Structural damage and phase stability of Al0.3CoCrFeNi high entropy alloy under high temperature ion irradiation
An initially single phase high entropy alloy (HEA) Al0.3CoCrFeNi was irradiated by 3 MeV Au ions to a fluence of 6 × 1015 cm−2 (∼31 dpa at damage peak) at four different temperatures ranging from 250 °C to 650 °C. Transmission electron microscopy (TEM) and Atom probe tomography (APT) were employed t...
Saved in:
Published in | Acta materialia Vol. 188; pp. 1 - 15 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
15.04.2020
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An initially single phase high entropy alloy (HEA) Al0.3CoCrFeNi was irradiated by 3 MeV Au ions to a fluence of 6 × 1015 cm−2 (∼31 dpa at damage peak) at four different temperatures ranging from 250 °C to 650 °C. Transmission electron microscopy (TEM) and Atom probe tomography (APT) were employed to study the evolution of structural damage and phase stability with irradiation temperature. Al0.3CoCrFeNi exhibited a similar evolution of irradiation-induced defects with temperature as compared with conventional FCC alloys. At 250 °C and 350 °C, most of the visible irradiation-induced defects were faulted 1/3〈111〉 dislocation loops. As the irradiation temperature increased to 500 °C, perfect 1/2〈110〉 dislocation loops were observed along with the faulted loops. At the highest irradiation temperature 650 °C, only dislocation lines and networks could be observed. Regarding phase stability, the 3 MeV Au irradiation was observed to suppress the precipitation of (Ni, Al)-enriched nano clusters and the L12 ordered structure at irradiation temperatures 250 °C to 500 °C whereas precipitation of the B2 ordered structure was accelerated at 650 °C. This resulted in qualitatively opposite precipitation behavior between the ion irradiated damage region and unirradiated region at 500 °C and 650 °C. The opposite phase stability of the ion-irradiated damage region and unirradiated region at different temperatures is attributed to the competing effects of ballistic dissolution vs irradiation enhanced diffusion on precipitation.
[Display omitted] |
---|---|
AbstractList | In this study, an initially single phase high entropy alloy (HEA) Al0.3CoCrFeNi was irradiated by 3 MeV Au ions to a fluence of 6 × 1015 cm–2 (~31 dpa at damage peak) at four different temperatures ranging from 250 °C to 650 °C. Transmission electron microscopy (TEM) and Atom probe tomography (APT) were employed to study the evolution of structural damage and phase stability with irradiation temperature. Al0.3CoCrFeNi exhibited a similar evolution of irradiation-induced defects with temperature as compared with conventional FCC alloys. At 250 °C and 350 °C, most of the visible irradiation-induced defects were faulted 1/3$\langle{111}\rangle$ dislocation loops. As the irradiation temperature increased to 500 °C, perfect 1/2$\langle{110}\rangle$ dislocation loops were observed along with the faulted loops. At the highest irradiation temperature 650 °C, only dislocation lines and networks could be observed. Regarding phase stability, the 3 MeV Au irradiation was observed to suppress the precipitation of (Ni, Al)-enriched nano clusters and the L12 ordered structure at irradiation temperatures 250 °C to 500 °C whereas precipitation of the B2 ordered structure was accelerated at 650 °C. This resulted in qualitatively opposite precipitation behavior between the ion irradiated damage region and unirradiated region at 500 °C and 650 °C. The opposite phase stability of the ion-irradiated damage region and unirradiated region at different temperatures is attributed to the competing effects of ballistic dissolution vs irradiation enhanced diffusion on precipitation. An initially single phase high entropy alloy (HEA) Al0.3CoCrFeNi was irradiated by 3 MeV Au ions to a fluence of 6 × 1015 cm−2 (∼31 dpa at damage peak) at four different temperatures ranging from 250 °C to 650 °C. Transmission electron microscopy (TEM) and Atom probe tomography (APT) were employed to study the evolution of structural damage and phase stability with irradiation temperature. Al0.3CoCrFeNi exhibited a similar evolution of irradiation-induced defects with temperature as compared with conventional FCC alloys. At 250 °C and 350 °C, most of the visible irradiation-induced defects were faulted 1/3〈111〉 dislocation loops. As the irradiation temperature increased to 500 °C, perfect 1/2〈110〉 dislocation loops were observed along with the faulted loops. At the highest irradiation temperature 650 °C, only dislocation lines and networks could be observed. Regarding phase stability, the 3 MeV Au irradiation was observed to suppress the precipitation of (Ni, Al)-enriched nano clusters and the L12 ordered structure at irradiation temperatures 250 °C to 500 °C whereas precipitation of the B2 ordered structure was accelerated at 650 °C. This resulted in qualitatively opposite precipitation behavior between the ion irradiated damage region and unirradiated region at 500 °C and 650 °C. The opposite phase stability of the ion-irradiated damage region and unirradiated region at different temperatures is attributed to the competing effects of ballistic dissolution vs irradiation enhanced diffusion on precipitation. [Display omitted] |
Author | Yang, Tengfei Guo, Wei Li, Yao Poplawsky, Jonathan D. Li, Dongyue Hu, Wangyu Crespillo, Miguel L. Yan, Zhanfeng Zinkle, Steven J. Wang, Ling Zhang, Yong Wang, Yugang |
Author_xml | – sequence: 1 givenname: Tengfei surname: Yang fullname: Yang, Tengfei email: tyang7@utk.edu organization: College of Materials Science and Engineering, Hunan University, Changsha 410082, China – sequence: 2 givenname: Wei orcidid: 0000-0002-9534-1902 surname: Guo fullname: Guo, Wei organization: Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States – sequence: 3 givenname: Jonathan D. orcidid: 0000-0002-4272-7043 surname: Poplawsky fullname: Poplawsky, Jonathan D. organization: Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States – sequence: 4 givenname: Dongyue surname: Li fullname: Li, Dongyue organization: State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China – sequence: 5 givenname: Ling orcidid: 0000-0001-7317-5766 surname: Wang fullname: Wang, Ling organization: Department of Materials Science & Engineering, University of Tennessee, Knoxville, TN 37996, United States – sequence: 6 givenname: Yao surname: Li fullname: Li, Yao organization: Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996, United States – sequence: 7 givenname: Wangyu surname: Hu fullname: Hu, Wangyu organization: College of Materials Science and Engineering, Hunan University, Changsha 410082, China – sequence: 8 givenname: Miguel L. surname: Crespillo fullname: Crespillo, Miguel L. organization: Department of Materials Science & Engineering, University of Tennessee, Knoxville, TN 37996, United States – sequence: 9 givenname: Zhanfeng surname: Yan fullname: Yan, Zhanfeng organization: State Key Laboratory of Nuclear Physics and Technology, Center for Applied Physics and Technology, Peking University, Beijing 100871, China – sequence: 10 givenname: Yong orcidid: 0000-0002-6355-9923 surname: Zhang fullname: Zhang, Yong organization: State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China – sequence: 11 givenname: Yugang surname: Wang fullname: Wang, Yugang organization: State Key Laboratory of Nuclear Physics and Technology, Center for Applied Physics and Technology, Peking University, Beijing 100871, China – sequence: 12 givenname: Steven J. orcidid: 0000-0003-2890-6915 surname: Zinkle fullname: Zinkle, Steven J. email: szinkle@utk.edu organization: Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996, United States |
BackLink | https://www.osti.gov/servlets/purl/1648949$$D View this record in Osti.gov |
BookMark | eNqFkE9LxDAQxYMo-PcjCMF766RN0wYPIourguhBPYc0nXWzdJOSZIX99mZdT148zcC892PeOyWHzjsk5JJByYCJ61WpTdJrncoKKiiBlSDggJywrq2Lijf1Yd7rRhaCN_yYnMa4AmBVy-GETG8pbEzaBD3SITM-kWo30GmpI9KYdG9Hm7bUL-jdCGU987MwxxdLl_ZzSdGl4Kct1ePot3TjBgz7Q8L1hEFnLFLrHbUh6MHqlPdzcrTQY8SL33lGPub377PH4vn14Wl291wYzmUquJDQQV8ZJmrGpBEVQIc5hW6btm4H6NGgbkzVtINALjuJC9kjN4LX2GfhGbnac31MVkVjE5ql8c6hSYoJ3kkus6jZi0zwMQZcqCnYtQ5bxUDtulUr9dut2nWrgKncbfbd_PFl_k-8FLQd_3Xf7t2Y839ZDLv30BkcbNh9N3j7D-EbTEybrg |
CitedBy_id | crossref_primary_10_1016_j_msea_2021_141054 crossref_primary_10_1016_j_scriptamat_2020_06_017 crossref_primary_10_1016_j_apsusc_2024_159669 crossref_primary_10_1016_j_mtcomm_2024_111231 crossref_primary_10_1002_adem_202201611 crossref_primary_10_1007_s42864_021_00081_x crossref_primary_10_1016_j_jallcom_2023_168800 crossref_primary_10_1016_j_jnucmat_2022_153689 crossref_primary_10_1016_j_jallcom_2020_154918 crossref_primary_10_1016_j_mtcomm_2023_105346 crossref_primary_10_1016_j_wear_2022_204533 crossref_primary_10_1016_j_jallcom_2022_164280 crossref_primary_10_1016_j_apmate_2023_100114 crossref_primary_10_1016_j_pmatsci_2021_100854 crossref_primary_10_1016_j_triboint_2023_108868 crossref_primary_10_1016_j_jmapro_2025_03_025 crossref_primary_10_1016_j_jallcom_2020_158291 crossref_primary_10_1016_j_jnucmat_2024_155194 crossref_primary_10_1063_5_0138924 crossref_primary_10_1016_j_jnucmat_2024_155514 crossref_primary_10_1016_j_jallcom_2022_166594 crossref_primary_10_1016_j_pmatsci_2024_101250 crossref_primary_10_1557_jmr_2020_262 crossref_primary_10_1016_j_jallcom_2020_157926 crossref_primary_10_1063_5_0149560 crossref_primary_10_1016_j_ceramint_2024_05_167 crossref_primary_10_1016_j_intermet_2020_106899 crossref_primary_10_1016_j_matchar_2022_111886 crossref_primary_10_1016_j_intermet_2024_108557 crossref_primary_10_1016_j_ijrmhm_2024_106674 crossref_primary_10_1016_j_jnucmat_2024_155283 crossref_primary_10_1016_j_msea_2023_145913 crossref_primary_10_1021_acs_chemrev_1c00387 crossref_primary_10_1016_j_jnucmat_2021_153342 crossref_primary_10_1016_j_pmatsci_2020_100740 crossref_primary_10_1016_j_jmatprotec_2023_118251 crossref_primary_10_1016_j_jallcom_2023_170826 crossref_primary_10_1016_j_apsusc_2022_153419 crossref_primary_10_1016_j_actamat_2022_117955 crossref_primary_10_1016_j_jnucmat_2020_152324 crossref_primary_10_1016_j_jnucmat_2021_152889 crossref_primary_10_1016_j_msea_2024_147382 crossref_primary_10_1016_j_jallcom_2024_177704 crossref_primary_10_1002_adem_202201915 crossref_primary_10_1016_j_msea_2025_148037 crossref_primary_10_1016_j_matchar_2024_114420 crossref_primary_10_1007_s11837_022_05435_5 crossref_primary_10_1016_j_jnucmat_2022_153630 crossref_primary_10_1016_j_jallcom_2023_169624 crossref_primary_10_7498_aps_74_20241481 crossref_primary_10_1016_j_vacuum_2024_113250 crossref_primary_10_1016_j_ijrmhm_2021_105504 crossref_primary_10_1016_j_jnucmat_2020_152458 crossref_primary_10_1016_j_jmst_2023_07_069 crossref_primary_10_1016_j_matchar_2024_113964 crossref_primary_10_1016_j_nme_2020_100813 crossref_primary_10_1016_j_actamat_2024_120409 crossref_primary_10_1016_j_mtcomm_2022_105296 crossref_primary_10_1007_s10853_022_07416_0 crossref_primary_10_1016_j_matchemphys_2025_130633 crossref_primary_10_1016_j_msea_2024_147674 crossref_primary_10_1016_j_matchar_2024_113881 crossref_primary_10_1016_j_surfin_2023_103285 crossref_primary_10_1557_s43578_020_00071_8 crossref_primary_10_1016_j_jnucmat_2023_154693 crossref_primary_10_1016_j_mtcomm_2021_102718 crossref_primary_10_1016_j_jnucmat_2021_153006 crossref_primary_10_1016_j_jallcom_2020_158128 crossref_primary_10_1016_j_scriptamat_2020_113652 crossref_primary_10_1016_j_jnucmat_2023_154286 crossref_primary_10_1016_j_scriptamat_2024_116269 crossref_primary_10_3390_ma16114031 crossref_primary_10_1016_j_jmst_2023_12_006 crossref_primary_10_46813_2021_132_003 crossref_primary_10_1016_j_matchar_2024_114282 crossref_primary_10_1016_j_jmst_2022_09_053 crossref_primary_10_1016_j_intermet_2022_107820 crossref_primary_10_1016_j_vacuum_2022_111059 crossref_primary_10_1016_j_ijplas_2022_103231 crossref_primary_10_1016_j_surfcoat_2023_130244 crossref_primary_10_1016_j_jnucmat_2020_152715 crossref_primary_10_1016_j_actamat_2023_119026 crossref_primary_10_1016_j_jallcom_2022_164105 crossref_primary_10_1016_j_nimb_2021_08_015 crossref_primary_10_1016_j_jmrt_2024_05_001 crossref_primary_10_1016_j_jallcom_2022_166768 crossref_primary_10_1016_j_anucene_2022_109667 crossref_primary_10_3390_cryst12091322 crossref_primary_10_1016_j_mser_2024_100853 crossref_primary_10_1080_17452759_2023_2250771 crossref_primary_10_1016_j_actamat_2023_118765 crossref_primary_10_1007_s12274_021_3719_y crossref_primary_10_1016_j_actamat_2022_118051 crossref_primary_10_1557_s43578_023_00922_0 crossref_primary_10_1016_j_jnucmat_2022_153794 crossref_primary_10_1016_j_jallcom_2022_166896 crossref_primary_10_1002_adem_202200232 crossref_primary_10_1016_j_jmst_2024_10_011 crossref_primary_10_1088_2752_5724_ac5e0c crossref_primary_10_1016_j_jnucmat_2020_152658 crossref_primary_10_3390_e23010098 crossref_primary_10_1016_j_msea_2024_147633 crossref_primary_10_1016_j_jmrt_2024_11_249 crossref_primary_10_3390_met11121980 |
Cites_doi | 10.1016/j.msea.2015.03.109 10.1063/1.4941720 10.1016/0022-3115(72)90043-8 10.1103/PhysRevLett.59.1934 10.1016/j.actamat.2010.10.055 10.1063/1.4942533 10.1016/j.actamat.2016.10.038 10.1016/j.jnucmat.2018.01.032 10.1007/s11837-001-0081-0 10.1103/PhysRevB.75.144107 10.1016/j.intermet.2010.05.014 10.1016/j.nimb.2013.05.008 10.1016/j.scriptamat.2015.05.041 10.1016/j.scriptamat.2016.07.023 10.1016/S0168-583X(02)01859-1 10.1016/S0022-3115(02)01630-6 10.1016/j.jnucmat.2008.08.044 10.1016/0001-6160(60)90200-5 10.1016/j.actamat.2012.11.004 10.1016/0022-3115(94)00670-9 10.1016/j.mseb.2009.05.024 10.1016/0022-3115(95)00054-2 10.1016/S1369-7021(09)70294-9 10.1038/ncomms10602 10.1103/PhysRevLett.116.135504 10.1016/j.actamat.2016.09.025 10.1016/j.actamat.2018.07.017 10.1126/science.1254581 10.1016/j.actamat.2012.06.046 10.1016/j.fusengdes.2005.08.008 10.1016/j.jallcom.2009.08.090 10.1016/j.scriptamat.2017.05.001 10.1016/j.jallcom.2013.11.084 10.1016/j.matlet.2017.04.072 10.1103/PhysRevB.30.1424 10.1016/j.scriptamat.2016.06.019 10.1016/S0920-3796(00)00320-3 10.1063/1.1697112 10.1016/j.scriptamat.2016.03.030 10.1088/0305-4608/3/2/009 10.1016/j.actamat.2017.06.027 10.1016/j.jallcom.2008.12.088 10.1016/0022-3115(78)90256-8 10.1016/j.jnucmat.2008.11.026 10.1016/j.scriptamat.2019.11.016 10.1017/S1431927607070845 10.1016/0022-3115(79)90443-4 10.1038/ncomms9736 10.1016/j.actamat.2017.01.019 10.1016/j.msea.2015.09.034 10.1557/jmr.2018.285 10.1016/j.intermet.2011.01.004 10.1016/S0022-3115(99)00173-7 10.1007/s11837-013-0771-4 10.1038/nmat1286 10.1146/annurev-matsci-070813-113627 10.1016/j.nimb.2014.07.028 10.1016/j.actamat.2015.08.007 10.1016/j.actamat.2017.03.066 10.1103/PhysRevB.60.14649 10.1080/00337578308207398 10.1016/j.jnucmat.2016.10.003 10.1103/PhysRevLett.1.243 10.1016/j.actamat.2016.08.081 10.1016/j.actamat.2016.12.046 10.1063/1.1727674 10.1016/j.actamat.2011.06.041 10.1016/j.jallcom.2010.03.111 10.1016/j.intermet.2012.03.005 10.1016/j.scriptamat.2017.09.025 10.1016/0022-3115(82)90431-7 10.1002/adem.200300567 10.1038/ncomms13564 10.1016/j.jnucmat.2007.03.056 10.1038/srep32146 10.1016/j.scriptamat.2010.07.009 10.1016/j.jnucmat.2017.02.026 10.1016/j.matdes.2016.05.079 10.1016/j.actamat.2016.05.007 10.1002/adem.200300507 10.1016/j.scriptamat.2017.06.041 10.1103/PhysRevLett.84.2885 10.1038/srep19994 10.1016/0022-3115(93)90128-L 10.1016/j.actamat.2013.04.058 |
ContentType | Journal Article |
Copyright | 2020 Acta Materialia Inc. |
Copyright_xml | – notice: 2020 Acta Materialia Inc. |
CorporateAuthor | Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS) |
CorporateAuthor_xml | – name: Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS) |
DBID | AAYXX CITATION OIOZB OTOTI |
DOI | 10.1016/j.actamat.2020.01.060 |
DatabaseName | CrossRef OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-2453 |
EndPage | 15 |
ExternalDocumentID | 1648949 10_1016_j_actamat_2020_01_060 S1359645420300860 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABNEU ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MAGPM N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSM SSQ SSZ T5K TN5 XPP ZMT ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FGOYB R2- SEW SSH T9H ZY4 AALMO ABPIF ABPTK OIOZB OTOTI |
ID | FETCH-LOGICAL-c449t-469080b2c163119c62008e135a75737d0becea5c257d6e4989ef9be4c643ebe13 |
IEDL.DBID | .~1 |
ISSN | 1359-6454 |
IngestDate | Thu May 18 22:33:17 EDT 2023 Thu Apr 24 23:08:50 EDT 2025 Tue Jul 01 01:20:49 EDT 2025 Fri Feb 23 02:40:45 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Phase stability Irradiation effect High entropy alloy Structural damage |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c449t-469080b2c163119c62008e135a75737d0becea5c257d6e4989ef9be4c643ebe13 |
Notes | National Magnetic Confinement Fusion Energy Research Project USDOE Office of Science (SC), Fusion Energy Sciences (FES) AC05-00OR22725; SC0006661; 2015GB113000; 11905057; 11935004; 51671020 National Natural Science Foundation of China (NNSFC) |
ORCID | 0000-0001-7317-5766 0000-0002-6355-9923 0000-0002-4272-7043 0000-0003-2890-6915 0000-0002-9534-1902 0000000295341902 0000000263559923 0000000328906915 0000000173175766 0000000242727043 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1648949 |
PageCount | 15 |
ParticipantIDs | osti_scitechconnect_1648949 crossref_primary_10_1016_j_actamat_2020_01_060 crossref_citationtrail_10_1016_j_actamat_2020_01_060 elsevier_sciencedirect_doi_10_1016_j_actamat_2020_01_060 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-15 |
PublicationDateYYYYMMDD | 2020-04-15 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Acta materialia |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | He, Wang, Jin, Bei, Yasuda, Matsumura, Higashida, Robertson (bib0021) 2016; 125 Liu, Chen, Xu, Wu, Wang, Wang, Fang, Meng (bib0060) 2017; 137 Li, Li, Feng, Zhang, Sha, Lewandowski, Liaw, Zhang (bib0030) 2017; 123 Mathon, de Carlan, Geoffroy, Averty, Alamo, de Novion (bib0081) 2003; 312 Murty, Charit (bib0003) 2008; 383 Zinkle, Ghoniem (bib0062) 2000; 51/52 Wood, Glasser, Austin (bib0089) 1966; 45 Yvon, Carré (bib0002) 2009; 385 Liaw, Zhang, Zhang, Wang, Xie, Diao, Kuo, An, Hemphill (bib0034) 2016 Shun, Du (bib0070) 2009; 479 Williams, Slifkin (bib0088) 1958; 1 Shu, Almirall, Wells, Yamamoto, Odette, Morgan (bib0075) 2018; 157 Krasnochtchekov, Averback, Bellon (bib0076) 2007; 75 Jin, Lu, Wang, Qu, Weber, Zhang, Bei (bib0018) 2016; 119 Yang, Xia, Liu, Wang, Liu, Zhang, Xue, Yan, Wang (bib0026) 2015; 648 Zinkle, Snead (bib0053) 1995; 225 Zinkle (bib0005) 2005; 74 Singh, Horsewell, Toft, Edwards (bib0050) 1995; 224 Yang, Lu, Jin, Crespillo, Zhang, Bei, Wang (bib0067) 2017; 488 He, Wang, Shi, Jin, Bei, Yasuda, Matsumura, Higashida, Robertson (bib0022) 2017; 126 Gwalani, Soni, Choudhuri, Lee, Hwang, Nam, Ryu, Hong, Banerjee (bib0069) 2016; 123 Zinkle, Snead (bib0006) 2014; 44 Miracle, Senkov (bib0007) 2017; 122 Chuang, Tsai, Wang, Lin, Yeh (bib0015) 2011; 59 Takaki, Fuss, Kuglers, Dedek, Schultz (bib0047) 1983; 79 Béland, Lu, Osetskiy, Samolyuk, Caro, Wang, Stoller (bib0055) 2016; 119 Senkov, Wilks, Miracle, Chuang, Liaw (bib0011) 2010; 18 Yang, Li, Zinkle, Zhao, Bei, Zhang (bib0016) 2018; 33 Gludovatz, Hohenwarter, Thurston, Bei, Wu, George, Ritchie (bib0010) 2016; 7 Yasuda, Miyamoto, Cho, Nagase (bib0035) 2017; 199 Aidhy, Lu, Jin, Bei, Zhang, Wang, Weber (bib0019) 2015; 99 Yang, Xia, Liu, Wang, Liu, Fang, Zhang, Xue, Yan, Wang (bib0068) 2016; 6 Yeh, Chen, Lin, Gan, Chin, Shun, Tsau, Chang (bib0008) 2004; 6 Eyre (bib0044) 1973; 3 Nastar, Soisson (bib0054) 2011 Zinkle, Snead (bib0064) 2018; 143 Zinkle, Maziasz, Stoller (bib0045) 1993; 206 Liu, Mitchell (bib0051) 1982; 107 Miller, Russell, Thompson, Alvis, Larson (bib0040) 2007; 13 Enrique, Nordlund, Averback, Bellon (bib0083) 2003; 202 Fabritsiev, Pokrovsky (bib0052) 2007; 367 Zinkle (bib0043) 2011 Odette, Lucas (bib0086) 2001; 53 Huang, Li, Lu, Tian, Shen, Holmström, Vitos (bib0058) 2015; 108 Nelson, Hudson, Mazey (bib0080) 1972; 44 Fu, Torre, Willaime, Bocquet, Barbu (bib0048) 2005; 4 Tsai, Tsai, Yeh (bib0084) 2013; 61 Martin (bib0079) 1984; 30 Vo, Chee, Schwen, Zhang, Bellon, Averback (bib0082) 2010; 63 Senkov, Wilks, Scott, Miracle (bib0012) 2011; 19 Tang, Huang, Cheng, Liao, Langdon, Dai (bib0071) 2016; 105 Jin, Guo, Lu, Ullah, Zhang, Weber, Wang, Poplawsky, Bei (bib0042) 2016; 121 Li, Li, Zhao, Jiang (bib0027) 2010; 504S Kao, Chen, Chen, Yeh (bib0033) 2009; 488 Gludovatz, Hohenwarter, Catoor, Chang, George, Ritchie (bib0009) 2014; 345 Zinkle, Busby (bib0001) 2009; 12 Makin, Minter (bib0049) 1960; 8 Yang, Liu, Lin, Xia (bib0063) 2020; 178 Huang, Yeh, Shun, Chen (bib0013) 2004; 6 Whitley, Kulcinski, Wilkes, Smith (bib0065) 1979; 79 Rao, Diao, Ocelík, Vainchtein, Zhang, Kuo, Tang, Guo, Poplawsky, Zhou, Liaw, De Hosson (bib0031) 2017; 131 Crespillo, Graham, Zhang, Weber (bib0037) 2016; 87 Yang, Xia, Guo, Hu, Poplawsky, Sha, Fang, Yan, Wang, Li (bib0046) 2018; 144 Sizmann (bib0085) 1978; 69 Zhang, Crespillo, Xue, Jin, Chen, Fontana, Graham, Weber (bib0036) 2014; 338 Granberg, Nordlund, Ullah, Jin, Lu, Bei, Wang, Djurabekova, Weber, Zhang (bib0041) 2016; 116 Lu, Jin, Béland, Zhang, Yang, Qiao, Zhang, Bei, Christen, Stoller (bib0020) 2016; 6 Kumar, Li, Leonard, Bei, Zinkle (bib0024) 2016; 113 Jiao, Was (bib0039) 2011; 59 Luther (bib0087) 1965; 43 Abromeit, Wollenberger, Matsumura, Kinoshita (bib0072) 2000; 276 Wang, Wang, Wang, Tsai, Lai, Yeh (bib0028) 2012; 26 Enrique, Bellon (bib0074) 1999; 60 Lu, Niu, Chen, Jin, Yang, Xiu, Zhang, Gao, Bei, Shi (bib0056) 2016; 7 Gorsse, Miracle, Senkov (bib0025) 2017; 135 Wang, Niu, Wang (bib0061) 2018; 501 Zinkle, Was (bib0004) 2013; 61 Lu, Yang, Jin, Gao, Xiu, Zhang, Gao, Bei, Weber, Sun, Dong, Wang (bib0023) 2017; 127 Stoller, Toloczko, Was, Certain, Dwaraknath, Garner (bib0038) 2013; 310 Wang, Wang, Yeh (bib0029) 2014; 589 Hemphill, Yuan, Wang, Yeh, Tsai, Chuang, Liaw (bib0014) 2012; 60 Ye, Bellon (bib0077) 2004; 70 Zhang, Stocks, Jin, Lu, Bei, Sales, Wang, Béland, Stoller, Samolyuk, Caro, Caro, Weber (bib0017) 2015; 6 Enrique, Bellon (bib0073) 2000; 84 Zaddach, Niu, Koch, Irving (bib0057) 2013; 65 Gigax, Chen, Kim, Wang, Price, Aydogan, Maloy, Schreiber, Toloczko, Garner, Shao (bib0066) 2016; 482 Chou, Chang, Chen, Yeh (bib0032) 2009; 163 Zaddach, Scattergood, Koch (bib0059) 2015; 636 Gonzalez-Miranda, Garido, Marro, Lebowitz (bib0078) 1987; 59 Liu (10.1016/j.actamat.2020.01.060_bib0051) 1982; 107 Gigax (10.1016/j.actamat.2020.01.060_bib0066) 2016; 482 Yvon (10.1016/j.actamat.2020.01.060_bib0002) 2009; 385 Stoller (10.1016/j.actamat.2020.01.060_bib0038) 2013; 310 Shu (10.1016/j.actamat.2020.01.060_bib0075) 2018; 157 Zhang (10.1016/j.actamat.2020.01.060_bib0036) 2014; 338 Béland (10.1016/j.actamat.2020.01.060_bib0055) 2016; 119 Eyre (10.1016/j.actamat.2020.01.060_bib0044) 1973; 3 Tsai (10.1016/j.actamat.2020.01.060_bib0084) 2013; 61 Shun (10.1016/j.actamat.2020.01.060_bib0070) 2009; 479 Crespillo (10.1016/j.actamat.2020.01.060_bib0037) 2016; 87 Tang (10.1016/j.actamat.2020.01.060_bib0071) 2016; 105 Wood (10.1016/j.actamat.2020.01.060_bib0089) 1966; 45 Rao (10.1016/j.actamat.2020.01.060_bib0031) 2017; 131 Krasnochtchekov (10.1016/j.actamat.2020.01.060_bib0076) 2007; 75 Yasuda (10.1016/j.actamat.2020.01.060_bib0035) 2017; 199 Zaddach (10.1016/j.actamat.2020.01.060_bib0059) 2015; 636 Chou (10.1016/j.actamat.2020.01.060_bib0032) 2009; 163 Zinkle (10.1016/j.actamat.2020.01.060_bib0053) 1995; 225 Senkov (10.1016/j.actamat.2020.01.060_bib0012) 2011; 19 Miller (10.1016/j.actamat.2020.01.060_bib0040) 2007; 13 Nastar (10.1016/j.actamat.2020.01.060_bib0054) 2011 Nelson (10.1016/j.actamat.2020.01.060_bib0080) 1972; 44 Jin (10.1016/j.actamat.2020.01.060_bib0018) 2016; 119 Zinkle (10.1016/j.actamat.2020.01.060_bib0005) 2005; 74 Makin (10.1016/j.actamat.2020.01.060_bib0049) 1960; 8 Li (10.1016/j.actamat.2020.01.060_bib0027) 2010; 504S Singh (10.1016/j.actamat.2020.01.060_bib0050) 1995; 224 Gludovatz (10.1016/j.actamat.2020.01.060_bib0010) 2016; 7 Ye (10.1016/j.actamat.2020.01.060_bib0077) 2004; 70 Kumar (10.1016/j.actamat.2020.01.060_bib0024) 2016; 113 Williams (10.1016/j.actamat.2020.01.060_bib0088) 1958; 1 Gonzalez-Miranda (10.1016/j.actamat.2020.01.060_bib0078) 1987; 59 Wang (10.1016/j.actamat.2020.01.060_bib0061) 2018; 501 Miracle (10.1016/j.actamat.2020.01.060_bib0007) 2017; 122 Zinkle (10.1016/j.actamat.2020.01.060_bib0006) 2014; 44 Yang (10.1016/j.actamat.2020.01.060_bib0068) 2016; 6 Zinkle (10.1016/j.actamat.2020.01.060_bib0064) 2018; 143 Yang (10.1016/j.actamat.2020.01.060_bib0026) 2015; 648 Yang (10.1016/j.actamat.2020.01.060_bib0063) 2020; 178 Fabritsiev (10.1016/j.actamat.2020.01.060_bib0052) 2007; 367 Abromeit (10.1016/j.actamat.2020.01.060_bib0072) 2000; 276 Hemphill (10.1016/j.actamat.2020.01.060_bib0014) 2012; 60 Li (10.1016/j.actamat.2020.01.060_bib0030) 2017; 123 Yeh (10.1016/j.actamat.2020.01.060_bib0008) 2004; 6 Zhang (10.1016/j.actamat.2020.01.060_bib0017) 2015; 6 Kao (10.1016/j.actamat.2020.01.060_bib0033) 2009; 488 Enrique (10.1016/j.actamat.2020.01.060_bib0073) 2000; 84 He (10.1016/j.actamat.2020.01.060_bib0022) 2017; 126 Enrique (10.1016/j.actamat.2020.01.060_bib0083) 2003; 202 Zinkle (10.1016/j.actamat.2020.01.060_bib0043) 2011 Senkov (10.1016/j.actamat.2020.01.060_bib0011) 2010; 18 Zinkle (10.1016/j.actamat.2020.01.060_bib0001) 2009; 12 Gwalani (10.1016/j.actamat.2020.01.060_bib0069) 2016; 123 He (10.1016/j.actamat.2020.01.060_bib0021) 2016; 125 Gludovatz (10.1016/j.actamat.2020.01.060_bib0009) 2014; 345 Mathon (10.1016/j.actamat.2020.01.060_bib0081) 2003; 312 Whitley (10.1016/j.actamat.2020.01.060_bib0065) 1979; 79 Luther (10.1016/j.actamat.2020.01.060_bib0087) 1965; 43 Zinkle (10.1016/j.actamat.2020.01.060_bib0045) 1993; 206 Wang (10.1016/j.actamat.2020.01.060_bib0029) 2014; 589 Liaw (10.1016/j.actamat.2020.01.060_bib0034) 2016 Lu (10.1016/j.actamat.2020.01.060_bib0020) 2016; 6 Jin (10.1016/j.actamat.2020.01.060_bib0042) 2016; 121 Zinkle (10.1016/j.actamat.2020.01.060_bib0062) 2000; 51/52 Zinkle (10.1016/j.actamat.2020.01.060_bib0004) 2013; 61 Yang (10.1016/j.actamat.2020.01.060_bib0046) 2018; 144 Wang (10.1016/j.actamat.2020.01.060_bib0028) 2012; 26 Jiao (10.1016/j.actamat.2020.01.060_bib0039) 2011; 59 Enrique (10.1016/j.actamat.2020.01.060_bib0074) 1999; 60 Vo (10.1016/j.actamat.2020.01.060_bib0082) 2010; 63 Chuang (10.1016/j.actamat.2020.01.060_bib0015) 2011; 59 Huang (10.1016/j.actamat.2020.01.060_bib0058) 2015; 108 Aidhy (10.1016/j.actamat.2020.01.060_bib0019) 2015; 99 Lu (10.1016/j.actamat.2020.01.060_bib0023) 2017; 127 Zaddach (10.1016/j.actamat.2020.01.060_bib0057) 2013; 65 Lu (10.1016/j.actamat.2020.01.060_bib0056) 2016; 7 Odette (10.1016/j.actamat.2020.01.060_bib0086) 2001; 53 Granberg (10.1016/j.actamat.2020.01.060_bib0041) 2016; 116 Fu (10.1016/j.actamat.2020.01.060_bib0048) 2005; 4 Liu (10.1016/j.actamat.2020.01.060_bib0060) 2017; 137 Martin (10.1016/j.actamat.2020.01.060_bib0079) 1984; 30 Sizmann (10.1016/j.actamat.2020.01.060_bib0085) 1978; 69 Huang (10.1016/j.actamat.2020.01.060_bib0013) 2004; 6 Yang (10.1016/j.actamat.2020.01.060_bib0016) 2018; 33 Murty (10.1016/j.actamat.2020.01.060_bib0003) 2008; 383 Gorsse (10.1016/j.actamat.2020.01.060_bib0025) 2017; 135 Yang (10.1016/j.actamat.2020.01.060_bib0067) 2017; 488 Takaki (10.1016/j.actamat.2020.01.060_bib0047) 1983; 79 |
References_xml | – year: 2011 ident: bib0054 article-title: Comprehensive Nuclear Materials. 1.Basic Aspects of Radiation Effects in Solids – volume: 636 start-page: 373 year: 2015 end-page: 378 ident: bib0059 article-title: Tensile properties of low-stacking fault energy high-entropy alloys publication-title: Mater. Sci. Eng. A – volume: 135 start-page: 177 year: 2017 end-page: 187 ident: bib0025 article-title: Mapping the world of complex concentrated alloys publication-title: Acta Mater. – volume: 51/52 start-page: 55 year: 2000 end-page: 71 ident: bib0062 article-title: Operating temperature windows for fusion reactor structural materials publication-title: Fusion Eng. Des. – volume: 119 start-page: 65 year: 2016 end-page: 70 ident: bib0018 article-title: Effects of compositional complexity on the ion-irradiation induced swelling and hardening in Ni-containing equiatomic alloys publication-title: Scr. Mater – volume: 113 start-page: 230 year: 2016 end-page: 244 ident: bib0024 article-title: Microstructural stability and mechanical behavior of FeNiMnCr high entropy alloy under ion irradiation publication-title: Acta Mater. – volume: 87 year: 2016 ident: bib0037 article-title: Temperature measurements during high flux ion beam irradiations publication-title: Rev. Sci. Instrum. – volume: 74 start-page: 31 year: 2005 end-page: 40 ident: bib0005 article-title: Advanced materials for fusion technology publication-title: Fusion Eng. Des – volume: 8 start-page: 691 year: 1960 end-page: 699 ident: bib0049 article-title: Irradiation hardening in copper and nickel publication-title: Acta Metall. – volume: 6 start-page: 299 year: 2004 end-page: 303 ident: bib0008 article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes publication-title: Adv. Eng. Mater. – volume: 338 start-page: 19 year: 2014 end-page: 30 ident: bib0036 article-title: New ion beam materials laboratory for materials modification and irradiation effects research publication-title: Nucl. Instrum. Meth. B – volume: 310 start-page: 75 year: 2013 end-page: 80 ident: bib0038 article-title: On the use of SRIM for computing radiation damage exposure publication-title: Nucl. Instrum. Meth. B – volume: 589 start-page: 143 year: 2014 end-page: 152 ident: bib0029 article-title: Phases, microstructure and mechanical properties of Al publication-title: J. Alloy Compd. – volume: 61 start-page: 735 year: 2013 end-page: 758 ident: bib0004 article-title: Materials challenges in nuclear energy publication-title: Acta Mater. – volume: 44 start-page: 241 year: 2014 end-page: 267 ident: bib0006 article-title: Designing radiation resistance in materials for fusion energy publication-title: Annu. Rev. Mater. Res. – volume: 199 start-page: 120 year: 2017 end-page: 123 ident: bib0035 article-title: Formation of ultrafine-grained microstructure in A publication-title: Mater. Lett. – volume: 312 start-page: 236 year: 2003 end-page: 248 ident: bib0081 article-title: A SANS investigation of the irradiation-enhanced α–α′ phases separation in 7–12 Cr martensitic steels publication-title: J. Nucl. Mater. – volume: 7 start-page: 13564 year: 2016 ident: bib0056 article-title: Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys publication-title: Nat. Commun. – volume: 59 start-page: 6308 year: 2011 end-page: 6317 ident: bib0015 article-title: Microstructure and wear behavior of Al publication-title: Acta Mater. – volume: 224 start-page: 131 year: 1995 end-page: 140 ident: bib0050 article-title: Temperature and dose dependencies of microstructure and hardness of neutron irradiated OFHC copper publication-title: J. Nucl. Mater. – volume: 276 start-page: 104 year: 2000 end-page: 113 ident: bib0072 article-title: Stability of ordered phases under irradiation publication-title: J. Nucl. Mater. – volume: 60 start-page: 5723 year: 2012 end-page: 5734 ident: bib0014 article-title: Fatigue behavior of Al publication-title: Acta Mater. – volume: 99 start-page: 69 year: 2015 end-page: 76 ident: bib0019 article-title: Point defect evolution in Ni, NiFe and NiCr alloys from atomistic simulations and irradiation experiments publication-title: Acta Mater. – volume: 84 start-page: 2885 year: 2000 ident: bib0073 article-title: Compositional patterning in systems driven by competing dynamics of different length scale publication-title: Phys. Rev. Lett. – volume: 143 start-page: 154 year: 2018 end-page: 160 ident: bib0064 article-title: Opportunities and limitations for ion beams in radiation effects studies: bridging critical gaps between charged particle and neutron irradiations publication-title: Scr. Mater. – volume: 79 start-page: 159 year: 1979 end-page: 169 ident: bib0065 article-title: The depth dependent damage profile in nickel irradiated with nickel or copper ions publication-title: J. Nucl. Mater. – volume: 6 start-page: 19994 year: 2016 ident: bib0020 article-title: Direct observation of defect range and evolution in ion-irradiated single crystalline ni and Ni binary alloys publication-title: Sci. Rep. – volume: 4 start-page: 68 year: 2005 end-page: 74 ident: bib0048 article-title: Multiscale modelling of defect kinetics in irradiated iron publication-title: Nat. Mater. – volume: 157 start-page: 72 year: 2018 end-page: 82 ident: bib0075 article-title: Precipitation in Fe-Cu and Fe-Cu-Mn model alloys under irradiation: dose rate effects publication-title: Acta Mater. – volume: 107 start-page: 318 year: 1982 end-page: 326 ident: bib0051 article-title: Defect aggregation in irradiated Ni3Al and NiAl publication-title: J. Nucl. Mater. – volume: 79 start-page: 87 year: 1983 end-page: 122 ident: bib0047 article-title: The resistivity recovery of high purity and carbon doped iron following low temperature electron irradiation publication-title: Radiat. Eff. – year: 2016 ident: bib0034 article-title: Experimental and Computational Investigation of High Entropy Alloys for Elevated-Temperature Applications – volume: 482 start-page: 257 year: 2016 end-page: 265 ident: bib0066 article-title: Radiation response of alloy T91 at damage levels up to 1000 peak dpa publication-title: J. Nucl. Mater. – volume: 488 start-page: 328 year: 2017 end-page: 337 ident: bib0067 article-title: The effect of injected interstitials on void formation in self-ion irradiated nickel containing concentrated solid solution alloys publication-title: J. Nucl. Mater. – volume: 105 start-page: 381 year: 2016 end-page: 385 ident: bib0071 article-title: The effect of grain size on the annealing-induced phase transformation in an A publication-title: Mater. Des. – volume: 108 start-page: 44 year: 2015 end-page: 47 ident: bib0058 article-title: Temperature dependent stacking fault energy of FeCrCoNiMn high entropy alloy publication-title: Scr. Mater. – volume: 43 start-page: 2213 year: 1965 end-page: 2218 ident: bib0087 article-title: Diffusion along dislocations publication-title: J. Chem. Phys. – volume: 121 start-page: 365 year: 2016 end-page: 373 ident: bib0042 article-title: Effects of Fe concentration on the ion-irradiation induced defect evolution and hardening in Ni-Fe solid solution alloys publication-title: Acta Mater. – volume: 137 start-page: 9 year: 2017 end-page: 12 ident: bib0060 article-title: Deformation twinning behaviors of the low stacking fault energy high-entropy alloy: an in-situ TEM study publication-title: Scr. Mater. – volume: 45 start-page: 1079 year: 1966 end-page: 1080 ident: bib0089 article-title: Diffusion along dislocations publication-title: J. Chem. Phys. – volume: 61 start-page: 4887 year: 2013 end-page: 4897 ident: bib0084 article-title: Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys publication-title: Acta Mater. – volume: 163 start-page: 184 year: 2009 end-page: 189 ident: bib0032 article-title: Microstructure, thermophysical and electrical properties in Al publication-title: Mater. Sci. Eng. B – volume: 6 start-page: 32146 year: 2016 ident: bib0068 article-title: Precipitation behavior of Al publication-title: Sci. Rep. – volume: 63 start-page: 929 year: 2010 end-page: 932 ident: bib0082 article-title: Microstructural stability of nanostructured Cu alloys during high-temperature irradiation publication-title: Scr. Mater. – volume: 19 start-page: 698 year: 2011 end-page: 706 ident: bib0012 article-title: Mechanical properties of Nb publication-title: Intermetallics – volume: 504S start-page: S515 year: 2010 ident: bib0027 article-title: Effect of aluminum contents on microstructure and properties of Al publication-title: J. Alloy Compd. – volume: 225 start-page: 123 year: 1995 end-page: 131 ident: bib0053 article-title: Microstructure of copper and nickel irradiated with fission neutrons near 230 C publication-title: J. Nucl. Mater. – volume: 1 start-page: 243 year: 1958 ident: bib0088 article-title: Diffusion along dislocations publication-title: Phys. Rev. Lett. – volume: 53 start-page: 18 year: 2001 end-page: 22 ident: bib0086 article-title: Embrittlement of nuclear reactor pressure vessels publication-title: JOM – volume: 65 start-page: 1780 year: 2013 end-page: 1789 ident: bib0057 article-title: Mechanical properties and stacking fault energies of nifecrcomn high-entropy alloy publication-title: JOM – volume: 75 year: 2007 ident: bib0076 article-title: Homogeneous phase separation in binary alloys under ion irradiation conditions: role of interstitial atoms publication-title: Phys. Rev. B – volume: 70 year: 2004 ident: bib0077 article-title: Nanoscale patterning of chemical order induced by displacement cascades in irradiated alloys. I. A kinetic Monte Carlo study publication-title: Phys. Rev. B – volume: 385 start-page: 217 year: 2009 end-page: 222 ident: bib0002 article-title: Structural materials challenges for advanced reactor systems publication-title: J. Nucl. Mater. – volume: 501 start-page: 94 year: 2018 end-page: 103 ident: bib0061 article-title: Energetics analysis of interstitial loops in single-phase concentrated solid-solution alloys publication-title: J. Nucl. Mater. – volume: 479 start-page: 157 year: 2009 end-page: 160 ident: bib0070 article-title: Microstructure and tensile behaviors of FCC A publication-title: J. Alloy Compd. – volume: 178 start-page: 181 year: 2020 end-page: 186 ident: bib0063 article-title: Core effect of local atomic configuration and design principles in Al publication-title: Scr. Mater. – volume: 131 start-page: 206 year: 2017 end-page: 220 ident: bib0031 article-title: Secondary phases in Al publication-title: Acta Mater. – volume: 3 start-page: 422 year: 1973 end-page: 470 ident: bib0044 article-title: Transmission electron microscope studies of point defect clusters in fcc and bcc metals publication-title: J. Phys. F: Metal Phys. – volume: 144 start-page: 31 year: 2018 end-page: 35 ident: bib0046 article-title: Effects of temperature on the irradiation responses of A publication-title: Scr. Mater. – volume: 488 start-page: 57 year: 2009 end-page: 64 ident: bib0033 article-title: Microstructure and mechanical property of as-cast, -homogenized, and -deformed Al publication-title: J. Alloy Compd. – volume: 383 start-page: 189 year: 2008 end-page: 195 ident: bib0003 article-title: Structural materials for GEN-IV nuclear reactors: challenges and opportunities publication-title: J. Nucl. Mater. – volume: 122 start-page: 448 year: 2017 end-page: 511 ident: bib0007 article-title: A critical review of high entropy alloys and related concepts publication-title: Acta Mater. – volume: 119 year: 2016 ident: bib0055 article-title: Features of primary damage by high energy displacement cascades in concentrated Ni-based alloys publication-title: J. Appl. Phys. – volume: 345 start-page: 1153 year: 2014 end-page: 1158 ident: bib0009 article-title: A fracture-resistant high-entropy alloy for cryogenic applications publication-title: Science – volume: 30 start-page: 1424 year: 1984 end-page: 1436 ident: bib0079 article-title: Phase stability under irradiation: ballistic effects publication-title: Phys. Rev. B – volume: 126 start-page: 182 year: 2017 end-page: 193 ident: bib0022 article-title: Mechanisms of radiation-induced segregation in CrFeCoNi-based single-phase concentrated solid solution alloys publication-title: Acta Mater. – volume: 69 start-page: 386 year: 1978 end-page: 412 ident: bib0085 article-title: The effect of radiation upon diffusion in metals publication-title: J. Nucl. Mater. – volume: 127 start-page: 98 year: 2017 end-page: 107 ident: bib0023 article-title: Radiation-induced segregation on defect clusters in single-phase concentrated solid-solution alloys publication-title: Acta Mater. – volume: 123 start-page: 285 year: 2017 end-page: 294 ident: bib0030 article-title: High-entropy A publication-title: Acta Mater. – volume: 18 start-page: 1758 year: 2010 end-page: 1765 ident: bib0011 article-title: Refractory high-entropy alloys publication-title: Intermetallics – volume: 7 start-page: 10602 year: 2016 ident: bib0010 article-title: Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures publication-title: Nat. Commun. – volume: 648 start-page: 15 year: 2015 end-page: 22 ident: bib0026 article-title: Effects of Al addition on microstructure and mechanical properties of Al publication-title: Mater. Sci. Eng. A – volume: 125 start-page: 5 year: 2016 end-page: 9 ident: bib0021 article-title: Enhanced damage resistance and novel defect structure of CrFeCoNi under in situ electron irradiation publication-title: Scr. Mater. – volume: 60 start-page: 14649 year: 1999 ident: bib0074 article-title: Phase stability under irradiation in alloys with a positive heat of mixing: effective thermodynamics description publication-title: Phys. Rev. B – volume: 367 start-page: 977 year: 2007 end-page: 983 ident: bib0052 article-title: Effect of irradiation temperature on microstructure, radiation hardening and embrittlement of pure copper and copper-based alloy publication-title: J. Nucl. Mater. – volume: 202 start-page: 206 year: 2003 end-page: 216 ident: bib0083 article-title: Nonequilibrium self-organization in alloys under irradiation leading to the formation of nanocomposites publication-title: Nucl. Instrum. Meth. B – volume: 6 start-page: 8736 year: 2015 ident: bib0017 article-title: Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys publication-title: Nat. Commun. – volume: 59 start-page: 1934 year: 1987 end-page: 1937 ident: bib0078 article-title: Nonequilibrium phase diagram of ISING model with competing dynamics publication-title: Phys. Rev. Lett. – volume: 123 start-page: 130 year: 2016 end-page: 134 ident: bib0069 article-title: Stability of ordered L12 and B2 precipitates in face centered cubic based high entropy alloys - Al0.3CoFeCrNi and Al0.3CuFeCrNi2 publication-title: Scr. Mater. – volume: 12 start-page: 12 year: 2009 end-page: 19 ident: bib0001 article-title: Structural materials for fission & fusion energy publication-title: Mater. Today – volume: 6 start-page: 74 year: 2004 end-page: 78 ident: bib0013 article-title: Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating publication-title: Adv. Eng. Mater. – volume: 59 start-page: 1220 year: 2011 end-page: 1238 ident: bib0039 article-title: Novel features of radiation-induced segregation and radiation-induced precipitation in austenitic stainless steels publication-title: Acta Mater. – volume: 33 start-page: 3077 year: 2018 end-page: 3091 ident: bib0016 article-title: Irradiation responses and defect behavior of single-phase concentrated solid solution alloys publication-title: J. Mater. Res. – start-page: 65 year: 2011 end-page: 98 ident: bib0043 article-title: 1.03-Radiation-Induced Effects on microstructure publication-title: Comprehensive Nuclear Materials. 1. Basic Aspects of Radiation Effects in Solids – volume: 13 start-page: 428 year: 2007 end-page: 436 ident: bib0040 article-title: Review of atom probe FIB-Based specimen preparation methods publication-title: Microsc. Microanal. – volume: 44 start-page: 318 year: 1972 end-page: 330 ident: bib0080 article-title: The stability of precipitates in an irradiation environment publication-title: J. Nucl. Mater. – volume: 116 year: 2016 ident: bib0041 article-title: Mechanism of radiation damage reduction in equiatomic multicomponent single phase alloys publication-title: Phys. Rev. Lett. – volume: 206 start-page: 266 year: 1993 end-page: 286 ident: bib0045 article-title: Dose dependence of the microstructural evolution in neutron-irradiated austenitic stainless steel publication-title: J. Nucl. Mater. – volume: 26 start-page: 44 year: 2012 end-page: 51 ident: bib0028 article-title: Effects of Al addition on the microstructure and mechanical property of Al publication-title: Intermetallics – volume: 636 start-page: 373 year: 2015 ident: 10.1016/j.actamat.2020.01.060_bib0059 article-title: Tensile properties of low-stacking fault energy high-entropy alloys publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2015.03.109 – volume: 87 issue: 2 year: 2016 ident: 10.1016/j.actamat.2020.01.060_bib0037 article-title: Temperature measurements during high flux ion beam irradiations publication-title: Rev. Sci. Instrum. doi: 10.1063/1.4941720 – volume: 44 start-page: 318 issue: 3 year: 1972 ident: 10.1016/j.actamat.2020.01.060_bib0080 article-title: The stability of precipitates in an irradiation environment publication-title: J. Nucl. Mater. doi: 10.1016/0022-3115(72)90043-8 – volume: 59 start-page: 1934 issue: 17 year: 1987 ident: 10.1016/j.actamat.2020.01.060_bib0078 article-title: Nonequilibrium phase diagram of ISING model with competing dynamics publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.59.1934 – volume: 59 start-page: 1220 issue: 3 year: 2011 ident: 10.1016/j.actamat.2020.01.060_bib0039 article-title: Novel features of radiation-induced segregation and radiation-induced precipitation in austenitic stainless steels publication-title: Acta Mater. doi: 10.1016/j.actamat.2010.10.055 – volume: 119 issue: 8 year: 2016 ident: 10.1016/j.actamat.2020.01.060_bib0055 article-title: Features of primary damage by high energy displacement cascades in concentrated Ni-based alloys publication-title: J. Appl. Phys. doi: 10.1063/1.4942533 – volume: 123 start-page: 285 year: 2017 ident: 10.1016/j.actamat.2020.01.060_bib0030 article-title: High-entropy Al0.3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.10.038 – volume: 501 start-page: 94 year: 2018 ident: 10.1016/j.actamat.2020.01.060_bib0061 article-title: Energetics analysis of interstitial loops in single-phase concentrated solid-solution alloys publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2018.01.032 – volume: 53 start-page: 18 issue: 7 year: 2001 ident: 10.1016/j.actamat.2020.01.060_bib0086 article-title: Embrittlement of nuclear reactor pressure vessels publication-title: JOM doi: 10.1007/s11837-001-0081-0 – volume: 75 issue: 14 year: 2007 ident: 10.1016/j.actamat.2020.01.060_bib0076 article-title: Homogeneous phase separation in binary alloys under ion irradiation conditions: role of interstitial atoms publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.75.144107 – year: 2016 ident: 10.1016/j.actamat.2020.01.060_bib0034 – volume: 18 start-page: 1758 issue: 9 year: 2010 ident: 10.1016/j.actamat.2020.01.060_bib0011 article-title: Refractory high-entropy alloys publication-title: Intermetallics doi: 10.1016/j.intermet.2010.05.014 – volume: 310 start-page: 75 year: 2013 ident: 10.1016/j.actamat.2020.01.060_bib0038 article-title: On the use of SRIM for computing radiation damage exposure publication-title: Nucl. Instrum. Meth. B doi: 10.1016/j.nimb.2013.05.008 – volume: 108 start-page: 44 year: 2015 ident: 10.1016/j.actamat.2020.01.060_bib0058 article-title: Temperature dependent stacking fault energy of FeCrCoNiMn high entropy alloy publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2015.05.041 – volume: 125 start-page: 5 year: 2016 ident: 10.1016/j.actamat.2020.01.060_bib0021 article-title: Enhanced damage resistance and novel defect structure of CrFeCoNi under in situ electron irradiation publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2016.07.023 – volume: 202 start-page: 206 year: 2003 ident: 10.1016/j.actamat.2020.01.060_bib0083 article-title: Nonequilibrium self-organization in alloys under irradiation leading to the formation of nanocomposites publication-title: Nucl. Instrum. Meth. B doi: 10.1016/S0168-583X(02)01859-1 – start-page: 65 year: 2011 ident: 10.1016/j.actamat.2020.01.060_bib0043 article-title: 1.03-Radiation-Induced Effects on microstructure – volume: 312 start-page: 236 issue: 2/3 year: 2003 ident: 10.1016/j.actamat.2020.01.060_bib0081 article-title: A SANS investigation of the irradiation-enhanced α–α′ phases separation in 7–12 Cr martensitic steels publication-title: J. Nucl. Mater. doi: 10.1016/S0022-3115(02)01630-6 – volume: 383 start-page: 189 issue: 1 year: 2008 ident: 10.1016/j.actamat.2020.01.060_bib0003 article-title: Structural materials for GEN-IV nuclear reactors: challenges and opportunities publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2008.08.044 – volume: 8 start-page: 691 issue: 10 year: 1960 ident: 10.1016/j.actamat.2020.01.060_bib0049 article-title: Irradiation hardening in copper and nickel publication-title: Acta Metall. doi: 10.1016/0001-6160(60)90200-5 – volume: 61 start-page: 735 issue: 3 year: 2013 ident: 10.1016/j.actamat.2020.01.060_bib0004 article-title: Materials challenges in nuclear energy publication-title: Acta Mater. doi: 10.1016/j.actamat.2012.11.004 – volume: 225 start-page: 123 year: 1995 ident: 10.1016/j.actamat.2020.01.060_bib0053 article-title: Microstructure of copper and nickel irradiated with fission neutrons near 230 C publication-title: J. Nucl. Mater. doi: 10.1016/0022-3115(94)00670-9 – volume: 163 start-page: 184 issue: 3 year: 2009 ident: 10.1016/j.actamat.2020.01.060_bib0032 article-title: Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0≤x≤2) high-entropy alloys publication-title: Mater. Sci. Eng. B doi: 10.1016/j.mseb.2009.05.024 – volume: 224 start-page: 131 issue: 2 year: 1995 ident: 10.1016/j.actamat.2020.01.060_bib0050 article-title: Temperature and dose dependencies of microstructure and hardness of neutron irradiated OFHC copper publication-title: J. Nucl. Mater. doi: 10.1016/0022-3115(95)00054-2 – volume: 12 start-page: 12 issue: 11 year: 2009 ident: 10.1016/j.actamat.2020.01.060_bib0001 article-title: Structural materials for fission & fusion energy publication-title: Mater. Today doi: 10.1016/S1369-7021(09)70294-9 – volume: 7 start-page: 10602 year: 2016 ident: 10.1016/j.actamat.2020.01.060_bib0010 article-title: Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures publication-title: Nat. Commun. doi: 10.1038/ncomms10602 – volume: 116 issue: 13 year: 2016 ident: 10.1016/j.actamat.2020.01.060_bib0041 article-title: Mechanism of radiation damage reduction in equiatomic multicomponent single phase alloys publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.135504 – volume: 121 start-page: 365 year: 2016 ident: 10.1016/j.actamat.2020.01.060_bib0042 article-title: Effects of Fe concentration on the ion-irradiation induced defect evolution and hardening in Ni-Fe solid solution alloys publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.09.025 – volume: 157 start-page: 72 year: 2018 ident: 10.1016/j.actamat.2020.01.060_bib0075 article-title: Precipitation in Fe-Cu and Fe-Cu-Mn model alloys under irradiation: dose rate effects publication-title: Acta Mater. doi: 10.1016/j.actamat.2018.07.017 – volume: 345 start-page: 1153 issue: 6201 year: 2014 ident: 10.1016/j.actamat.2020.01.060_bib0009 article-title: A fracture-resistant high-entropy alloy for cryogenic applications publication-title: Science doi: 10.1126/science.1254581 – volume: 60 start-page: 5723 issue: 16 year: 2012 ident: 10.1016/j.actamat.2020.01.060_bib0014 article-title: Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys publication-title: Acta Mater. doi: 10.1016/j.actamat.2012.06.046 – volume: 74 start-page: 31 issue: 1 year: 2005 ident: 10.1016/j.actamat.2020.01.060_bib0005 article-title: Advanced materials for fusion technology publication-title: Fusion Eng. Des doi: 10.1016/j.fusengdes.2005.08.008 – volume: 488 start-page: 57 issue: 1 year: 2009 ident: 10.1016/j.actamat.2020.01.060_bib0033 article-title: Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0≦x≦2) high-entropy alloys publication-title: J. Alloy Compd. doi: 10.1016/j.jallcom.2009.08.090 – volume: 137 start-page: 9 year: 2017 ident: 10.1016/j.actamat.2020.01.060_bib0060 article-title: Deformation twinning behaviors of the low stacking fault energy high-entropy alloy: an in-situ TEM study publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2017.05.001 – volume: 589 start-page: 143 year: 2014 ident: 10.1016/j.actamat.2020.01.060_bib0029 article-title: Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures publication-title: J. Alloy Compd. doi: 10.1016/j.jallcom.2013.11.084 – volume: 199 start-page: 120 year: 2017 ident: 10.1016/j.actamat.2020.01.060_bib0035 article-title: Formation of ultrafine-grained microstructure in Al0.3CoCrFeNi high entropy alloys with grain boundary precipitates publication-title: Mater. Lett. doi: 10.1016/j.matlet.2017.04.072 – volume: 30 start-page: 1424 issue: 3 year: 1984 ident: 10.1016/j.actamat.2020.01.060_bib0079 article-title: Phase stability under irradiation: ballistic effects publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.30.1424 – volume: 123 start-page: 130 year: 2016 ident: 10.1016/j.actamat.2020.01.060_bib0069 article-title: Stability of ordered L12 and B2 precipitates in face centered cubic based high entropy alloys - Al0.3CoFeCrNi and Al0.3CuFeCrNi2 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2016.06.019 – year: 2011 ident: 10.1016/j.actamat.2020.01.060_bib0054 – volume: 51/52 start-page: 55 year: 2000 ident: 10.1016/j.actamat.2020.01.060_bib0062 article-title: Operating temperature windows for fusion reactor structural materials publication-title: Fusion Eng. Des. doi: 10.1016/S0920-3796(00)00320-3 – volume: 43 start-page: 2213 issue: 7 year: 1965 ident: 10.1016/j.actamat.2020.01.060_bib0087 article-title: Diffusion along dislocations publication-title: J. Chem. Phys. doi: 10.1063/1.1697112 – volume: 119 start-page: 65 year: 2016 ident: 10.1016/j.actamat.2020.01.060_bib0018 article-title: Effects of compositional complexity on the ion-irradiation induced swelling and hardening in Ni-containing equiatomic alloys publication-title: Scr. Mater doi: 10.1016/j.scriptamat.2016.03.030 – volume: 3 start-page: 422 issue: 2 year: 1973 ident: 10.1016/j.actamat.2020.01.060_bib0044 article-title: Transmission electron microscope studies of point defect clusters in fcc and bcc metals publication-title: J. Phys. F: Metal Phys. doi: 10.1088/0305-4608/3/2/009 – volume: 135 start-page: 177 year: 2017 ident: 10.1016/j.actamat.2020.01.060_bib0025 article-title: Mapping the world of complex concentrated alloys publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.06.027 – volume: 479 start-page: 157 year: 2009 ident: 10.1016/j.actamat.2020.01.060_bib0070 article-title: Microstructure and tensile behaviors of FCC Al0.3CoCrFeNi high entropy alloy publication-title: J. Alloy Compd. doi: 10.1016/j.jallcom.2008.12.088 – volume: 69 start-page: 386 year: 1978 ident: 10.1016/j.actamat.2020.01.060_bib0085 article-title: The effect of radiation upon diffusion in metals publication-title: J. Nucl. Mater. doi: 10.1016/0022-3115(78)90256-8 – volume: 385 start-page: 217 issue: 2 year: 2009 ident: 10.1016/j.actamat.2020.01.060_bib0002 article-title: Structural materials challenges for advanced reactor systems publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2008.11.026 – volume: 178 start-page: 181 year: 2020 ident: 10.1016/j.actamat.2020.01.060_bib0063 article-title: Core effect of local atomic configuration and design principles in AlxCoCrFeNi high-entropy alloys publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2019.11.016 – volume: 13 start-page: 428 issue: 6 year: 2007 ident: 10.1016/j.actamat.2020.01.060_bib0040 article-title: Review of atom probe FIB-Based specimen preparation methods publication-title: Microsc. Microanal. doi: 10.1017/S1431927607070845 – volume: 79 start-page: 159 issue: 1 year: 1979 ident: 10.1016/j.actamat.2020.01.060_bib0065 article-title: The depth dependent damage profile in nickel irradiated with nickel or copper ions publication-title: J. Nucl. Mater. doi: 10.1016/0022-3115(79)90443-4 – volume: 6 start-page: 8736 year: 2015 ident: 10.1016/j.actamat.2020.01.060_bib0017 article-title: Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys publication-title: Nat. Commun. doi: 10.1038/ncomms9736 – volume: 127 start-page: 98 year: 2017 ident: 10.1016/j.actamat.2020.01.060_bib0023 article-title: Radiation-induced segregation on defect clusters in single-phase concentrated solid-solution alloys publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.01.019 – volume: 648 start-page: 15 year: 2015 ident: 10.1016/j.actamat.2020.01.060_bib0026 article-title: Effects of Al addition on microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloy publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2015.09.034 – volume: 33 start-page: 3077 year: 2018 ident: 10.1016/j.actamat.2020.01.060_bib0016 article-title: Irradiation responses and defect behavior of single-phase concentrated solid solution alloys publication-title: J. Mater. Res. doi: 10.1557/jmr.2018.285 – volume: 19 start-page: 698 issue: 5 year: 2011 ident: 10.1016/j.actamat.2020.01.060_bib0012 article-title: Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys publication-title: Intermetallics doi: 10.1016/j.intermet.2011.01.004 – volume: 276 start-page: 104 issue: 1 year: 2000 ident: 10.1016/j.actamat.2020.01.060_bib0072 article-title: Stability of ordered phases under irradiation publication-title: J. Nucl. Mater. doi: 10.1016/S0022-3115(99)00173-7 – volume: 65 start-page: 1780 issue: 12 year: 2013 ident: 10.1016/j.actamat.2020.01.060_bib0057 article-title: Mechanical properties and stacking fault energies of nifecrcomn high-entropy alloy publication-title: JOM doi: 10.1007/s11837-013-0771-4 – volume: 4 start-page: 68 issue: 1 year: 2005 ident: 10.1016/j.actamat.2020.01.060_bib0048 article-title: Multiscale modelling of defect kinetics in irradiated iron publication-title: Nat. Mater. doi: 10.1038/nmat1286 – volume: 44 start-page: 241 year: 2014 ident: 10.1016/j.actamat.2020.01.060_bib0006 article-title: Designing radiation resistance in materials for fusion energy publication-title: Annu. Rev. Mater. Res. doi: 10.1146/annurev-matsci-070813-113627 – volume: 338 start-page: 19 year: 2014 ident: 10.1016/j.actamat.2020.01.060_bib0036 article-title: New ion beam materials laboratory for materials modification and irradiation effects research publication-title: Nucl. Instrum. Meth. B doi: 10.1016/j.nimb.2014.07.028 – volume: 99 start-page: 69 year: 2015 ident: 10.1016/j.actamat.2020.01.060_bib0019 article-title: Point defect evolution in Ni, NiFe and NiCr alloys from atomistic simulations and irradiation experiments publication-title: Acta Mater. doi: 10.1016/j.actamat.2015.08.007 – volume: 131 start-page: 206 year: 2017 ident: 10.1016/j.actamat.2020.01.060_bib0031 article-title: Secondary phases in AlxCoCrFeNi high-entropy alloys: an in-situ TEM heating study and thermodynamic appraisal publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.03.066 – volume: 60 start-page: 14649 issue: 21 year: 1999 ident: 10.1016/j.actamat.2020.01.060_bib0074 article-title: Phase stability under irradiation in alloys with a positive heat of mixing: effective thermodynamics description publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.60.14649 – volume: 79 start-page: 87 issue: 1–4 year: 1983 ident: 10.1016/j.actamat.2020.01.060_bib0047 article-title: The resistivity recovery of high purity and carbon doped iron following low temperature electron irradiation publication-title: Radiat. Eff. doi: 10.1080/00337578308207398 – volume: 482 start-page: 257 year: 2016 ident: 10.1016/j.actamat.2020.01.060_bib0066 article-title: Radiation response of alloy T91 at damage levels up to 1000 peak dpa publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2016.10.003 – volume: 1 start-page: 243 issue: 7 year: 1958 ident: 10.1016/j.actamat.2020.01.060_bib0088 article-title: Diffusion along dislocations publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.1.243 – volume: 122 start-page: 448 year: 2017 ident: 10.1016/j.actamat.2020.01.060_bib0007 article-title: A critical review of high entropy alloys and related concepts publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.08.081 – volume: 126 start-page: 182 year: 2017 ident: 10.1016/j.actamat.2020.01.060_bib0022 article-title: Mechanisms of radiation-induced segregation in CrFeCoNi-based single-phase concentrated solid solution alloys publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.12.046 – volume: 45 start-page: 1079 issue: 3 year: 1966 ident: 10.1016/j.actamat.2020.01.060_bib0089 article-title: Diffusion along dislocations publication-title: J. Chem. Phys. doi: 10.1063/1.1727674 – volume: 59 start-page: 6308 issue: 16 year: 2011 ident: 10.1016/j.actamat.2020.01.060_bib0015 article-title: Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys publication-title: Acta Mater. doi: 10.1016/j.actamat.2011.06.041 – volume: 504S start-page: S515 issue: 0 year: 2010 ident: 10.1016/j.actamat.2020.01.060_bib0027 article-title: Effect of aluminum contents on microstructure and properties of AlxCoCrFeNi alloys publication-title: J. Alloy Compd. doi: 10.1016/j.jallcom.2010.03.111 – volume: 26 start-page: 44 issue: 0 year: 2012 ident: 10.1016/j.actamat.2020.01.060_bib0028 article-title: Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys publication-title: Intermetallics doi: 10.1016/j.intermet.2012.03.005 – volume: 144 start-page: 31 year: 2018 ident: 10.1016/j.actamat.2020.01.060_bib0046 article-title: Effects of temperature on the irradiation responses of Al0.1CoCrFeNi high entropy alloy publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2017.09.025 – volume: 107 start-page: 318 issue: 2/3 year: 1982 ident: 10.1016/j.actamat.2020.01.060_bib0051 article-title: Defect aggregation in irradiated Ni3Al and NiAl publication-title: J. Nucl. Mater. doi: 10.1016/0022-3115(82)90431-7 – volume: 6 start-page: 299 issue: 5 year: 2004 ident: 10.1016/j.actamat.2020.01.060_bib0008 article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes publication-title: Adv. Eng. Mater. doi: 10.1002/adem.200300567 – volume: 7 start-page: 13564 year: 2016 ident: 10.1016/j.actamat.2020.01.060_bib0056 article-title: Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys publication-title: Nat. Commun. doi: 10.1038/ncomms13564 – volume: 367 start-page: 977 year: 2007 ident: 10.1016/j.actamat.2020.01.060_bib0052 article-title: Effect of irradiation temperature on microstructure, radiation hardening and embrittlement of pure copper and copper-based alloy publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2007.03.056 – volume: 6 start-page: 32146 year: 2016 ident: 10.1016/j.actamat.2020.01.060_bib0068 article-title: Precipitation behavior of AlxCoCrFeNi high entropy alloys under ion irradiation publication-title: Sci. Rep. doi: 10.1038/srep32146 – volume: 63 start-page: 929 issue: 9 year: 2010 ident: 10.1016/j.actamat.2020.01.060_bib0082 article-title: Microstructural stability of nanostructured Cu alloys during high-temperature irradiation publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2010.07.009 – volume: 488 start-page: 328 year: 2017 ident: 10.1016/j.actamat.2020.01.060_bib0067 article-title: The effect of injected interstitials on void formation in self-ion irradiated nickel containing concentrated solid solution alloys publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2017.02.026 – volume: 105 start-page: 381 year: 2016 ident: 10.1016/j.actamat.2020.01.060_bib0071 article-title: The effect of grain size on the annealing-induced phase transformation in an Al0.3CoCrFeNi high entropy alloy publication-title: Mater. Des. doi: 10.1016/j.matdes.2016.05.079 – volume: 113 start-page: 230 year: 2016 ident: 10.1016/j.actamat.2020.01.060_bib0024 article-title: Microstructural stability and mechanical behavior of FeNiMnCr high entropy alloy under ion irradiation publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.05.007 – volume: 6 start-page: 74 issue: 1/2 year: 2004 ident: 10.1016/j.actamat.2020.01.060_bib0013 article-title: Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating publication-title: Adv. Eng. Mater. doi: 10.1002/adem.200300507 – volume: 143 start-page: 154 year: 2018 ident: 10.1016/j.actamat.2020.01.060_bib0064 article-title: Opportunities and limitations for ion beams in radiation effects studies: bridging critical gaps between charged particle and neutron irradiations publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2017.06.041 – volume: 84 start-page: 2885 issue: 13 year: 2000 ident: 10.1016/j.actamat.2020.01.060_bib0073 article-title: Compositional patterning in systems driven by competing dynamics of different length scale publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.84.2885 – volume: 6 start-page: 19994 year: 2016 ident: 10.1016/j.actamat.2020.01.060_bib0020 article-title: Direct observation of defect range and evolution in ion-irradiated single crystalline ni and Ni binary alloys publication-title: Sci. Rep. doi: 10.1038/srep19994 – volume: 206 start-page: 266 issue: 2 year: 1993 ident: 10.1016/j.actamat.2020.01.060_bib0045 article-title: Dose dependence of the microstructural evolution in neutron-irradiated austenitic stainless steel publication-title: J. Nucl. Mater. doi: 10.1016/0022-3115(93)90128-L – volume: 70 issue: 9 year: 2004 ident: 10.1016/j.actamat.2020.01.060_bib0077 article-title: Nanoscale patterning of chemical order induced by displacement cascades in irradiated alloys. I. A kinetic Monte Carlo study publication-title: Phys. Rev. B – volume: 61 start-page: 4887 issue: 13 year: 2013 ident: 10.1016/j.actamat.2020.01.060_bib0084 article-title: Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys publication-title: Acta Mater. doi: 10.1016/j.actamat.2013.04.058 |
SSID | ssj0012740 |
Score | 2.625099 |
Snippet | An initially single phase high entropy alloy (HEA) Al0.3CoCrFeNi was irradiated by 3 MeV Au ions to a fluence of 6 × 1015 cm−2 (∼31 dpa at damage peak) at four... In this study, an initially single phase high entropy alloy (HEA) Al0.3CoCrFeNi was irradiated by 3 MeV Au ions to a fluence of 6 × 1015 cm–2 (~31 dpa at... |
SourceID | osti crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | High entropy alloy Irradiation effect MATERIALS SCIENCE Phase stability Structural damage |
Title | Structural damage and phase stability of Al0.3CoCrFeNi high entropy alloy under high temperature ion irradiation |
URI | https://dx.doi.org/10.1016/j.actamat.2020.01.060 https://www.osti.gov/servlets/purl/1648949 |
Volume | 188 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4NAEN409aIH4zNqtdmDVwoLu8AeG2JTNfZSm_RGFliUpgFCeunF3-4Mj1oTkyYegR3YzMzOg535lpBHVwllCSs1lEhsgzPcJLTdyGCOtoRvJ1rUaPtvM3e64C9LseyRoOuFwbLK1vY3Nr221u0ds-WmWWaZOWeOkIhHZYOeQmCOeTvnHmr56GtX5sEg62o6hYU0cPRPF4-5gilvFASGkCbaVo3eWSNV_umf-gUsuT3XMzkjp23MSMfNtM5JT-cX5GQPSfCSlPMaBxYxNGgCH_vQVOUJLT_BSVEIAOsS2C0tUjpeQwYdFEE10bOMIloxxR-8RbmluAe_pdhVVjUPELeqBV2mID-aVRVCGaAsr8hi8vQeTI32MAUj5lxuDEyDfSuyYwjAGJOxi4UPGtiiPOE5XmKBMLUSMSzhxNVc-lKnMtI8hpAFBM2ca9LPi1zfEJoyGGp5ylcumgDPT1whI9sTLIXwivm3hHcsDOMWaRwPvFiHXUnZKmw5HyLnQ4uFwPlbMtqRlQ3UxiECv5NP-EtnQnAHh0gHKE8kQ6zcGIuKgA5yR19yeff_Fw_IMV7hfhMT96QPwtcPELZsomGtl0NyNH5-nc6-Af0z6-o |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b9swED647pB2KPpI0DR9cGhHxSRNSuLQIXBrOE3ixTaQjaEkqnUQWIJrIPCSP9U_2DuJdlOggIECWUUdJX483UM8fgT4GDvtuOZl5HQhIyVokVDGWST6nutUFl43bPsX43g0U98u9WUHfm32wlBZZbD9rU1vrHW40gto9ur5vDcRfW2Ij0qinmJgzkNl5Zlf32Le9vPz6Rec5E9SDr9OB6MoHC0Q5UqZVURJYcozmWM4IoTJYyoD8NijS3TSTwqOQ_NO56jQReyVSY0vTeZVjg4chy362O8jeKzQXNCxCcd327oSgWleuzVZm4he78-2od41YrRyGIliXip5QxfaUGP-0yF2K_zG7_m64XN4FoJUdtLi8AI6fvESnt6jLnwF9aQhniXSDlbgw7575hYFq3-gV2QYcTY1t2tWlezkBlP2QTVYDv14zogemdEf5apeM1r0XzPaxrZsG4goK7A8M1QYNl8uiTuBlGcfZg8C8QF0F9XCvwZWCryVJy51MdmcJC1ibTKZaFFiPCfSQ1AbCG0eqM3phI0bu6lhu7YBeUvIWy4sIn8Ix1uxuuX22CWQbubH_qWkFv3PLtEjmk8SI3LenKqYUA6T1dQo8-b_O_4Ae6Ppxbk9Px2fHcETaqHFLqHfQhcVwb_DmGmVvW90lMHVQ38UvwFX1Sax |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+damage+and+phase+stability+of+Al0.3CoCrFeNi+high+entropy+alloy+under+high+temperature+ion+irradiation&rft.jtitle=Acta+materialia&rft.au=Yang%2C+Tengfei&rft.au=Guo%2C+Wei&rft.au=Poplawsky%2C+Jonathan+D.&rft.au=Li%2C+Dongyue&rft.date=2020-04-15&rft.pub=Elsevier&rft.issn=1359-6454&rft.eissn=1873-2453&rft.volume=188&rft_id=info:doi/10.1016%2Fj.actamat.2020.01.060&rft.externalDocID=1648949 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-6454&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-6454&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-6454&client=summon |