09-YnFBhmdv5ot31dtzgto8cR0RyCvkq-c-YZU8R7mvCT5MbLxVcGyqyxWIKDWZ4LiSHH-sbWrXXTi5kr--B6vlvDT3gTA60DoZaMaZolKnPIuSiBkRs9SgWpv2YKdFRa58RXbbGOQsb25mIc8tjmyj0DR3OOrB027GB1eN5B9jNywMunEeAT3Y-gl4l-vwgc2_i3uw2SIx9_xsmbMUFb84Yzh9u3uLjMh6l0Rp5vUyj5EeWBLifPKXEcw68RleAB78-dO24fp4ejjJJ_tHB5two7GiN2GTD2G1WtTmEap_ldxqqJDA6VVj9zuDOWSC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Evolutionary+Algorithm+for+Global+Optimization+Based+on+Level-Set+Evolution+and+Latin+Squares&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Wang%2C+Yuping&rft.au=Dang%2C+Chuangyin&rft.date=2007-10-01&rft.issn=1089-778X&rft.volume=11&rft.issue=5&rft_id=info:doi/10.1109%2FTEVC.2006.886802&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon