Regulation of Nrf2 by phosphorylation: Consequences for biological function and therapeutic implications
The transcription factor nuclear factor erythroid-derived 2-like 2 (NRF2) participates in the activation of the antioxidant cytoprotective pathway and other important physiological processes to maintain cellular homeostasis. The dysregulation of NRF2 activity plays a role in various diseases, such a...
Saved in:
Published in | Free radical biology & medicine Vol. 168; pp. 129 - 141 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
20.05.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The transcription factor nuclear factor erythroid-derived 2-like 2 (NRF2) participates in the activation of the antioxidant cytoprotective pathway and other important physiological processes to maintain cellular homeostasis. The dysregulation of NRF2 activity plays a role in various diseases, such as cardiovascular diseases, neurodegenerative diseases, and cancer. Thus, NRF2 activity is tightly regulated through multiple mechanisms, among which phosphorylation by kinases is critical in the posttranslational regulation of NRF2. For instance, PKC, casein kinase 2, and AMP-activated kinase positively, while GSK-3 negatively regulates NRF2 activity through phosphorylation of different sites. Here, we provide an overview of the phosphorylation regulation pattern of NRF2 and discuss the therapeutic potential of interventions targeting NRF2 phosphorylation.
[Display omitted]
•Protein kinases phosphorylate Nrf2 to modulate its stability and/or activity.•Phosphorylation regulation of NRF2 bridges NRF2 activity to a series of biological events.•Targeting NRF2 phosphorylation regulation shows therapeutic potential for multiple inflammation-related diseases. |
---|---|
AbstractList | The transcription factor nuclear factor erythroid-derived 2-like 2 (NRF2) participates in the activation of the antioxidant cytoprotective pathway and other important physiological processes to maintain cellular homeostasis. The dysregulation of NRF2 activity plays a role in various diseases, such as cardiovascular diseases, neurodegenerative diseases, and cancer. Thus, NRF2 activity is tightly regulated through multiple mechanisms, among which phosphorylation by kinases is critical in the posttranslational regulation of NRF2. For instance, PKC, casein kinase 2, and AMP-activated kinase positively, while GSK-3 negatively regulates NRF2 activity through phosphorylation of different sites. Here, we provide an overview of the phosphorylation regulation pattern of NRF2 and discuss the therapeutic potential of interventions targeting NRF2 phosphorylation.The transcription factor nuclear factor erythroid-derived 2-like 2 (NRF2) participates in the activation of the antioxidant cytoprotective pathway and other important physiological processes to maintain cellular homeostasis. The dysregulation of NRF2 activity plays a role in various diseases, such as cardiovascular diseases, neurodegenerative diseases, and cancer. Thus, NRF2 activity is tightly regulated through multiple mechanisms, among which phosphorylation by kinases is critical in the posttranslational regulation of NRF2. For instance, PKC, casein kinase 2, and AMP-activated kinase positively, while GSK-3 negatively regulates NRF2 activity through phosphorylation of different sites. Here, we provide an overview of the phosphorylation regulation pattern of NRF2 and discuss the therapeutic potential of interventions targeting NRF2 phosphorylation. The transcription factor nuclear factor erythroid-derived 2-like 2 (NRF2) participates in the activation of the antioxidant cytoprotective pathway and other important physiological processes to maintain cellular homeostasis. The dysregulation of NRF2 activity plays a role in various diseases, such as cardiovascular diseases, neurodegenerative diseases, and cancer. Thus, NRF2 activity is tightly regulated through multiple mechanisms, among which phosphorylation by kinases is critical in the posttranslational regulation of NRF2. For instance, PKC, casein kinase 2, and AMP-activated kinase positively, while GSK-3 negatively regulates NRF2 activity through phosphorylation of different sites. Here, we provide an overview of the phosphorylation regulation pattern of NRF2 and discuss the therapeutic potential of interventions targeting NRF2 phosphorylation. [Display omitted] •Protein kinases phosphorylate Nrf2 to modulate its stability and/or activity.•Phosphorylation regulation of NRF2 bridges NRF2 activity to a series of biological events.•Targeting NRF2 phosphorylation regulation shows therapeutic potential for multiple inflammation-related diseases. The transcription factor nuclear factor erythroid-derived 2-like 2 (NRF2) participates in the activation of the antioxidant cytoprotective pathway and other important physiological processes to maintain cellular homeostasis. The dysregulation of NRF2 activity plays a role in various diseases, such as cardiovascular diseases, neurodegenerative diseases, and cancer. Thus, NRF2 activity is tightly regulated through multiple mechanisms, among which phosphorylation by kinases is critical in the posttranslational regulation of NRF2. For instance, PKC, casein kinase 2, and AMP-activated kinase positively, while GSK-3 negatively regulates NRF2 activity through phosphorylation of different sites. Here, we provide an overview of the phosphorylation regulation pattern of NRF2 and discuss the therapeutic potential of interventions targeting NRF2 phosphorylation. |
Author | Jiang, Zheng-Yu Zhao, Jing-Long You, Qi-Dong Liu, Tian Lv, Yi-Fei |
Author_xml | – sequence: 1 givenname: Tian orcidid: 0000-0003-1546-7490 surname: Liu fullname: Liu, Tian organization: State Key Laboratory of Natural Medicines, And Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China – sequence: 2 givenname: Yi-Fei surname: Lv fullname: Lv, Yi-Fei organization: State Key Laboratory of Natural Medicines, And Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China – sequence: 3 givenname: Jing-Long orcidid: 0000-0001-9783-6493 surname: Zhao fullname: Zhao, Jing-Long organization: State Key Laboratory of Natural Medicines, And Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China – sequence: 4 givenname: Qi-Dong surname: You fullname: You, Qi-Dong email: youqd@163.com organization: State Key Laboratory of Natural Medicines, And Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China – sequence: 5 givenname: Zheng-Yu surname: Jiang fullname: Jiang, Zheng-Yu email: jiangzhengyucpu@163.com organization: State Key Laboratory of Natural Medicines, And Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33794311$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkV1LHDEUhoNYdLX-hRLwpjez5ms-0l7Joq0gLZT2OuTjxM0yOxmTGWH_vVlXC-2VcEIuznPec3jfM3Q8xAEQuqRkSQltrjZLnwCSdibELbglI4wuCS8ljtCCdi2vRC2bY7QgnaRV3Ql5is5y3hBCRM27E3TKeSsFp3SB1r_gYe71FOKAo8c_kmfY7PC4jrm8tDu0vuBVHDI8zjBYyNjHhMvyPj4Eq3vs58G-COjB4WldThthnoLFYTv2hdj38kf0wes-w8Xrf47-3N78Xn2v7n9-u1td31dWCDlVHAh3bU0pMO2ho66rHRWt095aw5k3EiQ0BgR1NWdgHJXGiq5tGCHacM7P0eeD7phiuTdPahuyhb7XA8Q5K1aTrpZENqygn17R2RQj1ZjCVqedenOnAF8PgE0x5wT-L0KJ2mehNuqfLNQ-C0V4KVGmr_-btmF6MWNKOvTv1Lg5aECx7ClAUtmGfQguJLCTcjG8S-cZC_SygA |
CitedBy_id | crossref_primary_10_1016_j_jff_2024_106212 crossref_primary_10_3390_antiox12030735 crossref_primary_10_1186_s10020_023_00684_9 crossref_primary_10_3390_antiox12071363 crossref_primary_10_1007_s12257_021_0248_1 crossref_primary_10_1016_j_ecoenv_2021_112905 crossref_primary_10_3390_antiox12061283 crossref_primary_10_1111_cns_14646 crossref_primary_10_3390_pharmaceutics17020268 crossref_primary_10_1002_advs_202410410 crossref_primary_10_3390_antiox12081564 crossref_primary_10_3390_ijms23041966 crossref_primary_10_1016_j_freeradbiomed_2024_07_041 crossref_primary_10_3390_cancers14194881 crossref_primary_10_1016_j_phytochem_2022_113429 crossref_primary_10_3390_ijms242015276 crossref_primary_10_3390_ijms26041693 crossref_primary_10_1016_j_cbi_2024_111312 crossref_primary_10_1152_ajpcell_00573_2023 crossref_primary_10_1007_s12672_023_00644_z crossref_primary_10_2147_JIR_S490418 crossref_primary_10_3390_antiox12020366 crossref_primary_10_3389_fphar_2022_1011184 crossref_primary_10_1124_dmd_124_001282 crossref_primary_10_3390_foods10112807 crossref_primary_10_3390_biom14040502 crossref_primary_10_3390_antiox11010008 crossref_primary_10_3390_antiox13111406 crossref_primary_10_1016_j_bbadis_2023_166752 crossref_primary_10_1016_j_jphs_2022_02_004 crossref_primary_10_1039_D2FO00179A crossref_primary_10_1038_s41598_025_94249_x crossref_primary_10_1007_s12035_022_03201_x crossref_primary_10_3390_antiox12091728 crossref_primary_10_3390_ijms22157963 crossref_primary_10_1167_iovs_63_12_25 crossref_primary_10_1002_biof_1907 crossref_primary_10_3390_ijms24010595 crossref_primary_10_3390_ijms23052846 crossref_primary_10_1007_s13402_024_00918_w crossref_primary_10_1111_jnc_15786 crossref_primary_10_1134_S0006297922120045 crossref_primary_10_1016_j_intimp_2022_109301 crossref_primary_10_1007_s10753_022_01638_9 crossref_primary_10_1007_s12640_023_00650_7 crossref_primary_10_1016_j_lfs_2023_122346 crossref_primary_10_3390_pharmaceutics14030534 crossref_primary_10_1002_hep_32384 crossref_primary_10_3390_antiox10060944 crossref_primary_10_1016_j_fct_2021_112790 crossref_primary_10_1016_j_nbd_2025_106824 crossref_primary_10_3390_antiox13020169 crossref_primary_10_1016_j_lfs_2022_121217 crossref_primary_10_3390_cells11182898 crossref_primary_10_1016_j_phymed_2024_156323 crossref_primary_10_1016_j_bmcl_2022_128766 crossref_primary_10_1016_j_carbpol_2023_120601 crossref_primary_10_1016_j_freeradbiomed_2025_01_046 crossref_primary_10_1016_j_freeradbiomed_2025_02_005 crossref_primary_10_1016_j_phymed_2024_156052 crossref_primary_10_1016_j_biocel_2024_106702 crossref_primary_10_26599_FSHW_2024_9250067 crossref_primary_10_3390_molecules27134145 crossref_primary_10_1002_mco2_127 crossref_primary_10_1002_biof_1814 crossref_primary_10_1016_j_freeradbiomed_2022_06_226 crossref_primary_10_1186_s12985_023_02208_7 crossref_primary_10_3389_fimmu_2025_1529991 crossref_primary_10_1016_j_ecoenv_2024_117114 crossref_primary_10_31083_j_fbl2906218 crossref_primary_10_1016_j_fct_2022_113496 crossref_primary_10_1080_02713683_2024_2352058 crossref_primary_10_1042_BST20220228 crossref_primary_10_3390_antiox10071030 crossref_primary_10_3390_antiox10081296 crossref_primary_10_3390_antiox13070778 crossref_primary_10_1002_bies_202300176 crossref_primary_10_3389_fonc_2023_1184079 crossref_primary_10_3390_molecules27238568 crossref_primary_10_1016_j_freeradbiomed_2022_07_014 crossref_primary_10_1093_procel_pwad048 crossref_primary_10_1007_s43188_022_00141_5 crossref_primary_10_3389_fphar_2023_1240433 crossref_primary_10_1002_ptr_7940 crossref_primary_10_4062_biomolther_2023_179 crossref_primary_10_3389_fcell_2023_1332049 crossref_primary_10_1080_14756366_2022_2106478 crossref_primary_10_1186_s13578_022_00951_y crossref_primary_10_1016_j_neuint_2024_105925 crossref_primary_10_3390_molecules28155862 crossref_primary_10_1073_pnas_2214038120 crossref_primary_10_4103_aja202361 crossref_primary_10_1080_10715762_2024_2358026 |
Cites_doi | 10.1016/j.freeradbiomed.2019.01.016 10.1073/pnas.91.21.9926 10.1021/acs.jmedchem.8b01121 10.1073/pnas.1913633117 10.1038/srep45701 10.1074/jbc.M110778200 10.1016/j.advenzreg.2006.01.007 10.1016/j.bcp.2020.114002 10.1101/gad.13.1.76 10.1073/pnas.1305687110 10.1016/j.redox.2020.101544 10.1074/jbc.M802537200 10.1038/nn2071 10.1126/science.278.5335.141 10.1126/scitranslmed.aad6095 10.1006/excr.2000.5130 10.1016/j.ccr.2012.05.016 10.1016/j.coph.2008.12.012 10.1155/2019/8592348 10.1016/j.freeradbiomed.2020.06.028 10.1016/j.freeradbiomed.2015.04.029 10.1074/jbc.M110.121913 10.1016/j.ejphar.2007.11.061 10.1158/0008-5472.CAN-18-2723 10.1016/S0021-9258(17)36880-1 10.1073/pnas.220418997 10.4239/wjd.v6.i1.175 10.1152/ajpheart.00749.2010 10.1016/j.freeradbiomed.2007.03.001 10.1074/jbc.M207293200 10.1023/A:1025737622815 10.1038/onc.2012.388 10.1128/MCB.00180-12 10.1146/annurev-pharmtox-010818-021856 10.1128/MCB.25.1.162-171.2005 10.1074/jbc.275.4.2322 10.3233/JAD-2006-9S335 10.1146/annurev.biochem.73.011303.074134 10.1016/S0304-3835(01)00695-4 10.1016/j.taap.2013.05.010 10.1038/416703a 10.1126/scisignal.3112re3 10.1097/SHK.0b013e318164e762 10.1016/j.freeradbiomed.2009.07.035 10.3389/fphar.2018.00497 10.1128/MCB.01639-08 10.1074/jbc.M411451200 10.3390/cancers12103023 10.1210/me.2003-0379 10.1101/gad.238246.114 10.1021/jm3013344 10.1016/S0021-9258(19)36594-9 10.1016/j.redox.2018.05.002 10.1124/mol.59.5.1147 10.1016/j.molmed.2004.09.003 10.1016/j.ccell.2020.06.001 10.1111/j.1462-5822.2008.01164.x 10.1016/j.jbior.2017.05.001 10.1128/MCB.00753-07 10.1016/j.bbamcr.2008.05.024 10.1016/j.freeradbiomed.2015.03.030 10.1016/j.cell.2019.06.003 10.1042/BJ20130863 10.1021/acschemneuro.0c00363 10.1016/j.taap.2014.07.011 10.4155/fmc-2019-0285 10.1016/j.jnutbio.2010.03.008 10.1016/j.molcel.2005.06.009 10.3390/biomedicines7040088 10.1016/j.cbi.2017.12.014 10.1096/fj.02-0473rev 10.1016/j.exer.2018.01.018 10.1091/mbc.E14-06-1057 10.1016/j.freeradbiomed.2019.11.011 10.1016/j.biopha.2018.09.002 10.1016/j.biochi.2013.05.004 10.1242/bio.20134853 10.1007/s00018-009-9150-2 10.1007/978-1-60761-795-2_1 10.1146/annurev-pharmtox-011112-140320 10.1089/ars.2017.7342 10.1042/BJ20151182 10.1016/j.taap.2016.12.005 10.1002/jbt.20212 10.1172/JCI78031 10.1128/MCB.25.24.10895-10906.2005 10.1016/j.molmed.2019.09.007 10.1016/S0092-8674(00)80371-2 10.1073/pnas.220247197 10.3945/jn.111.146779 10.1074/jbc.M206911200 10.1016/j.molcel.2006.10.009 10.1128/MCB.00118-16 10.1016/j.bcp.2018.01.026 10.1038/onc.2012.59 10.1074/jbc.M611336200 10.1101/gad.13.10.1211 10.1152/physrev.00023.2017 10.1016/j.molmed.2016.05.002 10.1038/sj.onc.1202653 10.1016/j.nbd.2015.07.001 10.1089/ars.2012.5116 10.1158/0008-5472.CAN-12-3386 10.1016/j.fsi.2019.02.033 10.1074/jbc.M116.773960 10.1002/ptr.6206 10.1038/cdd.2015.49 10.1016/j.tibs.2014.02.002 10.1182/blood.V94.9.3037 10.1111/j.1365-2443.2010.01473.x 10.1038/378785a0 10.1016/j.lfs.2020.117329 10.1074/jbc.M101198200 10.1128/MCB.22.9.2883-2892.2002 10.1016/j.redox.2020.101475 10.1074/jbc.M410601200 10.1074/jbc.M200903200 10.1016/j.cotox.2016.10.003 10.1128/MCB.00700-06 10.1042/bj20021469 10.1101/gad.1324805 10.1074/jbc.M404984200 10.1128/MCB.00785-15 10.1089/ars.2017.7358 10.1007/s11064-016-2018-6 10.1016/j.tem.2012.11.002 10.1016/j.cbi.2015.06.024 10.1002/hep.24419 10.2174/156652406775574569 10.1042/BST20150011 10.1074/jbc.M804597200 10.1016/j.bcp.2012.11.016 10.1128/MCB.01204-10 10.1242/jcs.057026 10.1021/acschembio.6b00651 10.1016/S0955-2863(02)00251-6 10.1126/science.3686012 10.1073/pnas.0812872106 10.1002/med.21396 10.1038/s41598-019-45539-8 10.1074/jbc.M004729200 10.1016/j.ejmech.2020.112532 10.1016/j.freeradbiomed.2015.07.147 10.1097/nen.0b013e31802d6da9 10.1016/j.redox.2019.101393 10.1007/s10495-006-0016-x 10.1046/j.1365-2443.2001.00469.x 10.1155/2020/8291413 10.1016/j.biocel.2005.09.018 10.1074/jbc.M307633200 10.1002/mnfr.201200536 10.1016/j.canlet.2019.09.016 10.1194/jlr.M009480 10.1006/bbrc.1997.6943 10.1016/j.bbamcr.2012.06.012 10.1007/s11011-014-9632-2 10.1074/jbc.274.35.24896 10.1126/scitranslmed.aba3613 10.1128/MCB.23.20.7198-7209.2003 10.1074/jbc.M513737200 10.3390/cancers12030569 10.1091/mbc.e15-09-0624 10.1167/iovs.09-3648 10.1016/j.biopha.2020.110676 10.1016/S0006-2952(02)01137-1 10.3892/ijmm.2013.1235 |
ContentType | Journal Article |
Copyright | 2021 Copyright © 2021. Published by Elsevier Inc. |
Copyright_xml | – notice: 2021 – notice: Copyright © 2021. Published by Elsevier Inc. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.freeradbiomed.2021.03.034 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Biology |
EISSN | 1873-4596 |
EndPage | 141 |
ExternalDocumentID | 33794311 10_1016_j_freeradbiomed_2021_03_034 S0891584921001945 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABBQC ABFNM ABFRF ABGSF ABJNI ABLJU ABLVK ABMAC ABMZM ABUDA ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGYEJ AIEXJ AIKHN AITUG AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AXJTR BKOJK BLXMC BNPGV C45 CS3 DOVZS DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LCYCR LX3 LZ2 M29 M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAE SCC SDF SDG SDP SES SPCBC SSH SSU SSZ T5K TEORI ~G- .GJ .HR 29H 53G AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACIEU ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRDE AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HEA HLW HMK HMO HVGLF HX~ HZ~ R2- RIG SBG SEW WUQ XPP ZGI NPM 7X8 |
ID | FETCH-LOGICAL-c449t-3e03d7511e2afe81d85d147dafccb32fb9e9e6be41d532ebd19bc4876200ab333 |
IEDL.DBID | .~1 |
ISSN | 0891-5849 1873-4596 |
IngestDate | Fri Jul 11 02:22:57 EDT 2025 Thu Apr 03 07:06:24 EDT 2025 Thu Apr 24 23:12:32 EDT 2025 Tue Jul 01 01:11:32 EDT 2025 Fri Feb 23 02:39:39 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Posttranslational modification Oxidative stress Phosphorylation Regulation Cellular protection NRF2 |
Language | English |
License | Copyright © 2021. Published by Elsevier Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c449t-3e03d7511e2afe81d85d147dafccb32fb9e9e6be41d532ebd19bc4876200ab333 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-9783-6493 0000-0003-1546-7490 |
PMID | 33794311 |
PQID | 2508590962 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2508590962 pubmed_primary_33794311 crossref_primary_10_1016_j_freeradbiomed_2021_03_034 crossref_citationtrail_10_1016_j_freeradbiomed_2021_03_034 elsevier_sciencedirect_doi_10_1016_j_freeradbiomed_2021_03_034 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-20 |
PublicationDateYYYYMMDD | 2021-05-20 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Free radical biology & medicine |
PublicationTitleAlternate | Free Radic Biol Med |
PublicationYear | 2021 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Vecchio, Feng, Sokol, Tillman, Sanduja, Reinhardt, Gupta (bib121) 2014 Ma, Vattem, Wek (bib126) 2002; 277 Zhao, Li, Li, Zheng, Liang, Geng, Li, Yuan (bib138) 2009; 106 Li, Jain, Chen, Yue, Hebbar, Zhou, Kong (bib89) 2005; 280 Plafker, Nguyen, Barneche, Mirza, Crawford, Plafker (bib91) 2010; 285 Tong, Padmanabhan, Kobayashi, Shang, Hirotsu, Yokoyama, Yamamoto (bib45) 2007; 27 Huang, Nguyen, Pickett (bib57) 2000 Ashabi, Khalaj, Khodagholi, Goudarzvand, Sarkaki (bib174) 2015; 30 Takashima (bib186) 2006; 9 Jimenez-Blasco, Santofimia-Castaño, Gonzalez, Almeida, Bolaños (bib135) 2015 Papadia, Soriano, Léveillé, Martel, Dakin, Hansen, Kaindl, Sifringer, Fowler, Stefovska, McKenzie, Craigon, Corriveau, Ghazal, Horsburgh, Yankner, Wyllie, Ikonomidou, Hardingham (bib140) 2008; 11 Inoue, Hisamoto, An, Oliveira, Nishida, Blackwell, Matsumoto (bib157) 2005; 19 Huo, Li, Huang, Lam, Xia, Tu, Chang, Hsu, Lee, Nie, Yamaguchi, Wang, Lang, Li, Chen, Mishra, Hung (bib192) 2014; 6 Do, Kim, Khanal, Choi, Kim, Jeong, Jeong (bib178) 2013; 271 Matzinger, Fischhuber, Poloske, Mechtler, Heiss (bib104) 2020; 29 Iniaghe, Krafft, Klebe, Omogbai, Zhang, Tang (bib181) 2015; 82 Vrba, Gažák, Kuzma, Papoušková, Vacek, Weiszenstein, Křen, Ulrichová (bib145) 2013 Dai, Yan, Wintergerst, Cai, Keller, Tan (bib20) 2020; 26 Meggio, Pinna (bib117) 2003 Loo (bib143) 2003 Tong, Kobayashi, Katsuoka, Yamamoto (bib46) 2006 Brewer, Diehl (bib128) 2000; 97 Zhang, Ohta, Maruyama, Hosoya, Nishikawa, Maher, Shibahara, Itoh, Yamamoto (bib109) 2006; 26 Barnes (bib163) 2020; 33 Hayes, Dinkova-Kostova (bib36) 2014; 39 Rada, Rojo, Chowdhry, McMahon, Hayes, Cuadrado (bib65) 2011; 31 Katoh, Itoh, Yoshida, Miyagishi, Fukamizu, Yamamoto (bib106) 2001; 6 Hayes, Ebisine, Sharma, Chowdhry (bib62) 2016 Ramsey, Glass, Montgomery, Lindl, Ritson, Chia, Hamilton, Chu, Jordan-Sciutto (bib28) 2007; 66 Kitagishi, Matsuda (bib81) 2013; 31 Mou, Wen, Li, Gao, Zhang, Jiang (bib162) 2020; 202 Ding, Xia, Liu, Yang, Lee, Xia, Bartholomeusz, Li, Pan, Li, Bargou, Qin, Lai, Tsai, Tsai, Hung (bib190) 2005 Ma (bib9) 2013; 53 Nioi, Nguyen, Sherratt, Pickett (bib41) 2005; 25 Bloom, Jaiswal (bib58) 2003; 278 Mo, Wang, Zhang, Numazawa, Tang, Tang, Han, Li, Yang, Wang, Wei, Xiao (bib97) 2014; 20 Ossareh-Nazari, Bachelerie, Dargemont (bib101) 1997; 278 Yamamoto, Kensler, Motohashi (bib3) 2018; 98 Latres, Chiaur, Pagano (bib67) 1999; 18 Cuadrado (bib71) 2015; 88 Tsai, Lin, Wang (bib148) 2011 Kim, Kim, Jung, Yang, Park, Jun (bib60) 2017 Lochhead, Kinstrie, Sibbet, Rawjee, Morrice, Cleghon (bib76) 2006; 24 Menegon, Columbano, Giordano (bib15) 2016; 22 Dodson, de la Vega, Cholanians, Schmidlin, Chapman, Zhang (bib160) 2019; 59 Gr, D (bib94) 2019 Wang, Liu, Wu, Qu, Huang, Zhang, Zhou, Gerace, Chen (bib102) 2009; 20 Wu, Li, Cui, Wu, Hong, Li, Wu, Jie, Wang, Li (bib176) 2018; 9 Shi, Hao, Zhang, Wei, Lu, Wang, Ji (bib180) 2018; 150 Cross, Alessi, Cohen, Andjelkovich, Hemmings (bib78) 1995; 6559 Singh, Venkannagari, Oh, Zhang, Rohde, Liu, Nimmagadda, Sudini, Brimacombe, Gajghate, Ma, Wang, Xu, Shahane, Xia, Woo, Mensah, Wang, Ferrer, Gabrielson, Li, Rastinejad, Shen, Boxer, Biswal (bib170) 2016; 11 Furukawa, Xiong (bib47) 2005; 1 Tsuchiya, Misaka, Nitta, Tsuchiya (bib87) 2015; 6 Horike, Sakoda, Kushiyama, Ono, Fujishiro, Kamata, Nishiyama, Uchijima, Kurihara, Kurihara, Asano (bib103) 2008 Cuadrado (bib85) 2015; 88 Jain, Jaiswal (bib84) 2007; 282 Alam, Wicks, Stewart, Gong, Touchard, Otterbein, Choi, Burow, Tou (bib147) 2000; 275 Sarcinelli, Dragic, Piecyk, Barbet, Duret, Barthelaix, Ferraro-Peyret, Fauvre, Renno, Chaveroux, Manie (bib134) 2020; 12 House, Kemp (bib52) 1987 Kannan, Solovieva, Blank (bib88) 2012; 1823 Sun, Yu, Huangpu, Yao (bib184) 2019; 109 Salazar, Rojo, Velasco, de Sagarra, Cuadrado (bib64) 2006; 281 Plafker, Plafker (bib92) 2015; 26 Apopa, He, Ma (bib112) 2008 Hammad, Namani, Elshaer, Wang, Tang (bib173) 2019; 467 Tian, Lu, Guo (bib14) 2018; 280 Fernandez, Bode, Koromilas, Diehl, Krukovets, Snider, Hatzoglou (bib123) 2002; 277 Rada, Rojo, Evrard-Todeschi, Innamorato, Cotte, Jaworski, Tobon-Velasco, Devijver, Garcia-Mayoral, Van Leuven, Hayes, Bertho, Cuadrado (bib66) 2012; 32 St-Denis, Litchfield (bib116) 2009; 66 Afonyushkin, Oskolkova, Binder, Bochkov (bib118) 2011; 52 Ruvolo (bib63) 2017 Li, Yu, Liu, Kim, Blank, Li, Kong (bib90) 2008 K, Da, C (bib113) 2002 Johnson, Johnson (bib29) 2015; 88 Dey, Sayers, Verginadis, Lehman, Cheng, Cerniglia, Tuttle, Feldman, Zhang, Fuchs, Diehl, Koumenis (bib133) 2015; 125 Katsuoka, Motohashi, Engel, Yamamoto (bib12) 2005 Ortega-Molina, Serrano (bib79) 2013 Noh, Ismail (bib139) 2020; 27 Mitsuishi, Taguchi, Kawatani, Shibata, Nukiwa, Aburatani, Yamamoto, Motohashi (bib17) 2012; 22 Pi, Bai, Reece, Williams, Liu, Freeman, Fahl, Shugar, Liu, Qu (bib39) 2007 Xu, Yuan, Pan, Shen, Kim, Yu, Khor, Li, Ma, Kong (bib155) 2006 Kwak, Itoh, Yamamoto, Kensler (bib38) 2002; 22 Panieri, Saso (bib165) 2019; 2019 Kaufman (bib122) 1999; 13 Xue, Zhou, Qiu (bib30) 2020; 131 Holmstrom, Baird, Zhang, Hargreaves, Chalasani, Land, Stanyer, Yamamoto, Dinkova-Kostova, Abramov (bib16) 2013; 2 Pitha-Rowe, Liby, Royce, Sporn (bib82) 2009; 50 Wang, Wang, Zhang, Gao, Huang, Zhou, Zhou, Li (bib53) 2016; 27 Owuor, Kong (bib142) 2002 Keum, Owuor, Kim, Hu, Kong (bib154) 2003 Gameiro, Michalska, Tenti, Cores, Buendia, Rojo, Georgakopoulos, Hernández-Guijo, Teresa Ramos, Wells, López, Cuadrado, Menéndez, León (bib188) 2017; 7 Baird, Lleres, Swift, Dinkova-Kostova (bib44) 2013; 38 Xu, Yuan, Luo, Zhao, Xiao (bib183) 2020; 2020 Di Martino, Pruccoli, Bisi, Gobbi, Rampa, Martinez, Pérez, Martinez-Gonzalez, Paglione, Di Schiavi, Seghetti, Tarozzi, Belluti (bib187) 2020; 11 Y. Tian, Y. Su, Q. Ye, L. Chen, F. Yuan, Z. Wang, Silencing of TXNIP Alleviated Oxidative Stress Injury by Regulating MAPK–Nrf2 Axis in Ischemic Stroke, Neurochemical Research. Huang, Liu, Zhou, Sun, Yang, Zhang, Tang (bib177) 2020; 146 Wolfson, May, Thorpe, Jandhyala, Paton, Paton (bib124) 2008; 10 (bib54) 2018 Kocanova, Buytaert, Matroule, Piette, Golab, Witte, Agostinis (bib146) 2007 Schröder, Kaufman (bib125) 2005 Kang, Nam, Yoo, Keum (bib166) 2020; 177 Keleku-Lukwete, Suzuki, Yamamoto (bib159) 2018; 29 Zheng, Schulman, Song, Miller, Jeffrey, Wang, Chu, Koepp, Elledge, Pagano, Conaway, Conaway, Harper, Pavletich (bib68) 2002; 416 Lu, Ji, Jiang, You (bib161) 2016; 36 Marinelli, Mazzotta, Scalera, Terrenato, Sperati, D'Ambrosio, Pallocca, Corleone, Krasniqi, Pizzuti, Barba, Carpano, Vici, Filetti, Giusti, Vecchione, Occhipinti, Gelibter, Botticelli, De Nicola, Ciuffreda, Goeman, Gallo, Visca, Pescarmona, Fanciulli, De Maria, Marchetti, Ciliberto, Maugeri-Saccà (bib168) 2020; 31 Taguchi, Motohashi, Yamamoto (bib49) 2011; 16 Huang, Nguyen, Pickett (bib50) 2002 Favreau, Pickett (bib56) 1993 Lignitto, LeBoeuf, Homer, Jiang, Askenazi, Karakousi, Pass, Bhutkar, Tsirigos, Ueberheide, Sayin, Papagiannakopoulos, Pagano (bib167) 2019; 178 Cloer, Goldfarb, Schrank, Weissman, Major (bib164) 2019; 79 (bib149) 2006 Wang, Liu, Geng, Gao, Wu, Hai, Li, Li, Luo, Hayes, Wang, Tang (bib40) 2013; 73 Hayes (bib130) 2001 Park, Kim, Ko, Kim, Park, Kim, Seo, Li, Lee (bib172) 2018 Simpson, Parsons (bib80) 2001; 264 Levin, Peng, Baker, Villeval, Lecine, Burstein, Shivdasani (bib4) 1999; 94 Motohashi, Yamamoto (bib2) 2004; 10 Moi, Chan, Asunis, Cao, Kan (bib10) 1994; 91 Ren, Duan, Cheng, Shen, Gao, Bai, Liu, Busuttil, Kupiec-Weglinski, Zhai (bib75) 2011; 54 Yu, Liu, Zhou, Ruiz-Rodado, Larion, Xu, Yang (bib171) 2020; 117 (bib59) 2019 Ohtsuji, Katsuoka, Kobayashi, Aburatani, Hayes, Yamamoto (bib5) 2008; 283 Lu, Sun, Liu, Lu, Zhu, Lan, Mi, Dang, Li, Zhan, Tan, Pi, Xiong, Zhang, Chen (bib73) 2020; 12 Zhai, Lin, Zhang, Hu, Xu, Li, Liu, Ma, Tian, Yao (bib179) 2013; 57 Varì, D'Archivio, Filesi, Carotenuto, Scazzocchio, Santangelo, Giovannini, Masella (bib156) 2011 Zhang, Xiang (bib7) 2016; 473 Sekine, Okazaki, Ota, Shima, Katoh, Suzuki, Igarashi, Ito, Motohashi, Yamamoto (bib107) 2016; 36 Tonelli, Chio, Tuveson (bib11) 2018; 29 Ludtmann, Angelova, Zhang, Abramov, Dinkova-Kostova (bib18) 2014; 457 Kobayashi, Yamamoto (bib42) 2006; 46 Muri, Kopf (bib21) 2020 Kim, Yu, Chen, Kong (bib108) 2013; 32 Liu, Peyton, Shebib, Wang, Korthuis, Durante (bib99) 2011; 300 Hayes, Chowdhry, Dinkova-Kostova, Sutherland (bib69) 2015; 43 Choi, Lee, Jegal, Cho, Kim, Kim (bib152) 2016 Alam, Okazaki, Nguyen, Ota, Kitamura, Murakami, Shima, Igarashi, Sekine, Motohashi (bib110) 2017; 292 Ma, Lan, He, Ye, Li, Zhai, Chen, Huang, Fu, Sun, Wang, Ye, Li, Gao, Yan, Li (bib132) 2018; 169 Kavitha, Thiyagarajan, Rathna Nandhini, Mishra, Nagini (bib19) 2013; 95 Cullinan, Zhang, Hannink, Arvisais, Kaufman, Diehl (bib119) 2003; 23 Fujiki, Ando, Murakami, Isobe, Mori, Susa, Nomura, Sohara, Rai, Uchida (bib182) 2019; 9 Schroder, Kaufman (bib127) 2006; 6 Sun, Chin, Zhang (bib105) 2009; 29 Keshet, Seger (bib141) 2010 Jiang, Lu, You (bib169) 2019; 62 Howden (bib25) 2013 Chowdhry, Zhang, McMahon, Sutherland, Cuadrado, Hayes (bib70) 2013; 32 Chenais, Derjuga, Massrieh, Red-Horse, Bellingard, Fisher, Blank (bib8) 2005; 19 Vashi, Patel (bib23) 2020 S, E, Pj, A (bib191) 2006 Schmidlin, Dodson, Madhavan, Zhang (bib22) 2019; 134 Wu, Zhao, Gao, Tan, Yagishita, Nakajima, Wong, Chapman, Fang, Zhang (bib111) 2014; 28 Joo, Kim, Lee, Kim, Koo, Kim (bib93) 2016 Dang, Qiu, Song, Liu (bib61) 2019; 87 Wang, Liu, Long, Huang, Zhang, Zhang, Zheng, Liao, Wang, Liao, Li, Tang, Tong, Wang, Fang, Rojo de la Vega, Ouyang, Zhang, Yu, Zheng (bib32) 2016; 8 Ashrafizadeh, Ahmadi, Samarghandian, Mohammadinejad, Yaribeygi, Sathyapalan, Sahebkar (bib35) 2020; 244 Sankaranarayanan, Jaiswal (bib6) 2004; 279 Sahin, Hawasli, Greene, Molkentin, Bibb (bib136) 2008 (bib51) 2019 Yu, Mandlekar, Lei, Fahl, Tan, Kong (bib150) 2000 Kaspar, Niture, Jaiswal (bib48) 2009; 47 Thornton, Pedraza-Alva, Deng, Wood, Aronshtam, Clements, Sabio, Davis, Matthews, Doble, Rincon (bib189) 2008 Kang, Cho, Lee, Kim (bib77) 2001; 59 Zimmermann, Baldinger, Mayerhofer, Atanasov, Dirsch, Heiss (bib98) 2015; 88 He, Gong, Hu, Stewart, Choi, Choi, Alam (bib131) 2001; 276 Cullinan, Diehl (bib129) 2006; 38 Collino, Thiemermann, Mastroc Holmstrom (10.1016/j.freeradbiomed.2021.03.034_bib16) 2013; 2 Chowdhry (10.1016/j.freeradbiomed.2021.03.034_bib70) 2013; 32 Ding (10.1016/j.freeradbiomed.2021.03.034_bib190) 2005 Afonyushkin (10.1016/j.freeradbiomed.2021.03.034_bib118) 2011; 52 Menegon (10.1016/j.freeradbiomed.2021.03.034_bib15) 2016; 22 Thornton (10.1016/j.freeradbiomed.2021.03.034_bib189) 2008 Cuadrado (10.1016/j.freeradbiomed.2021.03.034_bib71) 2015; 88 Collino (10.1016/j.freeradbiomed.2021.03.034_bib72) 2008; 30 Alam (10.1016/j.freeradbiomed.2021.03.034_bib110) 2017; 292 Choi (10.1016/j.freeradbiomed.2021.03.034_bib152) 2016 Kitagishi (10.1016/j.freeradbiomed.2021.03.034_bib81) 2013; 31 Cullinan (10.1016/j.freeradbiomed.2021.03.034_bib119) 2003; 23 Hammad (10.1016/j.freeradbiomed.2021.03.034_bib173) 2019; 467 Kaufman (10.1016/j.freeradbiomed.2021.03.034_bib122) 1999; 13 Salaroglio (10.1016/j.freeradbiomed.2021.03.034_bib120) 2017 Cuadrado (10.1016/j.freeradbiomed.2021.03.034_bib85) 2015; 88 Sun (10.1016/j.freeradbiomed.2021.03.034_bib158) 2009 Kang (10.1016/j.freeradbiomed.2021.03.034_bib166) 2020; 177 Vrba (10.1016/j.freeradbiomed.2021.03.034_bib145) 2013 Katoh (10.1016/j.freeradbiomed.2021.03.034_bib106) 2001; 6 Hayes (10.1016/j.freeradbiomed.2021.03.034_bib62) 2016 Ma (10.1016/j.freeradbiomed.2021.03.034_bib132) 2018; 169 Hayes (10.1016/j.freeradbiomed.2021.03.034_bib69) 2015; 43 Vecchio (10.1016/j.freeradbiomed.2021.03.034_bib121) 2014 Pitha-Rowe (10.1016/j.freeradbiomed.2021.03.034_bib82) 2009; 50 Xue (10.1016/j.freeradbiomed.2021.03.034_bib30) 2020; 131 Kwak (10.1016/j.freeradbiomed.2021.03.034_bib38) 2002; 22 Huang (10.1016/j.freeradbiomed.2021.03.034_bib57) 2000 Kannan (10.1016/j.freeradbiomed.2021.03.034_bib88) 2012; 1823 Tong (10.1016/j.freeradbiomed.2021.03.034_bib46) 2006 Apopa (10.1016/j.freeradbiomed.2021.03.034_bib112) 2008 Nioi (10.1016/j.freeradbiomed.2021.03.034_bib41) 2005; 25 Xu (10.1016/j.freeradbiomed.2021.03.034_bib183) 2020; 2020 Pi (10.1016/j.freeradbiomed.2021.03.034_bib39) 2007 Ma (10.1016/j.freeradbiomed.2021.03.034_bib9) 2013; 53 Kavitha (10.1016/j.freeradbiomed.2021.03.034_bib19) 2013; 95 Ramsey (10.1016/j.freeradbiomed.2021.03.034_bib28) 2007; 66 Hayes (10.1016/j.freeradbiomed.2021.03.034_bib33) 2020; 38 Gameiro (10.1016/j.freeradbiomed.2021.03.034_bib188) 2017; 7 Bloom (10.1016/j.freeradbiomed.2021.03.034_bib58) 2003; 278 Noh (10.1016/j.freeradbiomed.2021.03.034_bib139) 2020; 27 Park (10.1016/j.freeradbiomed.2021.03.034_bib172) 2018 Dai (10.1016/j.freeradbiomed.2021.03.034_bib20) 2020; 26 Ashrafizadeh (10.1016/j.freeradbiomed.2021.03.034_bib35) 2020; 244 Hayes (10.1016/j.freeradbiomed.2021.03.034_bib36) 2014; 39 Kim (10.1016/j.freeradbiomed.2021.03.034_bib108) 2013; 32 Liang (10.1016/j.freeradbiomed.2021.03.034_bib185) 2019; 33 He (10.1016/j.freeradbiomed.2021.03.034_bib131) 2001; 276 Wolfson (10.1016/j.freeradbiomed.2021.03.034_bib124) 2008; 10 Mo (10.1016/j.freeradbiomed.2021.03.034_bib97) 2014; 20 Jimenez-Blasco (10.1016/j.freeradbiomed.2021.03.034_bib135) 2015 Li (10.1016/j.freeradbiomed.2021.03.034_bib90) 2008 Itoh (10.1016/j.freeradbiomed.2021.03.034_bib86) 1997 Gr (10.1016/j.freeradbiomed.2021.03.034_bib94) 2019 Marinelli (10.1016/j.freeradbiomed.2021.03.034_bib168) 2020; 31 Mann (10.1016/j.freeradbiomed.2021.03.034_bib26) 2009; 9 Takashima (10.1016/j.freeradbiomed.2021.03.034_bib186) 2006; 9 Muri (10.1016/j.freeradbiomed.2021.03.034_bib21) 2020 Hayes (10.1016/j.freeradbiomed.2021.03.034_bib130) 2001 Yamamoto (10.1016/j.freeradbiomed.2021.03.034_bib3) 2018; 98 Johnson (10.1016/j.freeradbiomed.2021.03.034_bib29) 2015; 88 (10.1016/j.freeradbiomed.2021.03.034_bib51) 2019 Cullinan (10.1016/j.freeradbiomed.2021.03.034_bib129) 2006; 38 Owuor (10.1016/j.freeradbiomed.2021.03.034_bib142) 2002 Yu (10.1016/j.freeradbiomed.2021.03.034_bib171) 2020; 117 Wang (10.1016/j.freeradbiomed.2021.03.034_bib32) 2016; 8 Papadia (10.1016/j.freeradbiomed.2021.03.034_bib140) 2008; 11 Zheng (10.1016/j.freeradbiomed.2021.03.034_bib43) 2020; 34 Kocanova (10.1016/j.freeradbiomed.2021.03.034_bib146) 2007 Chenais (10.1016/j.freeradbiomed.2021.03.034_bib8) 2005; 19 Mitsuishi (10.1016/j.freeradbiomed.2021.03.034_bib17) 2012; 22 Rada (10.1016/j.freeradbiomed.2021.03.034_bib65) 2011; 31 Dey (10.1016/j.freeradbiomed.2021.03.034_bib133) 2015; 125 Tapia (10.1016/j.freeradbiomed.2021.03.034_bib114) 2006 Jiang (10.1016/j.freeradbiomed.2021.03.034_bib169) 2019; 62 Moi (10.1016/j.freeradbiomed.2021.03.034_bib10) 1994; 91 Nguyen (10.1016/j.freeradbiomed.2021.03.034_bib55) 1994 Yu (10.1016/j.freeradbiomed.2021.03.034_bib150) 2000 Wang (10.1016/j.freeradbiomed.2021.03.034_bib102) 2009; 20 Lee (10.1016/j.freeradbiomed.2021.03.034_bib96) 2014; 281 Jain (10.1016/j.freeradbiomed.2021.03.034_bib84) 2007; 282 Keshet (10.1016/j.freeradbiomed.2021.03.034_bib141) 2010 Schroder (10.1016/j.freeradbiomed.2021.03.034_bib127) 2006; 6 Keum (10.1016/j.freeradbiomed.2021.03.034_bib154) 2003 Mou (10.1016/j.freeradbiomed.2021.03.034_bib162) 2020; 202 Ludtmann (10.1016/j.freeradbiomed.2021.03.034_bib18) 2014; 457 Fernandez (10.1016/j.freeradbiomed.2021.03.034_bib123) 2002; 277 Motohashi (10.1016/j.freeradbiomed.2021.03.034_bib2) 2004; 10 Raghunath (10.1016/j.freeradbiomed.2021.03.034_bib13) 2018; 17 Favreau (10.1016/j.freeradbiomed.2021.03.034_bib56) 1993 St-Denis (10.1016/j.freeradbiomed.2021.03.034_bib116) 2009; 66 Brewer (10.1016/j.freeradbiomed.2021.03.034_bib128) 2000; 97 10.1016/j.freeradbiomed.2021.03.034_bib144 Lin (10.1016/j.freeradbiomed.2021.03.034_bib83) 2020; 12 Inoue (10.1016/j.freeradbiomed.2021.03.034_bib157) 2005; 19 Lu (10.1016/j.freeradbiomed.2021.03.034_bib161) 2016; 36 Di Martino (10.1016/j.freeradbiomed.2021.03.034_bib187) 2020; 11 Ashabi (10.1016/j.freeradbiomed.2021.03.034_bib174) 2015; 30 Itoh (10.1016/j.freeradbiomed.2021.03.034_bib34) 1999; 13 Tsuchiya (10.1016/j.freeradbiomed.2021.03.034_bib87) 2015; 6 Schmidlin (10.1016/j.freeradbiomed.2021.03.034_bib22) 2019; 134 Roufayel (10.1016/j.freeradbiomed.2021.03.034_bib137) 2019; 7 Zhai (10.1016/j.freeradbiomed.2021.03.034_bib179) 2013; 57 Ruvolo (10.1016/j.freeradbiomed.2021.03.034_bib63) 2017 Loo (10.1016/j.freeradbiomed.2021.03.034_bib143) 2003 Huang (10.1016/j.freeradbiomed.2021.03.034_bib50) 2002 Zheng (10.1016/j.freeradbiomed.2021.03.034_bib68) 2002; 416 Sarcinelli (10.1016/j.freeradbiomed.2021.03.034_bib134) 2020; 12 Park (10.1016/j.freeradbiomed.2021.03.034_bib175) 2016; 41 Do (10.1016/j.freeradbiomed.2021.03.034_bib178) 2013; 271 Varì (10.1016/j.freeradbiomed.2021.03.034_bib156) 2011 Howden (10.1016/j.freeradbiomed.2021.03.034_bib25) 2013 Qu (10.1016/j.freeradbiomed.2021.03.034_bib27) 2020; 159 Lu (10.1016/j.freeradbiomed.2021.03.034_bib73) 2020; 12 Dodson (10.1016/j.freeradbiomed.2021.03.034_bib160) 2019; 59 Bryan (10.1016/j.freeradbiomed.2021.03.034_bib37) 2013; 85 (10.1016/j.freeradbiomed.2021.03.034_bib59) 2019 Kim (10.1016/j.freeradbiomed.2021.03.034_bib60) 2017 Li (10.1016/j.freeradbiomed.2021.03.034_bib89) 2005; 280 Cross (10.1016/j.freeradbiomed.2021.03.034_bib78) 1995; 6559 Sahin (10.1016/j.freeradbiomed.2021.03.034_bib136) 2008 Katsuoka (10.1016/j.freeradbiomed.2021.03.034_bib12) 2005 Liu (10.1016/j.freeradbiomed.2021.03.034_bib99) 2011; 300 S (10.1016/j.freeradbiomed.2021.03.034_bib191) 2006 Rada (10.1016/j.freeradbiomed.2021.03.034_bib66) 2012; 32 Vashi (10.1016/j.freeradbiomed.2021.03.034_bib23) 2020 Fujiki (10.1016/j.freeradbiomed.2021.03.034_bib182) 2019; 9 Ortega-Molina (10.1016/j.freeradbiomed.2021.03.034_bib79) 2013 Wu (10.1016/j.freeradbiomed.2021.03.034_bib111) 2014; 28 Ma (10.1016/j.freeradbiomed.2021.03.034_bib126) 2002; 277 Tian (10.1016/j.freeradbiomed.2021.03.034_bib14) 2018; 280 House (10.1016/j.freeradbiomed.2021.03.034_bib52) 1987 Litchfield (10.1016/j.freeradbiomed.2021.03.034_bib115) 2003 Dg (10.1016/j.freeradbiomed.2021.03.034_bib95) 2011 Satta (10.1016/j.freeradbiomed.2021.03.034_bib24) 2017 Zhang (10.1016/j.freeradbiomed.2021.03.034_bib7) 2016; 473 DeBlasi (10.1016/j.freeradbiomed.2021.03.034_bib31) 2020; 12 Tsai (10.1016/j.freeradbiomed.2021.03.034_bib148) 2011 Sankaranarayanan (10.1016/j.freeradbiomed.2021.03.034_bib6) 2004; 279 Plafker (10.1016/j.freeradbiomed.2021.03.034_bib91) 2010; 285 Huo (10.1016/j.freeradbiomed.2021.03.034_bib192) 2014; 6 Dang (10.1016/j.freeradbiomed.2021.03.034_bib61) 2019; 87 Wu (10.1016/j.freeradbiomed.2021.03.034_bib176) 2018; 9 Schröder (10.1016/j.freeradbiomed.2021.03.034_bib125) 2005 Kaspar (10.1016/j.freeradbiomed.2021.03.034_bib48) 2009; 47 Alam (10.1016/j.freeradbiomed.2021.03.034_bib147) 2000; 275 Wang (10.1016/j.freeradbiomed.2021.03.034_bib40) 2013; 73 Singh (10.1016/j.freeradbiomed.2021.03.034_bib170) 2016; 11 Shi (10.1016/j.freeradbiomed.2021.03.034_bib180) 2018; 150 Nguyen (10.1016/j.freeradbiomed.2021.03.034_bib151) 2003; 278 Rb (10.1016/j.freeradbiomed.2021.03.034_bib153) 2018 Markuns (10.1016/j.freeradbiomed.2021.03.034_bib74) 1999; 274 Baird (10.1016/j.freeradbiomed.2021.03.034_bib44) 2013; 38 Taguchi (10.1016/j.freeradbiomed.2021.03.034_bib49) 2011; 16 (10.1016/j.freeradbiomed.2021.03.034_bib54) 2018 Joo (10.1016/j.freeradbiomed.2021.03.034_bib93) 2016 Huang (10.1016/j.freeradbiomed.2021.03.034_bib177) 2020; 146 Matzinger (10.1016/j.freeradbiomed.2021.03.034_bib104) 2020; 29 Tong (10.1016/j.freeradbiomed.2021.03.034_bib45) 2007; 27 Furukawa (10.1016/j.freeradbiomed.2021.03.034_bib47) 2005; 1 Latres (10.1016/j.freeradbiomed.2021.03.034_bib67) 1999; 18 Horike (10.1016/j.freeradbiomed.2021.03.034_bib103) 2008 Sekine (10.1016/j.freeradbiomed.2021.03.034_bib107) 2016; 36 Ohtsuji (10.1016/j.freeradbiomed.2021.03.034_bib5) 2008; 283 Kobayashi (10.1016/j.freeradbiomed.2021.03.034_bib42) 2006; 46 Zhao (10.1016/j.freeradbiomed.2021.03.034_bib138) 2009; 106 Simpson (10.1016/j.freeradbiomed.2021.03.034_bib80) 2001; 264 Meggio (10.1016/j.freeradbiomed.2021.03.034_bib117) 2003 Lochhead (10.1016/j.freeradbiomed.2021.03.034_bib76) 2006; 24 Lignitto (10.1016/j.freeradbiomed.2021.03.034_bib167) 2019; 178 K (10.1016/j.freeradbiomed.2021.03.034_bib113) 2002 (10.1016/j.freeradbiomed.2021.03.034_bib149) 2006 Plafker (10.1016/j.freeradbiomed.2021.03.034_bib92) 2015; 26 Tonelli (10.1016/j.freeradbi |
References_xml | – volume: 62 start-page: 3840 year: 2019 end-page: 3856 ident: bib169 article-title: Nuclear factor erythroid 2-related factor 2 (Nrf2) inhibition: an emerging strategy in cancer therapy publication-title: J. Med. Chem. – start-page: 1351 year: 2003 end-page: 1356 ident: bib154 article-title: Involvement of Nrf2 and JNK1 in the activation of antioxidant responsive element (ARE) by chemopreventive agent phenethyl isothiocyanate (PEITC) publication-title: Pharmaceut. Res. – year: 2018 ident: bib172 article-title: Resistance to gefitinib and cross-resistance to irreversible EGFR-TKIs mediated by disruption of the Keap1-Nrf2 pathway in human lung cancer cells publication-title: Faseb. J. – start-page: 2322 year: 2000 end-page: 2327 ident: bib150 article-title: p38 mitogen-activated protein kinase negatively regulates the induction of phase II drug-metabolizing enzymes that detoxify carcinogens publication-title: J. Biol. Chem. – volume: 27 start-page: 410 year: 2016 end-page: 420 ident: bib53 article-title: Sequential posttranslational modifications regulate PKC degradation publication-title: Mol. Biol. Cell – volume: 38 start-page: 15259 year: 2013 end-page: 15264 ident: bib44 article-title: Regulatory flexibility in the Nrf2-mediated stress response is conferred by conformational cycling of the Keap1-Nrf2 protein complex publication-title: Proc. Natl. Acad. Sci. U. S. A – start-page: 270 year: 2008 end-page: 275 ident: bib136 article-title: Negative regulation of cyclin-dependent kinase 5 targets by protein kinase C publication-title: Eur. J. Pharmacol. – year: 1994 ident: bib55 article-title: Transcriptional regulation of a rat liver glutathione S-transferase Ya subunit gene. Analysis of the antioxidant response element and its activation by the phorbol ester 12-O-tetradecanoylphorbol-13-acetate publication-title: J. Biol. Chem. – volume: 6 start-page: 175 year: 2015 end-page: 183 ident: bib87 article-title: Transcriptional factors, Mafs and their biological roles publication-title: World J. Diabetes – volume: 271 start-page: 229 year: 2013 end-page: 238 ident: bib178 article-title: Metformin inhibits heme oxygenase-1 expression in cancer cells through inactivation of Raf-ERK-Nrf2 signaling and AMPK-independent pathways publication-title: Toxicol. Appl. Pharmacol. – volume: 52 start-page: 98 year: 2011 end-page: 103 ident: bib118 article-title: Involvement of CK2 in activation of electrophilic genes in endothelial cells by oxidized phospholipids publication-title: J. Lipid Res. – volume: 7 year: 2019 ident: bib137 article-title: CDK5: Key regulator of apoptosis and cell survival publication-title: Biomedicines – volume: 32 start-page: 3765 year: 2013 end-page: 3781 ident: bib70 article-title: Nrf2 is controlled by two distinct β-TrCP recognition motifs in its Neh6 domain, one of which can be modulated by GSK-3 activity publication-title: Oncogene – volume: 57 start-page: 249 year: 2013 end-page: 259 ident: bib179 article-title: Dietary flavonoid genistein induces Nrf2 and phase II detoxification gene expression via ERKs and PKC pathways and protects against oxidative stress in Caco-2 cells publication-title: Mol. Nutr. Food Res. – volume: 6559 start-page: 785 year: 1995 end-page: 789 ident: bib78 article-title: Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B publication-title: Nature – volume: 278 start-page: 4536 year: 2003 end-page: 4541 ident: bib151 article-title: Increased protein stability as a mechanism that enhances Nrf2-mediated transcriptional activation of the antioxidant response element. Degradation of Nrf2 by the 26 S proteasome publication-title: J. Biol. Chem. – volume: 98 start-page: 1169 year: 2018 end-page: 1203 ident: bib3 article-title: The KEAP1-NRF2 system: a thiol-based sensor-effector apparatus for maintaining redox homeostasis publication-title: Physiol. Rev. – volume: 18 start-page: 849 year: 1999 end-page: 854 ident: bib67 article-title: The human F box protein beta-Trcp associates with the Cul1/Skp1 complex and regulates the stability of beta-catenin publication-title: Oncogene – volume: 6 start-page: 649 year: 2014 end-page: 663 ident: bib192 article-title: Activation of Keap1/Nrf2 signaling pathway by nuclear epidermal growth factor receptor in cancer cells publication-title: Am. J. Tourism Res. – volume: 88 start-page: 147 year: 2015 end-page: 157 ident: bib71 article-title: Structural and functional characterization of Nrf2 degradation by glycogen synthase kinase 3/β-TrCP publication-title: Free Radic. Biol. Med. – volume: 11 start-page: 2728 year: 2020 end-page: 2740 ident: bib187 article-title: Novel curcumin-diethyl fumarate hybrid as a dualistic GSK-3β inhibitor/nrf2 inducer for the treatment of Parkinson's disease publication-title: ACS Chem. Neurosci. – volume: 87 start-page: 871 year: 2019 end-page: 878 ident: bib61 article-title: PMA-triggered PKCepsilon activity enhances Nrf2-mediated antiviral response on fish rhabdovirus infection publication-title: Fish Shellfish Immunol. – volume: 20 start-page: 574 year: 2014 end-page: 588 ident: bib97 article-title: The crosstalk between Nrf2 and AMPK signal pathways is important for the anti-inflammatory effect of berberine in LPS-stimulated macrophages and endotoxin-shocked mice publication-title: Antioxidants Redox Signal. – volume: 39 start-page: 199 year: 2014 end-page: 218 ident: bib36 article-title: The Nrf2 regulatory network provides an interface between redox and intermediary metabolism publication-title: Trends Biochem. Sci. – volume: 23 start-page: 7198 year: 2003 end-page: 7209 ident: bib119 article-title: Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival publication-title: Mol. Cell Biol. – volume: 10 start-page: 1775 year: 2008 end-page: 1786 ident: bib124 article-title: Subtilase cytotoxin activates PERK, IRE1 and ATF6 endoplasmic reticulum stress-signalling pathways publication-title: Cell Microbiol. – volume: 85 start-page: 705 year: 2013 end-page: 717 ident: bib37 article-title: The Nrf2 cell defence pathway: keap1-dependent and -independent mechanisms of regulation publication-title: Biochem. Pharmacol. – volume: 281 start-page: 87 year: 2014 end-page: 100 ident: bib96 article-title: Upregulation of heme oxygenase-1 expression by dehydrodiconiferyl alcohol (DHCA) through the AMPK-Nrf2 dependent pathway publication-title: Toxicol. Appl. Pharmacol. – volume: 125 start-page: 2592 year: 2015 end-page: 2608 ident: bib133 article-title: ATF4-dependent induction of heme oxygenase 1 prevents anoikis and promotes metastasis publication-title: J. Clin. Invest. – volume: 30 start-page: 747 year: 2015 end-page: 754 ident: bib174 article-title: Pre-treatment with metformin activates Nrf2 antioxidant pathways and inhibits inflammatory responses through induction of AMPK after transient global cerebral ischemia publication-title: Metab. Brain Dis. – volume: 91 start-page: 9926 year: 1994 end-page: 9930 ident: bib10 article-title: Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region publication-title: Proc. Natl. Acad. Sci. U. S. A – volume: 36 start-page: 407 year: 2016 end-page: 420 ident: bib107 article-title: The mediator subunit MED16 transduces NRF2-activating signals into antioxidant gene expression publication-title: Mol. Cell Biol. – volume: 59 start-page: 1147 year: 2001 end-page: 1156 ident: bib77 article-title: Activation of phosphatidylinositol 3-kinase and Akt by tert-butylhydroquinone is responsible for antioxidant response element-mediated rGSTA2 induction in H4IIE cells publication-title: Mol. Pharmacol. – volume: 283 start-page: 33554 year: 2008 end-page: 33562 ident: bib5 article-title: Nrf1 and Nrf2 play distinct roles in activation of antioxidant response element-dependent genes publication-title: J. Biol. Chem. – start-page: 26 year: 2017 end-page: 35 ident: bib63 article-title: GSK-3 as a novel prognostic indicator in leukemia publication-title: Advances in biological regulation – volume: 53 start-page: 401 year: 2013 end-page: 426 ident: bib9 article-title: Role of nrf2 in oxidative stress and toxicity publication-title: Annu. Rev. Pharmacol. Toxicol. – volume: 12 year: 2020 ident: bib134 article-title: ATF4-Dependent NRF2 transcriptional regulation promotes antioxidant protection during endoplasmic reticulum stress publication-title: Cancers – volume: 38 start-page: 167 year: 2020 end-page: 197 ident: bib33 article-title: Oxidative stress in cancer publication-title: Canc. Cell – volume: 38 start-page: 317 year: 2006 end-page: 332 ident: bib129 article-title: Coordination of ER and oxidative stress signaling: the PERK/Nrf2 signaling pathway publication-title: Int. J. Biochem. Cell Biol. – start-page: 731 year: 2007 end-page: 741 ident: bib146 article-title: Induction of heme-oxygenase 1 requires the p38MAPK and PI3K pathways and suppresses apoptotic cell death following hypericin-mediated photodynamic therapy publication-title: Apoptosis – volume: 12 start-page: 243 year: 2020 end-page: 267 ident: bib83 article-title: Small molecular Nrf2 inhibitors as chemosensitizers for cancer therapy publication-title: Future Med. Chem. – volume: 43 start-page: 611 year: 2015 end-page: 620 ident: bib69 article-title: Dual regulation of transcription factor Nrf2 by Keap1 and by the combined actions of β-TrCP and GSK-3 publication-title: Biochem. Soc. Trans. – volume: 9 start-page: 497 year: 2018 ident: bib176 article-title: The natural flavone acacetin confers cardiomyocyte protection against hypoxia/reoxygenation injury via AMPK-mediated activation of Nrf2 signaling pathway publication-title: Front. Pharmacol. – start-page: 212 year: 2019 end-page: 226 ident: bib51 article-title: PKC and PKN in heart disease publication-title: J. Mol. Cell. Cardiol. – start-page: 208 year: 2018 end-page: 230 ident: bib54 article-title: Protein kinase C: perfectly balanced publication-title: Crit. Rev. Biochem. Mol. Biol. – start-page: 110 year: 2016 end-page: 121 ident: bib152 article-title: Oxyresveratrol abrogates oxidative stress by activating ERK–Nrf2 pathway in the liver publication-title: Chem. Biol. Interact. – volume: 11 start-page: 3214 year: 2016 end-page: 3225 ident: bib170 article-title: Small molecule inhibitor of NRF2 selectively intervenes therapeutic resistance in KEAP1-deficient NSCLC tumors publication-title: ACS Chem. Biol. – start-page: 760 year: 2019 ident: bib59 article-title: Melatonin prevents mice cortical astrocytes from hemin-induced toxicity through activating PKCα/nrf2/HO-1 signaling in vitro publication-title: Front. Neurosci. – volume: 9 start-page: 9245 year: 2019 ident: bib182 article-title: Tolvaptan activates the Nrf2/HO-1 antioxidant pathway through PERK phosphorylation publication-title: Sci. Rep. – volume: 46 start-page: 113 year: 2006 end-page: 140 ident: bib42 article-title: Nrf2-Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species publication-title: Adv. Enzym. Regul. – volume: 25 start-page: 10895 year: 2005 end-page: 10906 ident: bib41 article-title: The carboxy-terminal Neh3 domain of Nrf2 is required for transcriptional activation publication-title: Mol. Cell Biol. – volume: 12 year: 2020 ident: bib31 article-title: Dissecting the crosstalk between NRF2 signaling and metabolic processes in cancer publication-title: Cancers – volume: 177 start-page: 114002 year: 2020 ident: bib166 article-title: Molecular mechanisms and systemic targeting of NRF2 dysregulation in cancer publication-title: Biochem. Pharmacol. – start-page: 1931 year: 2016 end-page: 1942 ident: bib93 article-title: AMPK facilitates nuclear accumulation of nrf2 by phosphorylating at serine 550(article) publication-title: Mol. Cell Biol. – volume: 7 start-page: 45701 year: 2017 ident: bib188 article-title: Discovery of the first dual GSK3β inhibitor/Nrf2 inducer. A new multitarget therapeutic strategy for Alzheimer's disease publication-title: Sci. Rep. – volume: 3 start-page: re3 year: 2010 ident: bib1 article-title: Stress-activated cap'n'collar transcription factors in aging and human disease publication-title: Sci. Signal. – volume: 2020 start-page: 8291413 year: 2020 ident: bib183 article-title: Ganoderic acid D protects human amniotic mesenchymal stem cells against oxidative stress-induced senescence through the PERK/NRF2 signaling pathway publication-title: Oxidative medicine and cellular longevity – start-page: 667 year: 2008 end-page: 670 ident: bib189 article-title: Phosphorylation by P38 MAPK as an Alternative Pathway for GSK3beta Inactivation – volume: 22 start-page: 578 year: 2016 end-page: 593 ident: bib15 article-title: The dual roles of NRF2 in cancer publication-title: Trends Mol. Med. – volume: 27 start-page: 7511 year: 2007 end-page: 7521 ident: bib45 article-title: Different electrostatic potentials define ETGE and DLG motifs as hinge and latch in oxidative stress response publication-title: Mol. Cell Biol. – volume: 27 start-page: 6 year: 2020 end-page: 21 ident: bib139 article-title: A review on chronic pain in rheumatoid arthritis: a focus on activation of NR2B subunit of N-Methyl-D-Aspartate receptors publication-title: Malays. J. Med. Sci.: MJMS – start-page: 63 year: 2008 end-page: 76 ident: bib112 article-title: Phosphorylation of Nrf2 in the transcription activation domain by casein kinase 2 (CK2) is critical for the nuclear translocation and transcription activation function of Nrf2 in IMR-32 neuroblastoma cells publication-title: J. Biochem. Mol. Toxicol. – volume: 29 start-page: 1727 year: 2018 end-page: 1745 ident: bib11 article-title: Transcriptional regulation by Nrf2 publication-title: Antioxidants Redox Signal. – start-page: 3 year: 2010 end-page: 38 ident: bib141 article-title: The MAP kinase signaling cascades: a system of hundreds of components regulates a diverse array of physiological functions publication-title: Methods Mol. Biol. – volume: 88 start-page: 253 year: 2015 end-page: 267 ident: bib29 article-title: Nrf2--a therapeutic target for the treatment of neurodegenerative diseases publication-title: Free Radic. Biol. Med. – start-page: 856 year: 2013 end-page: 866 ident: bib145 article-title: A novel semisynthetic flavonoid 7-O-galloyltaxifolin upregulates heme oxygenase-1 in RAW264.7 cells via MAPK/Nrf2 pathway publication-title: J. Med. Chem. – volume: 33 start-page: 101544 year: 2020 ident: bib163 article-title: Oxidative stress-based therapeutics in COPD publication-title: Redox Biology – start-page: 122 year: 2006 end-page: 125 ident: bib191 article-title: PKCalpha reduces the lipid kinase activity of the p110alpha/p85alpha PI3K through the phosphorylation of the catalytic subunit publication-title: Biochem. Biophys. Res. Commun. – volume: 2019 start-page: 8592348 year: 2019 ident: bib165 article-title: Potential applications of NRF2 inhibitors in cancer therapy publication-title: Oxid. Med. Cell. Longev. – volume: 95 start-page: 1629 year: 2013 end-page: 1639 ident: bib19 article-title: Chemopreventive effects of diverse dietary phytochemicals against DMBA-induced hamster buccal pouch carcinogenesis via the induction of Nrf2-mediated cytoprotective antioxidant, detoxification, and DNA repair enzymes publication-title: Biochimie – volume: 292 start-page: 7519 year: 2017 end-page: 7530 ident: bib110 article-title: Glucocorticoid receptor signaling represses the antioxidant response by inhibiting histone acetylation mediated by the transcriptional activator NRF2 publication-title: J. Biol. Chem. – volume: 6 start-page: 857 year: 2001 end-page: 868 ident: bib106 article-title: Two domains of Nrf2 cooperatively bind CBP, a CREB binding protein, and synergistically activate transcription publication-title: Gene Cell.: devoted to molecular & cellular mechanisms – volume: 79 start-page: 889 year: 2019 end-page: 898 ident: bib164 article-title: NRF2 activation in cancer: from DNA to protein publication-title: Canc. Res. – volume: 274 start-page: 24896 year: 1999 end-page: 24900 ident: bib74 article-title: Insulin and exercise decrease glycogen synthase kinase-3 activity by different mechanisms in rat skeletal muscle publication-title: J. Biol. Chem. – volume: 54 start-page: 687 year: 2011 end-page: 696 ident: bib75 article-title: Inhibition of glycogen synthase kinase 3 beta ameliorates liver ischemia reperfusion injury by way of an interleukin-10-mediated immune regulatory mechanism publication-title: Hepatology (Baltimore, Md – reference: Y. Tian, Y. Su, Q. Ye, L. Chen, F. Yuan, Z. Wang, Silencing of TXNIP Alleviated Oxidative Stress Injury by Regulating MAPK–Nrf2 Axis in Ischemic Stroke, Neurochemical Research. – volume: 22 start-page: 66 year: 2012 end-page: 79 ident: bib17 article-title: Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming publication-title: Canc. Cell – volume: 33 start-page: 130 year: 2019 end-page: 148 ident: bib185 article-title: Berberine ameliorates lipopolysaccharide-induced acute lung injury via the PERK-mediated Nrf2/HO-1 signaling axis publication-title: Phytother Res.: PTR – start-page: 184 year: 2013 end-page: 189 ident: bib79 article-title: PTEN in cancer, metabolism, and aging publication-title: Trends Endocrinol. Metabol.: TEM (Trends Endocrinol. Metab.) – start-page: 1797 year: 2007 end-page: 1806 ident: bib39 article-title: Molecular mechanism of human Nrf2 activation and degradation: role of sequential phosphorylation by protein kinase CK2 publication-title: Free Radic. Biol. Med. – volume: 264 start-page: 29 year: 2001 end-page: 41 ident: bib80 article-title: PTEN: life as a tumor suppressor publication-title: Exp. Cell Res. – volume: 31 start-page: 1121 year: 2011 end-page: 1133 ident: bib65 article-title: SCF/{beta}-TrCP promotes glycogen synthase kinase 3-dependent degradation of the Nrf2 transcription factor in a Keap1-independent manner publication-title: Mol. Cell Biol. – volume: 28 start-page: 708 year: 2014 end-page: 722 ident: bib111 article-title: Hrd1 suppresses Nrf2-mediated cellular protection during liver cirrhosis publication-title: Genes Dev. – start-page: 64 year: 2003 end-page: 73 ident: bib143 article-title: Redox-sensitive mechanisms of phytochemical-mediated inhibition of cancer cell proliferation (review) publication-title: J. Nutr. Biochem. – volume: 32 start-page: 3486 year: 2012 end-page: 3499 ident: bib66 article-title: Structural and functional characterization of Nrf2 degradation by the glycogen synthase kinase 3/beta-TrCP axis publication-title: Mol. Cell Biol. – volume: 59 start-page: 555 year: 2019 end-page: 575 ident: bib160 article-title: Modulating NRF2 in disease: timing is everything publication-title: Annu. Rev. Pharmacol. Toxicol. – start-page: 1918 year: 2006 end-page: 1926 ident: bib155 article-title: Mechanism of Action of Isothiocyanates: the Induction of ARE-Regulated Genes Is Associated with Activation of ERK and JNK and the Phosphorylation and Nuclear Translocation of Nrf2 – volume: 178 start-page: 316 year: 2019 end-page: 329 ident: bib167 article-title: Nrf2 activation promotes lung cancer metastasis by inhibiting the degradation of Bach1 publication-title: Cell – start-page: 104308 year: 2013 ident: bib25 article-title: Nrf2 and Cardiovascular Defense, Oxidative Medicine and Cellular Longevity 2013 – volume: 13 start-page: 1211 year: 1999 end-page: 1233 ident: bib122 article-title: Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls publication-title: Genes Dev. – volume: 90 start-page: 1051 year: 1997 end-page: 1060 ident: bib100 article-title: CRM1 is an export receptor for leucine-rich nuclear export signals publication-title: Cell – volume: 22 start-page: 2883 year: 2002 end-page: 2892 ident: bib38 article-title: Enhanced expression of the transcription factor Nrf2 by cancer chemopreventive agents: role of antioxidant response element-like sequences in the nrf2 promoter publication-title: Mol. Cell Biol. – volume: 20 start-page: 3772 year: 2009 end-page: 3779 ident: bib102 article-title: Repression of classical nuclear export by S-nitrosylation of CRM1 publication-title: J. Cell Sci. – volume: 134 start-page: 702 year: 2019 end-page: 707 ident: bib22 article-title: Redox regulation by NRF2 in aging and disease publication-title: Free Radical Biol. Med. – volume: 6 start-page: 5 year: 2006 end-page: 36 ident: bib127 article-title: Divergent roles of IRE1alpha and PERK in the unfolded protein response publication-title: Curr. Mol. Med. – volume: 30 start-page: 299 year: 2008 end-page: 307 ident: bib72 article-title: Treatment with the glycogen synthase kinase-3beta inhibitor, TDZD-8, affects transient cerebral ischemia/reperfusion injury in the rat hippocampus publication-title: Shock (Augusta, Ga.) – volume: 277 start-page: 11780 year: 2002 end-page: 11787 ident: bib123 article-title: Translation mediated by the internal ribosome entry site of the cat-1 mRNA is regulated by glucose availability in a PERK kinase-dependent manner publication-title: J. Biol. Chem. – start-page: 12475 year: 2000 end-page: 12480 ident: bib57 article-title: Regulation of the antioxidant response element by protein kinase C-mediated phosphorylation of NF-E2-related factor 2 publication-title: Proc. Natl. Acad. Sci. U. S. A – year: 2017 ident: bib120 article-title: PERK Induces Resistance to Cell Death Elicited by Endoplasmic Reticulum Stress and Chemotherapy – start-page: 92 year: 2016 end-page: 103 ident: bib62 article-title: Regulation of the CNC-bZIP transcription factor nrf2 by Keap1 and the axis between GSK-3 and β-TrCP publication-title: Current Opinion in Toxicology – volume: 12 year: 2020 ident: bib73 article-title: Activation of NRF2 ameliorates oxidative stress and cystogenesis in autosomal dominant polycystic kidney disease publication-title: Sci. Transl. Med. – volume: 276 start-page: 20858 year: 2001 end-page: 20865 ident: bib131 article-title: Identification of activating transcription factor 4 (ATF4) as an Nrf2-interacting protein. Implication for heme oxygenase-1 gene regulation publication-title: J. Biol. Chem. – start-page: 60 year: 2017 end-page: 69 ident: bib60 article-title: EX4 stabilizes and activates Nrf2 via PKCδ, contributing to the prevention of oxidative stress-induced pancreatic beta cell damage publication-title: Toxicol. Appl. Pharmacol. – volume: 280 start-page: 28430 year: 2005 end-page: 28438 ident: bib89 article-title: Nrf2 Possesses a redox-insensitive nuclear export signal overlapping with the leucine zipper motif publication-title: J. Biol. Chem. – volume: 131 start-page: 110676 year: 2020 ident: bib30 article-title: Emerging role of NRF2 in ROS-mediated tumor chemoresistance publication-title: Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie – volume: 416 start-page: 703 year: 2002 end-page: 709 ident: bib68 article-title: Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex publication-title: Nature – volume: 300 start-page: H84 year: 2011 end-page: H93 ident: bib99 article-title: Activation of AMPK stimulates heme oxygenase-1 gene expression and human endothelial cell survival publication-title: Am. J. Physiol. Heart Circ. Physiol. – volume: 282 start-page: 16502 year: 2007 end-page: 16510 ident: bib84 article-title: GSK-3beta acts upstream of Fyn kinase in regulation of nuclear export and degradation of NF-E2 related factor 2 publication-title: J. Biol. Chem. – start-page: 527 year: 2019 end-page: 551 ident: bib94 article-title: AMP-activated protein kinase: the current landscape for drug development publication-title: Nat. Rev. Drug Discov. – volume: 8 start-page: 334ra51 year: 2016 ident: bib32 article-title: NRF2 activation by antioxidant antidiabetic agents accelerates tumor metastasis publication-title: Sci. Transl. Med. – year: 2003 ident: bib115 article-title: Protein kinase CK2: structure, regulation and role in cellular decisions of life and death publication-title: Biochem. J. – volume: 31 start-page: 1746 year: 2020 end-page: 1754 ident: bib168 article-title: KEAP1-driven co-mutations in lung adenocarcinoma unresponsive to immunotherapy despite high tumor mutational burden, Ann publication-title: Oncol. – volume: 278 start-page: 141 year: 1997 end-page: 144 ident: bib101 article-title: Evidence for a role of CRM1 in signal-mediated nuclear protein export publication-title: Science – volume: 26 start-page: 7942 year: 2006 end-page: 7952 ident: bib109 article-title: BRG1 interacts with Nrf2 to selectively mediate HO-1 induction in response to oxidative stress publication-title: Mol. Cell Biol. – volume: 50 start-page: 5339 year: 2009 end-page: 5347 ident: bib82 article-title: Synthetic triterpenoids attenuate cytotoxic retinal injury: cross-talk between Nrf2 and PI3K/AKT signaling through inhibition of the lipid phosphatase PTEN publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 159 start-page: 87 year: 2020 end-page: 102 ident: bib27 article-title: Transcription factor NRF2 as a promising therapeutic target for Alzheimer's disease publication-title: Free Radic. Biol. Med. – volume: 11 start-page: 476 year: 2008 end-page: 487 ident: bib140 article-title: Synaptic NMDA receptor activity boosts intrinsic antioxidant defenses publication-title: Nat. Neurosci. – volume: 26 start-page: 185 year: 2020 end-page: 200 ident: bib20 article-title: Nrf2: redox and metabolic regulator of stem cell state and function publication-title: Trends Mol. Med. – start-page: 19875 year: 1993 end-page: 19881 ident: bib56 article-title: Transcriptional regulation of the rat NAD(P)H:quinone reductase gene. Characterization of a DNA-protein interaction at the antioxidant responsive element and induction by 12-O-tetradecanoylphorbol 13- acetate publication-title: J. Biol. Chem. – volume: 109 start-page: 254 year: 2019 end-page: 261 ident: bib184 article-title: Ginsenoside Rb3 protects cardiomyocytes against hypoxia/reoxygenation injury via activating the antioxidation signaling pathway of PERK/Nrf2/HMOX1 publication-title: Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie – volume: 467 start-page: 40 year: 2019 end-page: 49 ident: bib173 article-title: NRF2 addiction" in lung cancer cells and its impact on cancer therapy publication-title: Canc. Lett. – volume: 277 start-page: 18728 year: 2002 end-page: 18735 ident: bib126 article-title: Dimerization and release of molecular chaperone inhibition facilitate activation of eukaryotic initiation factor-2 kinase in response to endoplasmic reticulum stress publication-title: J. Biol. Chem. – volume: 169 start-page: 28 year: 2018 end-page: 37 ident: bib132 article-title: Nrf2 protects human lens epithelial cells against H2O2-induced oxidative and ER stress: the ATF4 may be involved publication-title: Exp. Eye Res. – volume: 19 start-page: 2278 year: 2005 end-page: 2283 ident: bib157 article-title: The C. elegans p38 MAPK pathway regulates nuclear localization of the transcription factor SKN-1 in oxidative stress response publication-title: Genes Dev. – volume: 281 start-page: 14841 year: 2006 end-page: 14851 ident: bib64 article-title: Glycogen synthase kinase-3beta inhibits the xenobiotic and antioxidant cell response by direct phosphorylation and nuclear exclusion of the transcription factor Nrf2 publication-title: J. Biol. Chem. – volume: 9 start-page: 139 year: 2009 end-page: 145 ident: bib26 article-title: Targeting the redox sensitive Nrf2-Keap1 defense pathway in cardiovascular disease: protection afforded by dietary isoflavones publication-title: Curr. Opin. Pharmacol. – volume: 9 start-page: 309 year: 2006 end-page: 317 ident: bib186 article-title: GSK-3 is essential in the pathogenesis of Alzheimer's disease publication-title: J. Alzheim. Dis.: JAD – start-page: 349 year: 2003 end-page: 368 ident: bib117 article-title: One-thousand-and-one substrates of protein kinase CK2? publication-title: Faseb J.: official publication of the Federation of American Societies for Experimental Biology – start-page: 1 year: 2009 end-page: 9 ident: bib158 article-title: Phosphorylation of Nrf2 at multiple sites by MAP kinases has a limited contribution in modulating the Nrf2- dependent antioxidant response publication-title: PloS One – start-page: 765 year: 2002 end-page: 770 ident: bib142 article-title: Antioxidants and oxidants regulated signal transduction pathways publication-title: Biochem. Pharmacol. – volume: 36 start-page: 924 year: 2016 end-page: 963 ident: bib161 article-title: The keap1–nrf2–ARE pathway as a potential preventive and therapeutic target: an update publication-title: Med. Res. Rev. – start-page: 33902 year: 2008 end-page: 33910 ident: bib103 article-title: AMP-activated protein kinase activation increases phosphorylation of glycogen synthase kinase 3beta and thereby reduces cAMP-responsive element transcriptional activity and phosphoenolpyruvate carboxykinase C gene expression in the liver publication-title: J. Biol. Chem. – start-page: 1877 year: 2015 end-page: 1889 ident: bib135 article-title: Astrocyte NMDA receptors' activity sustains neuronal survival through a Cdk5-Nrf2 pathway publication-title: Cell Death Differ. – start-page: 313 year: 1997 end-page: 322 ident: bib86 article-title: An nrf2/small maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements publication-title: Biochem. Biophys. Res. Commun. – volume: 280 start-page: 70 year: 2018 end-page: 76 ident: bib14 article-title: Regulation and role of nuclear factor-E2-related factor 2 (Nrf2) in multidrug resistance of hepatocellular carcinoma publication-title: Chem. Biol. Interact. – start-page: 409 year: 2011 end-page: 417 ident: bib156 article-title: Protocatechuic acid induces antioxidant/detoxifying enzyme expression through JNK-mediated Nrf2 activation in murine macrophages publication-title: J. Nutr. Biochem. – start-page: 226 year: 2002 end-page: 230 ident: bib113 article-title: Joining the cell survival squad: an emerging role for protein kinase CK2 publication-title: Trends Cell Biol. – year: 2020 ident: bib23 article-title: NRF2 in cardiovascular diseases: a ray of hope! publication-title: Journal of cardiovascular translational research – start-page: 15079 year: 2006 end-page: 15084 ident: bib114 article-title: Casein kinase 2 (CK2) increases survivin expression via enhanced beta-catenin-T cell factor/lymphoid enhancer binding factor-dependent transcription publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 19 start-page: 125 year: 2005 end-page: 137 ident: bib8 article-title: Functional and placental expression analysis of the human NRF3 transcription factor publication-title: Molecular endocrinology (Baltimore, Md – volume: 34 start-page: 101475 year: 2020 ident: bib43 article-title: Redox toxicology of environmental chemicals causing oxidative stress publication-title: Redox Biology – start-page: 8804 year: 2006 end-page: 8813 ident: bib149 article-title: Mechanism of action of sulforaphane: inhibition of p38 mitogen-activated protein kinase isoforms contributing to the induction of antioxidant response element-mediated heme oxygenase-1 in human hepatoma HepG2 cells publication-title: Canc. Res. – start-page: 9237263 year: 2017 ident: bib24 article-title: The Role of Nrf2 in Cardiovascular Function and Disease, Oxidative Medicine and Cellular Longevity 2017 – start-page: 1726 year: 1987 end-page: 1728 ident: bib52 article-title: Protein kinase C contains a pseudosubstrate prototope in its regulatory domain publication-title: Science (New York, N.Y.) – volume: 88 start-page: 417 year: 2015 end-page: 426 ident: bib98 article-title: Activated AMPK boosts the Nrf2/HO-1 signaling axis--A role for the unfolded protein response publication-title: Free Radic. Biol. Med. – volume: 41 start-page: 2981 year: 2016 end-page: 2992 ident: bib175 article-title: Anti-neuroinflammatory effect of emodin in LPS-stimulated microglia: involvement of AMPK/Nrf2 activation publication-title: Neurochem. Res. – start-page: 42769 year: 2002 end-page: 42774 ident: bib50 article-title: Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription publication-title: J. Biol. Chem. – volume: 473 start-page: 961 year: 2016 end-page: 1000 ident: bib7 article-title: Molecular and cellular basis for the unique functioning of Nrf1, an indispensable transcription factor for maintaining cell homoeostasis and organ integrity publication-title: Biochem. J. – volume: 29 start-page: 1746 year: 2018 end-page: 1755 ident: bib159 article-title: An overview of the advantages of KEAP1-NRF2 system activation during inflammatory disease treatment publication-title: Antioxidants Redox Signal. – volume: 150 start-page: 9 year: 2018 end-page: 23 ident: bib180 article-title: Baicalein and baicalin alleviate acetaminophen-induced liver injury by activating Nrf2 antioxidative pathway: the involvement of ERK1/2 and PKC publication-title: Biochem. Pharmacol. – volume: 97 start-page: 12625 year: 2000 end-page: 12630 ident: bib128 article-title: PERK mediates cell-cycle exit during the mammalian unfolded protein response publication-title: Proc. Natl. Acad. Sci. U. S. A – volume: 106 start-page: 21353 year: 2009 end-page: 21358 ident: bib138 article-title: PKCdelta regulates cortical radial migration by stabilizing the Cdk5 activator p35 publication-title: Proc. Natl. Acad. Sci. U. S. A – start-page: 2119 year: 2011 ident: bib148 article-title: Carnosic acid induces the NAD(P)H: quinone oxidoreductase 1 expression in rat clone 9 cells through the p38/nuclear factor erythroid-2 related factor 2 pathway publication-title: J. Nutr. – volume: 94 start-page: 3037 year: 1999 end-page: 3047 ident: bib4 article-title: Pathophysiology of thrombocytopenia and anemia in mice lacking transcription factor NF-E2 publication-title: Blood – volume: 16 start-page: 123 year: 2011 end-page: 140 ident: bib49 article-title: Molecular mechanisms of the Keap1–Nrf2 pathway in stress response and cancer evolution publication-title: Gene Cell.: devoted to molecular & cellular mechanisms – volume: 278 start-page: 44675 year: 2003 end-page: 44682 ident: bib58 article-title: Phosphorylation of Nrf2 at Ser40 by protein kinase C in response to antioxidants leads to the release of Nrf2 from INrf2, but is not required for Nrf2 stabilization/accumulation in the nucleus and transcriptional activation of antioxidant response element-mediated NAD(P)H:quinone oxidoreductase-1 gene expression publication-title: J. Biol. Chem. – volume: 29 start-page: 2658 year: 2009 end-page: 2672 ident: bib105 article-title: Acetylation of Nrf2 by p300/CBP augments promoter-specific DNA binding of Nrf2 during the antioxidant response publication-title: Mol. Cell Biol. – start-page: 1311 year: 2006 end-page: 1320 ident: bib46 article-title: Two-site substrate recognition model for the Keap1-Nrf2 system: a hinge and latch mechanism publication-title: Biol. Chem. – start-page: 103 year: 2001 end-page: 113 ident: bib130 article-title: Molecular basis for the contribution of the antioxidant responsive element to cancer chemoprevention publication-title: Canc. Lett. – volume: 1823 start-page: 1841 year: 2012 end-page: 1846 ident: bib88 article-title: The small MAF transcription factors MAFF, MAFG and MAFK: current knowledge and perspectives publication-title: Biochim. Biophys. Acta – start-page: 1847 year: 2008 end-page: 1856 ident: bib90 article-title: Heterodimerization with small Maf proteins enhances nuclear retention of Nrf2 via masking the NESzip motif publication-title: Biochim. Biophys. Acta Mol. Cell Res. – volume: 2 start-page: 761 year: 2013 end-page: 770 ident: bib16 article-title: Nrf2 impacts cellular bioenergetics by controlling substrate availability for mitochondrial respiration publication-title: Biology open – volume: 457 start-page: 415 year: 2014 end-page: 424 ident: bib18 article-title: Nrf2 affects the efficiency of mitochondrial fatty acid oxidation publication-title: Biochem. J. – volume: 82 start-page: 349 year: 2015 end-page: 358 ident: bib181 article-title: Dimethyl fumarate confers neuroprotection by casein kinase 2 phosphorylation of Nrf2 in murine intracerebral hemorrhage publication-title: Neurobiol. Dis. – volume: 1 start-page: 162 year: 2005 end-page: 171 ident: bib47 article-title: BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the cullin 3-Roc1 ligase publication-title: Mol. Cell Biol. – volume: 10 start-page: 549 year: 2004 end-page: 557 ident: bib2 article-title: Nrf2-Keap1 defines a physiologically important stress response mechanism publication-title: Trends Mol. Med. – start-page: 4483 year: 2005 end-page: 4490 ident: bib12 article-title: Nrf2 transcriptionally activates the mafG gene through an antioxidant response element publication-title: J. Biol. Chem. – year: 2020 ident: bib21 article-title: Redox regulation of immunometabolism publication-title: Nat. Rev. Immunol. – volume: 26 start-page: 327 year: 2015 end-page: 338 ident: bib92 article-title: The ubiquitin-conjugating enzyme UBE2E3 and its import receptor importin-11 regulate the localization and activity of the antioxidant transcription factor NRF2 publication-title: Mol. Biol. Cell – volume: 29 start-page: 101393 year: 2020 ident: bib104 article-title: AMPK leads to phosphorylation of the transcription factor Nrf2, tuning transactivation of selected target genes publication-title: Redox biology – volume: 73 start-page: 3097 year: 2013 end-page: 3108 ident: bib40 article-title: RXRalpha inhibits the NRF2-ARE signaling pathway through a direct interaction with the Neh7 domain of NRF2 publication-title: Canc. Res. – start-page: 1895 year: 2011 end-page: 1908 ident: bib95 article-title: AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function publication-title: Genes Dev.: a Journal Devoted to the Molecular Analysis of Gene Expression in Eukaryotes, Prokaryotes, and Viruses – volume: 17 start-page: 297 year: 2018 end-page: 314 ident: bib13 article-title: Antioxidant response elements: discovery, classes, regulation and potential applications publication-title: Redox biology – volume: 146 start-page: 222 year: 2020 end-page: 233 ident: bib177 article-title: Galectin-1 ameliorates lipopolysaccharide-induced acute lung injury via AMPK-Nrf2 pathway in mice publication-title: Free Radic. Biol. Med. – volume: 66 start-page: 75 year: 2007 end-page: 85 ident: bib28 article-title: Expression of Nrf2 in neurodegenerative diseases publication-title: J. Neuropathol. Exp. Neurol. – volume: 279 start-page: 50810 year: 2004 end-page: 50817 ident: bib6 article-title: Nrf3 negatively regulates antioxidant-response element-mediated expression and antioxidant induction of NAD(P)H:quinone oxidoreductase1 gene publication-title: J. Biol. Chem. – volume: 285 start-page: 23064 year: 2010 end-page: 23074 ident: bib91 article-title: The ubiquitin-conjugating enzyme UbcM2 can regulate the stability and activity of the antioxidant transcription factor Nrf2 publication-title: J. Biol. Chem. – start-page: 739 year: 2005 end-page: 789 ident: bib125 article-title: The mammalian unfolded protein response publication-title: Annu. Rev. Biochem. – volume: 66 start-page: 1817 year: 2009 end-page: 1829 ident: bib116 article-title: Protein kinase CK2 in health and disease: from birth to death: the role of protein kinase CK2 in the regulation of cell proliferation and survival publication-title: Cell. Mol. Life Sci.: CM – volume: 47 start-page: 1304 year: 2009 end-page: 1309 ident: bib48 article-title: Nrf2:INrf2 (Keap1) signaling in oxidative stress publication-title: Free Radic. Biol. Med. – year: 2014 ident: bib121 article-title: De-differentiation confers multidrug resistance via noncanonical PERK-nrf2 signaling publication-title: PLoS Biol. – volume: 244 start-page: 117329 year: 2020 ident: bib35 article-title: MicroRNA-mediated regulation of Nrf2 signaling pathway: implications in disease therapy and protection against oxidative stress publication-title: Life Sci. – volume: 24 start-page: 627 year: 2006 end-page: 633 ident: bib76 article-title: A chaperone-dependent GSK3beta transitional intermediate mediates activation-loop autophosphorylation publication-title: Mol. Cell – start-page: 479 year: 2018 end-page: 488 ident: bib153 article-title: Gallic acid, a natural polyphenol, protects against tert-butyl hydroperoxide- induced hepatotoxicity by activating ERK-Nrf2-Keap1-mediated antioxidative response publication-title: Food and Chemical Toxicology: an International Journal Published for the British Industrial Biological Research Association – volume: 117 start-page: 9964 year: 2020 end-page: 9972 ident: bib171 article-title: Triptolide suppresses IDH1-mutated malignancy via Nrf2-driven glutathione metabolism publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 31 start-page: 511 year: 2013 end-page: 515 ident: bib81 article-title: Redox regulation of tumor suppressor PTEN in cancer and aging (Review) publication-title: Int. J. Mol. Med. – volume: 275 start-page: 27694 year: 2000 end-page: 27702 ident: bib147 article-title: Mechanism of heme oxygenase-1 gene activation by cadmium in MCF-7 mammary epithelial cells. Role of p38 kinase and Nrf2 transcription factor publication-title: J. Biol. Chem. – volume: 88 start-page: 147 year: 2015 end-page: 157 ident: bib85 article-title: Structural and functional characterization of Nrf2 degradation by glycogen synthase kinase 3/β-TrCP publication-title: Free Radic. Biol. Med. – volume: 32 start-page: 514 year: 2013 end-page: 527 ident: bib108 article-title: The nuclear cofactor RAC3/AIB1/SRC-3 enhances Nrf2 signaling by interacting with transactivation domains publication-title: Oncogene – volume: 13 start-page: 76 year: 1999 end-page: 86 ident: bib34 article-title: Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain publication-title: Genes Dev. – volume: 202 start-page: 112532 year: 2020 ident: bib162 article-title: Recent progress in Keap1-Nrf2 protein-protein interaction inhibitors publication-title: Eur. J. Med. Chem. – start-page: 159 year: 2005 end-page: 170 ident: bib190 article-title: Erk associates with and primes GSK-3beta for its inactivation resulting in upregulation of beta-catenin publication-title: Mol. Cell – volume: 134 start-page: 702 year: 2019 ident: 10.1016/j.freeradbiomed.2021.03.034_bib22 article-title: Redox regulation by NRF2 in aging and disease publication-title: Free Radical Biol. Med. doi: 10.1016/j.freeradbiomed.2019.01.016 – issue: No.9 year: 2014 ident: 10.1016/j.freeradbiomed.2021.03.034_bib121 article-title: De-differentiation confers multidrug resistance via noncanonical PERK-nrf2 signaling publication-title: PLoS Biol. – volume: 31 start-page: 1746 issue: 12 year: 2020 ident: 10.1016/j.freeradbiomed.2021.03.034_bib168 article-title: KEAP1-driven co-mutations in lung adenocarcinoma unresponsive to immunotherapy despite high tumor mutational burden, Ann publication-title: Oncol. – volume: 91 start-page: 9926 issue: 21 year: 1994 ident: 10.1016/j.freeradbiomed.2021.03.034_bib10 article-title: Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region publication-title: Proc. Natl. Acad. Sci. U. S. A doi: 10.1073/pnas.91.21.9926 – volume: 62 start-page: 3840 issue: 8 year: 2019 ident: 10.1016/j.freeradbiomed.2021.03.034_bib169 article-title: Nuclear factor erythroid 2-related factor 2 (Nrf2) inhibition: an emerging strategy in cancer therapy publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.8b01121 – volume: 117 start-page: 9964 issue: 18 year: 2020 ident: 10.1016/j.freeradbiomed.2021.03.034_bib171 article-title: Triptolide suppresses IDH1-mutated malignancy via Nrf2-driven glutathione metabolism publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1913633117 – volume: 7 start-page: 45701 year: 2017 ident: 10.1016/j.freeradbiomed.2021.03.034_bib188 article-title: Discovery of the first dual GSK3β inhibitor/Nrf2 inducer. A new multitarget therapeutic strategy for Alzheimer's disease publication-title: Sci. Rep. doi: 10.1038/srep45701 – volume: 277 start-page: 11780 issue: 14 year: 2002 ident: 10.1016/j.freeradbiomed.2021.03.034_bib123 article-title: Translation mediated by the internal ribosome entry site of the cat-1 mRNA is regulated by glucose availability in a PERK kinase-dependent manner publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110778200 – volume: 46 start-page: 113 year: 2006 ident: 10.1016/j.freeradbiomed.2021.03.034_bib42 article-title: Nrf2-Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species publication-title: Adv. Enzym. Regul. doi: 10.1016/j.advenzreg.2006.01.007 – volume: 177 start-page: 114002 year: 2020 ident: 10.1016/j.freeradbiomed.2021.03.034_bib166 article-title: Molecular mechanisms and systemic targeting of NRF2 dysregulation in cancer publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2020.114002 – volume: 13 start-page: 76 issue: 1 year: 1999 ident: 10.1016/j.freeradbiomed.2021.03.034_bib34 article-title: Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain publication-title: Genes Dev. doi: 10.1101/gad.13.1.76 – volume: 38 start-page: 15259 year: 2013 ident: 10.1016/j.freeradbiomed.2021.03.034_bib44 article-title: Regulatory flexibility in the Nrf2-mediated stress response is conferred by conformational cycling of the Keap1-Nrf2 protein complex publication-title: Proc. Natl. Acad. Sci. U. S. A doi: 10.1073/pnas.1305687110 – volume: 33 start-page: 101544 year: 2020 ident: 10.1016/j.freeradbiomed.2021.03.034_bib163 article-title: Oxidative stress-based therapeutics in COPD publication-title: Redox Biology doi: 10.1016/j.redox.2020.101544 – start-page: 33902 year: 2008 ident: 10.1016/j.freeradbiomed.2021.03.034_bib103 article-title: AMP-activated protein kinase activation increases phosphorylation of glycogen synthase kinase 3beta and thereby reduces cAMP-responsive element transcriptional activity and phosphoenolpyruvate carboxykinase C gene expression in the liver publication-title: J. Biol. Chem. doi: 10.1074/jbc.M802537200 – volume: 11 start-page: 476 issue: 4 year: 2008 ident: 10.1016/j.freeradbiomed.2021.03.034_bib140 article-title: Synaptic NMDA receptor activity boosts intrinsic antioxidant defenses publication-title: Nat. Neurosci. doi: 10.1038/nn2071 – volume: 278 start-page: 141 issue: 5335 year: 1997 ident: 10.1016/j.freeradbiomed.2021.03.034_bib101 article-title: Evidence for a role of CRM1 in signal-mediated nuclear protein export publication-title: Science doi: 10.1126/science.278.5335.141 – year: 2017 ident: 10.1016/j.freeradbiomed.2021.03.034_bib120 – volume: 8 start-page: 334ra51 issue: 334 year: 2016 ident: 10.1016/j.freeradbiomed.2021.03.034_bib32 article-title: NRF2 activation by antioxidant antidiabetic agents accelerates tumor metastasis publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aad6095 – volume: 264 start-page: 29 issue: 1 year: 2001 ident: 10.1016/j.freeradbiomed.2021.03.034_bib80 article-title: PTEN: life as a tumor suppressor publication-title: Exp. Cell Res. doi: 10.1006/excr.2000.5130 – volume: 22 start-page: 66 issue: 1 year: 2012 ident: 10.1016/j.freeradbiomed.2021.03.034_bib17 article-title: Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming publication-title: Canc. Cell doi: 10.1016/j.ccr.2012.05.016 – volume: 9 start-page: 139 issue: 2 year: 2009 ident: 10.1016/j.freeradbiomed.2021.03.034_bib26 article-title: Targeting the redox sensitive Nrf2-Keap1 defense pathway in cardiovascular disease: protection afforded by dietary isoflavones publication-title: Curr. Opin. Pharmacol. doi: 10.1016/j.coph.2008.12.012 – volume: 2019 start-page: 8592348 year: 2019 ident: 10.1016/j.freeradbiomed.2021.03.034_bib165 article-title: Potential applications of NRF2 inhibitors in cancer therapy publication-title: Oxid. Med. Cell. Longev. doi: 10.1155/2019/8592348 – volume: 159 start-page: 87 year: 2020 ident: 10.1016/j.freeradbiomed.2021.03.034_bib27 article-title: Transcription factor NRF2 as a promising therapeutic target for Alzheimer's disease publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2020.06.028 – volume: 88 start-page: 147 issue: Pt B year: 2015 ident: 10.1016/j.freeradbiomed.2021.03.034_bib71 article-title: Structural and functional characterization of Nrf2 degradation by glycogen synthase kinase 3/β-TrCP publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2015.04.029 – volume: 285 start-page: 23064 issue: 30 year: 2010 ident: 10.1016/j.freeradbiomed.2021.03.034_bib91 article-title: The ubiquitin-conjugating enzyme UbcM2 can regulate the stability and activity of the antioxidant transcription factor Nrf2 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.121913 – start-page: 270 year: 2008 ident: 10.1016/j.freeradbiomed.2021.03.034_bib136 article-title: Negative regulation of cyclin-dependent kinase 5 targets by protein kinase C publication-title: Eur. J. Pharmacol. doi: 10.1016/j.ejphar.2007.11.061 – volume: 79 start-page: 889 issue: 5 year: 2019 ident: 10.1016/j.freeradbiomed.2021.03.034_bib164 article-title: NRF2 activation in cancer: from DNA to protein publication-title: Canc. Res. doi: 10.1158/0008-5472.CAN-18-2723 – year: 1994 ident: 10.1016/j.freeradbiomed.2021.03.034_bib55 article-title: Transcriptional regulation of a rat liver glutathione S-transferase Ya subunit gene. Analysis of the antioxidant response element and its activation by the phorbol ester 12-O-tetradecanoylphorbol-13-acetate publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)36880-1 – start-page: 12475 issue: No.23 year: 2000 ident: 10.1016/j.freeradbiomed.2021.03.034_bib57 article-title: Regulation of the antioxidant response element by protein kinase C-mediated phosphorylation of NF-E2-related factor 2 publication-title: Proc. Natl. Acad. Sci. U. S. A doi: 10.1073/pnas.220418997 – start-page: 1895 issue: No.18 year: 2011 ident: 10.1016/j.freeradbiomed.2021.03.034_bib95 article-title: AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function publication-title: Genes Dev.: a Journal Devoted to the Molecular Analysis of Gene Expression in Eukaryotes, Prokaryotes, and Viruses – start-page: 15079 year: 2006 ident: 10.1016/j.freeradbiomed.2021.03.034_bib114 article-title: Casein kinase 2 (CK2) increases survivin expression via enhanced beta-catenin-T cell factor/lymphoid enhancer binding factor-dependent transcription – volume: 6 start-page: 175 issue: 1 year: 2015 ident: 10.1016/j.freeradbiomed.2021.03.034_bib87 article-title: Transcriptional factors, Mafs and their biological roles publication-title: World J. Diabetes doi: 10.4239/wjd.v6.i1.175 – volume: 300 start-page: H84 issue: 1 year: 2011 ident: 10.1016/j.freeradbiomed.2021.03.034_bib99 article-title: Activation of AMPK stimulates heme oxygenase-1 gene expression and human endothelial cell survival publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.00749.2010 – start-page: 1797 issue: No.12 year: 2007 ident: 10.1016/j.freeradbiomed.2021.03.034_bib39 article-title: Molecular mechanism of human Nrf2 activation and degradation: role of sequential phosphorylation by protein kinase CK2 publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2007.03.001 – volume: 278 start-page: 4536 issue: 7 year: 2003 ident: 10.1016/j.freeradbiomed.2021.03.034_bib151 article-title: Increased protein stability as a mechanism that enhances Nrf2-mediated transcriptional activation of the antioxidant response element. Degradation of Nrf2 by the 26 S proteasome publication-title: J. Biol. Chem. doi: 10.1074/jbc.M207293200 – start-page: 1351 issue: No.9 year: 2003 ident: 10.1016/j.freeradbiomed.2021.03.034_bib154 article-title: Involvement of Nrf2 and JNK1 in the activation of antioxidant responsive element (ARE) by chemopreventive agent phenethyl isothiocyanate (PEITC) publication-title: Pharmaceut. Res. doi: 10.1023/A:1025737622815 – volume: 32 start-page: 3765 issue: 32 year: 2013 ident: 10.1016/j.freeradbiomed.2021.03.034_bib70 article-title: Nrf2 is controlled by two distinct β-TrCP recognition motifs in its Neh6 domain, one of which can be modulated by GSK-3 activity publication-title: Oncogene doi: 10.1038/onc.2012.388 – start-page: 479 year: 2018 ident: 10.1016/j.freeradbiomed.2021.03.034_bib153 article-title: Gallic acid, a natural polyphenol, protects against tert-butyl hydroperoxide- induced hepatotoxicity by activating ERK-Nrf2-Keap1-mediated antioxidative response – volume: 32 start-page: 3486 issue: 17 year: 2012 ident: 10.1016/j.freeradbiomed.2021.03.034_bib66 article-title: Structural and functional characterization of Nrf2 degradation by the glycogen synthase kinase 3/beta-TrCP axis publication-title: Mol. Cell Biol. doi: 10.1128/MCB.00180-12 – volume: 59 start-page: 555 year: 2019 ident: 10.1016/j.freeradbiomed.2021.03.034_bib160 article-title: Modulating NRF2 in disease: timing is everything publication-title: Annu. Rev. Pharmacol. Toxicol. doi: 10.1146/annurev-pharmtox-010818-021856 – volume: 1 start-page: 162 year: 2005 ident: 10.1016/j.freeradbiomed.2021.03.034_bib47 article-title: BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the cullin 3-Roc1 ligase publication-title: Mol. Cell Biol. doi: 10.1128/MCB.25.1.162-171.2005 – start-page: 1 issue: No.8 year: 2009 ident: 10.1016/j.freeradbiomed.2021.03.034_bib158 article-title: Phosphorylation of Nrf2 at multiple sites by MAP kinases has a limited contribution in modulating the Nrf2- dependent antioxidant response publication-title: PloS One – start-page: 2322 issue: No.4 year: 2000 ident: 10.1016/j.freeradbiomed.2021.03.034_bib150 article-title: p38 mitogen-activated protein kinase negatively regulates the induction of phase II drug-metabolizing enzymes that detoxify carcinogens publication-title: J. Biol. Chem. doi: 10.1074/jbc.275.4.2322 – volume: 9 start-page: 309 issue: 3 Suppl year: 2006 ident: 10.1016/j.freeradbiomed.2021.03.034_bib186 article-title: GSK-3 is essential in the pathogenesis of Alzheimer's disease publication-title: J. Alzheim. Dis.: JAD doi: 10.3233/JAD-2006-9S335 – start-page: 739 issue: No.1 year: 2005 ident: 10.1016/j.freeradbiomed.2021.03.034_bib125 article-title: The mammalian unfolded protein response publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.73.011303.074134 – start-page: 103 issue: No.2 year: 2001 ident: 10.1016/j.freeradbiomed.2021.03.034_bib130 article-title: Molecular basis for the contribution of the antioxidant responsive element to cancer chemoprevention publication-title: Canc. Lett. doi: 10.1016/S0304-3835(01)00695-4 – volume: 271 start-page: 229 issue: 2 year: 2013 ident: 10.1016/j.freeradbiomed.2021.03.034_bib178 article-title: Metformin inhibits heme oxygenase-1 expression in cancer cells through inactivation of Raf-ERK-Nrf2 signaling and AMPK-independent pathways publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2013.05.010 – volume: 416 start-page: 703 issue: 6882 year: 2002 ident: 10.1016/j.freeradbiomed.2021.03.034_bib68 article-title: Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex publication-title: Nature doi: 10.1038/416703a – volume: 3 start-page: re3 issue: 112 year: 2010 ident: 10.1016/j.freeradbiomed.2021.03.034_bib1 article-title: Stress-activated cap'n'collar transcription factors in aging and human disease publication-title: Sci. Signal. doi: 10.1126/scisignal.3112re3 – volume: 30 start-page: 299 issue: 3 year: 2008 ident: 10.1016/j.freeradbiomed.2021.03.034_bib72 article-title: Treatment with the glycogen synthase kinase-3beta inhibitor, TDZD-8, affects transient cerebral ischemia/reperfusion injury in the rat hippocampus publication-title: Shock (Augusta, Ga.) doi: 10.1097/SHK.0b013e318164e762 – volume: 47 start-page: 1304 issue: 9 year: 2009 ident: 10.1016/j.freeradbiomed.2021.03.034_bib48 article-title: Nrf2:INrf2 (Keap1) signaling in oxidative stress publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2009.07.035 – volume: 9 start-page: 497 year: 2018 ident: 10.1016/j.freeradbiomed.2021.03.034_bib176 article-title: The natural flavone acacetin confers cardiomyocyte protection against hypoxia/reoxygenation injury via AMPK-mediated activation of Nrf2 signaling pathway publication-title: Front. Pharmacol. doi: 10.3389/fphar.2018.00497 – volume: 29 start-page: 2658 issue: 10 year: 2009 ident: 10.1016/j.freeradbiomed.2021.03.034_bib105 article-title: Acetylation of Nrf2 by p300/CBP augments promoter-specific DNA binding of Nrf2 during the antioxidant response publication-title: Mol. Cell Biol. doi: 10.1128/MCB.01639-08 – start-page: 4483 issue: No.6 year: 2005 ident: 10.1016/j.freeradbiomed.2021.03.034_bib12 article-title: Nrf2 transcriptionally activates the mafG gene through an antioxidant response element publication-title: J. Biol. Chem. doi: 10.1074/jbc.M411451200 – start-page: 667 year: 2008 ident: 10.1016/j.freeradbiomed.2021.03.034_bib189 – volume: 12 issue: 10 year: 2020 ident: 10.1016/j.freeradbiomed.2021.03.034_bib31 article-title: Dissecting the crosstalk between NRF2 signaling and metabolic processes in cancer publication-title: Cancers doi: 10.3390/cancers12103023 – volume: 19 start-page: 125 issue: 1 year: 2005 ident: 10.1016/j.freeradbiomed.2021.03.034_bib8 article-title: Functional and placental expression analysis of the human NRF3 transcription factor publication-title: Molecular endocrinology (Baltimore, Md doi: 10.1210/me.2003-0379 – volume: 28 start-page: 708 issue: 7 year: 2014 ident: 10.1016/j.freeradbiomed.2021.03.034_bib111 article-title: Hrd1 suppresses Nrf2-mediated cellular protection during liver cirrhosis publication-title: Genes Dev. doi: 10.1101/gad.238246.114 – start-page: 856 issue: No.3 year: 2013 ident: 10.1016/j.freeradbiomed.2021.03.034_bib145 article-title: A novel semisynthetic flavonoid 7-O-galloyltaxifolin upregulates heme oxygenase-1 in RAW264.7 cells via MAPK/Nrf2 pathway publication-title: J. Med. Chem. doi: 10.1021/jm3013344 – start-page: 19875 issue: No.26 year: 1993 ident: 10.1016/j.freeradbiomed.2021.03.034_bib56 article-title: Transcriptional regulation of the rat NAD(P)H:quinone reductase gene. Characterization of a DNA-protein interaction at the antioxidant responsive element and induction by 12-O-tetradecanoylphorbol 13- acetate publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)36594-9 – volume: 17 start-page: 297 year: 2018 ident: 10.1016/j.freeradbiomed.2021.03.034_bib13 article-title: Antioxidant response elements: discovery, classes, regulation and potential applications publication-title: Redox biology doi: 10.1016/j.redox.2018.05.002 – volume: 59 start-page: 1147 issue: 5 year: 2001 ident: 10.1016/j.freeradbiomed.2021.03.034_bib77 article-title: Activation of phosphatidylinositol 3-kinase and Akt by tert-butylhydroquinone is responsible for antioxidant response element-mediated rGSTA2 induction in H4IIE cells publication-title: Mol. Pharmacol. doi: 10.1124/mol.59.5.1147 – start-page: 226 issue: No.5 year: 2002 ident: 10.1016/j.freeradbiomed.2021.03.034_bib113 article-title: Joining the cell survival squad: an emerging role for protein kinase CK2 publication-title: Trends Cell Biol. – volume: 10 start-page: 549 issue: 11 year: 2004 ident: 10.1016/j.freeradbiomed.2021.03.034_bib2 article-title: Nrf2-Keap1 defines a physiologically important stress response mechanism publication-title: Trends Mol. Med. doi: 10.1016/j.molmed.2004.09.003 – year: 2020 ident: 10.1016/j.freeradbiomed.2021.03.034_bib21 article-title: Redox regulation of immunometabolism publication-title: Nat. Rev. Immunol. – volume: 38 start-page: 167 issue: 2 year: 2020 ident: 10.1016/j.freeradbiomed.2021.03.034_bib33 article-title: Oxidative stress in cancer publication-title: Canc. Cell doi: 10.1016/j.ccell.2020.06.001 – volume: 10 start-page: 1775 issue: 9 year: 2008 ident: 10.1016/j.freeradbiomed.2021.03.034_bib124 article-title: Subtilase cytotoxin activates PERK, IRE1 and ATF6 endoplasmic reticulum stress-signalling pathways publication-title: Cell Microbiol. doi: 10.1111/j.1462-5822.2008.01164.x – start-page: 26 year: 2017 ident: 10.1016/j.freeradbiomed.2021.03.034_bib63 article-title: GSK-3 as a novel prognostic indicator in leukemia publication-title: Advances in biological regulation doi: 10.1016/j.jbior.2017.05.001 – volume: 27 start-page: 7511 issue: 21 year: 2007 ident: 10.1016/j.freeradbiomed.2021.03.034_bib45 article-title: Different electrostatic potentials define ETGE and DLG motifs as hinge and latch in oxidative stress response publication-title: Mol. Cell Biol. doi: 10.1128/MCB.00753-07 – start-page: 1847 issue: No.10 year: 2008 ident: 10.1016/j.freeradbiomed.2021.03.034_bib90 article-title: Heterodimerization with small Maf proteins enhances nuclear retention of Nrf2 via masking the NESzip motif publication-title: Biochim. Biophys. Acta Mol. Cell Res. doi: 10.1016/j.bbamcr.2008.05.024 – volume: 88 start-page: 417 issue: Pt B year: 2015 ident: 10.1016/j.freeradbiomed.2021.03.034_bib98 article-title: Activated AMPK boosts the Nrf2/HO-1 signaling axis--A role for the unfolded protein response publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2015.03.030 – volume: 178 start-page: 316 issue: 2 year: 2019 ident: 10.1016/j.freeradbiomed.2021.03.034_bib167 article-title: Nrf2 activation promotes lung cancer metastasis by inhibiting the degradation of Bach1 publication-title: Cell doi: 10.1016/j.cell.2019.06.003 – volume: 457 start-page: 415 issue: 3 year: 2014 ident: 10.1016/j.freeradbiomed.2021.03.034_bib18 article-title: Nrf2 affects the efficiency of mitochondrial fatty acid oxidation publication-title: Biochem. J. doi: 10.1042/BJ20130863 – volume: 11 start-page: 2728 issue: 17 year: 2020 ident: 10.1016/j.freeradbiomed.2021.03.034_bib187 article-title: Novel curcumin-diethyl fumarate hybrid as a dualistic GSK-3β inhibitor/nrf2 inducer for the treatment of Parkinson's disease publication-title: ACS Chem. Neurosci. doi: 10.1021/acschemneuro.0c00363 – volume: 281 start-page: 87 issue: 1 year: 2014 ident: 10.1016/j.freeradbiomed.2021.03.034_bib96 article-title: Upregulation of heme oxygenase-1 expression by dehydrodiconiferyl alcohol (DHCA) through the AMPK-Nrf2 dependent pathway publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2014.07.011 – volume: 12 start-page: 243 issue: 3 year: 2020 ident: 10.1016/j.freeradbiomed.2021.03.034_bib83 article-title: Small molecular Nrf2 inhibitors as chemosensitizers for cancer therapy publication-title: Future Med. Chem. doi: 10.4155/fmc-2019-0285 – start-page: 409 issue: No.5 year: 2011 ident: 10.1016/j.freeradbiomed.2021.03.034_bib156 article-title: Protocatechuic acid induces antioxidant/detoxifying enzyme expression through JNK-mediated Nrf2 activation in murine macrophages publication-title: J. Nutr. Biochem. doi: 10.1016/j.jnutbio.2010.03.008 – start-page: 159 year: 2005 ident: 10.1016/j.freeradbiomed.2021.03.034_bib190 article-title: Erk associates with and primes GSK-3beta for its inactivation resulting in upregulation of beta-catenin publication-title: Mol. Cell doi: 10.1016/j.molcel.2005.06.009 – volume: 7 issue: 4 year: 2019 ident: 10.1016/j.freeradbiomed.2021.03.034_bib137 article-title: CDK5: Key regulator of apoptosis and cell survival publication-title: Biomedicines doi: 10.3390/biomedicines7040088 – volume: 280 start-page: 70 year: 2018 ident: 10.1016/j.freeradbiomed.2021.03.034_bib14 article-title: Regulation and role of nuclear factor-E2-related factor 2 (Nrf2) in multidrug resistance of hepatocellular carcinoma publication-title: Chem. Biol. Interact. doi: 10.1016/j.cbi.2017.12.014 – start-page: 104308 year: 2013 ident: 10.1016/j.freeradbiomed.2021.03.034_bib25 – start-page: 349 issue: No.3 year: 2003 ident: 10.1016/j.freeradbiomed.2021.03.034_bib117 article-title: One-thousand-and-one substrates of protein kinase CK2? publication-title: Faseb J.: official publication of the Federation of American Societies for Experimental Biology doi: 10.1096/fj.02-0473rev – volume: 169 start-page: 28 year: 2018 ident: 10.1016/j.freeradbiomed.2021.03.034_bib132 article-title: Nrf2 protects human lens epithelial cells against H2O2-induced oxidative and ER stress: the ATF4 may be involved publication-title: Exp. Eye Res. doi: 10.1016/j.exer.2018.01.018 – ident: 10.1016/j.freeradbiomed.2021.03.034_bib144 – volume: 26 start-page: 327 issue: 2 year: 2015 ident: 10.1016/j.freeradbiomed.2021.03.034_bib92 article-title: The ubiquitin-conjugating enzyme UBE2E3 and its import receptor importin-11 regulate the localization and activity of the antioxidant transcription factor NRF2 publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E14-06-1057 – volume: 146 start-page: 222 year: 2020 ident: 10.1016/j.freeradbiomed.2021.03.034_bib177 article-title: Galectin-1 ameliorates lipopolysaccharide-induced acute lung injury via AMPK-Nrf2 pathway in mice publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2019.11.011 – volume: 109 start-page: 254 year: 2019 ident: 10.1016/j.freeradbiomed.2021.03.034_bib184 article-title: Ginsenoside Rb3 protects cardiomyocytes against hypoxia/reoxygenation injury via activating the antioxidation signaling pathway of PERK/Nrf2/HMOX1 publication-title: Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie doi: 10.1016/j.biopha.2018.09.002 – volume: 95 start-page: 1629 issue: 8 year: 2013 ident: 10.1016/j.freeradbiomed.2021.03.034_bib19 article-title: Chemopreventive effects of diverse dietary phytochemicals against DMBA-induced hamster buccal pouch carcinogenesis via the induction of Nrf2-mediated cytoprotective antioxidant, detoxification, and DNA repair enzymes publication-title: Biochimie doi: 10.1016/j.biochi.2013.05.004 – volume: 2 start-page: 761 issue: 8 year: 2013 ident: 10.1016/j.freeradbiomed.2021.03.034_bib16 article-title: Nrf2 impacts cellular bioenergetics by controlling substrate availability for mitochondrial respiration publication-title: Biology open doi: 10.1242/bio.20134853 – volume: 66 start-page: 1817 issue: 11–12 year: 2009 ident: 10.1016/j.freeradbiomed.2021.03.034_bib116 article-title: Protein kinase CK2 in health and disease: from birth to death: the role of protein kinase CK2 in the regulation of cell proliferation and survival publication-title: Cell. Mol. Life Sci.: CM doi: 10.1007/s00018-009-9150-2 – start-page: 3 year: 2010 ident: 10.1016/j.freeradbiomed.2021.03.034_bib141 article-title: The MAP kinase signaling cascades: a system of hundreds of components regulates a diverse array of physiological functions publication-title: Methods Mol. Biol. doi: 10.1007/978-1-60761-795-2_1 – start-page: 8804 issue: No.17 year: 2006 ident: 10.1016/j.freeradbiomed.2021.03.034_bib149 article-title: Mechanism of action of sulforaphane: inhibition of p38 mitogen-activated protein kinase isoforms contributing to the induction of antioxidant response element-mediated heme oxygenase-1 in human hepatoma HepG2 cells publication-title: Canc. Res. – volume: 53 start-page: 401 year: 2013 ident: 10.1016/j.freeradbiomed.2021.03.034_bib9 article-title: Role of nrf2 in oxidative stress and toxicity publication-title: Annu. Rev. Pharmacol. Toxicol. doi: 10.1146/annurev-pharmtox-011112-140320 – volume: 29 start-page: 1727 issue: 17 year: 2018 ident: 10.1016/j.freeradbiomed.2021.03.034_bib11 article-title: Transcriptional regulation by Nrf2 publication-title: Antioxidants Redox Signal. doi: 10.1089/ars.2017.7342 – volume: 473 start-page: 961 issue: 8 year: 2016 ident: 10.1016/j.freeradbiomed.2021.03.034_bib7 article-title: Molecular and cellular basis for the unique functioning of Nrf1, an indispensable transcription factor for maintaining cell homoeostasis and organ integrity publication-title: Biochem. J. doi: 10.1042/BJ20151182 – start-page: 60 year: 2017 ident: 10.1016/j.freeradbiomed.2021.03.034_bib60 article-title: EX4 stabilizes and activates Nrf2 via PKCδ, contributing to the prevention of oxidative stress-induced pancreatic beta cell damage publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2016.12.005 – start-page: 63 year: 2008 ident: 10.1016/j.freeradbiomed.2021.03.034_bib112 article-title: Phosphorylation of Nrf2 in the transcription activation domain by casein kinase 2 (CK2) is critical for the nuclear translocation and transcription activation function of Nrf2 in IMR-32 neuroblastoma cells publication-title: J. Biochem. Mol. Toxicol. doi: 10.1002/jbt.20212 – volume: 125 start-page: 2592 issue: 7 year: 2015 ident: 10.1016/j.freeradbiomed.2021.03.034_bib133 article-title: ATF4-dependent induction of heme oxygenase 1 prevents anoikis and promotes metastasis publication-title: J. Clin. Invest. doi: 10.1172/JCI78031 – volume: 25 start-page: 10895 issue: 24 year: 2005 ident: 10.1016/j.freeradbiomed.2021.03.034_bib41 article-title: The carboxy-terminal Neh3 domain of Nrf2 is required for transcriptional activation publication-title: Mol. Cell Biol. doi: 10.1128/MCB.25.24.10895-10906.2005 – year: 2020 ident: 10.1016/j.freeradbiomed.2021.03.034_bib23 article-title: NRF2 in cardiovascular diseases: a ray of hope! publication-title: Journal of cardiovascular translational research – volume: 26 start-page: 185 issue: 2 year: 2020 ident: 10.1016/j.freeradbiomed.2021.03.034_bib20 article-title: Nrf2: redox and metabolic regulator of stem cell state and function publication-title: Trends Mol. Med. doi: 10.1016/j.molmed.2019.09.007 – volume: 90 start-page: 1051 issue: 6 year: 1997 ident: 10.1016/j.freeradbiomed.2021.03.034_bib100 article-title: CRM1 is an export receptor for leucine-rich nuclear export signals publication-title: Cell doi: 10.1016/S0092-8674(00)80371-2 – volume: 97 start-page: 12625 issue: 23 year: 2000 ident: 10.1016/j.freeradbiomed.2021.03.034_bib128 article-title: PERK mediates cell-cycle exit during the mammalian unfolded protein response publication-title: Proc. Natl. Acad. Sci. U. S. A doi: 10.1073/pnas.220247197 – start-page: 2119 issue: No.12 year: 2011 ident: 10.1016/j.freeradbiomed.2021.03.034_bib148 article-title: Carnosic acid induces the NAD(P)H: quinone oxidoreductase 1 expression in rat clone 9 cells through the p38/nuclear factor erythroid-2 related factor 2 pathway publication-title: J. Nutr. doi: 10.3945/jn.111.146779 – start-page: 42769 issue: No.45 year: 2002 ident: 10.1016/j.freeradbiomed.2021.03.034_bib50 article-title: Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription publication-title: J. Biol. Chem. doi: 10.1074/jbc.M206911200 – volume: 24 start-page: 627 issue: 4 year: 2006 ident: 10.1016/j.freeradbiomed.2021.03.034_bib76 article-title: A chaperone-dependent GSK3beta transitional intermediate mediates activation-loop autophosphorylation publication-title: Mol. Cell doi: 10.1016/j.molcel.2006.10.009 – start-page: 1931 issue: No.14 year: 2016 ident: 10.1016/j.freeradbiomed.2021.03.034_bib93 article-title: AMPK facilitates nuclear accumulation of nrf2 by phosphorylating at serine 550(article) publication-title: Mol. Cell Biol. doi: 10.1128/MCB.00118-16 – volume: 150 start-page: 9 year: 2018 ident: 10.1016/j.freeradbiomed.2021.03.034_bib180 article-title: Baicalein and baicalin alleviate acetaminophen-induced liver injury by activating Nrf2 antioxidative pathway: the involvement of ERK1/2 and PKC publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2018.01.026 – start-page: 1311 year: 2006 ident: 10.1016/j.freeradbiomed.2021.03.034_bib46 article-title: Two-site substrate recognition model for the Keap1-Nrf2 system: a hinge and latch mechanism publication-title: Biol. Chem. – volume: 6 start-page: 649 issue: 6 year: 2014 ident: 10.1016/j.freeradbiomed.2021.03.034_bib192 article-title: Activation of Keap1/Nrf2 signaling pathway by nuclear epidermal growth factor receptor in cancer cells publication-title: Am. J. Tourism Res. – volume: 32 start-page: 514 issue: 4 year: 2013 ident: 10.1016/j.freeradbiomed.2021.03.034_bib108 article-title: The nuclear cofactor RAC3/AIB1/SRC-3 enhances Nrf2 signaling by interacting with transactivation domains publication-title: Oncogene doi: 10.1038/onc.2012.59 – volume: 282 start-page: 16502 issue: 22 year: 2007 ident: 10.1016/j.freeradbiomed.2021.03.034_bib84 article-title: GSK-3beta acts upstream of Fyn kinase in regulation of nuclear export and degradation of NF-E2 related factor 2 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M611336200 – volume: 13 start-page: 1211 issue: 10 year: 1999 ident: 10.1016/j.freeradbiomed.2021.03.034_bib122 article-title: Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls publication-title: Genes Dev. doi: 10.1101/gad.13.10.1211 – volume: 98 start-page: 1169 issue: 3 year: 2018 ident: 10.1016/j.freeradbiomed.2021.03.034_bib3 article-title: The KEAP1-NRF2 system: a thiol-based sensor-effector apparatus for maintaining redox homeostasis publication-title: Physiol. Rev. doi: 10.1152/physrev.00023.2017 – start-page: 122 issue: No.1 year: 2006 ident: 10.1016/j.freeradbiomed.2021.03.034_bib191 article-title: PKCalpha reduces the lipid kinase activity of the p110alpha/p85alpha PI3K through the phosphorylation of the catalytic subunit publication-title: Biochem. Biophys. Res. Commun. – volume: 22 start-page: 578 issue: 7 year: 2016 ident: 10.1016/j.freeradbiomed.2021.03.034_bib15 article-title: The dual roles of NRF2 in cancer publication-title: Trends Mol. Med. doi: 10.1016/j.molmed.2016.05.002 – volume: 18 start-page: 849 issue: 4 year: 1999 ident: 10.1016/j.freeradbiomed.2021.03.034_bib67 article-title: The human F box protein beta-Trcp associates with the Cul1/Skp1 complex and regulates the stability of beta-catenin publication-title: Oncogene doi: 10.1038/sj.onc.1202653 – volume: 82 start-page: 349 year: 2015 ident: 10.1016/j.freeradbiomed.2021.03.034_bib181 article-title: Dimethyl fumarate confers neuroprotection by casein kinase 2 phosphorylation of Nrf2 in murine intracerebral hemorrhage publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2015.07.001 – volume: 20 start-page: 574 issue: 4 year: 2014 ident: 10.1016/j.freeradbiomed.2021.03.034_bib97 article-title: The crosstalk between Nrf2 and AMPK signal pathways is important for the anti-inflammatory effect of berberine in LPS-stimulated macrophages and endotoxin-shocked mice publication-title: Antioxidants Redox Signal. doi: 10.1089/ars.2012.5116 – start-page: 1918 year: 2006 ident: 10.1016/j.freeradbiomed.2021.03.034_bib155 – volume: 73 start-page: 3097 issue: 10 year: 2013 ident: 10.1016/j.freeradbiomed.2021.03.034_bib40 article-title: RXRalpha inhibits the NRF2-ARE signaling pathway through a direct interaction with the Neh7 domain of NRF2 publication-title: Canc. Res. doi: 10.1158/0008-5472.CAN-12-3386 – volume: 87 start-page: 871 year: 2019 ident: 10.1016/j.freeradbiomed.2021.03.034_bib61 article-title: PMA-triggered PKCepsilon activity enhances Nrf2-mediated antiviral response on fish rhabdovirus infection publication-title: Fish Shellfish Immunol. doi: 10.1016/j.fsi.2019.02.033 – start-page: 208 issue: No.2 year: 2018 ident: 10.1016/j.freeradbiomed.2021.03.034_bib54 article-title: Protein kinase C: perfectly balanced publication-title: Crit. Rev. Biochem. Mol. Biol. – volume: 292 start-page: 7519 issue: 18 year: 2017 ident: 10.1016/j.freeradbiomed.2021.03.034_bib110 article-title: Glucocorticoid receptor signaling represses the antioxidant response by inhibiting histone acetylation mediated by the transcriptional activator NRF2 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M116.773960 – volume: 33 start-page: 130 issue: 1 year: 2019 ident: 10.1016/j.freeradbiomed.2021.03.034_bib185 article-title: Berberine ameliorates lipopolysaccharide-induced acute lung injury via the PERK-mediated Nrf2/HO-1 signaling axis publication-title: Phytother Res.: PTR doi: 10.1002/ptr.6206 – start-page: 1877 issue: No.11 year: 2015 ident: 10.1016/j.freeradbiomed.2021.03.034_bib135 article-title: Astrocyte NMDA receptors' activity sustains neuronal survival through a Cdk5-Nrf2 pathway publication-title: Cell Death Differ. doi: 10.1038/cdd.2015.49 – volume: 39 start-page: 199 issue: 4 year: 2014 ident: 10.1016/j.freeradbiomed.2021.03.034_bib36 article-title: The Nrf2 regulatory network provides an interface between redox and intermediary metabolism publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2014.02.002 – volume: 94 start-page: 3037 issue: 9 year: 1999 ident: 10.1016/j.freeradbiomed.2021.03.034_bib4 article-title: Pathophysiology of thrombocytopenia and anemia in mice lacking transcription factor NF-E2 publication-title: Blood doi: 10.1182/blood.V94.9.3037 – volume: 16 start-page: 123 issue: 2 year: 2011 ident: 10.1016/j.freeradbiomed.2021.03.034_bib49 article-title: Molecular mechanisms of the Keap1–Nrf2 pathway in stress response and cancer evolution publication-title: Gene Cell.: devoted to molecular & cellular mechanisms doi: 10.1111/j.1365-2443.2010.01473.x – volume: 6559 start-page: 785 year: 1995 ident: 10.1016/j.freeradbiomed.2021.03.034_bib78 article-title: Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B publication-title: Nature doi: 10.1038/378785a0 – volume: 244 start-page: 117329 year: 2020 ident: 10.1016/j.freeradbiomed.2021.03.034_bib35 article-title: MicroRNA-mediated regulation of Nrf2 signaling pathway: implications in disease therapy and protection against oxidative stress publication-title: Life Sci. doi: 10.1016/j.lfs.2020.117329 – volume: 276 start-page: 20858 issue: 24 year: 2001 ident: 10.1016/j.freeradbiomed.2021.03.034_bib131 article-title: Identification of activating transcription factor 4 (ATF4) as an Nrf2-interacting protein. Implication for heme oxygenase-1 gene regulation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M101198200 – volume: 22 start-page: 2883 issue: 9 year: 2002 ident: 10.1016/j.freeradbiomed.2021.03.034_bib38 article-title: Enhanced expression of the transcription factor Nrf2 by cancer chemopreventive agents: role of antioxidant response element-like sequences in the nrf2 promoter publication-title: Mol. Cell Biol. doi: 10.1128/MCB.22.9.2883-2892.2002 – volume: 34 start-page: 101475 year: 2020 ident: 10.1016/j.freeradbiomed.2021.03.034_bib43 article-title: Redox toxicology of environmental chemicals causing oxidative stress publication-title: Redox Biology doi: 10.1016/j.redox.2020.101475 – volume: 280 start-page: 28430 issue: 31 year: 2005 ident: 10.1016/j.freeradbiomed.2021.03.034_bib89 article-title: Nrf2 Possesses a redox-insensitive nuclear export signal overlapping with the leucine zipper motif publication-title: J. Biol. Chem. doi: 10.1074/jbc.M410601200 – volume: 277 start-page: 18728 issue: 21 year: 2002 ident: 10.1016/j.freeradbiomed.2021.03.034_bib126 article-title: Dimerization and release of molecular chaperone inhibition facilitate activation of eukaryotic initiation factor-2 kinase in response to endoplasmic reticulum stress publication-title: J. Biol. Chem. doi: 10.1074/jbc.M200903200 – start-page: 92 year: 2016 ident: 10.1016/j.freeradbiomed.2021.03.034_bib62 article-title: Regulation of the CNC-bZIP transcription factor nrf2 by Keap1 and the axis between GSK-3 and β-TrCP publication-title: Current Opinion in Toxicology doi: 10.1016/j.cotox.2016.10.003 – volume: 26 start-page: 7942 issue: 21 year: 2006 ident: 10.1016/j.freeradbiomed.2021.03.034_bib109 article-title: BRG1 interacts with Nrf2 to selectively mediate HO-1 induction in response to oxidative stress publication-title: Mol. Cell Biol. doi: 10.1128/MCB.00700-06 – year: 2003 ident: 10.1016/j.freeradbiomed.2021.03.034_bib115 article-title: Protein kinase CK2: structure, regulation and role in cellular decisions of life and death publication-title: Biochem. J. doi: 10.1042/bj20021469 – volume: 19 start-page: 2278 issue: 19 year: 2005 ident: 10.1016/j.freeradbiomed.2021.03.034_bib157 article-title: The C. elegans p38 MAPK pathway regulates nuclear localization of the transcription factor SKN-1 in oxidative stress response publication-title: Genes Dev. doi: 10.1101/gad.1324805 – volume: 279 start-page: 50810 issue: 49 year: 2004 ident: 10.1016/j.freeradbiomed.2021.03.034_bib6 article-title: Nrf3 negatively regulates antioxidant-response element-mediated expression and antioxidant induction of NAD(P)H:quinone oxidoreductase1 gene publication-title: J. Biol. Chem. doi: 10.1074/jbc.M404984200 – volume: 36 start-page: 407 issue: 3 year: 2016 ident: 10.1016/j.freeradbiomed.2021.03.034_bib107 article-title: The mediator subunit MED16 transduces NRF2-activating signals into antioxidant gene expression publication-title: Mol. Cell Biol. doi: 10.1128/MCB.00785-15 – year: 2018 ident: 10.1016/j.freeradbiomed.2021.03.034_bib172 article-title: Resistance to gefitinib and cross-resistance to irreversible EGFR-TKIs mediated by disruption of the Keap1-Nrf2 pathway in human lung cancer cells publication-title: Faseb. J. – volume: 27 start-page: 6 issue: 1 year: 2020 ident: 10.1016/j.freeradbiomed.2021.03.034_bib139 article-title: A review on chronic pain in rheumatoid arthritis: a focus on activation of NR2B subunit of N-Methyl-D-Aspartate receptors publication-title: Malays. J. Med. Sci.: MJMS – volume: 29 start-page: 1746 issue: 17 year: 2018 ident: 10.1016/j.freeradbiomed.2021.03.034_bib159 article-title: An overview of the advantages of KEAP1-NRF2 system activation during inflammatory disease treatment publication-title: Antioxidants Redox Signal. doi: 10.1089/ars.2017.7358 – volume: 41 start-page: 2981 issue: 11 year: 2016 ident: 10.1016/j.freeradbiomed.2021.03.034_bib175 article-title: Anti-neuroinflammatory effect of emodin in LPS-stimulated microglia: involvement of AMPK/Nrf2 activation publication-title: Neurochem. Res. doi: 10.1007/s11064-016-2018-6 – start-page: 184 issue: No.4 year: 2013 ident: 10.1016/j.freeradbiomed.2021.03.034_bib79 article-title: PTEN in cancer, metabolism, and aging publication-title: Trends Endocrinol. Metabol.: TEM (Trends Endocrinol. Metab.) doi: 10.1016/j.tem.2012.11.002 – start-page: 110 year: 2016 ident: 10.1016/j.freeradbiomed.2021.03.034_bib152 article-title: Oxyresveratrol abrogates oxidative stress by activating ERK–Nrf2 pathway in the liver publication-title: Chem. Biol. Interact. doi: 10.1016/j.cbi.2015.06.024 – start-page: 212 year: 2019 ident: 10.1016/j.freeradbiomed.2021.03.034_bib51 article-title: PKC and PKN in heart disease publication-title: J. Mol. Cell. Cardiol. – volume: 54 start-page: 687 issue: 2 year: 2011 ident: 10.1016/j.freeradbiomed.2021.03.034_bib75 article-title: Inhibition of glycogen synthase kinase 3 beta ameliorates liver ischemia reperfusion injury by way of an interleukin-10-mediated immune regulatory mechanism publication-title: Hepatology (Baltimore, Md doi: 10.1002/hep.24419 – volume: 6 start-page: 5 issue: 1 year: 2006 ident: 10.1016/j.freeradbiomed.2021.03.034_bib127 article-title: Divergent roles of IRE1alpha and PERK in the unfolded protein response publication-title: Curr. Mol. Med. doi: 10.2174/156652406775574569 – volume: 43 start-page: 611 issue: 4 year: 2015 ident: 10.1016/j.freeradbiomed.2021.03.034_bib69 article-title: Dual regulation of transcription factor Nrf2 by Keap1 and by the combined actions of β-TrCP and GSK-3 publication-title: Biochem. Soc. Trans. doi: 10.1042/BST20150011 – volume: 283 start-page: 33554 issue: 48 year: 2008 ident: 10.1016/j.freeradbiomed.2021.03.034_bib5 article-title: Nrf1 and Nrf2 play distinct roles in activation of antioxidant response element-dependent genes publication-title: J. Biol. Chem. doi: 10.1074/jbc.M804597200 – volume: 85 start-page: 705 issue: 6 year: 2013 ident: 10.1016/j.freeradbiomed.2021.03.034_bib37 article-title: The Nrf2 cell defence pathway: keap1-dependent and -independent mechanisms of regulation publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2012.11.016 – volume: 31 start-page: 1121 issue: 6 year: 2011 ident: 10.1016/j.freeradbiomed.2021.03.034_bib65 article-title: SCF/{beta}-TrCP promotes glycogen synthase kinase 3-dependent degradation of the Nrf2 transcription factor in a Keap1-independent manner publication-title: Mol. Cell Biol. doi: 10.1128/MCB.01204-10 – volume: 20 start-page: 3772 year: 2009 ident: 10.1016/j.freeradbiomed.2021.03.034_bib102 article-title: Repression of classical nuclear export by S-nitrosylation of CRM1 publication-title: J. Cell Sci. doi: 10.1242/jcs.057026 – volume: 11 start-page: 3214 issue: 11 year: 2016 ident: 10.1016/j.freeradbiomed.2021.03.034_bib170 article-title: Small molecule inhibitor of NRF2 selectively intervenes therapeutic resistance in KEAP1-deficient NSCLC tumors publication-title: ACS Chem. Biol. doi: 10.1021/acschembio.6b00651 – start-page: 64 issue: No.2 year: 2003 ident: 10.1016/j.freeradbiomed.2021.03.034_bib143 article-title: Redox-sensitive mechanisms of phytochemical-mediated inhibition of cancer cell proliferation (review) publication-title: J. Nutr. Biochem. doi: 10.1016/S0955-2863(02)00251-6 – start-page: 1726 issue: No.4834 year: 1987 ident: 10.1016/j.freeradbiomed.2021.03.034_bib52 article-title: Protein kinase C contains a pseudosubstrate prototope in its regulatory domain publication-title: Science (New York, N.Y.) doi: 10.1126/science.3686012 – volume: 106 start-page: 21353 issue: 50 year: 2009 ident: 10.1016/j.freeradbiomed.2021.03.034_bib138 article-title: PKCdelta regulates cortical radial migration by stabilizing the Cdk5 activator p35 publication-title: Proc. Natl. Acad. Sci. U. S. A doi: 10.1073/pnas.0812872106 – volume: 36 start-page: 924 issue: 5 year: 2016 ident: 10.1016/j.freeradbiomed.2021.03.034_bib161 article-title: The keap1–nrf2–ARE pathway as a potential preventive and therapeutic target: an update publication-title: Med. Res. Rev. doi: 10.1002/med.21396 – volume: 9 start-page: 9245 issue: 1 year: 2019 ident: 10.1016/j.freeradbiomed.2021.03.034_bib182 article-title: Tolvaptan activates the Nrf2/HO-1 antioxidant pathway through PERK phosphorylation publication-title: Sci. Rep. doi: 10.1038/s41598-019-45539-8 – volume: 88 start-page: 147 year: 2015 ident: 10.1016/j.freeradbiomed.2021.03.034_bib85 article-title: Structural and functional characterization of Nrf2 degradation by glycogen synthase kinase 3/β-TrCP publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2015.04.029 – volume: 275 start-page: 27694 issue: 36 year: 2000 ident: 10.1016/j.freeradbiomed.2021.03.034_bib147 article-title: Mechanism of heme oxygenase-1 gene activation by cadmium in MCF-7 mammary epithelial cells. Role of p38 kinase and Nrf2 transcription factor publication-title: J. Biol. Chem. doi: 10.1074/jbc.M004729200 – volume: 202 start-page: 112532 year: 2020 ident: 10.1016/j.freeradbiomed.2021.03.034_bib162 article-title: Recent progress in Keap1-Nrf2 protein-protein interaction inhibitors publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2020.112532 – volume: 88 start-page: 253 issue: Pt B year: 2015 ident: 10.1016/j.freeradbiomed.2021.03.034_bib29 article-title: Nrf2--a therapeutic target for the treatment of neurodegenerative diseases publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2015.07.147 – volume: 66 start-page: 75 issue: 1 year: 2007 ident: 10.1016/j.freeradbiomed.2021.03.034_bib28 article-title: Expression of Nrf2 in neurodegenerative diseases publication-title: J. Neuropathol. Exp. Neurol. doi: 10.1097/nen.0b013e31802d6da9 – volume: 29 start-page: 101393 year: 2020 ident: 10.1016/j.freeradbiomed.2021.03.034_bib104 article-title: AMPK leads to phosphorylation of the transcription factor Nrf2, tuning transactivation of selected target genes publication-title: Redox biology doi: 10.1016/j.redox.2019.101393 – start-page: 731 issue: No.4 year: 2007 ident: 10.1016/j.freeradbiomed.2021.03.034_bib146 article-title: Induction of heme-oxygenase 1 requires the p38MAPK and PI3K pathways and suppresses apoptotic cell death following hypericin-mediated photodynamic therapy publication-title: Apoptosis doi: 10.1007/s10495-006-0016-x – volume: 6 start-page: 857 issue: 10 year: 2001 ident: 10.1016/j.freeradbiomed.2021.03.034_bib106 article-title: Two domains of Nrf2 cooperatively bind CBP, a CREB binding protein, and synergistically activate transcription publication-title: Gene Cell.: devoted to molecular & cellular mechanisms doi: 10.1046/j.1365-2443.2001.00469.x – volume: 2020 start-page: 8291413 year: 2020 ident: 10.1016/j.freeradbiomed.2021.03.034_bib183 article-title: Ganoderic acid D protects human amniotic mesenchymal stem cells against oxidative stress-induced senescence through the PERK/NRF2 signaling pathway publication-title: Oxidative medicine and cellular longevity doi: 10.1155/2020/8291413 – volume: 38 start-page: 317 issue: 3 year: 2006 ident: 10.1016/j.freeradbiomed.2021.03.034_bib129 article-title: Coordination of ER and oxidative stress signaling: the PERK/Nrf2 signaling pathway publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2005.09.018 – volume: 278 start-page: 44675 issue: 45 year: 2003 ident: 10.1016/j.freeradbiomed.2021.03.034_bib58 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M307633200 – start-page: 760 year: 2019 ident: 10.1016/j.freeradbiomed.2021.03.034_bib59 article-title: Melatonin prevents mice cortical astrocytes from hemin-induced toxicity through activating PKCα/nrf2/HO-1 signaling in vitro publication-title: Front. Neurosci. – volume: 57 start-page: 249 issue: 2 year: 2013 ident: 10.1016/j.freeradbiomed.2021.03.034_bib179 article-title: Dietary flavonoid genistein induces Nrf2 and phase II detoxification gene expression via ERKs and PKC pathways and protects against oxidative stress in Caco-2 cells publication-title: Mol. Nutr. Food Res. doi: 10.1002/mnfr.201200536 – volume: 467 start-page: 40 year: 2019 ident: 10.1016/j.freeradbiomed.2021.03.034_bib173 article-title: NRF2 addiction" in lung cancer cells and its impact on cancer therapy publication-title: Canc. Lett. doi: 10.1016/j.canlet.2019.09.016 – volume: 52 start-page: 98 issue: 1 year: 2011 ident: 10.1016/j.freeradbiomed.2021.03.034_bib118 article-title: Involvement of CK2 in activation of electrophilic genes in endothelial cells by oxidized phospholipids publication-title: J. Lipid Res. doi: 10.1194/jlr.M009480 – start-page: 313 issue: No.2 year: 1997 ident: 10.1016/j.freeradbiomed.2021.03.034_bib86 article-title: An nrf2/small maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements publication-title: Biochem. Biophys. Res. Commun. doi: 10.1006/bbrc.1997.6943 – volume: 1823 start-page: 1841 issue: 10 year: 2012 ident: 10.1016/j.freeradbiomed.2021.03.034_bib88 article-title: The small MAF transcription factors MAFF, MAFG and MAFK: current knowledge and perspectives publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamcr.2012.06.012 – volume: 30 start-page: 747 issue: 3 year: 2015 ident: 10.1016/j.freeradbiomed.2021.03.034_bib174 article-title: Pre-treatment with metformin activates Nrf2 antioxidant pathways and inhibits inflammatory responses through induction of AMPK after transient global cerebral ischemia publication-title: Metab. Brain Dis. doi: 10.1007/s11011-014-9632-2 – volume: 274 start-page: 24896 issue: 35 year: 1999 ident: 10.1016/j.freeradbiomed.2021.03.034_bib74 article-title: Insulin and exercise decrease glycogen synthase kinase-3 activity by different mechanisms in rat skeletal muscle publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.35.24896 – volume: 12 issue: 554 year: 2020 ident: 10.1016/j.freeradbiomed.2021.03.034_bib73 article-title: Activation of NRF2 ameliorates oxidative stress and cystogenesis in autosomal dominant polycystic kidney disease publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aba3613 – volume: 23 start-page: 7198 issue: 20 year: 2003 ident: 10.1016/j.freeradbiomed.2021.03.034_bib119 article-title: Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival publication-title: Mol. Cell Biol. doi: 10.1128/MCB.23.20.7198-7209.2003 – volume: 281 start-page: 14841 issue: 21 year: 2006 ident: 10.1016/j.freeradbiomed.2021.03.034_bib64 article-title: Glycogen synthase kinase-3beta inhibits the xenobiotic and antioxidant cell response by direct phosphorylation and nuclear exclusion of the transcription factor Nrf2 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M513737200 – volume: 12 issue: 3 year: 2020 ident: 10.1016/j.freeradbiomed.2021.03.034_bib134 article-title: ATF4-Dependent NRF2 transcriptional regulation promotes antioxidant protection during endoplasmic reticulum stress publication-title: Cancers doi: 10.3390/cancers12030569 – volume: 27 start-page: 410 issue: 2 year: 2016 ident: 10.1016/j.freeradbiomed.2021.03.034_bib53 article-title: Sequential posttranslational modifications regulate PKC degradation publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e15-09-0624 – volume: 50 start-page: 5339 issue: 11 year: 2009 ident: 10.1016/j.freeradbiomed.2021.03.034_bib82 article-title: Synthetic triterpenoids attenuate cytotoxic retinal injury: cross-talk between Nrf2 and PI3K/AKT signaling through inhibition of the lipid phosphatase PTEN publication-title: Invest. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.09-3648 – volume: 131 start-page: 110676 year: 2020 ident: 10.1016/j.freeradbiomed.2021.03.034_bib30 article-title: Emerging role of NRF2 in ROS-mediated tumor chemoresistance publication-title: Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie doi: 10.1016/j.biopha.2020.110676 – start-page: 527 issue: No.7 year: 2019 ident: 10.1016/j.freeradbiomed.2021.03.034_bib94 article-title: AMP-activated protein kinase: the current landscape for drug development publication-title: Nat. Rev. Drug Discov. – start-page: 765 issue: No.5–6 year: 2002 ident: 10.1016/j.freeradbiomed.2021.03.034_bib142 article-title: Antioxidants and oxidants regulated signal transduction pathways publication-title: Biochem. Pharmacol. doi: 10.1016/S0006-2952(02)01137-1 – start-page: 9237263 year: 2017 ident: 10.1016/j.freeradbiomed.2021.03.034_bib24 – volume: 31 start-page: 511 issue: 3 year: 2013 ident: 10.1016/j.freeradbiomed.2021.03.034_bib81 article-title: Redox regulation of tumor suppressor PTEN in cancer and aging (Review) publication-title: Int. J. Mol. Med. doi: 10.3892/ijmm.2013.1235 |
SSID | ssj0004538 |
Score | 2.6342578 |
SecondaryResourceType | review_article |
Snippet | The transcription factor nuclear factor erythroid-derived 2-like 2 (NRF2) participates in the activation of the antioxidant cytoprotective pathway and other... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 129 |
SubjectTerms | Cellular protection NRF2 Oxidative stress Phosphorylation Posttranslational modification Regulation |
Title | Regulation of Nrf2 by phosphorylation: Consequences for biological function and therapeutic implications |
URI | https://dx.doi.org/10.1016/j.freeradbiomed.2021.03.034 https://www.ncbi.nlm.nih.gov/pubmed/33794311 https://www.proquest.com/docview/2508590962 |
Volume | 168 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na9swFH-UjpVdRtePLetWNDp2c6NPx-qhEEJLtrEcuhV6E5L1TDM2J6TpIZf97ZNku00PhULBPtiWZKH3_N7vWe8D4HOhrJbeq8wJXQQDReWZLbDMrHdSVnlZ6rRj-mOSjy_ltyt1tQGjLhYmulW2sr-R6Ulat3f67Wr259Np_yctNAvqU_OYRkjLGGgu5SBy-fE_tpYxPFWzjo2z2HoLju59vKoFYtyyTpHuwVjkLGU8FfIxLfUYCk3a6HwbXrcwkgybmb6BDax3YHdYBxP674p8IcmxM_0x34GXTb3J1S5cXzSV5wMtyKwik0XFiVuR-fXsJpyLVfPohIzWXKxJQLWkSdUU6UmiIkwD2NqTtegtMl3zTd-Dy_OzX6Nx1pZayEop9TITSIUfBPCF3FYYMGyhPJMDb6uydIJXTqPG3KFkXgmOzjPtShklKaXWCSH2YbOe1fgOCFWUVRwDoTVKWgwsRe0YxTxgB2Wt6MFJt7SmbPOQx3IYf0zncPbbPKCLiXQxVIRD9kDedZ436Tie1u20o6F5wF0mKI6nDfCpo7wJ31_cVLE1zm5vTICQhdLBEOQ9eNuwxN3MhIjp9xh7_9zXH8CreBW9Fjj9AJvLxS1-DGBo6Q4Ttx_Ci-HX7-PJfylCDSk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBYhpY9LaZM-tk-VPm7u6um1Ai2EtGHTJHtoE8hNkewx2ZB6l90NxZf-qf7BjmQ73RwCgRKwLzaWhWY08430aYaQd5l2RhWFTrw0GQYoOk1cBnniCq9Umea5iTum-6N0eKi-HemjFfKnOwsTaJWt7W9serTW7ZN-O5r96Xjc_8Eyw9F9GhHSCBnVMSt3of6Fcdv8084XFPJ7Iba_HmwNk7a0QJIrZRaJBCaLAYINEK4ExGyZLrgaFK7Mcy9F6Q0YSD0oXmgpwBfc-FwFy8GY8zKsgqLdv6XQXISyCR9_86UU5bF8duhdErp3h7z9RyorZwBhjzwercfoVPCYYlWqq9ziVbA3ur_tB-R-i1vpZjM0D8kKVGtkfbPCmP1nTT_QyCSNS_Rr5HZT4LJeJyffm1L3KHw6KeloVgrqazo9mczxntXNqw26tcTppgijaZMbKigQDZ43NuCqgi4dF6PjJTL8I3J4IwJ4TFarSQVPCWWa8VIAapYBxbKBY2A8Z5AiWNHOyR7Z6IbW5m3i81B_48x2DLdTe0kuNsjFMomX6hF18fG0yf9xvc8-dzK0l9TZoqe6XgNvOslbnPBhF8dVMDmfW8SsmTYYeYoeedKoxEXPpAz5_jh_9r-_f03uDg_29-zezmj3ObkX3gTKhGAvyOpidg4vEYkt_Kuo-ZQc3_RU-wsnAEn3 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulation+of+Nrf2+by+phosphorylation%3A+Consequences+for+biological+function+and+therapeutic+implications&rft.jtitle=Free+radical+biology+%26+medicine&rft.au=Liu%2C+Tian&rft.au=Lv%2C+Yi-Fei&rft.au=Zhao%2C+Jing-Long&rft.au=You%2C+Qi-Dong&rft.date=2021-05-20&rft.pub=Elsevier+Inc&rft.issn=0891-5849&rft.eissn=1873-4596&rft.volume=168&rft.spage=129&rft.epage=141&rft_id=info:doi/10.1016%2Fj.freeradbiomed.2021.03.034&rft.externalDocID=S0891584921001945 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0891-5849&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0891-5849&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0891-5849&client=summon |