Regulation of Nrf2 by phosphorylation: Consequences for biological function and therapeutic implications

The transcription factor nuclear factor erythroid-derived 2-like 2 (NRF2) participates in the activation of the antioxidant cytoprotective pathway and other important physiological processes to maintain cellular homeostasis. The dysregulation of NRF2 activity plays a role in various diseases, such a...

Full description

Saved in:
Bibliographic Details
Published inFree radical biology & medicine Vol. 168; pp. 129 - 141
Main Authors Liu, Tian, Lv, Yi-Fei, Zhao, Jing-Long, You, Qi-Dong, Jiang, Zheng-Yu
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 20.05.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The transcription factor nuclear factor erythroid-derived 2-like 2 (NRF2) participates in the activation of the antioxidant cytoprotective pathway and other important physiological processes to maintain cellular homeostasis. The dysregulation of NRF2 activity plays a role in various diseases, such as cardiovascular diseases, neurodegenerative diseases, and cancer. Thus, NRF2 activity is tightly regulated through multiple mechanisms, among which phosphorylation by kinases is critical in the posttranslational regulation of NRF2. For instance, PKC, casein kinase 2, and AMP-activated kinase positively, while GSK-3 negatively regulates NRF2 activity through phosphorylation of different sites. Here, we provide an overview of the phosphorylation regulation pattern of NRF2 and discuss the therapeutic potential of interventions targeting NRF2 phosphorylation. [Display omitted] •Protein kinases phosphorylate Nrf2 to modulate its stability and/or activity.•Phosphorylation regulation of NRF2 bridges NRF2 activity to a series of biological events.•Targeting NRF2 phosphorylation regulation shows therapeutic potential for multiple inflammation-related diseases.
AbstractList The transcription factor nuclear factor erythroid-derived 2-like 2 (NRF2) participates in the activation of the antioxidant cytoprotective pathway and other important physiological processes to maintain cellular homeostasis. The dysregulation of NRF2 activity plays a role in various diseases, such as cardiovascular diseases, neurodegenerative diseases, and cancer. Thus, NRF2 activity is tightly regulated through multiple mechanisms, among which phosphorylation by kinases is critical in the posttranslational regulation of NRF2. For instance, PKC, casein kinase 2, and AMP-activated kinase positively, while GSK-3 negatively regulates NRF2 activity through phosphorylation of different sites. Here, we provide an overview of the phosphorylation regulation pattern of NRF2 and discuss the therapeutic potential of interventions targeting NRF2 phosphorylation.The transcription factor nuclear factor erythroid-derived 2-like 2 (NRF2) participates in the activation of the antioxidant cytoprotective pathway and other important physiological processes to maintain cellular homeostasis. The dysregulation of NRF2 activity plays a role in various diseases, such as cardiovascular diseases, neurodegenerative diseases, and cancer. Thus, NRF2 activity is tightly regulated through multiple mechanisms, among which phosphorylation by kinases is critical in the posttranslational regulation of NRF2. For instance, PKC, casein kinase 2, and AMP-activated kinase positively, while GSK-3 negatively regulates NRF2 activity through phosphorylation of different sites. Here, we provide an overview of the phosphorylation regulation pattern of NRF2 and discuss the therapeutic potential of interventions targeting NRF2 phosphorylation.
The transcription factor nuclear factor erythroid-derived 2-like 2 (NRF2) participates in the activation of the antioxidant cytoprotective pathway and other important physiological processes to maintain cellular homeostasis. The dysregulation of NRF2 activity plays a role in various diseases, such as cardiovascular diseases, neurodegenerative diseases, and cancer. Thus, NRF2 activity is tightly regulated through multiple mechanisms, among which phosphorylation by kinases is critical in the posttranslational regulation of NRF2. For instance, PKC, casein kinase 2, and AMP-activated kinase positively, while GSK-3 negatively regulates NRF2 activity through phosphorylation of different sites. Here, we provide an overview of the phosphorylation regulation pattern of NRF2 and discuss the therapeutic potential of interventions targeting NRF2 phosphorylation. [Display omitted] •Protein kinases phosphorylate Nrf2 to modulate its stability and/or activity.•Phosphorylation regulation of NRF2 bridges NRF2 activity to a series of biological events.•Targeting NRF2 phosphorylation regulation shows therapeutic potential for multiple inflammation-related diseases.
The transcription factor nuclear factor erythroid-derived 2-like 2 (NRF2) participates in the activation of the antioxidant cytoprotective pathway and other important physiological processes to maintain cellular homeostasis. The dysregulation of NRF2 activity plays a role in various diseases, such as cardiovascular diseases, neurodegenerative diseases, and cancer. Thus, NRF2 activity is tightly regulated through multiple mechanisms, among which phosphorylation by kinases is critical in the posttranslational regulation of NRF2. For instance, PKC, casein kinase 2, and AMP-activated kinase positively, while GSK-3 negatively regulates NRF2 activity through phosphorylation of different sites. Here, we provide an overview of the phosphorylation regulation pattern of NRF2 and discuss the therapeutic potential of interventions targeting NRF2 phosphorylation.
Author Jiang, Zheng-Yu
Zhao, Jing-Long
You, Qi-Dong
Liu, Tian
Lv, Yi-Fei
Author_xml – sequence: 1
  givenname: Tian
  orcidid: 0000-0003-1546-7490
  surname: Liu
  fullname: Liu, Tian
  organization: State Key Laboratory of Natural Medicines, And Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
– sequence: 2
  givenname: Yi-Fei
  surname: Lv
  fullname: Lv, Yi-Fei
  organization: State Key Laboratory of Natural Medicines, And Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
– sequence: 3
  givenname: Jing-Long
  orcidid: 0000-0001-9783-6493
  surname: Zhao
  fullname: Zhao, Jing-Long
  organization: State Key Laboratory of Natural Medicines, And Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
– sequence: 4
  givenname: Qi-Dong
  surname: You
  fullname: You, Qi-Dong
  email: youqd@163.com
  organization: State Key Laboratory of Natural Medicines, And Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
– sequence: 5
  givenname: Zheng-Yu
  surname: Jiang
  fullname: Jiang, Zheng-Yu
  email: jiangzhengyucpu@163.com
  organization: State Key Laboratory of Natural Medicines, And Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33794311$$D View this record in MEDLINE/PubMed
BookMark eNqNkV1LHDEUhoNYdLX-hRLwpjez5ms-0l7Joq0gLZT2OuTjxM0yOxmTGWH_vVlXC-2VcEIuznPec3jfM3Q8xAEQuqRkSQltrjZLnwCSdibELbglI4wuCS8ljtCCdi2vRC2bY7QgnaRV3Ql5is5y3hBCRM27E3TKeSsFp3SB1r_gYe71FOKAo8c_kmfY7PC4jrm8tDu0vuBVHDI8zjBYyNjHhMvyPj4Eq3vs58G-COjB4WldThthnoLFYTv2hdj38kf0wes-w8Xrf47-3N78Xn2v7n9-u1td31dWCDlVHAh3bU0pMO2ho66rHRWt095aw5k3EiQ0BgR1NWdgHJXGiq5tGCHacM7P0eeD7phiuTdPahuyhb7XA8Q5K1aTrpZENqygn17R2RQj1ZjCVqedenOnAF8PgE0x5wT-L0KJ2mehNuqfLNQ-C0V4KVGmr_-btmF6MWNKOvTv1Lg5aECx7ClAUtmGfQguJLCTcjG8S-cZC_SygA
CitedBy_id crossref_primary_10_1016_j_jff_2024_106212
crossref_primary_10_3390_antiox12030735
crossref_primary_10_1186_s10020_023_00684_9
crossref_primary_10_3390_antiox12071363
crossref_primary_10_1007_s12257_021_0248_1
crossref_primary_10_1016_j_ecoenv_2021_112905
crossref_primary_10_3390_antiox12061283
crossref_primary_10_1111_cns_14646
crossref_primary_10_3390_pharmaceutics17020268
crossref_primary_10_1002_advs_202410410
crossref_primary_10_3390_antiox12081564
crossref_primary_10_3390_ijms23041966
crossref_primary_10_1016_j_freeradbiomed_2024_07_041
crossref_primary_10_3390_cancers14194881
crossref_primary_10_1016_j_phytochem_2022_113429
crossref_primary_10_3390_ijms242015276
crossref_primary_10_3390_ijms26041693
crossref_primary_10_1016_j_cbi_2024_111312
crossref_primary_10_1152_ajpcell_00573_2023
crossref_primary_10_1007_s12672_023_00644_z
crossref_primary_10_2147_JIR_S490418
crossref_primary_10_3390_antiox12020366
crossref_primary_10_3389_fphar_2022_1011184
crossref_primary_10_1124_dmd_124_001282
crossref_primary_10_3390_foods10112807
crossref_primary_10_3390_biom14040502
crossref_primary_10_3390_antiox11010008
crossref_primary_10_3390_antiox13111406
crossref_primary_10_1016_j_bbadis_2023_166752
crossref_primary_10_1016_j_jphs_2022_02_004
crossref_primary_10_1039_D2FO00179A
crossref_primary_10_1038_s41598_025_94249_x
crossref_primary_10_1007_s12035_022_03201_x
crossref_primary_10_3390_antiox12091728
crossref_primary_10_3390_ijms22157963
crossref_primary_10_1167_iovs_63_12_25
crossref_primary_10_1002_biof_1907
crossref_primary_10_3390_ijms24010595
crossref_primary_10_3390_ijms23052846
crossref_primary_10_1007_s13402_024_00918_w
crossref_primary_10_1111_jnc_15786
crossref_primary_10_1134_S0006297922120045
crossref_primary_10_1016_j_intimp_2022_109301
crossref_primary_10_1007_s10753_022_01638_9
crossref_primary_10_1007_s12640_023_00650_7
crossref_primary_10_1016_j_lfs_2023_122346
crossref_primary_10_3390_pharmaceutics14030534
crossref_primary_10_1002_hep_32384
crossref_primary_10_3390_antiox10060944
crossref_primary_10_1016_j_fct_2021_112790
crossref_primary_10_1016_j_nbd_2025_106824
crossref_primary_10_3390_antiox13020169
crossref_primary_10_1016_j_lfs_2022_121217
crossref_primary_10_3390_cells11182898
crossref_primary_10_1016_j_phymed_2024_156323
crossref_primary_10_1016_j_bmcl_2022_128766
crossref_primary_10_1016_j_carbpol_2023_120601
crossref_primary_10_1016_j_freeradbiomed_2025_01_046
crossref_primary_10_1016_j_freeradbiomed_2025_02_005
crossref_primary_10_1016_j_phymed_2024_156052
crossref_primary_10_1016_j_biocel_2024_106702
crossref_primary_10_26599_FSHW_2024_9250067
crossref_primary_10_3390_molecules27134145
crossref_primary_10_1002_mco2_127
crossref_primary_10_1002_biof_1814
crossref_primary_10_1016_j_freeradbiomed_2022_06_226
crossref_primary_10_1186_s12985_023_02208_7
crossref_primary_10_3389_fimmu_2025_1529991
crossref_primary_10_1016_j_ecoenv_2024_117114
crossref_primary_10_31083_j_fbl2906218
crossref_primary_10_1016_j_fct_2022_113496
crossref_primary_10_1080_02713683_2024_2352058
crossref_primary_10_1042_BST20220228
crossref_primary_10_3390_antiox10071030
crossref_primary_10_3390_antiox10081296
crossref_primary_10_3390_antiox13070778
crossref_primary_10_1002_bies_202300176
crossref_primary_10_3389_fonc_2023_1184079
crossref_primary_10_3390_molecules27238568
crossref_primary_10_1016_j_freeradbiomed_2022_07_014
crossref_primary_10_1093_procel_pwad048
crossref_primary_10_1007_s43188_022_00141_5
crossref_primary_10_3389_fphar_2023_1240433
crossref_primary_10_1002_ptr_7940
crossref_primary_10_4062_biomolther_2023_179
crossref_primary_10_3389_fcell_2023_1332049
crossref_primary_10_1080_14756366_2022_2106478
crossref_primary_10_1186_s13578_022_00951_y
crossref_primary_10_1016_j_neuint_2024_105925
crossref_primary_10_3390_molecules28155862
crossref_primary_10_1073_pnas_2214038120
crossref_primary_10_4103_aja202361
crossref_primary_10_1080_10715762_2024_2358026
Cites_doi 10.1016/j.freeradbiomed.2019.01.016
10.1073/pnas.91.21.9926
10.1021/acs.jmedchem.8b01121
10.1073/pnas.1913633117
10.1038/srep45701
10.1074/jbc.M110778200
10.1016/j.advenzreg.2006.01.007
10.1016/j.bcp.2020.114002
10.1101/gad.13.1.76
10.1073/pnas.1305687110
10.1016/j.redox.2020.101544
10.1074/jbc.M802537200
10.1038/nn2071
10.1126/science.278.5335.141
10.1126/scitranslmed.aad6095
10.1006/excr.2000.5130
10.1016/j.ccr.2012.05.016
10.1016/j.coph.2008.12.012
10.1155/2019/8592348
10.1016/j.freeradbiomed.2020.06.028
10.1016/j.freeradbiomed.2015.04.029
10.1074/jbc.M110.121913
10.1016/j.ejphar.2007.11.061
10.1158/0008-5472.CAN-18-2723
10.1016/S0021-9258(17)36880-1
10.1073/pnas.220418997
10.4239/wjd.v6.i1.175
10.1152/ajpheart.00749.2010
10.1016/j.freeradbiomed.2007.03.001
10.1074/jbc.M207293200
10.1023/A:1025737622815
10.1038/onc.2012.388
10.1128/MCB.00180-12
10.1146/annurev-pharmtox-010818-021856
10.1128/MCB.25.1.162-171.2005
10.1074/jbc.275.4.2322
10.3233/JAD-2006-9S335
10.1146/annurev.biochem.73.011303.074134
10.1016/S0304-3835(01)00695-4
10.1016/j.taap.2013.05.010
10.1038/416703a
10.1126/scisignal.3112re3
10.1097/SHK.0b013e318164e762
10.1016/j.freeradbiomed.2009.07.035
10.3389/fphar.2018.00497
10.1128/MCB.01639-08
10.1074/jbc.M411451200
10.3390/cancers12103023
10.1210/me.2003-0379
10.1101/gad.238246.114
10.1021/jm3013344
10.1016/S0021-9258(19)36594-9
10.1016/j.redox.2018.05.002
10.1124/mol.59.5.1147
10.1016/j.molmed.2004.09.003
10.1016/j.ccell.2020.06.001
10.1111/j.1462-5822.2008.01164.x
10.1016/j.jbior.2017.05.001
10.1128/MCB.00753-07
10.1016/j.bbamcr.2008.05.024
10.1016/j.freeradbiomed.2015.03.030
10.1016/j.cell.2019.06.003
10.1042/BJ20130863
10.1021/acschemneuro.0c00363
10.1016/j.taap.2014.07.011
10.4155/fmc-2019-0285
10.1016/j.jnutbio.2010.03.008
10.1016/j.molcel.2005.06.009
10.3390/biomedicines7040088
10.1016/j.cbi.2017.12.014
10.1096/fj.02-0473rev
10.1016/j.exer.2018.01.018
10.1091/mbc.E14-06-1057
10.1016/j.freeradbiomed.2019.11.011
10.1016/j.biopha.2018.09.002
10.1016/j.biochi.2013.05.004
10.1242/bio.20134853
10.1007/s00018-009-9150-2
10.1007/978-1-60761-795-2_1
10.1146/annurev-pharmtox-011112-140320
10.1089/ars.2017.7342
10.1042/BJ20151182
10.1016/j.taap.2016.12.005
10.1002/jbt.20212
10.1172/JCI78031
10.1128/MCB.25.24.10895-10906.2005
10.1016/j.molmed.2019.09.007
10.1016/S0092-8674(00)80371-2
10.1073/pnas.220247197
10.3945/jn.111.146779
10.1074/jbc.M206911200
10.1016/j.molcel.2006.10.009
10.1128/MCB.00118-16
10.1016/j.bcp.2018.01.026
10.1038/onc.2012.59
10.1074/jbc.M611336200
10.1101/gad.13.10.1211
10.1152/physrev.00023.2017
10.1016/j.molmed.2016.05.002
10.1038/sj.onc.1202653
10.1016/j.nbd.2015.07.001
10.1089/ars.2012.5116
10.1158/0008-5472.CAN-12-3386
10.1016/j.fsi.2019.02.033
10.1074/jbc.M116.773960
10.1002/ptr.6206
10.1038/cdd.2015.49
10.1016/j.tibs.2014.02.002
10.1182/blood.V94.9.3037
10.1111/j.1365-2443.2010.01473.x
10.1038/378785a0
10.1016/j.lfs.2020.117329
10.1074/jbc.M101198200
10.1128/MCB.22.9.2883-2892.2002
10.1016/j.redox.2020.101475
10.1074/jbc.M410601200
10.1074/jbc.M200903200
10.1016/j.cotox.2016.10.003
10.1128/MCB.00700-06
10.1042/bj20021469
10.1101/gad.1324805
10.1074/jbc.M404984200
10.1128/MCB.00785-15
10.1089/ars.2017.7358
10.1007/s11064-016-2018-6
10.1016/j.tem.2012.11.002
10.1016/j.cbi.2015.06.024
10.1002/hep.24419
10.2174/156652406775574569
10.1042/BST20150011
10.1074/jbc.M804597200
10.1016/j.bcp.2012.11.016
10.1128/MCB.01204-10
10.1242/jcs.057026
10.1021/acschembio.6b00651
10.1016/S0955-2863(02)00251-6
10.1126/science.3686012
10.1073/pnas.0812872106
10.1002/med.21396
10.1038/s41598-019-45539-8
10.1074/jbc.M004729200
10.1016/j.ejmech.2020.112532
10.1016/j.freeradbiomed.2015.07.147
10.1097/nen.0b013e31802d6da9
10.1016/j.redox.2019.101393
10.1007/s10495-006-0016-x
10.1046/j.1365-2443.2001.00469.x
10.1155/2020/8291413
10.1016/j.biocel.2005.09.018
10.1074/jbc.M307633200
10.1002/mnfr.201200536
10.1016/j.canlet.2019.09.016
10.1194/jlr.M009480
10.1006/bbrc.1997.6943
10.1016/j.bbamcr.2012.06.012
10.1007/s11011-014-9632-2
10.1074/jbc.274.35.24896
10.1126/scitranslmed.aba3613
10.1128/MCB.23.20.7198-7209.2003
10.1074/jbc.M513737200
10.3390/cancers12030569
10.1091/mbc.e15-09-0624
10.1167/iovs.09-3648
10.1016/j.biopha.2020.110676
10.1016/S0006-2952(02)01137-1
10.3892/ijmm.2013.1235
ContentType Journal Article
Copyright 2021
Copyright © 2021. Published by Elsevier Inc.
Copyright_xml – notice: 2021
– notice: Copyright © 2021. Published by Elsevier Inc.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.freeradbiomed.2021.03.034
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1873-4596
EndPage 141
ExternalDocumentID 33794311
10_1016_j_freeradbiomed_2021_03_034
S0891584921001945
Genre Journal Article
Review
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABBQC
ABFNM
ABFRF
ABGSF
ABJNI
ABLJU
ABLVK
ABMAC
ABMZM
ABUDA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AXJTR
BKOJK
BLXMC
BNPGV
C45
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LCYCR
LX3
LZ2
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SPCBC
SSH
SSU
SSZ
T5K
TEORI
~G-
.GJ
.HR
29H
53G
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACIEU
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRDE
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HEA
HLW
HMK
HMO
HVGLF
HX~
HZ~
R2-
RIG
SBG
SEW
WUQ
XPP
ZGI
NPM
7X8
ID FETCH-LOGICAL-c449t-3e03d7511e2afe81d85d147dafccb32fb9e9e6be41d532ebd19bc4876200ab333
IEDL.DBID .~1
ISSN 0891-5849
1873-4596
IngestDate Fri Jul 11 02:22:57 EDT 2025
Thu Apr 03 07:06:24 EDT 2025
Thu Apr 24 23:12:32 EDT 2025
Tue Jul 01 01:11:32 EDT 2025
Fri Feb 23 02:39:39 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Posttranslational modification
Oxidative stress
Phosphorylation
Regulation
Cellular protection
NRF2
Language English
License Copyright © 2021. Published by Elsevier Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c449t-3e03d7511e2afe81d85d147dafccb32fb9e9e6be41d532ebd19bc4876200ab333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0001-9783-6493
0000-0003-1546-7490
PMID 33794311
PQID 2508590962
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_2508590962
pubmed_primary_33794311
crossref_primary_10_1016_j_freeradbiomed_2021_03_034
crossref_citationtrail_10_1016_j_freeradbiomed_2021_03_034
elsevier_sciencedirect_doi_10_1016_j_freeradbiomed_2021_03_034
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-20
PublicationDateYYYYMMDD 2021-05-20
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-20
  day: 20
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Free radical biology & medicine
PublicationTitleAlternate Free Radic Biol Med
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Vecchio, Feng, Sokol, Tillman, Sanduja, Reinhardt, Gupta (bib121) 2014
Ma, Vattem, Wek (bib126) 2002; 277
Zhao, Li, Li, Zheng, Liang, Geng, Li, Yuan (bib138) 2009; 106
Li, Jain, Chen, Yue, Hebbar, Zhou, Kong (bib89) 2005; 280
Plafker, Nguyen, Barneche, Mirza, Crawford, Plafker (bib91) 2010; 285
Tong, Padmanabhan, Kobayashi, Shang, Hirotsu, Yokoyama, Yamamoto (bib45) 2007; 27
Huang, Nguyen, Pickett (bib57) 2000
Ashabi, Khalaj, Khodagholi, Goudarzvand, Sarkaki (bib174) 2015; 30
Takashima (bib186) 2006; 9
Jimenez-Blasco, Santofimia-Castaño, Gonzalez, Almeida, Bolaños (bib135) 2015
Papadia, Soriano, Léveillé, Martel, Dakin, Hansen, Kaindl, Sifringer, Fowler, Stefovska, McKenzie, Craigon, Corriveau, Ghazal, Horsburgh, Yankner, Wyllie, Ikonomidou, Hardingham (bib140) 2008; 11
Inoue, Hisamoto, An, Oliveira, Nishida, Blackwell, Matsumoto (bib157) 2005; 19
Huo, Li, Huang, Lam, Xia, Tu, Chang, Hsu, Lee, Nie, Yamaguchi, Wang, Lang, Li, Chen, Mishra, Hung (bib192) 2014; 6
Do, Kim, Khanal, Choi, Kim, Jeong, Jeong (bib178) 2013; 271
Matzinger, Fischhuber, Poloske, Mechtler, Heiss (bib104) 2020; 29
Iniaghe, Krafft, Klebe, Omogbai, Zhang, Tang (bib181) 2015; 82
Vrba, Gažák, Kuzma, Papoušková, Vacek, Weiszenstein, Křen, Ulrichová (bib145) 2013
Dai, Yan, Wintergerst, Cai, Keller, Tan (bib20) 2020; 26
Meggio, Pinna (bib117) 2003
Loo (bib143) 2003
Tong, Kobayashi, Katsuoka, Yamamoto (bib46) 2006
Brewer, Diehl (bib128) 2000; 97
Zhang, Ohta, Maruyama, Hosoya, Nishikawa, Maher, Shibahara, Itoh, Yamamoto (bib109) 2006; 26
Barnes (bib163) 2020; 33
Hayes, Dinkova-Kostova (bib36) 2014; 39
Rada, Rojo, Chowdhry, McMahon, Hayes, Cuadrado (bib65) 2011; 31
Katoh, Itoh, Yoshida, Miyagishi, Fukamizu, Yamamoto (bib106) 2001; 6
Hayes, Ebisine, Sharma, Chowdhry (bib62) 2016
Ramsey, Glass, Montgomery, Lindl, Ritson, Chia, Hamilton, Chu, Jordan-Sciutto (bib28) 2007; 66
Kitagishi, Matsuda (bib81) 2013; 31
Mou, Wen, Li, Gao, Zhang, Jiang (bib162) 2020; 202
Ding, Xia, Liu, Yang, Lee, Xia, Bartholomeusz, Li, Pan, Li, Bargou, Qin, Lai, Tsai, Tsai, Hung (bib190) 2005
Ma (bib9) 2013; 53
Nioi, Nguyen, Sherratt, Pickett (bib41) 2005; 25
Bloom, Jaiswal (bib58) 2003; 278
Mo, Wang, Zhang, Numazawa, Tang, Tang, Han, Li, Yang, Wang, Wei, Xiao (bib97) 2014; 20
Ossareh-Nazari, Bachelerie, Dargemont (bib101) 1997; 278
Yamamoto, Kensler, Motohashi (bib3) 2018; 98
Latres, Chiaur, Pagano (bib67) 1999; 18
Cuadrado (bib71) 2015; 88
Tsai, Lin, Wang (bib148) 2011
Kim, Kim, Jung, Yang, Park, Jun (bib60) 2017
Lochhead, Kinstrie, Sibbet, Rawjee, Morrice, Cleghon (bib76) 2006; 24
Menegon, Columbano, Giordano (bib15) 2016; 22
Dodson, de la Vega, Cholanians, Schmidlin, Chapman, Zhang (bib160) 2019; 59
Gr, D (bib94) 2019
Wang, Liu, Wu, Qu, Huang, Zhang, Zhou, Gerace, Chen (bib102) 2009; 20
Wu, Li, Cui, Wu, Hong, Li, Wu, Jie, Wang, Li (bib176) 2018; 9
Shi, Hao, Zhang, Wei, Lu, Wang, Ji (bib180) 2018; 150
Cross, Alessi, Cohen, Andjelkovich, Hemmings (bib78) 1995; 6559
Singh, Venkannagari, Oh, Zhang, Rohde, Liu, Nimmagadda, Sudini, Brimacombe, Gajghate, Ma, Wang, Xu, Shahane, Xia, Woo, Mensah, Wang, Ferrer, Gabrielson, Li, Rastinejad, Shen, Boxer, Biswal (bib170) 2016; 11
Furukawa, Xiong (bib47) 2005; 1
Tsuchiya, Misaka, Nitta, Tsuchiya (bib87) 2015; 6
Horike, Sakoda, Kushiyama, Ono, Fujishiro, Kamata, Nishiyama, Uchijima, Kurihara, Kurihara, Asano (bib103) 2008
Cuadrado (bib85) 2015; 88
Jain, Jaiswal (bib84) 2007; 282
Alam, Wicks, Stewart, Gong, Touchard, Otterbein, Choi, Burow, Tou (bib147) 2000; 275
Sarcinelli, Dragic, Piecyk, Barbet, Duret, Barthelaix, Ferraro-Peyret, Fauvre, Renno, Chaveroux, Manie (bib134) 2020; 12
House, Kemp (bib52) 1987
Kannan, Solovieva, Blank (bib88) 2012; 1823
Sun, Yu, Huangpu, Yao (bib184) 2019; 109
Salazar, Rojo, Velasco, de Sagarra, Cuadrado (bib64) 2006; 281
Plafker, Plafker (bib92) 2015; 26
Apopa, He, Ma (bib112) 2008
Hammad, Namani, Elshaer, Wang, Tang (bib173) 2019; 467
Tian, Lu, Guo (bib14) 2018; 280
Fernandez, Bode, Koromilas, Diehl, Krukovets, Snider, Hatzoglou (bib123) 2002; 277
Rada, Rojo, Evrard-Todeschi, Innamorato, Cotte, Jaworski, Tobon-Velasco, Devijver, Garcia-Mayoral, Van Leuven, Hayes, Bertho, Cuadrado (bib66) 2012; 32
St-Denis, Litchfield (bib116) 2009; 66
Afonyushkin, Oskolkova, Binder, Bochkov (bib118) 2011; 52
Ruvolo (bib63) 2017
Li, Yu, Liu, Kim, Blank, Li, Kong (bib90) 2008
K, Da, C (bib113) 2002
Johnson, Johnson (bib29) 2015; 88
Dey, Sayers, Verginadis, Lehman, Cheng, Cerniglia, Tuttle, Feldman, Zhang, Fuchs, Diehl, Koumenis (bib133) 2015; 125
Katsuoka, Motohashi, Engel, Yamamoto (bib12) 2005
Ortega-Molina, Serrano (bib79) 2013
Noh, Ismail (bib139) 2020; 27
Mitsuishi, Taguchi, Kawatani, Shibata, Nukiwa, Aburatani, Yamamoto, Motohashi (bib17) 2012; 22
Pi, Bai, Reece, Williams, Liu, Freeman, Fahl, Shugar, Liu, Qu (bib39) 2007
Xu, Yuan, Pan, Shen, Kim, Yu, Khor, Li, Ma, Kong (bib155) 2006
Kwak, Itoh, Yamamoto, Kensler (bib38) 2002; 22
Panieri, Saso (bib165) 2019; 2019
Kaufman (bib122) 1999; 13
Xue, Zhou, Qiu (bib30) 2020; 131
Holmstrom, Baird, Zhang, Hargreaves, Chalasani, Land, Stanyer, Yamamoto, Dinkova-Kostova, Abramov (bib16) 2013; 2
Pitha-Rowe, Liby, Royce, Sporn (bib82) 2009; 50
Wang, Wang, Zhang, Gao, Huang, Zhou, Zhou, Li (bib53) 2016; 27
Owuor, Kong (bib142) 2002
Keum, Owuor, Kim, Hu, Kong (bib154) 2003
Gameiro, Michalska, Tenti, Cores, Buendia, Rojo, Georgakopoulos, Hernández-Guijo, Teresa Ramos, Wells, López, Cuadrado, Menéndez, León (bib188) 2017; 7
Baird, Lleres, Swift, Dinkova-Kostova (bib44) 2013; 38
Xu, Yuan, Luo, Zhao, Xiao (bib183) 2020; 2020
Di Martino, Pruccoli, Bisi, Gobbi, Rampa, Martinez, Pérez, Martinez-Gonzalez, Paglione, Di Schiavi, Seghetti, Tarozzi, Belluti (bib187) 2020; 11
Y. Tian, Y. Su, Q. Ye, L. Chen, F. Yuan, Z. Wang, Silencing of TXNIP Alleviated Oxidative Stress Injury by Regulating MAPK–Nrf2 Axis in Ischemic Stroke, Neurochemical Research.
Huang, Liu, Zhou, Sun, Yang, Zhang, Tang (bib177) 2020; 146
Wolfson, May, Thorpe, Jandhyala, Paton, Paton (bib124) 2008; 10
(bib54) 2018
Kocanova, Buytaert, Matroule, Piette, Golab, Witte, Agostinis (bib146) 2007
Schröder, Kaufman (bib125) 2005
Kang, Nam, Yoo, Keum (bib166) 2020; 177
Keleku-Lukwete, Suzuki, Yamamoto (bib159) 2018; 29
Zheng, Schulman, Song, Miller, Jeffrey, Wang, Chu, Koepp, Elledge, Pagano, Conaway, Conaway, Harper, Pavletich (bib68) 2002; 416
Lu, Ji, Jiang, You (bib161) 2016; 36
Marinelli, Mazzotta, Scalera, Terrenato, Sperati, D'Ambrosio, Pallocca, Corleone, Krasniqi, Pizzuti, Barba, Carpano, Vici, Filetti, Giusti, Vecchione, Occhipinti, Gelibter, Botticelli, De Nicola, Ciuffreda, Goeman, Gallo, Visca, Pescarmona, Fanciulli, De Maria, Marchetti, Ciliberto, Maugeri-Saccà (bib168) 2020; 31
Taguchi, Motohashi, Yamamoto (bib49) 2011; 16
Huang, Nguyen, Pickett (bib50) 2002
Favreau, Pickett (bib56) 1993
Lignitto, LeBoeuf, Homer, Jiang, Askenazi, Karakousi, Pass, Bhutkar, Tsirigos, Ueberheide, Sayin, Papagiannakopoulos, Pagano (bib167) 2019; 178
Cloer, Goldfarb, Schrank, Weissman, Major (bib164) 2019; 79
(bib149) 2006
Wang, Liu, Geng, Gao, Wu, Hai, Li, Li, Luo, Hayes, Wang, Tang (bib40) 2013; 73
Hayes (bib130) 2001
Park, Kim, Ko, Kim, Park, Kim, Seo, Li, Lee (bib172) 2018
Simpson, Parsons (bib80) 2001; 264
Levin, Peng, Baker, Villeval, Lecine, Burstein, Shivdasani (bib4) 1999; 94
Motohashi, Yamamoto (bib2) 2004; 10
Moi, Chan, Asunis, Cao, Kan (bib10) 1994; 91
Ren, Duan, Cheng, Shen, Gao, Bai, Liu, Busuttil, Kupiec-Weglinski, Zhai (bib75) 2011; 54
Yu, Liu, Zhou, Ruiz-Rodado, Larion, Xu, Yang (bib171) 2020; 117
(bib59) 2019
Ohtsuji, Katsuoka, Kobayashi, Aburatani, Hayes, Yamamoto (bib5) 2008; 283
Lu, Sun, Liu, Lu, Zhu, Lan, Mi, Dang, Li, Zhan, Tan, Pi, Xiong, Zhang, Chen (bib73) 2020; 12
Zhai, Lin, Zhang, Hu, Xu, Li, Liu, Ma, Tian, Yao (bib179) 2013; 57
Varì, D'Archivio, Filesi, Carotenuto, Scazzocchio, Santangelo, Giovannini, Masella (bib156) 2011
Zhang, Xiang (bib7) 2016; 473
Sekine, Okazaki, Ota, Shima, Katoh, Suzuki, Igarashi, Ito, Motohashi, Yamamoto (bib107) 2016; 36
Tonelli, Chio, Tuveson (bib11) 2018; 29
Ludtmann, Angelova, Zhang, Abramov, Dinkova-Kostova (bib18) 2014; 457
Kobayashi, Yamamoto (bib42) 2006; 46
Muri, Kopf (bib21) 2020
Kim, Yu, Chen, Kong (bib108) 2013; 32
Liu, Peyton, Shebib, Wang, Korthuis, Durante (bib99) 2011; 300
Hayes, Chowdhry, Dinkova-Kostova, Sutherland (bib69) 2015; 43
Choi, Lee, Jegal, Cho, Kim, Kim (bib152) 2016
Alam, Okazaki, Nguyen, Ota, Kitamura, Murakami, Shima, Igarashi, Sekine, Motohashi (bib110) 2017; 292
Ma, Lan, He, Ye, Li, Zhai, Chen, Huang, Fu, Sun, Wang, Ye, Li, Gao, Yan, Li (bib132) 2018; 169
Kavitha, Thiyagarajan, Rathna Nandhini, Mishra, Nagini (bib19) 2013; 95
Cullinan, Zhang, Hannink, Arvisais, Kaufman, Diehl (bib119) 2003; 23
Fujiki, Ando, Murakami, Isobe, Mori, Susa, Nomura, Sohara, Rai, Uchida (bib182) 2019; 9
Schroder, Kaufman (bib127) 2006; 6
Sun, Chin, Zhang (bib105) 2009; 29
Keshet, Seger (bib141) 2010
Jiang, Lu, You (bib169) 2019; 62
Howden (bib25) 2013
Chowdhry, Zhang, McMahon, Sutherland, Cuadrado, Hayes (bib70) 2013; 32
Chenais, Derjuga, Massrieh, Red-Horse, Bellingard, Fisher, Blank (bib8) 2005; 19
Vashi, Patel (bib23) 2020
S, E, Pj, A (bib191) 2006
Schmidlin, Dodson, Madhavan, Zhang (bib22) 2019; 134
Wu, Zhao, Gao, Tan, Yagishita, Nakajima, Wong, Chapman, Fang, Zhang (bib111) 2014; 28
Joo, Kim, Lee, Kim, Koo, Kim (bib93) 2016
Dang, Qiu, Song, Liu (bib61) 2019; 87
Wang, Liu, Long, Huang, Zhang, Zhang, Zheng, Liao, Wang, Liao, Li, Tang, Tong, Wang, Fang, Rojo de la Vega, Ouyang, Zhang, Yu, Zheng (bib32) 2016; 8
Ashrafizadeh, Ahmadi, Samarghandian, Mohammadinejad, Yaribeygi, Sathyapalan, Sahebkar (bib35) 2020; 244
Sankaranarayanan, Jaiswal (bib6) 2004; 279
Sahin, Hawasli, Greene, Molkentin, Bibb (bib136) 2008
(bib51) 2019
Yu, Mandlekar, Lei, Fahl, Tan, Kong (bib150) 2000
Kaspar, Niture, Jaiswal (bib48) 2009; 47
Thornton, Pedraza-Alva, Deng, Wood, Aronshtam, Clements, Sabio, Davis, Matthews, Doble, Rincon (bib189) 2008
Kang, Cho, Lee, Kim (bib77) 2001; 59
Zimmermann, Baldinger, Mayerhofer, Atanasov, Dirsch, Heiss (bib98) 2015; 88
He, Gong, Hu, Stewart, Choi, Choi, Alam (bib131) 2001; 276
Cullinan, Diehl (bib129) 2006; 38
Collino, Thiemermann, Mastroc
Holmstrom (10.1016/j.freeradbiomed.2021.03.034_bib16) 2013; 2
Chowdhry (10.1016/j.freeradbiomed.2021.03.034_bib70) 2013; 32
Ding (10.1016/j.freeradbiomed.2021.03.034_bib190) 2005
Afonyushkin (10.1016/j.freeradbiomed.2021.03.034_bib118) 2011; 52
Menegon (10.1016/j.freeradbiomed.2021.03.034_bib15) 2016; 22
Thornton (10.1016/j.freeradbiomed.2021.03.034_bib189) 2008
Cuadrado (10.1016/j.freeradbiomed.2021.03.034_bib71) 2015; 88
Collino (10.1016/j.freeradbiomed.2021.03.034_bib72) 2008; 30
Alam (10.1016/j.freeradbiomed.2021.03.034_bib110) 2017; 292
Choi (10.1016/j.freeradbiomed.2021.03.034_bib152) 2016
Kitagishi (10.1016/j.freeradbiomed.2021.03.034_bib81) 2013; 31
Cullinan (10.1016/j.freeradbiomed.2021.03.034_bib119) 2003; 23
Hammad (10.1016/j.freeradbiomed.2021.03.034_bib173) 2019; 467
Kaufman (10.1016/j.freeradbiomed.2021.03.034_bib122) 1999; 13
Salaroglio (10.1016/j.freeradbiomed.2021.03.034_bib120) 2017
Cuadrado (10.1016/j.freeradbiomed.2021.03.034_bib85) 2015; 88
Sun (10.1016/j.freeradbiomed.2021.03.034_bib158) 2009
Kang (10.1016/j.freeradbiomed.2021.03.034_bib166) 2020; 177
Vrba (10.1016/j.freeradbiomed.2021.03.034_bib145) 2013
Katoh (10.1016/j.freeradbiomed.2021.03.034_bib106) 2001; 6
Hayes (10.1016/j.freeradbiomed.2021.03.034_bib62) 2016
Ma (10.1016/j.freeradbiomed.2021.03.034_bib132) 2018; 169
Hayes (10.1016/j.freeradbiomed.2021.03.034_bib69) 2015; 43
Vecchio (10.1016/j.freeradbiomed.2021.03.034_bib121) 2014
Pitha-Rowe (10.1016/j.freeradbiomed.2021.03.034_bib82) 2009; 50
Xue (10.1016/j.freeradbiomed.2021.03.034_bib30) 2020; 131
Kwak (10.1016/j.freeradbiomed.2021.03.034_bib38) 2002; 22
Huang (10.1016/j.freeradbiomed.2021.03.034_bib57) 2000
Kannan (10.1016/j.freeradbiomed.2021.03.034_bib88) 2012; 1823
Tong (10.1016/j.freeradbiomed.2021.03.034_bib46) 2006
Apopa (10.1016/j.freeradbiomed.2021.03.034_bib112) 2008
Nioi (10.1016/j.freeradbiomed.2021.03.034_bib41) 2005; 25
Xu (10.1016/j.freeradbiomed.2021.03.034_bib183) 2020; 2020
Pi (10.1016/j.freeradbiomed.2021.03.034_bib39) 2007
Ma (10.1016/j.freeradbiomed.2021.03.034_bib9) 2013; 53
Kavitha (10.1016/j.freeradbiomed.2021.03.034_bib19) 2013; 95
Ramsey (10.1016/j.freeradbiomed.2021.03.034_bib28) 2007; 66
Hayes (10.1016/j.freeradbiomed.2021.03.034_bib33) 2020; 38
Gameiro (10.1016/j.freeradbiomed.2021.03.034_bib188) 2017; 7
Bloom (10.1016/j.freeradbiomed.2021.03.034_bib58) 2003; 278
Noh (10.1016/j.freeradbiomed.2021.03.034_bib139) 2020; 27
Park (10.1016/j.freeradbiomed.2021.03.034_bib172) 2018
Dai (10.1016/j.freeradbiomed.2021.03.034_bib20) 2020; 26
Ashrafizadeh (10.1016/j.freeradbiomed.2021.03.034_bib35) 2020; 244
Hayes (10.1016/j.freeradbiomed.2021.03.034_bib36) 2014; 39
Kim (10.1016/j.freeradbiomed.2021.03.034_bib108) 2013; 32
Liang (10.1016/j.freeradbiomed.2021.03.034_bib185) 2019; 33
He (10.1016/j.freeradbiomed.2021.03.034_bib131) 2001; 276
Wolfson (10.1016/j.freeradbiomed.2021.03.034_bib124) 2008; 10
Mo (10.1016/j.freeradbiomed.2021.03.034_bib97) 2014; 20
Jimenez-Blasco (10.1016/j.freeradbiomed.2021.03.034_bib135) 2015
Li (10.1016/j.freeradbiomed.2021.03.034_bib90) 2008
Itoh (10.1016/j.freeradbiomed.2021.03.034_bib86) 1997
Gr (10.1016/j.freeradbiomed.2021.03.034_bib94) 2019
Marinelli (10.1016/j.freeradbiomed.2021.03.034_bib168) 2020; 31
Mann (10.1016/j.freeradbiomed.2021.03.034_bib26) 2009; 9
Takashima (10.1016/j.freeradbiomed.2021.03.034_bib186) 2006; 9
Muri (10.1016/j.freeradbiomed.2021.03.034_bib21) 2020
Hayes (10.1016/j.freeradbiomed.2021.03.034_bib130) 2001
Yamamoto (10.1016/j.freeradbiomed.2021.03.034_bib3) 2018; 98
Johnson (10.1016/j.freeradbiomed.2021.03.034_bib29) 2015; 88
(10.1016/j.freeradbiomed.2021.03.034_bib51) 2019
Cullinan (10.1016/j.freeradbiomed.2021.03.034_bib129) 2006; 38
Owuor (10.1016/j.freeradbiomed.2021.03.034_bib142) 2002
Yu (10.1016/j.freeradbiomed.2021.03.034_bib171) 2020; 117
Wang (10.1016/j.freeradbiomed.2021.03.034_bib32) 2016; 8
Papadia (10.1016/j.freeradbiomed.2021.03.034_bib140) 2008; 11
Zheng (10.1016/j.freeradbiomed.2021.03.034_bib43) 2020; 34
Kocanova (10.1016/j.freeradbiomed.2021.03.034_bib146) 2007
Chenais (10.1016/j.freeradbiomed.2021.03.034_bib8) 2005; 19
Mitsuishi (10.1016/j.freeradbiomed.2021.03.034_bib17) 2012; 22
Rada (10.1016/j.freeradbiomed.2021.03.034_bib65) 2011; 31
Dey (10.1016/j.freeradbiomed.2021.03.034_bib133) 2015; 125
Tapia (10.1016/j.freeradbiomed.2021.03.034_bib114) 2006
Jiang (10.1016/j.freeradbiomed.2021.03.034_bib169) 2019; 62
Moi (10.1016/j.freeradbiomed.2021.03.034_bib10) 1994; 91
Nguyen (10.1016/j.freeradbiomed.2021.03.034_bib55) 1994
Yu (10.1016/j.freeradbiomed.2021.03.034_bib150) 2000
Wang (10.1016/j.freeradbiomed.2021.03.034_bib102) 2009; 20
Lee (10.1016/j.freeradbiomed.2021.03.034_bib96) 2014; 281
Jain (10.1016/j.freeradbiomed.2021.03.034_bib84) 2007; 282
Keshet (10.1016/j.freeradbiomed.2021.03.034_bib141) 2010
Schroder (10.1016/j.freeradbiomed.2021.03.034_bib127) 2006; 6
Keum (10.1016/j.freeradbiomed.2021.03.034_bib154) 2003
Mou (10.1016/j.freeradbiomed.2021.03.034_bib162) 2020; 202
Ludtmann (10.1016/j.freeradbiomed.2021.03.034_bib18) 2014; 457
Fernandez (10.1016/j.freeradbiomed.2021.03.034_bib123) 2002; 277
Motohashi (10.1016/j.freeradbiomed.2021.03.034_bib2) 2004; 10
Raghunath (10.1016/j.freeradbiomed.2021.03.034_bib13) 2018; 17
Favreau (10.1016/j.freeradbiomed.2021.03.034_bib56) 1993
St-Denis (10.1016/j.freeradbiomed.2021.03.034_bib116) 2009; 66
Brewer (10.1016/j.freeradbiomed.2021.03.034_bib128) 2000; 97
10.1016/j.freeradbiomed.2021.03.034_bib144
Lin (10.1016/j.freeradbiomed.2021.03.034_bib83) 2020; 12
Inoue (10.1016/j.freeradbiomed.2021.03.034_bib157) 2005; 19
Lu (10.1016/j.freeradbiomed.2021.03.034_bib161) 2016; 36
Di Martino (10.1016/j.freeradbiomed.2021.03.034_bib187) 2020; 11
Ashabi (10.1016/j.freeradbiomed.2021.03.034_bib174) 2015; 30
Itoh (10.1016/j.freeradbiomed.2021.03.034_bib34) 1999; 13
Tsuchiya (10.1016/j.freeradbiomed.2021.03.034_bib87) 2015; 6
Schmidlin (10.1016/j.freeradbiomed.2021.03.034_bib22) 2019; 134
Roufayel (10.1016/j.freeradbiomed.2021.03.034_bib137) 2019; 7
Zhai (10.1016/j.freeradbiomed.2021.03.034_bib179) 2013; 57
Ruvolo (10.1016/j.freeradbiomed.2021.03.034_bib63) 2017
Loo (10.1016/j.freeradbiomed.2021.03.034_bib143) 2003
Huang (10.1016/j.freeradbiomed.2021.03.034_bib50) 2002
Zheng (10.1016/j.freeradbiomed.2021.03.034_bib68) 2002; 416
Sarcinelli (10.1016/j.freeradbiomed.2021.03.034_bib134) 2020; 12
Park (10.1016/j.freeradbiomed.2021.03.034_bib175) 2016; 41
Do (10.1016/j.freeradbiomed.2021.03.034_bib178) 2013; 271
Varì (10.1016/j.freeradbiomed.2021.03.034_bib156) 2011
Howden (10.1016/j.freeradbiomed.2021.03.034_bib25) 2013
Qu (10.1016/j.freeradbiomed.2021.03.034_bib27) 2020; 159
Lu (10.1016/j.freeradbiomed.2021.03.034_bib73) 2020; 12
Dodson (10.1016/j.freeradbiomed.2021.03.034_bib160) 2019; 59
Bryan (10.1016/j.freeradbiomed.2021.03.034_bib37) 2013; 85
(10.1016/j.freeradbiomed.2021.03.034_bib59) 2019
Kim (10.1016/j.freeradbiomed.2021.03.034_bib60) 2017
Li (10.1016/j.freeradbiomed.2021.03.034_bib89) 2005; 280
Cross (10.1016/j.freeradbiomed.2021.03.034_bib78) 1995; 6559
Sahin (10.1016/j.freeradbiomed.2021.03.034_bib136) 2008
Katsuoka (10.1016/j.freeradbiomed.2021.03.034_bib12) 2005
Liu (10.1016/j.freeradbiomed.2021.03.034_bib99) 2011; 300
S (10.1016/j.freeradbiomed.2021.03.034_bib191) 2006
Rada (10.1016/j.freeradbiomed.2021.03.034_bib66) 2012; 32
Vashi (10.1016/j.freeradbiomed.2021.03.034_bib23) 2020
Fujiki (10.1016/j.freeradbiomed.2021.03.034_bib182) 2019; 9
Ortega-Molina (10.1016/j.freeradbiomed.2021.03.034_bib79) 2013
Wu (10.1016/j.freeradbiomed.2021.03.034_bib111) 2014; 28
Ma (10.1016/j.freeradbiomed.2021.03.034_bib126) 2002; 277
Tian (10.1016/j.freeradbiomed.2021.03.034_bib14) 2018; 280
House (10.1016/j.freeradbiomed.2021.03.034_bib52) 1987
Litchfield (10.1016/j.freeradbiomed.2021.03.034_bib115) 2003
Dg (10.1016/j.freeradbiomed.2021.03.034_bib95) 2011
Satta (10.1016/j.freeradbiomed.2021.03.034_bib24) 2017
Zhang (10.1016/j.freeradbiomed.2021.03.034_bib7) 2016; 473
DeBlasi (10.1016/j.freeradbiomed.2021.03.034_bib31) 2020; 12
Tsai (10.1016/j.freeradbiomed.2021.03.034_bib148) 2011
Sankaranarayanan (10.1016/j.freeradbiomed.2021.03.034_bib6) 2004; 279
Plafker (10.1016/j.freeradbiomed.2021.03.034_bib91) 2010; 285
Huo (10.1016/j.freeradbiomed.2021.03.034_bib192) 2014; 6
Dang (10.1016/j.freeradbiomed.2021.03.034_bib61) 2019; 87
Wu (10.1016/j.freeradbiomed.2021.03.034_bib176) 2018; 9
Schröder (10.1016/j.freeradbiomed.2021.03.034_bib125) 2005
Kaspar (10.1016/j.freeradbiomed.2021.03.034_bib48) 2009; 47
Alam (10.1016/j.freeradbiomed.2021.03.034_bib147) 2000; 275
Wang (10.1016/j.freeradbiomed.2021.03.034_bib40) 2013; 73
Singh (10.1016/j.freeradbiomed.2021.03.034_bib170) 2016; 11
Shi (10.1016/j.freeradbiomed.2021.03.034_bib180) 2018; 150
Nguyen (10.1016/j.freeradbiomed.2021.03.034_bib151) 2003; 278
Rb (10.1016/j.freeradbiomed.2021.03.034_bib153) 2018
Markuns (10.1016/j.freeradbiomed.2021.03.034_bib74) 1999; 274
Baird (10.1016/j.freeradbiomed.2021.03.034_bib44) 2013; 38
Taguchi (10.1016/j.freeradbiomed.2021.03.034_bib49) 2011; 16
(10.1016/j.freeradbiomed.2021.03.034_bib54) 2018
Joo (10.1016/j.freeradbiomed.2021.03.034_bib93) 2016
Huang (10.1016/j.freeradbiomed.2021.03.034_bib177) 2020; 146
Matzinger (10.1016/j.freeradbiomed.2021.03.034_bib104) 2020; 29
Tong (10.1016/j.freeradbiomed.2021.03.034_bib45) 2007; 27
Furukawa (10.1016/j.freeradbiomed.2021.03.034_bib47) 2005; 1
Latres (10.1016/j.freeradbiomed.2021.03.034_bib67) 1999; 18
Horike (10.1016/j.freeradbiomed.2021.03.034_bib103) 2008
Sekine (10.1016/j.freeradbiomed.2021.03.034_bib107) 2016; 36
Ohtsuji (10.1016/j.freeradbiomed.2021.03.034_bib5) 2008; 283
Kobayashi (10.1016/j.freeradbiomed.2021.03.034_bib42) 2006; 46
Zhao (10.1016/j.freeradbiomed.2021.03.034_bib138) 2009; 106
Simpson (10.1016/j.freeradbiomed.2021.03.034_bib80) 2001; 264
Meggio (10.1016/j.freeradbiomed.2021.03.034_bib117) 2003
Lochhead (10.1016/j.freeradbiomed.2021.03.034_bib76) 2006; 24
Lignitto (10.1016/j.freeradbiomed.2021.03.034_bib167) 2019; 178
K (10.1016/j.freeradbiomed.2021.03.034_bib113) 2002
(10.1016/j.freeradbiomed.2021.03.034_bib149) 2006
Plafker (10.1016/j.freeradbiomed.2021.03.034_bib92) 2015; 26
Tonelli (10.1016/j.freeradbi
References_xml – volume: 62
  start-page: 3840
  year: 2019
  end-page: 3856
  ident: bib169
  article-title: Nuclear factor erythroid 2-related factor 2 (Nrf2) inhibition: an emerging strategy in cancer therapy
  publication-title: J. Med. Chem.
– start-page: 1351
  year: 2003
  end-page: 1356
  ident: bib154
  article-title: Involvement of Nrf2 and JNK1 in the activation of antioxidant responsive element (ARE) by chemopreventive agent phenethyl isothiocyanate (PEITC)
  publication-title: Pharmaceut. Res.
– year: 2018
  ident: bib172
  article-title: Resistance to gefitinib and cross-resistance to irreversible EGFR-TKIs mediated by disruption of the Keap1-Nrf2 pathway in human lung cancer cells
  publication-title: Faseb. J.
– start-page: 2322
  year: 2000
  end-page: 2327
  ident: bib150
  article-title: p38 mitogen-activated protein kinase negatively regulates the induction of phase II drug-metabolizing enzymes that detoxify carcinogens
  publication-title: J. Biol. Chem.
– volume: 27
  start-page: 410
  year: 2016
  end-page: 420
  ident: bib53
  article-title: Sequential posttranslational modifications regulate PKC degradation
  publication-title: Mol. Biol. Cell
– volume: 38
  start-page: 15259
  year: 2013
  end-page: 15264
  ident: bib44
  article-title: Regulatory flexibility in the Nrf2-mediated stress response is conferred by conformational cycling of the Keap1-Nrf2 protein complex
  publication-title: Proc. Natl. Acad. Sci. U. S. A
– start-page: 270
  year: 2008
  end-page: 275
  ident: bib136
  article-title: Negative regulation of cyclin-dependent kinase 5 targets by protein kinase C
  publication-title: Eur. J. Pharmacol.
– year: 1994
  ident: bib55
  article-title: Transcriptional regulation of a rat liver glutathione S-transferase Ya subunit gene. Analysis of the antioxidant response element and its activation by the phorbol ester 12-O-tetradecanoylphorbol-13-acetate
  publication-title: J. Biol. Chem.
– volume: 6
  start-page: 175
  year: 2015
  end-page: 183
  ident: bib87
  article-title: Transcriptional factors, Mafs and their biological roles
  publication-title: World J. Diabetes
– volume: 271
  start-page: 229
  year: 2013
  end-page: 238
  ident: bib178
  article-title: Metformin inhibits heme oxygenase-1 expression in cancer cells through inactivation of Raf-ERK-Nrf2 signaling and AMPK-independent pathways
  publication-title: Toxicol. Appl. Pharmacol.
– volume: 52
  start-page: 98
  year: 2011
  end-page: 103
  ident: bib118
  article-title: Involvement of CK2 in activation of electrophilic genes in endothelial cells by oxidized phospholipids
  publication-title: J. Lipid Res.
– volume: 7
  year: 2019
  ident: bib137
  article-title: CDK5: Key regulator of apoptosis and cell survival
  publication-title: Biomedicines
– volume: 32
  start-page: 3765
  year: 2013
  end-page: 3781
  ident: bib70
  article-title: Nrf2 is controlled by two distinct β-TrCP recognition motifs in its Neh6 domain, one of which can be modulated by GSK-3 activity
  publication-title: Oncogene
– volume: 57
  start-page: 249
  year: 2013
  end-page: 259
  ident: bib179
  article-title: Dietary flavonoid genistein induces Nrf2 and phase II detoxification gene expression via ERKs and PKC pathways and protects against oxidative stress in Caco-2 cells
  publication-title: Mol. Nutr. Food Res.
– volume: 6559
  start-page: 785
  year: 1995
  end-page: 789
  ident: bib78
  article-title: Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B
  publication-title: Nature
– volume: 278
  start-page: 4536
  year: 2003
  end-page: 4541
  ident: bib151
  article-title: Increased protein stability as a mechanism that enhances Nrf2-mediated transcriptional activation of the antioxidant response element. Degradation of Nrf2 by the 26 S proteasome
  publication-title: J. Biol. Chem.
– volume: 98
  start-page: 1169
  year: 2018
  end-page: 1203
  ident: bib3
  article-title: The KEAP1-NRF2 system: a thiol-based sensor-effector apparatus for maintaining redox homeostasis
  publication-title: Physiol. Rev.
– volume: 18
  start-page: 849
  year: 1999
  end-page: 854
  ident: bib67
  article-title: The human F box protein beta-Trcp associates with the Cul1/Skp1 complex and regulates the stability of beta-catenin
  publication-title: Oncogene
– volume: 6
  start-page: 649
  year: 2014
  end-page: 663
  ident: bib192
  article-title: Activation of Keap1/Nrf2 signaling pathway by nuclear epidermal growth factor receptor in cancer cells
  publication-title: Am. J. Tourism Res.
– volume: 88
  start-page: 147
  year: 2015
  end-page: 157
  ident: bib71
  article-title: Structural and functional characterization of Nrf2 degradation by glycogen synthase kinase 3/β-TrCP
  publication-title: Free Radic. Biol. Med.
– volume: 11
  start-page: 2728
  year: 2020
  end-page: 2740
  ident: bib187
  article-title: Novel curcumin-diethyl fumarate hybrid as a dualistic GSK-3β inhibitor/nrf2 inducer for the treatment of Parkinson's disease
  publication-title: ACS Chem. Neurosci.
– volume: 87
  start-page: 871
  year: 2019
  end-page: 878
  ident: bib61
  article-title: PMA-triggered PKCepsilon activity enhances Nrf2-mediated antiviral response on fish rhabdovirus infection
  publication-title: Fish Shellfish Immunol.
– volume: 20
  start-page: 574
  year: 2014
  end-page: 588
  ident: bib97
  article-title: The crosstalk between Nrf2 and AMPK signal pathways is important for the anti-inflammatory effect of berberine in LPS-stimulated macrophages and endotoxin-shocked mice
  publication-title: Antioxidants Redox Signal.
– volume: 39
  start-page: 199
  year: 2014
  end-page: 218
  ident: bib36
  article-title: The Nrf2 regulatory network provides an interface between redox and intermediary metabolism
  publication-title: Trends Biochem. Sci.
– volume: 23
  start-page: 7198
  year: 2003
  end-page: 7209
  ident: bib119
  article-title: Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival
  publication-title: Mol. Cell Biol.
– volume: 10
  start-page: 1775
  year: 2008
  end-page: 1786
  ident: bib124
  article-title: Subtilase cytotoxin activates PERK, IRE1 and ATF6 endoplasmic reticulum stress-signalling pathways
  publication-title: Cell Microbiol.
– volume: 85
  start-page: 705
  year: 2013
  end-page: 717
  ident: bib37
  article-title: The Nrf2 cell defence pathway: keap1-dependent and -independent mechanisms of regulation
  publication-title: Biochem. Pharmacol.
– volume: 281
  start-page: 87
  year: 2014
  end-page: 100
  ident: bib96
  article-title: Upregulation of heme oxygenase-1 expression by dehydrodiconiferyl alcohol (DHCA) through the AMPK-Nrf2 dependent pathway
  publication-title: Toxicol. Appl. Pharmacol.
– volume: 125
  start-page: 2592
  year: 2015
  end-page: 2608
  ident: bib133
  article-title: ATF4-dependent induction of heme oxygenase 1 prevents anoikis and promotes metastasis
  publication-title: J. Clin. Invest.
– volume: 30
  start-page: 747
  year: 2015
  end-page: 754
  ident: bib174
  article-title: Pre-treatment with metformin activates Nrf2 antioxidant pathways and inhibits inflammatory responses through induction of AMPK after transient global cerebral ischemia
  publication-title: Metab. Brain Dis.
– volume: 91
  start-page: 9926
  year: 1994
  end-page: 9930
  ident: bib10
  article-title: Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region
  publication-title: Proc. Natl. Acad. Sci. U. S. A
– volume: 36
  start-page: 407
  year: 2016
  end-page: 420
  ident: bib107
  article-title: The mediator subunit MED16 transduces NRF2-activating signals into antioxidant gene expression
  publication-title: Mol. Cell Biol.
– volume: 59
  start-page: 1147
  year: 2001
  end-page: 1156
  ident: bib77
  article-title: Activation of phosphatidylinositol 3-kinase and Akt by tert-butylhydroquinone is responsible for antioxidant response element-mediated rGSTA2 induction in H4IIE cells
  publication-title: Mol. Pharmacol.
– volume: 283
  start-page: 33554
  year: 2008
  end-page: 33562
  ident: bib5
  article-title: Nrf1 and Nrf2 play distinct roles in activation of antioxidant response element-dependent genes
  publication-title: J. Biol. Chem.
– start-page: 26
  year: 2017
  end-page: 35
  ident: bib63
  article-title: GSK-3 as a novel prognostic indicator in leukemia
  publication-title: Advances in biological regulation
– volume: 53
  start-page: 401
  year: 2013
  end-page: 426
  ident: bib9
  article-title: Role of nrf2 in oxidative stress and toxicity
  publication-title: Annu. Rev. Pharmacol. Toxicol.
– volume: 12
  year: 2020
  ident: bib134
  article-title: ATF4-Dependent NRF2 transcriptional regulation promotes antioxidant protection during endoplasmic reticulum stress
  publication-title: Cancers
– volume: 38
  start-page: 167
  year: 2020
  end-page: 197
  ident: bib33
  article-title: Oxidative stress in cancer
  publication-title: Canc. Cell
– volume: 38
  start-page: 317
  year: 2006
  end-page: 332
  ident: bib129
  article-title: Coordination of ER and oxidative stress signaling: the PERK/Nrf2 signaling pathway
  publication-title: Int. J. Biochem. Cell Biol.
– start-page: 731
  year: 2007
  end-page: 741
  ident: bib146
  article-title: Induction of heme-oxygenase 1 requires the p38MAPK and PI3K pathways and suppresses apoptotic cell death following hypericin-mediated photodynamic therapy
  publication-title: Apoptosis
– volume: 12
  start-page: 243
  year: 2020
  end-page: 267
  ident: bib83
  article-title: Small molecular Nrf2 inhibitors as chemosensitizers for cancer therapy
  publication-title: Future Med. Chem.
– volume: 43
  start-page: 611
  year: 2015
  end-page: 620
  ident: bib69
  article-title: Dual regulation of transcription factor Nrf2 by Keap1 and by the combined actions of β-TrCP and GSK-3
  publication-title: Biochem. Soc. Trans.
– volume: 9
  start-page: 497
  year: 2018
  ident: bib176
  article-title: The natural flavone acacetin confers cardiomyocyte protection against hypoxia/reoxygenation injury via AMPK-mediated activation of Nrf2 signaling pathway
  publication-title: Front. Pharmacol.
– start-page: 212
  year: 2019
  end-page: 226
  ident: bib51
  article-title: PKC and PKN in heart disease
  publication-title: J. Mol. Cell. Cardiol.
– start-page: 208
  year: 2018
  end-page: 230
  ident: bib54
  article-title: Protein kinase C: perfectly balanced
  publication-title: Crit. Rev. Biochem. Mol. Biol.
– start-page: 110
  year: 2016
  end-page: 121
  ident: bib152
  article-title: Oxyresveratrol abrogates oxidative stress by activating ERK–Nrf2 pathway in the liver
  publication-title: Chem. Biol. Interact.
– volume: 11
  start-page: 3214
  year: 2016
  end-page: 3225
  ident: bib170
  article-title: Small molecule inhibitor of NRF2 selectively intervenes therapeutic resistance in KEAP1-deficient NSCLC tumors
  publication-title: ACS Chem. Biol.
– start-page: 760
  year: 2019
  ident: bib59
  article-title: Melatonin prevents mice cortical astrocytes from hemin-induced toxicity through activating PKCα/nrf2/HO-1 signaling in vitro
  publication-title: Front. Neurosci.
– volume: 9
  start-page: 9245
  year: 2019
  ident: bib182
  article-title: Tolvaptan activates the Nrf2/HO-1 antioxidant pathway through PERK phosphorylation
  publication-title: Sci. Rep.
– volume: 46
  start-page: 113
  year: 2006
  end-page: 140
  ident: bib42
  article-title: Nrf2-Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species
  publication-title: Adv. Enzym. Regul.
– volume: 25
  start-page: 10895
  year: 2005
  end-page: 10906
  ident: bib41
  article-title: The carboxy-terminal Neh3 domain of Nrf2 is required for transcriptional activation
  publication-title: Mol. Cell Biol.
– volume: 12
  year: 2020
  ident: bib31
  article-title: Dissecting the crosstalk between NRF2 signaling and metabolic processes in cancer
  publication-title: Cancers
– volume: 177
  start-page: 114002
  year: 2020
  ident: bib166
  article-title: Molecular mechanisms and systemic targeting of NRF2 dysregulation in cancer
  publication-title: Biochem. Pharmacol.
– start-page: 1931
  year: 2016
  end-page: 1942
  ident: bib93
  article-title: AMPK facilitates nuclear accumulation of nrf2 by phosphorylating at serine 550(article)
  publication-title: Mol. Cell Biol.
– volume: 7
  start-page: 45701
  year: 2017
  ident: bib188
  article-title: Discovery of the first dual GSK3β inhibitor/Nrf2 inducer. A new multitarget therapeutic strategy for Alzheimer's disease
  publication-title: Sci. Rep.
– volume: 3
  start-page: re3
  year: 2010
  ident: bib1
  article-title: Stress-activated cap'n'collar transcription factors in aging and human disease
  publication-title: Sci. Signal.
– volume: 2020
  start-page: 8291413
  year: 2020
  ident: bib183
  article-title: Ganoderic acid D protects human amniotic mesenchymal stem cells against oxidative stress-induced senescence through the PERK/NRF2 signaling pathway
  publication-title: Oxidative medicine and cellular longevity
– start-page: 667
  year: 2008
  end-page: 670
  ident: bib189
  article-title: Phosphorylation by P38 MAPK as an Alternative Pathway for GSK3beta Inactivation
– volume: 22
  start-page: 578
  year: 2016
  end-page: 593
  ident: bib15
  article-title: The dual roles of NRF2 in cancer
  publication-title: Trends Mol. Med.
– volume: 27
  start-page: 7511
  year: 2007
  end-page: 7521
  ident: bib45
  article-title: Different electrostatic potentials define ETGE and DLG motifs as hinge and latch in oxidative stress response
  publication-title: Mol. Cell Biol.
– volume: 27
  start-page: 6
  year: 2020
  end-page: 21
  ident: bib139
  article-title: A review on chronic pain in rheumatoid arthritis: a focus on activation of NR2B subunit of N-Methyl-D-Aspartate receptors
  publication-title: Malays. J. Med. Sci.: MJMS
– start-page: 63
  year: 2008
  end-page: 76
  ident: bib112
  article-title: Phosphorylation of Nrf2 in the transcription activation domain by casein kinase 2 (CK2) is critical for the nuclear translocation and transcription activation function of Nrf2 in IMR-32 neuroblastoma cells
  publication-title: J. Biochem. Mol. Toxicol.
– volume: 29
  start-page: 1727
  year: 2018
  end-page: 1745
  ident: bib11
  article-title: Transcriptional regulation by Nrf2
  publication-title: Antioxidants Redox Signal.
– start-page: 3
  year: 2010
  end-page: 38
  ident: bib141
  article-title: The MAP kinase signaling cascades: a system of hundreds of components regulates a diverse array of physiological functions
  publication-title: Methods Mol. Biol.
– volume: 88
  start-page: 253
  year: 2015
  end-page: 267
  ident: bib29
  article-title: Nrf2--a therapeutic target for the treatment of neurodegenerative diseases
  publication-title: Free Radic. Biol. Med.
– start-page: 856
  year: 2013
  end-page: 866
  ident: bib145
  article-title: A novel semisynthetic flavonoid 7-O-galloyltaxifolin upregulates heme oxygenase-1 in RAW264.7 cells via MAPK/Nrf2 pathway
  publication-title: J. Med. Chem.
– volume: 33
  start-page: 101544
  year: 2020
  ident: bib163
  article-title: Oxidative stress-based therapeutics in COPD
  publication-title: Redox Biology
– start-page: 122
  year: 2006
  end-page: 125
  ident: bib191
  article-title: PKCalpha reduces the lipid kinase activity of the p110alpha/p85alpha PI3K through the phosphorylation of the catalytic subunit
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 2019
  start-page: 8592348
  year: 2019
  ident: bib165
  article-title: Potential applications of NRF2 inhibitors in cancer therapy
  publication-title: Oxid. Med. Cell. Longev.
– volume: 95
  start-page: 1629
  year: 2013
  end-page: 1639
  ident: bib19
  article-title: Chemopreventive effects of diverse dietary phytochemicals against DMBA-induced hamster buccal pouch carcinogenesis via the induction of Nrf2-mediated cytoprotective antioxidant, detoxification, and DNA repair enzymes
  publication-title: Biochimie
– volume: 292
  start-page: 7519
  year: 2017
  end-page: 7530
  ident: bib110
  article-title: Glucocorticoid receptor signaling represses the antioxidant response by inhibiting histone acetylation mediated by the transcriptional activator NRF2
  publication-title: J. Biol. Chem.
– volume: 6
  start-page: 857
  year: 2001
  end-page: 868
  ident: bib106
  article-title: Two domains of Nrf2 cooperatively bind CBP, a CREB binding protein, and synergistically activate transcription
  publication-title: Gene Cell.: devoted to molecular & cellular mechanisms
– volume: 79
  start-page: 889
  year: 2019
  end-page: 898
  ident: bib164
  article-title: NRF2 activation in cancer: from DNA to protein
  publication-title: Canc. Res.
– volume: 274
  start-page: 24896
  year: 1999
  end-page: 24900
  ident: bib74
  article-title: Insulin and exercise decrease glycogen synthase kinase-3 activity by different mechanisms in rat skeletal muscle
  publication-title: J. Biol. Chem.
– volume: 54
  start-page: 687
  year: 2011
  end-page: 696
  ident: bib75
  article-title: Inhibition of glycogen synthase kinase 3 beta ameliorates liver ischemia reperfusion injury by way of an interleukin-10-mediated immune regulatory mechanism
  publication-title: Hepatology (Baltimore, Md
– reference: Y. Tian, Y. Su, Q. Ye, L. Chen, F. Yuan, Z. Wang, Silencing of TXNIP Alleviated Oxidative Stress Injury by Regulating MAPK–Nrf2 Axis in Ischemic Stroke, Neurochemical Research.
– volume: 22
  start-page: 66
  year: 2012
  end-page: 79
  ident: bib17
  article-title: Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming
  publication-title: Canc. Cell
– volume: 33
  start-page: 130
  year: 2019
  end-page: 148
  ident: bib185
  article-title: Berberine ameliorates lipopolysaccharide-induced acute lung injury via the PERK-mediated Nrf2/HO-1 signaling axis
  publication-title: Phytother Res.: PTR
– start-page: 184
  year: 2013
  end-page: 189
  ident: bib79
  article-title: PTEN in cancer, metabolism, and aging
  publication-title: Trends Endocrinol. Metabol.: TEM (Trends Endocrinol. Metab.)
– start-page: 1797
  year: 2007
  end-page: 1806
  ident: bib39
  article-title: Molecular mechanism of human Nrf2 activation and degradation: role of sequential phosphorylation by protein kinase CK2
  publication-title: Free Radic. Biol. Med.
– volume: 264
  start-page: 29
  year: 2001
  end-page: 41
  ident: bib80
  article-title: PTEN: life as a tumor suppressor
  publication-title: Exp. Cell Res.
– volume: 31
  start-page: 1121
  year: 2011
  end-page: 1133
  ident: bib65
  article-title: SCF/{beta}-TrCP promotes glycogen synthase kinase 3-dependent degradation of the Nrf2 transcription factor in a Keap1-independent manner
  publication-title: Mol. Cell Biol.
– volume: 28
  start-page: 708
  year: 2014
  end-page: 722
  ident: bib111
  article-title: Hrd1 suppresses Nrf2-mediated cellular protection during liver cirrhosis
  publication-title: Genes Dev.
– start-page: 64
  year: 2003
  end-page: 73
  ident: bib143
  article-title: Redox-sensitive mechanisms of phytochemical-mediated inhibition of cancer cell proliferation (review)
  publication-title: J. Nutr. Biochem.
– volume: 32
  start-page: 3486
  year: 2012
  end-page: 3499
  ident: bib66
  article-title: Structural and functional characterization of Nrf2 degradation by the glycogen synthase kinase 3/beta-TrCP axis
  publication-title: Mol. Cell Biol.
– volume: 59
  start-page: 555
  year: 2019
  end-page: 575
  ident: bib160
  article-title: Modulating NRF2 in disease: timing is everything
  publication-title: Annu. Rev. Pharmacol. Toxicol.
– start-page: 1918
  year: 2006
  end-page: 1926
  ident: bib155
  article-title: Mechanism of Action of Isothiocyanates: the Induction of ARE-Regulated Genes Is Associated with Activation of ERK and JNK and the Phosphorylation and Nuclear Translocation of Nrf2
– volume: 178
  start-page: 316
  year: 2019
  end-page: 329
  ident: bib167
  article-title: Nrf2 activation promotes lung cancer metastasis by inhibiting the degradation of Bach1
  publication-title: Cell
– start-page: 104308
  year: 2013
  ident: bib25
  article-title: Nrf2 and Cardiovascular Defense, Oxidative Medicine and Cellular Longevity 2013
– volume: 13
  start-page: 1211
  year: 1999
  end-page: 1233
  ident: bib122
  article-title: Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls
  publication-title: Genes Dev.
– volume: 90
  start-page: 1051
  year: 1997
  end-page: 1060
  ident: bib100
  article-title: CRM1 is an export receptor for leucine-rich nuclear export signals
  publication-title: Cell
– volume: 22
  start-page: 2883
  year: 2002
  end-page: 2892
  ident: bib38
  article-title: Enhanced expression of the transcription factor Nrf2 by cancer chemopreventive agents: role of antioxidant response element-like sequences in the nrf2 promoter
  publication-title: Mol. Cell Biol.
– volume: 20
  start-page: 3772
  year: 2009
  end-page: 3779
  ident: bib102
  article-title: Repression of classical nuclear export by S-nitrosylation of CRM1
  publication-title: J. Cell Sci.
– volume: 134
  start-page: 702
  year: 2019
  end-page: 707
  ident: bib22
  article-title: Redox regulation by NRF2 in aging and disease
  publication-title: Free Radical Biol. Med.
– volume: 6
  start-page: 5
  year: 2006
  end-page: 36
  ident: bib127
  article-title: Divergent roles of IRE1alpha and PERK in the unfolded protein response
  publication-title: Curr. Mol. Med.
– volume: 30
  start-page: 299
  year: 2008
  end-page: 307
  ident: bib72
  article-title: Treatment with the glycogen synthase kinase-3beta inhibitor, TDZD-8, affects transient cerebral ischemia/reperfusion injury in the rat hippocampus
  publication-title: Shock (Augusta, Ga.)
– volume: 277
  start-page: 11780
  year: 2002
  end-page: 11787
  ident: bib123
  article-title: Translation mediated by the internal ribosome entry site of the cat-1 mRNA is regulated by glucose availability in a PERK kinase-dependent manner
  publication-title: J. Biol. Chem.
– start-page: 12475
  year: 2000
  end-page: 12480
  ident: bib57
  article-title: Regulation of the antioxidant response element by protein kinase C-mediated phosphorylation of NF-E2-related factor 2
  publication-title: Proc. Natl. Acad. Sci. U. S. A
– year: 2017
  ident: bib120
  article-title: PERK Induces Resistance to Cell Death Elicited by Endoplasmic Reticulum Stress and Chemotherapy
– start-page: 92
  year: 2016
  end-page: 103
  ident: bib62
  article-title: Regulation of the CNC-bZIP transcription factor nrf2 by Keap1 and the axis between GSK-3 and β-TrCP
  publication-title: Current Opinion in Toxicology
– volume: 12
  year: 2020
  ident: bib73
  article-title: Activation of NRF2 ameliorates oxidative stress and cystogenesis in autosomal dominant polycystic kidney disease
  publication-title: Sci. Transl. Med.
– volume: 276
  start-page: 20858
  year: 2001
  end-page: 20865
  ident: bib131
  article-title: Identification of activating transcription factor 4 (ATF4) as an Nrf2-interacting protein. Implication for heme oxygenase-1 gene regulation
  publication-title: J. Biol. Chem.
– start-page: 60
  year: 2017
  end-page: 69
  ident: bib60
  article-title: EX4 stabilizes and activates Nrf2 via PKCδ, contributing to the prevention of oxidative stress-induced pancreatic beta cell damage
  publication-title: Toxicol. Appl. Pharmacol.
– volume: 280
  start-page: 28430
  year: 2005
  end-page: 28438
  ident: bib89
  article-title: Nrf2 Possesses a redox-insensitive nuclear export signal overlapping with the leucine zipper motif
  publication-title: J. Biol. Chem.
– volume: 131
  start-page: 110676
  year: 2020
  ident: bib30
  article-title: Emerging role of NRF2 in ROS-mediated tumor chemoresistance
  publication-title: Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie
– volume: 416
  start-page: 703
  year: 2002
  end-page: 709
  ident: bib68
  article-title: Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex
  publication-title: Nature
– volume: 300
  start-page: H84
  year: 2011
  end-page: H93
  ident: bib99
  article-title: Activation of AMPK stimulates heme oxygenase-1 gene expression and human endothelial cell survival
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
– volume: 282
  start-page: 16502
  year: 2007
  end-page: 16510
  ident: bib84
  article-title: GSK-3beta acts upstream of Fyn kinase in regulation of nuclear export and degradation of NF-E2 related factor 2
  publication-title: J. Biol. Chem.
– start-page: 527
  year: 2019
  end-page: 551
  ident: bib94
  article-title: AMP-activated protein kinase: the current landscape for drug development
  publication-title: Nat. Rev. Drug Discov.
– volume: 8
  start-page: 334ra51
  year: 2016
  ident: bib32
  article-title: NRF2 activation by antioxidant antidiabetic agents accelerates tumor metastasis
  publication-title: Sci. Transl. Med.
– year: 2003
  ident: bib115
  article-title: Protein kinase CK2: structure, regulation and role in cellular decisions of life and death
  publication-title: Biochem. J.
– volume: 31
  start-page: 1746
  year: 2020
  end-page: 1754
  ident: bib168
  article-title: KEAP1-driven co-mutations in lung adenocarcinoma unresponsive to immunotherapy despite high tumor mutational burden, Ann
  publication-title: Oncol.
– volume: 278
  start-page: 141
  year: 1997
  end-page: 144
  ident: bib101
  article-title: Evidence for a role of CRM1 in signal-mediated nuclear protein export
  publication-title: Science
– volume: 26
  start-page: 7942
  year: 2006
  end-page: 7952
  ident: bib109
  article-title: BRG1 interacts with Nrf2 to selectively mediate HO-1 induction in response to oxidative stress
  publication-title: Mol. Cell Biol.
– volume: 50
  start-page: 5339
  year: 2009
  end-page: 5347
  ident: bib82
  article-title: Synthetic triterpenoids attenuate cytotoxic retinal injury: cross-talk between Nrf2 and PI3K/AKT signaling through inhibition of the lipid phosphatase PTEN
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 159
  start-page: 87
  year: 2020
  end-page: 102
  ident: bib27
  article-title: Transcription factor NRF2 as a promising therapeutic target for Alzheimer's disease
  publication-title: Free Radic. Biol. Med.
– volume: 11
  start-page: 476
  year: 2008
  end-page: 487
  ident: bib140
  article-title: Synaptic NMDA receptor activity boosts intrinsic antioxidant defenses
  publication-title: Nat. Neurosci.
– volume: 26
  start-page: 185
  year: 2020
  end-page: 200
  ident: bib20
  article-title: Nrf2: redox and metabolic regulator of stem cell state and function
  publication-title: Trends Mol. Med.
– start-page: 19875
  year: 1993
  end-page: 19881
  ident: bib56
  article-title: Transcriptional regulation of the rat NAD(P)H:quinone reductase gene. Characterization of a DNA-protein interaction at the antioxidant responsive element and induction by 12-O-tetradecanoylphorbol 13- acetate
  publication-title: J. Biol. Chem.
– volume: 109
  start-page: 254
  year: 2019
  end-page: 261
  ident: bib184
  article-title: Ginsenoside Rb3 protects cardiomyocytes against hypoxia/reoxygenation injury via activating the antioxidation signaling pathway of PERK/Nrf2/HMOX1
  publication-title: Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie
– volume: 467
  start-page: 40
  year: 2019
  end-page: 49
  ident: bib173
  article-title: NRF2 addiction" in lung cancer cells and its impact on cancer therapy
  publication-title: Canc. Lett.
– volume: 277
  start-page: 18728
  year: 2002
  end-page: 18735
  ident: bib126
  article-title: Dimerization and release of molecular chaperone inhibition facilitate activation of eukaryotic initiation factor-2 kinase in response to endoplasmic reticulum stress
  publication-title: J. Biol. Chem.
– volume: 169
  start-page: 28
  year: 2018
  end-page: 37
  ident: bib132
  article-title: Nrf2 protects human lens epithelial cells against H2O2-induced oxidative and ER stress: the ATF4 may be involved
  publication-title: Exp. Eye Res.
– volume: 19
  start-page: 2278
  year: 2005
  end-page: 2283
  ident: bib157
  article-title: The C. elegans p38 MAPK pathway regulates nuclear localization of the transcription factor SKN-1 in oxidative stress response
  publication-title: Genes Dev.
– volume: 281
  start-page: 14841
  year: 2006
  end-page: 14851
  ident: bib64
  article-title: Glycogen synthase kinase-3beta inhibits the xenobiotic and antioxidant cell response by direct phosphorylation and nuclear exclusion of the transcription factor Nrf2
  publication-title: J. Biol. Chem.
– volume: 9
  start-page: 139
  year: 2009
  end-page: 145
  ident: bib26
  article-title: Targeting the redox sensitive Nrf2-Keap1 defense pathway in cardiovascular disease: protection afforded by dietary isoflavones
  publication-title: Curr. Opin. Pharmacol.
– volume: 9
  start-page: 309
  year: 2006
  end-page: 317
  ident: bib186
  article-title: GSK-3 is essential in the pathogenesis of Alzheimer's disease
  publication-title: J. Alzheim. Dis.: JAD
– start-page: 349
  year: 2003
  end-page: 368
  ident: bib117
  article-title: One-thousand-and-one substrates of protein kinase CK2?
  publication-title: Faseb J.: official publication of the Federation of American Societies for Experimental Biology
– start-page: 1
  year: 2009
  end-page: 9
  ident: bib158
  article-title: Phosphorylation of Nrf2 at multiple sites by MAP kinases has a limited contribution in modulating the Nrf2- dependent antioxidant response
  publication-title: PloS One
– start-page: 765
  year: 2002
  end-page: 770
  ident: bib142
  article-title: Antioxidants and oxidants regulated signal transduction pathways
  publication-title: Biochem. Pharmacol.
– volume: 36
  start-page: 924
  year: 2016
  end-page: 963
  ident: bib161
  article-title: The keap1–nrf2–ARE pathway as a potential preventive and therapeutic target: an update
  publication-title: Med. Res. Rev.
– start-page: 33902
  year: 2008
  end-page: 33910
  ident: bib103
  article-title: AMP-activated protein kinase activation increases phosphorylation of glycogen synthase kinase 3beta and thereby reduces cAMP-responsive element transcriptional activity and phosphoenolpyruvate carboxykinase C gene expression in the liver
  publication-title: J. Biol. Chem.
– start-page: 1877
  year: 2015
  end-page: 1889
  ident: bib135
  article-title: Astrocyte NMDA receptors' activity sustains neuronal survival through a Cdk5-Nrf2 pathway
  publication-title: Cell Death Differ.
– start-page: 313
  year: 1997
  end-page: 322
  ident: bib86
  article-title: An nrf2/small maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 280
  start-page: 70
  year: 2018
  end-page: 76
  ident: bib14
  article-title: Regulation and role of nuclear factor-E2-related factor 2 (Nrf2) in multidrug resistance of hepatocellular carcinoma
  publication-title: Chem. Biol. Interact.
– start-page: 409
  year: 2011
  end-page: 417
  ident: bib156
  article-title: Protocatechuic acid induces antioxidant/detoxifying enzyme expression through JNK-mediated Nrf2 activation in murine macrophages
  publication-title: J. Nutr. Biochem.
– start-page: 226
  year: 2002
  end-page: 230
  ident: bib113
  article-title: Joining the cell survival squad: an emerging role for protein kinase CK2
  publication-title: Trends Cell Biol.
– year: 2020
  ident: bib23
  article-title: NRF2 in cardiovascular diseases: a ray of hope!
  publication-title: Journal of cardiovascular translational research
– start-page: 15079
  year: 2006
  end-page: 15084
  ident: bib114
  article-title: Casein kinase 2 (CK2) increases survivin expression via enhanced beta-catenin-T cell factor/lymphoid enhancer binding factor-dependent transcription
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 19
  start-page: 125
  year: 2005
  end-page: 137
  ident: bib8
  article-title: Functional and placental expression analysis of the human NRF3 transcription factor
  publication-title: Molecular endocrinology (Baltimore, Md
– volume: 34
  start-page: 101475
  year: 2020
  ident: bib43
  article-title: Redox toxicology of environmental chemicals causing oxidative stress
  publication-title: Redox Biology
– start-page: 8804
  year: 2006
  end-page: 8813
  ident: bib149
  article-title: Mechanism of action of sulforaphane: inhibition of p38 mitogen-activated protein kinase isoforms contributing to the induction of antioxidant response element-mediated heme oxygenase-1 in human hepatoma HepG2 cells
  publication-title: Canc. Res.
– start-page: 9237263
  year: 2017
  ident: bib24
  article-title: The Role of Nrf2 in Cardiovascular Function and Disease, Oxidative Medicine and Cellular Longevity 2017
– start-page: 1726
  year: 1987
  end-page: 1728
  ident: bib52
  article-title: Protein kinase C contains a pseudosubstrate prototope in its regulatory domain
  publication-title: Science (New York, N.Y.)
– volume: 88
  start-page: 417
  year: 2015
  end-page: 426
  ident: bib98
  article-title: Activated AMPK boosts the Nrf2/HO-1 signaling axis--A role for the unfolded protein response
  publication-title: Free Radic. Biol. Med.
– volume: 41
  start-page: 2981
  year: 2016
  end-page: 2992
  ident: bib175
  article-title: Anti-neuroinflammatory effect of emodin in LPS-stimulated microglia: involvement of AMPK/Nrf2 activation
  publication-title: Neurochem. Res.
– start-page: 42769
  year: 2002
  end-page: 42774
  ident: bib50
  article-title: Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription
  publication-title: J. Biol. Chem.
– volume: 473
  start-page: 961
  year: 2016
  end-page: 1000
  ident: bib7
  article-title: Molecular and cellular basis for the unique functioning of Nrf1, an indispensable transcription factor for maintaining cell homoeostasis and organ integrity
  publication-title: Biochem. J.
– volume: 29
  start-page: 1746
  year: 2018
  end-page: 1755
  ident: bib159
  article-title: An overview of the advantages of KEAP1-NRF2 system activation during inflammatory disease treatment
  publication-title: Antioxidants Redox Signal.
– volume: 150
  start-page: 9
  year: 2018
  end-page: 23
  ident: bib180
  article-title: Baicalein and baicalin alleviate acetaminophen-induced liver injury by activating Nrf2 antioxidative pathway: the involvement of ERK1/2 and PKC
  publication-title: Biochem. Pharmacol.
– volume: 97
  start-page: 12625
  year: 2000
  end-page: 12630
  ident: bib128
  article-title: PERK mediates cell-cycle exit during the mammalian unfolded protein response
  publication-title: Proc. Natl. Acad. Sci. U. S. A
– volume: 106
  start-page: 21353
  year: 2009
  end-page: 21358
  ident: bib138
  article-title: PKCdelta regulates cortical radial migration by stabilizing the Cdk5 activator p35
  publication-title: Proc. Natl. Acad. Sci. U. S. A
– start-page: 2119
  year: 2011
  ident: bib148
  article-title: Carnosic acid induces the NAD(P)H: quinone oxidoreductase 1 expression in rat clone 9 cells through the p38/nuclear factor erythroid-2 related factor 2 pathway
  publication-title: J. Nutr.
– volume: 94
  start-page: 3037
  year: 1999
  end-page: 3047
  ident: bib4
  article-title: Pathophysiology of thrombocytopenia and anemia in mice lacking transcription factor NF-E2
  publication-title: Blood
– volume: 16
  start-page: 123
  year: 2011
  end-page: 140
  ident: bib49
  article-title: Molecular mechanisms of the Keap1–Nrf2 pathway in stress response and cancer evolution
  publication-title: Gene Cell.: devoted to molecular & cellular mechanisms
– volume: 278
  start-page: 44675
  year: 2003
  end-page: 44682
  ident: bib58
  article-title: Phosphorylation of Nrf2 at Ser40 by protein kinase C in response to antioxidants leads to the release of Nrf2 from INrf2, but is not required for Nrf2 stabilization/accumulation in the nucleus and transcriptional activation of antioxidant response element-mediated NAD(P)H:quinone oxidoreductase-1 gene expression
  publication-title: J. Biol. Chem.
– volume: 29
  start-page: 2658
  year: 2009
  end-page: 2672
  ident: bib105
  article-title: Acetylation of Nrf2 by p300/CBP augments promoter-specific DNA binding of Nrf2 during the antioxidant response
  publication-title: Mol. Cell Biol.
– start-page: 1311
  year: 2006
  end-page: 1320
  ident: bib46
  article-title: Two-site substrate recognition model for the Keap1-Nrf2 system: a hinge and latch mechanism
  publication-title: Biol. Chem.
– start-page: 103
  year: 2001
  end-page: 113
  ident: bib130
  article-title: Molecular basis for the contribution of the antioxidant responsive element to cancer chemoprevention
  publication-title: Canc. Lett.
– volume: 1823
  start-page: 1841
  year: 2012
  end-page: 1846
  ident: bib88
  article-title: The small MAF transcription factors MAFF, MAFG and MAFK: current knowledge and perspectives
  publication-title: Biochim. Biophys. Acta
– start-page: 1847
  year: 2008
  end-page: 1856
  ident: bib90
  article-title: Heterodimerization with small Maf proteins enhances nuclear retention of Nrf2 via masking the NESzip motif
  publication-title: Biochim. Biophys. Acta Mol. Cell Res.
– volume: 2
  start-page: 761
  year: 2013
  end-page: 770
  ident: bib16
  article-title: Nrf2 impacts cellular bioenergetics by controlling substrate availability for mitochondrial respiration
  publication-title: Biology open
– volume: 457
  start-page: 415
  year: 2014
  end-page: 424
  ident: bib18
  article-title: Nrf2 affects the efficiency of mitochondrial fatty acid oxidation
  publication-title: Biochem. J.
– volume: 82
  start-page: 349
  year: 2015
  end-page: 358
  ident: bib181
  article-title: Dimethyl fumarate confers neuroprotection by casein kinase 2 phosphorylation of Nrf2 in murine intracerebral hemorrhage
  publication-title: Neurobiol. Dis.
– volume: 1
  start-page: 162
  year: 2005
  end-page: 171
  ident: bib47
  article-title: BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the cullin 3-Roc1 ligase
  publication-title: Mol. Cell Biol.
– volume: 10
  start-page: 549
  year: 2004
  end-page: 557
  ident: bib2
  article-title: Nrf2-Keap1 defines a physiologically important stress response mechanism
  publication-title: Trends Mol. Med.
– start-page: 4483
  year: 2005
  end-page: 4490
  ident: bib12
  article-title: Nrf2 transcriptionally activates the mafG gene through an antioxidant response element
  publication-title: J. Biol. Chem.
– year: 2020
  ident: bib21
  article-title: Redox regulation of immunometabolism
  publication-title: Nat. Rev. Immunol.
– volume: 26
  start-page: 327
  year: 2015
  end-page: 338
  ident: bib92
  article-title: The ubiquitin-conjugating enzyme UBE2E3 and its import receptor importin-11 regulate the localization and activity of the antioxidant transcription factor NRF2
  publication-title: Mol. Biol. Cell
– volume: 29
  start-page: 101393
  year: 2020
  ident: bib104
  article-title: AMPK leads to phosphorylation of the transcription factor Nrf2, tuning transactivation of selected target genes
  publication-title: Redox biology
– volume: 73
  start-page: 3097
  year: 2013
  end-page: 3108
  ident: bib40
  article-title: RXRalpha inhibits the NRF2-ARE signaling pathway through a direct interaction with the Neh7 domain of NRF2
  publication-title: Canc. Res.
– start-page: 1895
  year: 2011
  end-page: 1908
  ident: bib95
  article-title: AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function
  publication-title: Genes Dev.: a Journal Devoted to the Molecular Analysis of Gene Expression in Eukaryotes, Prokaryotes, and Viruses
– volume: 17
  start-page: 297
  year: 2018
  end-page: 314
  ident: bib13
  article-title: Antioxidant response elements: discovery, classes, regulation and potential applications
  publication-title: Redox biology
– volume: 146
  start-page: 222
  year: 2020
  end-page: 233
  ident: bib177
  article-title: Galectin-1 ameliorates lipopolysaccharide-induced acute lung injury via AMPK-Nrf2 pathway in mice
  publication-title: Free Radic. Biol. Med.
– volume: 66
  start-page: 75
  year: 2007
  end-page: 85
  ident: bib28
  article-title: Expression of Nrf2 in neurodegenerative diseases
  publication-title: J. Neuropathol. Exp. Neurol.
– volume: 279
  start-page: 50810
  year: 2004
  end-page: 50817
  ident: bib6
  article-title: Nrf3 negatively regulates antioxidant-response element-mediated expression and antioxidant induction of NAD(P)H:quinone oxidoreductase1 gene
  publication-title: J. Biol. Chem.
– volume: 285
  start-page: 23064
  year: 2010
  end-page: 23074
  ident: bib91
  article-title: The ubiquitin-conjugating enzyme UbcM2 can regulate the stability and activity of the antioxidant transcription factor Nrf2
  publication-title: J. Biol. Chem.
– start-page: 739
  year: 2005
  end-page: 789
  ident: bib125
  article-title: The mammalian unfolded protein response
  publication-title: Annu. Rev. Biochem.
– volume: 66
  start-page: 1817
  year: 2009
  end-page: 1829
  ident: bib116
  article-title: Protein kinase CK2 in health and disease: from birth to death: the role of protein kinase CK2 in the regulation of cell proliferation and survival
  publication-title: Cell. Mol. Life Sci.: CM
– volume: 47
  start-page: 1304
  year: 2009
  end-page: 1309
  ident: bib48
  article-title: Nrf2:INrf2 (Keap1) signaling in oxidative stress
  publication-title: Free Radic. Biol. Med.
– year: 2014
  ident: bib121
  article-title: De-differentiation confers multidrug resistance via noncanonical PERK-nrf2 signaling
  publication-title: PLoS Biol.
– volume: 244
  start-page: 117329
  year: 2020
  ident: bib35
  article-title: MicroRNA-mediated regulation of Nrf2 signaling pathway: implications in disease therapy and protection against oxidative stress
  publication-title: Life Sci.
– volume: 24
  start-page: 627
  year: 2006
  end-page: 633
  ident: bib76
  article-title: A chaperone-dependent GSK3beta transitional intermediate mediates activation-loop autophosphorylation
  publication-title: Mol. Cell
– start-page: 479
  year: 2018
  end-page: 488
  ident: bib153
  article-title: Gallic acid, a natural polyphenol, protects against tert-butyl hydroperoxide- induced hepatotoxicity by activating ERK-Nrf2-Keap1-mediated antioxidative response
  publication-title: Food and Chemical Toxicology: an International Journal Published for the British Industrial Biological Research Association
– volume: 117
  start-page: 9964
  year: 2020
  end-page: 9972
  ident: bib171
  article-title: Triptolide suppresses IDH1-mutated malignancy via Nrf2-driven glutathione metabolism
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 31
  start-page: 511
  year: 2013
  end-page: 515
  ident: bib81
  article-title: Redox regulation of tumor suppressor PTEN in cancer and aging (Review)
  publication-title: Int. J. Mol. Med.
– volume: 275
  start-page: 27694
  year: 2000
  end-page: 27702
  ident: bib147
  article-title: Mechanism of heme oxygenase-1 gene activation by cadmium in MCF-7 mammary epithelial cells. Role of p38 kinase and Nrf2 transcription factor
  publication-title: J. Biol. Chem.
– volume: 88
  start-page: 147
  year: 2015
  end-page: 157
  ident: bib85
  article-title: Structural and functional characterization of Nrf2 degradation by glycogen synthase kinase 3/β-TrCP
  publication-title: Free Radic. Biol. Med.
– volume: 32
  start-page: 514
  year: 2013
  end-page: 527
  ident: bib108
  article-title: The nuclear cofactor RAC3/AIB1/SRC-3 enhances Nrf2 signaling by interacting with transactivation domains
  publication-title: Oncogene
– volume: 13
  start-page: 76
  year: 1999
  end-page: 86
  ident: bib34
  article-title: Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain
  publication-title: Genes Dev.
– volume: 202
  start-page: 112532
  year: 2020
  ident: bib162
  article-title: Recent progress in Keap1-Nrf2 protein-protein interaction inhibitors
  publication-title: Eur. J. Med. Chem.
– start-page: 159
  year: 2005
  end-page: 170
  ident: bib190
  article-title: Erk associates with and primes GSK-3beta for its inactivation resulting in upregulation of beta-catenin
  publication-title: Mol. Cell
– volume: 134
  start-page: 702
  year: 2019
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib22
  article-title: Redox regulation by NRF2 in aging and disease
  publication-title: Free Radical Biol. Med.
  doi: 10.1016/j.freeradbiomed.2019.01.016
– issue: No.9
  year: 2014
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib121
  article-title: De-differentiation confers multidrug resistance via noncanonical PERK-nrf2 signaling
  publication-title: PLoS Biol.
– volume: 31
  start-page: 1746
  issue: 12
  year: 2020
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib168
  article-title: KEAP1-driven co-mutations in lung adenocarcinoma unresponsive to immunotherapy despite high tumor mutational burden, Ann
  publication-title: Oncol.
– volume: 91
  start-page: 9926
  issue: 21
  year: 1994
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib10
  article-title: Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region
  publication-title: Proc. Natl. Acad. Sci. U. S. A
  doi: 10.1073/pnas.91.21.9926
– volume: 62
  start-page: 3840
  issue: 8
  year: 2019
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib169
  article-title: Nuclear factor erythroid 2-related factor 2 (Nrf2) inhibition: an emerging strategy in cancer therapy
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.8b01121
– volume: 117
  start-page: 9964
  issue: 18
  year: 2020
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib171
  article-title: Triptolide suppresses IDH1-mutated malignancy via Nrf2-driven glutathione metabolism
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1913633117
– volume: 7
  start-page: 45701
  year: 2017
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib188
  article-title: Discovery of the first dual GSK3β inhibitor/Nrf2 inducer. A new multitarget therapeutic strategy for Alzheimer's disease
  publication-title: Sci. Rep.
  doi: 10.1038/srep45701
– volume: 277
  start-page: 11780
  issue: 14
  year: 2002
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib123
  article-title: Translation mediated by the internal ribosome entry site of the cat-1 mRNA is regulated by glucose availability in a PERK kinase-dependent manner
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110778200
– volume: 46
  start-page: 113
  year: 2006
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib42
  article-title: Nrf2-Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species
  publication-title: Adv. Enzym. Regul.
  doi: 10.1016/j.advenzreg.2006.01.007
– volume: 177
  start-page: 114002
  year: 2020
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib166
  article-title: Molecular mechanisms and systemic targeting of NRF2 dysregulation in cancer
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2020.114002
– volume: 13
  start-page: 76
  issue: 1
  year: 1999
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib34
  article-title: Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain
  publication-title: Genes Dev.
  doi: 10.1101/gad.13.1.76
– volume: 38
  start-page: 15259
  year: 2013
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib44
  article-title: Regulatory flexibility in the Nrf2-mediated stress response is conferred by conformational cycling of the Keap1-Nrf2 protein complex
  publication-title: Proc. Natl. Acad. Sci. U. S. A
  doi: 10.1073/pnas.1305687110
– volume: 33
  start-page: 101544
  year: 2020
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib163
  article-title: Oxidative stress-based therapeutics in COPD
  publication-title: Redox Biology
  doi: 10.1016/j.redox.2020.101544
– start-page: 33902
  year: 2008
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib103
  article-title: AMP-activated protein kinase activation increases phosphorylation of glycogen synthase kinase 3beta and thereby reduces cAMP-responsive element transcriptional activity and phosphoenolpyruvate carboxykinase C gene expression in the liver
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M802537200
– volume: 11
  start-page: 476
  issue: 4
  year: 2008
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib140
  article-title: Synaptic NMDA receptor activity boosts intrinsic antioxidant defenses
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn2071
– volume: 278
  start-page: 141
  issue: 5335
  year: 1997
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib101
  article-title: Evidence for a role of CRM1 in signal-mediated nuclear protein export
  publication-title: Science
  doi: 10.1126/science.278.5335.141
– year: 2017
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib120
– volume: 8
  start-page: 334ra51
  issue: 334
  year: 2016
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib32
  article-title: NRF2 activation by antioxidant antidiabetic agents accelerates tumor metastasis
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aad6095
– volume: 264
  start-page: 29
  issue: 1
  year: 2001
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib80
  article-title: PTEN: life as a tumor suppressor
  publication-title: Exp. Cell Res.
  doi: 10.1006/excr.2000.5130
– volume: 22
  start-page: 66
  issue: 1
  year: 2012
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib17
  article-title: Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming
  publication-title: Canc. Cell
  doi: 10.1016/j.ccr.2012.05.016
– volume: 9
  start-page: 139
  issue: 2
  year: 2009
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib26
  article-title: Targeting the redox sensitive Nrf2-Keap1 defense pathway in cardiovascular disease: protection afforded by dietary isoflavones
  publication-title: Curr. Opin. Pharmacol.
  doi: 10.1016/j.coph.2008.12.012
– volume: 2019
  start-page: 8592348
  year: 2019
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib165
  article-title: Potential applications of NRF2 inhibitors in cancer therapy
  publication-title: Oxid. Med. Cell. Longev.
  doi: 10.1155/2019/8592348
– volume: 159
  start-page: 87
  year: 2020
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib27
  article-title: Transcription factor NRF2 as a promising therapeutic target for Alzheimer's disease
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2020.06.028
– volume: 88
  start-page: 147
  issue: Pt B
  year: 2015
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib71
  article-title: Structural and functional characterization of Nrf2 degradation by glycogen synthase kinase 3/β-TrCP
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2015.04.029
– volume: 285
  start-page: 23064
  issue: 30
  year: 2010
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib91
  article-title: The ubiquitin-conjugating enzyme UbcM2 can regulate the stability and activity of the antioxidant transcription factor Nrf2
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.121913
– start-page: 270
  year: 2008
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib136
  article-title: Negative regulation of cyclin-dependent kinase 5 targets by protein kinase C
  publication-title: Eur. J. Pharmacol.
  doi: 10.1016/j.ejphar.2007.11.061
– volume: 79
  start-page: 889
  issue: 5
  year: 2019
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib164
  article-title: NRF2 activation in cancer: from DNA to protein
  publication-title: Canc. Res.
  doi: 10.1158/0008-5472.CAN-18-2723
– year: 1994
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib55
  article-title: Transcriptional regulation of a rat liver glutathione S-transferase Ya subunit gene. Analysis of the antioxidant response element and its activation by the phorbol ester 12-O-tetradecanoylphorbol-13-acetate
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)36880-1
– start-page: 12475
  issue: No.23
  year: 2000
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib57
  article-title: Regulation of the antioxidant response element by protein kinase C-mediated phosphorylation of NF-E2-related factor 2
  publication-title: Proc. Natl. Acad. Sci. U. S. A
  doi: 10.1073/pnas.220418997
– start-page: 1895
  issue: No.18
  year: 2011
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib95
  article-title: AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function
  publication-title: Genes Dev.: a Journal Devoted to the Molecular Analysis of Gene Expression in Eukaryotes, Prokaryotes, and Viruses
– start-page: 15079
  year: 2006
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib114
  article-title: Casein kinase 2 (CK2) increases survivin expression via enhanced beta-catenin-T cell factor/lymphoid enhancer binding factor-dependent transcription
– volume: 6
  start-page: 175
  issue: 1
  year: 2015
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib87
  article-title: Transcriptional factors, Mafs and their biological roles
  publication-title: World J. Diabetes
  doi: 10.4239/wjd.v6.i1.175
– volume: 300
  start-page: H84
  issue: 1
  year: 2011
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib99
  article-title: Activation of AMPK stimulates heme oxygenase-1 gene expression and human endothelial cell survival
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.00749.2010
– start-page: 1797
  issue: No.12
  year: 2007
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib39
  article-title: Molecular mechanism of human Nrf2 activation and degradation: role of sequential phosphorylation by protein kinase CK2
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2007.03.001
– volume: 278
  start-page: 4536
  issue: 7
  year: 2003
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib151
  article-title: Increased protein stability as a mechanism that enhances Nrf2-mediated transcriptional activation of the antioxidant response element. Degradation of Nrf2 by the 26 S proteasome
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M207293200
– start-page: 1351
  issue: No.9
  year: 2003
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib154
  article-title: Involvement of Nrf2 and JNK1 in the activation of antioxidant responsive element (ARE) by chemopreventive agent phenethyl isothiocyanate (PEITC)
  publication-title: Pharmaceut. Res.
  doi: 10.1023/A:1025737622815
– volume: 32
  start-page: 3765
  issue: 32
  year: 2013
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib70
  article-title: Nrf2 is controlled by two distinct β-TrCP recognition motifs in its Neh6 domain, one of which can be modulated by GSK-3 activity
  publication-title: Oncogene
  doi: 10.1038/onc.2012.388
– start-page: 479
  year: 2018
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib153
  article-title: Gallic acid, a natural polyphenol, protects against tert-butyl hydroperoxide- induced hepatotoxicity by activating ERK-Nrf2-Keap1-mediated antioxidative response
– volume: 32
  start-page: 3486
  issue: 17
  year: 2012
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib66
  article-title: Structural and functional characterization of Nrf2 degradation by the glycogen synthase kinase 3/beta-TrCP axis
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.00180-12
– volume: 59
  start-page: 555
  year: 2019
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib160
  article-title: Modulating NRF2 in disease: timing is everything
  publication-title: Annu. Rev. Pharmacol. Toxicol.
  doi: 10.1146/annurev-pharmtox-010818-021856
– volume: 1
  start-page: 162
  year: 2005
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib47
  article-title: BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the cullin 3-Roc1 ligase
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.25.1.162-171.2005
– start-page: 1
  issue: No.8
  year: 2009
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib158
  article-title: Phosphorylation of Nrf2 at multiple sites by MAP kinases has a limited contribution in modulating the Nrf2- dependent antioxidant response
  publication-title: PloS One
– start-page: 2322
  issue: No.4
  year: 2000
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib150
  article-title: p38 mitogen-activated protein kinase negatively regulates the induction of phase II drug-metabolizing enzymes that detoxify carcinogens
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.275.4.2322
– volume: 9
  start-page: 309
  issue: 3 Suppl
  year: 2006
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib186
  article-title: GSK-3 is essential in the pathogenesis of Alzheimer's disease
  publication-title: J. Alzheim. Dis.: JAD
  doi: 10.3233/JAD-2006-9S335
– start-page: 739
  issue: No.1
  year: 2005
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib125
  article-title: The mammalian unfolded protein response
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.73.011303.074134
– start-page: 103
  issue: No.2
  year: 2001
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib130
  article-title: Molecular basis for the contribution of the antioxidant responsive element to cancer chemoprevention
  publication-title: Canc. Lett.
  doi: 10.1016/S0304-3835(01)00695-4
– volume: 271
  start-page: 229
  issue: 2
  year: 2013
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib178
  article-title: Metformin inhibits heme oxygenase-1 expression in cancer cells through inactivation of Raf-ERK-Nrf2 signaling and AMPK-independent pathways
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2013.05.010
– volume: 416
  start-page: 703
  issue: 6882
  year: 2002
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib68
  article-title: Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex
  publication-title: Nature
  doi: 10.1038/416703a
– volume: 3
  start-page: re3
  issue: 112
  year: 2010
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib1
  article-title: Stress-activated cap'n'collar transcription factors in aging and human disease
  publication-title: Sci. Signal.
  doi: 10.1126/scisignal.3112re3
– volume: 30
  start-page: 299
  issue: 3
  year: 2008
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib72
  article-title: Treatment with the glycogen synthase kinase-3beta inhibitor, TDZD-8, affects transient cerebral ischemia/reperfusion injury in the rat hippocampus
  publication-title: Shock (Augusta, Ga.)
  doi: 10.1097/SHK.0b013e318164e762
– volume: 47
  start-page: 1304
  issue: 9
  year: 2009
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib48
  article-title: Nrf2:INrf2 (Keap1) signaling in oxidative stress
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2009.07.035
– volume: 9
  start-page: 497
  year: 2018
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib176
  article-title: The natural flavone acacetin confers cardiomyocyte protection against hypoxia/reoxygenation injury via AMPK-mediated activation of Nrf2 signaling pathway
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2018.00497
– volume: 29
  start-page: 2658
  issue: 10
  year: 2009
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib105
  article-title: Acetylation of Nrf2 by p300/CBP augments promoter-specific DNA binding of Nrf2 during the antioxidant response
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.01639-08
– start-page: 4483
  issue: No.6
  year: 2005
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib12
  article-title: Nrf2 transcriptionally activates the mafG gene through an antioxidant response element
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M411451200
– start-page: 667
  year: 2008
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib189
– volume: 12
  issue: 10
  year: 2020
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib31
  article-title: Dissecting the crosstalk between NRF2 signaling and metabolic processes in cancer
  publication-title: Cancers
  doi: 10.3390/cancers12103023
– volume: 19
  start-page: 125
  issue: 1
  year: 2005
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib8
  article-title: Functional and placental expression analysis of the human NRF3 transcription factor
  publication-title: Molecular endocrinology (Baltimore, Md
  doi: 10.1210/me.2003-0379
– volume: 28
  start-page: 708
  issue: 7
  year: 2014
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib111
  article-title: Hrd1 suppresses Nrf2-mediated cellular protection during liver cirrhosis
  publication-title: Genes Dev.
  doi: 10.1101/gad.238246.114
– start-page: 856
  issue: No.3
  year: 2013
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib145
  article-title: A novel semisynthetic flavonoid 7-O-galloyltaxifolin upregulates heme oxygenase-1 in RAW264.7 cells via MAPK/Nrf2 pathway
  publication-title: J. Med. Chem.
  doi: 10.1021/jm3013344
– start-page: 19875
  issue: No.26
  year: 1993
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib56
  article-title: Transcriptional regulation of the rat NAD(P)H:quinone reductase gene. Characterization of a DNA-protein interaction at the antioxidant responsive element and induction by 12-O-tetradecanoylphorbol 13- acetate
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)36594-9
– volume: 17
  start-page: 297
  year: 2018
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib13
  article-title: Antioxidant response elements: discovery, classes, regulation and potential applications
  publication-title: Redox biology
  doi: 10.1016/j.redox.2018.05.002
– volume: 59
  start-page: 1147
  issue: 5
  year: 2001
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib77
  article-title: Activation of phosphatidylinositol 3-kinase and Akt by tert-butylhydroquinone is responsible for antioxidant response element-mediated rGSTA2 induction in H4IIE cells
  publication-title: Mol. Pharmacol.
  doi: 10.1124/mol.59.5.1147
– start-page: 226
  issue: No.5
  year: 2002
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib113
  article-title: Joining the cell survival squad: an emerging role for protein kinase CK2
  publication-title: Trends Cell Biol.
– volume: 10
  start-page: 549
  issue: 11
  year: 2004
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib2
  article-title: Nrf2-Keap1 defines a physiologically important stress response mechanism
  publication-title: Trends Mol. Med.
  doi: 10.1016/j.molmed.2004.09.003
– year: 2020
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib21
  article-title: Redox regulation of immunometabolism
  publication-title: Nat. Rev. Immunol.
– volume: 38
  start-page: 167
  issue: 2
  year: 2020
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib33
  article-title: Oxidative stress in cancer
  publication-title: Canc. Cell
  doi: 10.1016/j.ccell.2020.06.001
– volume: 10
  start-page: 1775
  issue: 9
  year: 2008
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib124
  article-title: Subtilase cytotoxin activates PERK, IRE1 and ATF6 endoplasmic reticulum stress-signalling pathways
  publication-title: Cell Microbiol.
  doi: 10.1111/j.1462-5822.2008.01164.x
– start-page: 26
  year: 2017
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib63
  article-title: GSK-3 as a novel prognostic indicator in leukemia
  publication-title: Advances in biological regulation
  doi: 10.1016/j.jbior.2017.05.001
– volume: 27
  start-page: 7511
  issue: 21
  year: 2007
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib45
  article-title: Different electrostatic potentials define ETGE and DLG motifs as hinge and latch in oxidative stress response
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.00753-07
– start-page: 1847
  issue: No.10
  year: 2008
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib90
  article-title: Heterodimerization with small Maf proteins enhances nuclear retention of Nrf2 via masking the NESzip motif
  publication-title: Biochim. Biophys. Acta Mol. Cell Res.
  doi: 10.1016/j.bbamcr.2008.05.024
– volume: 88
  start-page: 417
  issue: Pt B
  year: 2015
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib98
  article-title: Activated AMPK boosts the Nrf2/HO-1 signaling axis--A role for the unfolded protein response
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2015.03.030
– volume: 178
  start-page: 316
  issue: 2
  year: 2019
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib167
  article-title: Nrf2 activation promotes lung cancer metastasis by inhibiting the degradation of Bach1
  publication-title: Cell
  doi: 10.1016/j.cell.2019.06.003
– volume: 457
  start-page: 415
  issue: 3
  year: 2014
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib18
  article-title: Nrf2 affects the efficiency of mitochondrial fatty acid oxidation
  publication-title: Biochem. J.
  doi: 10.1042/BJ20130863
– volume: 11
  start-page: 2728
  issue: 17
  year: 2020
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib187
  article-title: Novel curcumin-diethyl fumarate hybrid as a dualistic GSK-3β inhibitor/nrf2 inducer for the treatment of Parkinson's disease
  publication-title: ACS Chem. Neurosci.
  doi: 10.1021/acschemneuro.0c00363
– volume: 281
  start-page: 87
  issue: 1
  year: 2014
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib96
  article-title: Upregulation of heme oxygenase-1 expression by dehydrodiconiferyl alcohol (DHCA) through the AMPK-Nrf2 dependent pathway
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2014.07.011
– volume: 12
  start-page: 243
  issue: 3
  year: 2020
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib83
  article-title: Small molecular Nrf2 inhibitors as chemosensitizers for cancer therapy
  publication-title: Future Med. Chem.
  doi: 10.4155/fmc-2019-0285
– start-page: 409
  issue: No.5
  year: 2011
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib156
  article-title: Protocatechuic acid induces antioxidant/detoxifying enzyme expression through JNK-mediated Nrf2 activation in murine macrophages
  publication-title: J. Nutr. Biochem.
  doi: 10.1016/j.jnutbio.2010.03.008
– start-page: 159
  year: 2005
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib190
  article-title: Erk associates with and primes GSK-3beta for its inactivation resulting in upregulation of beta-catenin
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2005.06.009
– volume: 7
  issue: 4
  year: 2019
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib137
  article-title: CDK5: Key regulator of apoptosis and cell survival
  publication-title: Biomedicines
  doi: 10.3390/biomedicines7040088
– volume: 280
  start-page: 70
  year: 2018
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib14
  article-title: Regulation and role of nuclear factor-E2-related factor 2 (Nrf2) in multidrug resistance of hepatocellular carcinoma
  publication-title: Chem. Biol. Interact.
  doi: 10.1016/j.cbi.2017.12.014
– start-page: 104308
  year: 2013
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib25
– start-page: 349
  issue: No.3
  year: 2003
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib117
  article-title: One-thousand-and-one substrates of protein kinase CK2?
  publication-title: Faseb J.: official publication of the Federation of American Societies for Experimental Biology
  doi: 10.1096/fj.02-0473rev
– volume: 169
  start-page: 28
  year: 2018
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib132
  article-title: Nrf2 protects human lens epithelial cells against H2O2-induced oxidative and ER stress: the ATF4 may be involved
  publication-title: Exp. Eye Res.
  doi: 10.1016/j.exer.2018.01.018
– ident: 10.1016/j.freeradbiomed.2021.03.034_bib144
– volume: 26
  start-page: 327
  issue: 2
  year: 2015
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib92
  article-title: The ubiquitin-conjugating enzyme UBE2E3 and its import receptor importin-11 regulate the localization and activity of the antioxidant transcription factor NRF2
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E14-06-1057
– volume: 146
  start-page: 222
  year: 2020
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib177
  article-title: Galectin-1 ameliorates lipopolysaccharide-induced acute lung injury via AMPK-Nrf2 pathway in mice
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2019.11.011
– volume: 109
  start-page: 254
  year: 2019
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib184
  article-title: Ginsenoside Rb3 protects cardiomyocytes against hypoxia/reoxygenation injury via activating the antioxidation signaling pathway of PERK/Nrf2/HMOX1
  publication-title: Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie
  doi: 10.1016/j.biopha.2018.09.002
– volume: 95
  start-page: 1629
  issue: 8
  year: 2013
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib19
  article-title: Chemopreventive effects of diverse dietary phytochemicals against DMBA-induced hamster buccal pouch carcinogenesis via the induction of Nrf2-mediated cytoprotective antioxidant, detoxification, and DNA repair enzymes
  publication-title: Biochimie
  doi: 10.1016/j.biochi.2013.05.004
– volume: 2
  start-page: 761
  issue: 8
  year: 2013
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib16
  article-title: Nrf2 impacts cellular bioenergetics by controlling substrate availability for mitochondrial respiration
  publication-title: Biology open
  doi: 10.1242/bio.20134853
– volume: 66
  start-page: 1817
  issue: 11–12
  year: 2009
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib116
  article-title: Protein kinase CK2 in health and disease: from birth to death: the role of protein kinase CK2 in the regulation of cell proliferation and survival
  publication-title: Cell. Mol. Life Sci.: CM
  doi: 10.1007/s00018-009-9150-2
– start-page: 3
  year: 2010
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib141
  article-title: The MAP kinase signaling cascades: a system of hundreds of components regulates a diverse array of physiological functions
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-60761-795-2_1
– start-page: 8804
  issue: No.17
  year: 2006
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib149
  article-title: Mechanism of action of sulforaphane: inhibition of p38 mitogen-activated protein kinase isoforms contributing to the induction of antioxidant response element-mediated heme oxygenase-1 in human hepatoma HepG2 cells
  publication-title: Canc. Res.
– volume: 53
  start-page: 401
  year: 2013
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib9
  article-title: Role of nrf2 in oxidative stress and toxicity
  publication-title: Annu. Rev. Pharmacol. Toxicol.
  doi: 10.1146/annurev-pharmtox-011112-140320
– volume: 29
  start-page: 1727
  issue: 17
  year: 2018
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib11
  article-title: Transcriptional regulation by Nrf2
  publication-title: Antioxidants Redox Signal.
  doi: 10.1089/ars.2017.7342
– volume: 473
  start-page: 961
  issue: 8
  year: 2016
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib7
  article-title: Molecular and cellular basis for the unique functioning of Nrf1, an indispensable transcription factor for maintaining cell homoeostasis and organ integrity
  publication-title: Biochem. J.
  doi: 10.1042/BJ20151182
– start-page: 60
  year: 2017
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib60
  article-title: EX4 stabilizes and activates Nrf2 via PKCδ, contributing to the prevention of oxidative stress-induced pancreatic beta cell damage
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2016.12.005
– start-page: 63
  year: 2008
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib112
  article-title: Phosphorylation of Nrf2 in the transcription activation domain by casein kinase 2 (CK2) is critical for the nuclear translocation and transcription activation function of Nrf2 in IMR-32 neuroblastoma cells
  publication-title: J. Biochem. Mol. Toxicol.
  doi: 10.1002/jbt.20212
– volume: 125
  start-page: 2592
  issue: 7
  year: 2015
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib133
  article-title: ATF4-dependent induction of heme oxygenase 1 prevents anoikis and promotes metastasis
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI78031
– volume: 25
  start-page: 10895
  issue: 24
  year: 2005
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib41
  article-title: The carboxy-terminal Neh3 domain of Nrf2 is required for transcriptional activation
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.25.24.10895-10906.2005
– year: 2020
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib23
  article-title: NRF2 in cardiovascular diseases: a ray of hope!
  publication-title: Journal of cardiovascular translational research
– volume: 26
  start-page: 185
  issue: 2
  year: 2020
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib20
  article-title: Nrf2: redox and metabolic regulator of stem cell state and function
  publication-title: Trends Mol. Med.
  doi: 10.1016/j.molmed.2019.09.007
– volume: 90
  start-page: 1051
  issue: 6
  year: 1997
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib100
  article-title: CRM1 is an export receptor for leucine-rich nuclear export signals
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80371-2
– volume: 97
  start-page: 12625
  issue: 23
  year: 2000
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib128
  article-title: PERK mediates cell-cycle exit during the mammalian unfolded protein response
  publication-title: Proc. Natl. Acad. Sci. U. S. A
  doi: 10.1073/pnas.220247197
– start-page: 2119
  issue: No.12
  year: 2011
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib148
  article-title: Carnosic acid induces the NAD(P)H: quinone oxidoreductase 1 expression in rat clone 9 cells through the p38/nuclear factor erythroid-2 related factor 2 pathway
  publication-title: J. Nutr.
  doi: 10.3945/jn.111.146779
– start-page: 42769
  issue: No.45
  year: 2002
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib50
  article-title: Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M206911200
– volume: 24
  start-page: 627
  issue: 4
  year: 2006
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib76
  article-title: A chaperone-dependent GSK3beta transitional intermediate mediates activation-loop autophosphorylation
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2006.10.009
– start-page: 1931
  issue: No.14
  year: 2016
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib93
  article-title: AMPK facilitates nuclear accumulation of nrf2 by phosphorylating at serine 550(article)
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.00118-16
– volume: 150
  start-page: 9
  year: 2018
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib180
  article-title: Baicalein and baicalin alleviate acetaminophen-induced liver injury by activating Nrf2 antioxidative pathway: the involvement of ERK1/2 and PKC
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2018.01.026
– start-page: 1311
  year: 2006
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib46
  article-title: Two-site substrate recognition model for the Keap1-Nrf2 system: a hinge and latch mechanism
  publication-title: Biol. Chem.
– volume: 6
  start-page: 649
  issue: 6
  year: 2014
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib192
  article-title: Activation of Keap1/Nrf2 signaling pathway by nuclear epidermal growth factor receptor in cancer cells
  publication-title: Am. J. Tourism Res.
– volume: 32
  start-page: 514
  issue: 4
  year: 2013
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib108
  article-title: The nuclear cofactor RAC3/AIB1/SRC-3 enhances Nrf2 signaling by interacting with transactivation domains
  publication-title: Oncogene
  doi: 10.1038/onc.2012.59
– volume: 282
  start-page: 16502
  issue: 22
  year: 2007
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib84
  article-title: GSK-3beta acts upstream of Fyn kinase in regulation of nuclear export and degradation of NF-E2 related factor 2
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M611336200
– volume: 13
  start-page: 1211
  issue: 10
  year: 1999
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib122
  article-title: Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls
  publication-title: Genes Dev.
  doi: 10.1101/gad.13.10.1211
– volume: 98
  start-page: 1169
  issue: 3
  year: 2018
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib3
  article-title: The KEAP1-NRF2 system: a thiol-based sensor-effector apparatus for maintaining redox homeostasis
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00023.2017
– start-page: 122
  issue: No.1
  year: 2006
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib191
  article-title: PKCalpha reduces the lipid kinase activity of the p110alpha/p85alpha PI3K through the phosphorylation of the catalytic subunit
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 22
  start-page: 578
  issue: 7
  year: 2016
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib15
  article-title: The dual roles of NRF2 in cancer
  publication-title: Trends Mol. Med.
  doi: 10.1016/j.molmed.2016.05.002
– volume: 18
  start-page: 849
  issue: 4
  year: 1999
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib67
  article-title: The human F box protein beta-Trcp associates with the Cul1/Skp1 complex and regulates the stability of beta-catenin
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1202653
– volume: 82
  start-page: 349
  year: 2015
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib181
  article-title: Dimethyl fumarate confers neuroprotection by casein kinase 2 phosphorylation of Nrf2 in murine intracerebral hemorrhage
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2015.07.001
– volume: 20
  start-page: 574
  issue: 4
  year: 2014
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib97
  article-title: The crosstalk between Nrf2 and AMPK signal pathways is important for the anti-inflammatory effect of berberine in LPS-stimulated macrophages and endotoxin-shocked mice
  publication-title: Antioxidants Redox Signal.
  doi: 10.1089/ars.2012.5116
– start-page: 1918
  year: 2006
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib155
– volume: 73
  start-page: 3097
  issue: 10
  year: 2013
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib40
  article-title: RXRalpha inhibits the NRF2-ARE signaling pathway through a direct interaction with the Neh7 domain of NRF2
  publication-title: Canc. Res.
  doi: 10.1158/0008-5472.CAN-12-3386
– volume: 87
  start-page: 871
  year: 2019
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib61
  article-title: PMA-triggered PKCepsilon activity enhances Nrf2-mediated antiviral response on fish rhabdovirus infection
  publication-title: Fish Shellfish Immunol.
  doi: 10.1016/j.fsi.2019.02.033
– start-page: 208
  issue: No.2
  year: 2018
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib54
  article-title: Protein kinase C: perfectly balanced
  publication-title: Crit. Rev. Biochem. Mol. Biol.
– volume: 292
  start-page: 7519
  issue: 18
  year: 2017
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib110
  article-title: Glucocorticoid receptor signaling represses the antioxidant response by inhibiting histone acetylation mediated by the transcriptional activator NRF2
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M116.773960
– volume: 33
  start-page: 130
  issue: 1
  year: 2019
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib185
  article-title: Berberine ameliorates lipopolysaccharide-induced acute lung injury via the PERK-mediated Nrf2/HO-1 signaling axis
  publication-title: Phytother Res.: PTR
  doi: 10.1002/ptr.6206
– start-page: 1877
  issue: No.11
  year: 2015
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib135
  article-title: Astrocyte NMDA receptors' activity sustains neuronal survival through a Cdk5-Nrf2 pathway
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2015.49
– volume: 39
  start-page: 199
  issue: 4
  year: 2014
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib36
  article-title: The Nrf2 regulatory network provides an interface between redox and intermediary metabolism
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2014.02.002
– volume: 94
  start-page: 3037
  issue: 9
  year: 1999
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib4
  article-title: Pathophysiology of thrombocytopenia and anemia in mice lacking transcription factor NF-E2
  publication-title: Blood
  doi: 10.1182/blood.V94.9.3037
– volume: 16
  start-page: 123
  issue: 2
  year: 2011
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib49
  article-title: Molecular mechanisms of the Keap1–Nrf2 pathway in stress response and cancer evolution
  publication-title: Gene Cell.: devoted to molecular & cellular mechanisms
  doi: 10.1111/j.1365-2443.2010.01473.x
– volume: 6559
  start-page: 785
  year: 1995
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib78
  article-title: Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B
  publication-title: Nature
  doi: 10.1038/378785a0
– volume: 244
  start-page: 117329
  year: 2020
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib35
  article-title: MicroRNA-mediated regulation of Nrf2 signaling pathway: implications in disease therapy and protection against oxidative stress
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2020.117329
– volume: 276
  start-page: 20858
  issue: 24
  year: 2001
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib131
  article-title: Identification of activating transcription factor 4 (ATF4) as an Nrf2-interacting protein. Implication for heme oxygenase-1 gene regulation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M101198200
– volume: 22
  start-page: 2883
  issue: 9
  year: 2002
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib38
  article-title: Enhanced expression of the transcription factor Nrf2 by cancer chemopreventive agents: role of antioxidant response element-like sequences in the nrf2 promoter
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.22.9.2883-2892.2002
– volume: 34
  start-page: 101475
  year: 2020
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib43
  article-title: Redox toxicology of environmental chemicals causing oxidative stress
  publication-title: Redox Biology
  doi: 10.1016/j.redox.2020.101475
– volume: 280
  start-page: 28430
  issue: 31
  year: 2005
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib89
  article-title: Nrf2 Possesses a redox-insensitive nuclear export signal overlapping with the leucine zipper motif
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M410601200
– volume: 277
  start-page: 18728
  issue: 21
  year: 2002
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib126
  article-title: Dimerization and release of molecular chaperone inhibition facilitate activation of eukaryotic initiation factor-2 kinase in response to endoplasmic reticulum stress
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M200903200
– start-page: 92
  year: 2016
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib62
  article-title: Regulation of the CNC-bZIP transcription factor nrf2 by Keap1 and the axis between GSK-3 and β-TrCP
  publication-title: Current Opinion in Toxicology
  doi: 10.1016/j.cotox.2016.10.003
– volume: 26
  start-page: 7942
  issue: 21
  year: 2006
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib109
  article-title: BRG1 interacts with Nrf2 to selectively mediate HO-1 induction in response to oxidative stress
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.00700-06
– year: 2003
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib115
  article-title: Protein kinase CK2: structure, regulation and role in cellular decisions of life and death
  publication-title: Biochem. J.
  doi: 10.1042/bj20021469
– volume: 19
  start-page: 2278
  issue: 19
  year: 2005
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib157
  article-title: The C. elegans p38 MAPK pathway regulates nuclear localization of the transcription factor SKN-1 in oxidative stress response
  publication-title: Genes Dev.
  doi: 10.1101/gad.1324805
– volume: 279
  start-page: 50810
  issue: 49
  year: 2004
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib6
  article-title: Nrf3 negatively regulates antioxidant-response element-mediated expression and antioxidant induction of NAD(P)H:quinone oxidoreductase1 gene
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M404984200
– volume: 36
  start-page: 407
  issue: 3
  year: 2016
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib107
  article-title: The mediator subunit MED16 transduces NRF2-activating signals into antioxidant gene expression
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.00785-15
– year: 2018
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib172
  article-title: Resistance to gefitinib and cross-resistance to irreversible EGFR-TKIs mediated by disruption of the Keap1-Nrf2 pathway in human lung cancer cells
  publication-title: Faseb. J.
– volume: 27
  start-page: 6
  issue: 1
  year: 2020
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib139
  article-title: A review on chronic pain in rheumatoid arthritis: a focus on activation of NR2B subunit of N-Methyl-D-Aspartate receptors
  publication-title: Malays. J. Med. Sci.: MJMS
– volume: 29
  start-page: 1746
  issue: 17
  year: 2018
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib159
  article-title: An overview of the advantages of KEAP1-NRF2 system activation during inflammatory disease treatment
  publication-title: Antioxidants Redox Signal.
  doi: 10.1089/ars.2017.7358
– volume: 41
  start-page: 2981
  issue: 11
  year: 2016
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib175
  article-title: Anti-neuroinflammatory effect of emodin in LPS-stimulated microglia: involvement of AMPK/Nrf2 activation
  publication-title: Neurochem. Res.
  doi: 10.1007/s11064-016-2018-6
– start-page: 184
  issue: No.4
  year: 2013
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib79
  article-title: PTEN in cancer, metabolism, and aging
  publication-title: Trends Endocrinol. Metabol.: TEM (Trends Endocrinol. Metab.)
  doi: 10.1016/j.tem.2012.11.002
– start-page: 110
  year: 2016
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib152
  article-title: Oxyresveratrol abrogates oxidative stress by activating ERK–Nrf2 pathway in the liver
  publication-title: Chem. Biol. Interact.
  doi: 10.1016/j.cbi.2015.06.024
– start-page: 212
  year: 2019
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib51
  article-title: PKC and PKN in heart disease
  publication-title: J. Mol. Cell. Cardiol.
– volume: 54
  start-page: 687
  issue: 2
  year: 2011
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib75
  article-title: Inhibition of glycogen synthase kinase 3 beta ameliorates liver ischemia reperfusion injury by way of an interleukin-10-mediated immune regulatory mechanism
  publication-title: Hepatology (Baltimore, Md
  doi: 10.1002/hep.24419
– volume: 6
  start-page: 5
  issue: 1
  year: 2006
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib127
  article-title: Divergent roles of IRE1alpha and PERK in the unfolded protein response
  publication-title: Curr. Mol. Med.
  doi: 10.2174/156652406775574569
– volume: 43
  start-page: 611
  issue: 4
  year: 2015
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib69
  article-title: Dual regulation of transcription factor Nrf2 by Keap1 and by the combined actions of β-TrCP and GSK-3
  publication-title: Biochem. Soc. Trans.
  doi: 10.1042/BST20150011
– volume: 283
  start-page: 33554
  issue: 48
  year: 2008
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib5
  article-title: Nrf1 and Nrf2 play distinct roles in activation of antioxidant response element-dependent genes
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M804597200
– volume: 85
  start-page: 705
  issue: 6
  year: 2013
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib37
  article-title: The Nrf2 cell defence pathway: keap1-dependent and -independent mechanisms of regulation
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2012.11.016
– volume: 31
  start-page: 1121
  issue: 6
  year: 2011
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib65
  article-title: SCF/{beta}-TrCP promotes glycogen synthase kinase 3-dependent degradation of the Nrf2 transcription factor in a Keap1-independent manner
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.01204-10
– volume: 20
  start-page: 3772
  year: 2009
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib102
  article-title: Repression of classical nuclear export by S-nitrosylation of CRM1
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.057026
– volume: 11
  start-page: 3214
  issue: 11
  year: 2016
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib170
  article-title: Small molecule inhibitor of NRF2 selectively intervenes therapeutic resistance in KEAP1-deficient NSCLC tumors
  publication-title: ACS Chem. Biol.
  doi: 10.1021/acschembio.6b00651
– start-page: 64
  issue: No.2
  year: 2003
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib143
  article-title: Redox-sensitive mechanisms of phytochemical-mediated inhibition of cancer cell proliferation (review)
  publication-title: J. Nutr. Biochem.
  doi: 10.1016/S0955-2863(02)00251-6
– start-page: 1726
  issue: No.4834
  year: 1987
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib52
  article-title: Protein kinase C contains a pseudosubstrate prototope in its regulatory domain
  publication-title: Science (New York, N.Y.)
  doi: 10.1126/science.3686012
– volume: 106
  start-page: 21353
  issue: 50
  year: 2009
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib138
  article-title: PKCdelta regulates cortical radial migration by stabilizing the Cdk5 activator p35
  publication-title: Proc. Natl. Acad. Sci. U. S. A
  doi: 10.1073/pnas.0812872106
– volume: 36
  start-page: 924
  issue: 5
  year: 2016
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib161
  article-title: The keap1–nrf2–ARE pathway as a potential preventive and therapeutic target: an update
  publication-title: Med. Res. Rev.
  doi: 10.1002/med.21396
– volume: 9
  start-page: 9245
  issue: 1
  year: 2019
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib182
  article-title: Tolvaptan activates the Nrf2/HO-1 antioxidant pathway through PERK phosphorylation
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-45539-8
– volume: 88
  start-page: 147
  year: 2015
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib85
  article-title: Structural and functional characterization of Nrf2 degradation by glycogen synthase kinase 3/β-TrCP
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2015.04.029
– volume: 275
  start-page: 27694
  issue: 36
  year: 2000
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib147
  article-title: Mechanism of heme oxygenase-1 gene activation by cadmium in MCF-7 mammary epithelial cells. Role of p38 kinase and Nrf2 transcription factor
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M004729200
– volume: 202
  start-page: 112532
  year: 2020
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib162
  article-title: Recent progress in Keap1-Nrf2 protein-protein interaction inhibitors
  publication-title: Eur. J. Med. Chem.
  doi: 10.1016/j.ejmech.2020.112532
– volume: 88
  start-page: 253
  issue: Pt B
  year: 2015
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib29
  article-title: Nrf2--a therapeutic target for the treatment of neurodegenerative diseases
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2015.07.147
– volume: 66
  start-page: 75
  issue: 1
  year: 2007
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib28
  article-title: Expression of Nrf2 in neurodegenerative diseases
  publication-title: J. Neuropathol. Exp. Neurol.
  doi: 10.1097/nen.0b013e31802d6da9
– volume: 29
  start-page: 101393
  year: 2020
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib104
  article-title: AMPK leads to phosphorylation of the transcription factor Nrf2, tuning transactivation of selected target genes
  publication-title: Redox biology
  doi: 10.1016/j.redox.2019.101393
– start-page: 731
  issue: No.4
  year: 2007
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib146
  article-title: Induction of heme-oxygenase 1 requires the p38MAPK and PI3K pathways and suppresses apoptotic cell death following hypericin-mediated photodynamic therapy
  publication-title: Apoptosis
  doi: 10.1007/s10495-006-0016-x
– volume: 6
  start-page: 857
  issue: 10
  year: 2001
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib106
  article-title: Two domains of Nrf2 cooperatively bind CBP, a CREB binding protein, and synergistically activate transcription
  publication-title: Gene Cell.: devoted to molecular & cellular mechanisms
  doi: 10.1046/j.1365-2443.2001.00469.x
– volume: 2020
  start-page: 8291413
  year: 2020
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib183
  article-title: Ganoderic acid D protects human amniotic mesenchymal stem cells against oxidative stress-induced senescence through the PERK/NRF2 signaling pathway
  publication-title: Oxidative medicine and cellular longevity
  doi: 10.1155/2020/8291413
– volume: 38
  start-page: 317
  issue: 3
  year: 2006
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib129
  article-title: Coordination of ER and oxidative stress signaling: the PERK/Nrf2 signaling pathway
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/j.biocel.2005.09.018
– volume: 278
  start-page: 44675
  issue: 45
  year: 2003
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib58
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M307633200
– start-page: 760
  year: 2019
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib59
  article-title: Melatonin prevents mice cortical astrocytes from hemin-induced toxicity through activating PKCα/nrf2/HO-1 signaling in vitro
  publication-title: Front. Neurosci.
– volume: 57
  start-page: 249
  issue: 2
  year: 2013
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib179
  article-title: Dietary flavonoid genistein induces Nrf2 and phase II detoxification gene expression via ERKs and PKC pathways and protects against oxidative stress in Caco-2 cells
  publication-title: Mol. Nutr. Food Res.
  doi: 10.1002/mnfr.201200536
– volume: 467
  start-page: 40
  year: 2019
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib173
  article-title: NRF2 addiction" in lung cancer cells and its impact on cancer therapy
  publication-title: Canc. Lett.
  doi: 10.1016/j.canlet.2019.09.016
– volume: 52
  start-page: 98
  issue: 1
  year: 2011
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib118
  article-title: Involvement of CK2 in activation of electrophilic genes in endothelial cells by oxidized phospholipids
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.M009480
– start-page: 313
  issue: No.2
  year: 1997
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib86
  article-title: An nrf2/small maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1006/bbrc.1997.6943
– volume: 1823
  start-page: 1841
  issue: 10
  year: 2012
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib88
  article-title: The small MAF transcription factors MAFF, MAFG and MAFK: current knowledge and perspectives
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamcr.2012.06.012
– volume: 30
  start-page: 747
  issue: 3
  year: 2015
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib174
  article-title: Pre-treatment with metformin activates Nrf2 antioxidant pathways and inhibits inflammatory responses through induction of AMPK after transient global cerebral ischemia
  publication-title: Metab. Brain Dis.
  doi: 10.1007/s11011-014-9632-2
– volume: 274
  start-page: 24896
  issue: 35
  year: 1999
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib74
  article-title: Insulin and exercise decrease glycogen synthase kinase-3 activity by different mechanisms in rat skeletal muscle
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.35.24896
– volume: 12
  issue: 554
  year: 2020
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib73
  article-title: Activation of NRF2 ameliorates oxidative stress and cystogenesis in autosomal dominant polycystic kidney disease
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aba3613
– volume: 23
  start-page: 7198
  issue: 20
  year: 2003
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib119
  article-title: Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.23.20.7198-7209.2003
– volume: 281
  start-page: 14841
  issue: 21
  year: 2006
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib64
  article-title: Glycogen synthase kinase-3beta inhibits the xenobiotic and antioxidant cell response by direct phosphorylation and nuclear exclusion of the transcription factor Nrf2
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M513737200
– volume: 12
  issue: 3
  year: 2020
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib134
  article-title: ATF4-Dependent NRF2 transcriptional regulation promotes antioxidant protection during endoplasmic reticulum stress
  publication-title: Cancers
  doi: 10.3390/cancers12030569
– volume: 27
  start-page: 410
  issue: 2
  year: 2016
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib53
  article-title: Sequential posttranslational modifications regulate PKC degradation
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e15-09-0624
– volume: 50
  start-page: 5339
  issue: 11
  year: 2009
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib82
  article-title: Synthetic triterpenoids attenuate cytotoxic retinal injury: cross-talk between Nrf2 and PI3K/AKT signaling through inhibition of the lipid phosphatase PTEN
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.09-3648
– volume: 131
  start-page: 110676
  year: 2020
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib30
  article-title: Emerging role of NRF2 in ROS-mediated tumor chemoresistance
  publication-title: Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie
  doi: 10.1016/j.biopha.2020.110676
– start-page: 527
  issue: No.7
  year: 2019
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib94
  article-title: AMP-activated protein kinase: the current landscape for drug development
  publication-title: Nat. Rev. Drug Discov.
– start-page: 765
  issue: No.5–6
  year: 2002
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib142
  article-title: Antioxidants and oxidants regulated signal transduction pathways
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/S0006-2952(02)01137-1
– start-page: 9237263
  year: 2017
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib24
– volume: 31
  start-page: 511
  issue: 3
  year: 2013
  ident: 10.1016/j.freeradbiomed.2021.03.034_bib81
  article-title: Redox regulation of tumor suppressor PTEN in cancer and aging (Review)
  publication-title: Int. J. Mol. Med.
  doi: 10.3892/ijmm.2013.1235
SSID ssj0004538
Score 2.6342578
SecondaryResourceType review_article
Snippet The transcription factor nuclear factor erythroid-derived 2-like 2 (NRF2) participates in the activation of the antioxidant cytoprotective pathway and other...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 129
SubjectTerms Cellular protection
NRF2
Oxidative stress
Phosphorylation
Posttranslational modification
Regulation
Title Regulation of Nrf2 by phosphorylation: Consequences for biological function and therapeutic implications
URI https://dx.doi.org/10.1016/j.freeradbiomed.2021.03.034
https://www.ncbi.nlm.nih.gov/pubmed/33794311
https://www.proquest.com/docview/2508590962
Volume 168
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na9swFH-UjpVdRtePLetWNDp2c6NPx-qhEEJLtrEcuhV6E5L1TDM2J6TpIZf97ZNku00PhULBPtiWZKH3_N7vWe8D4HOhrJbeq8wJXQQDReWZLbDMrHdSVnlZ6rRj-mOSjy_ltyt1tQGjLhYmulW2sr-R6Ulat3f67Wr259Np_yctNAvqU_OYRkjLGGgu5SBy-fE_tpYxPFWzjo2z2HoLju59vKoFYtyyTpHuwVjkLGU8FfIxLfUYCk3a6HwbXrcwkgybmb6BDax3YHdYBxP674p8IcmxM_0x34GXTb3J1S5cXzSV5wMtyKwik0XFiVuR-fXsJpyLVfPohIzWXKxJQLWkSdUU6UmiIkwD2NqTtegtMl3zTd-Dy_OzX6Nx1pZayEop9TITSIUfBPCF3FYYMGyhPJMDb6uydIJXTqPG3KFkXgmOzjPtShklKaXWCSH2YbOe1fgOCFWUVRwDoTVKWgwsRe0YxTxgB2Wt6MFJt7SmbPOQx3IYf0zncPbbPKCLiXQxVIRD9kDedZ436Tie1u20o6F5wF0mKI6nDfCpo7wJ31_cVLE1zm5vTICQhdLBEOQ9eNuwxN3MhIjp9xh7_9zXH8CreBW9Fjj9AJvLxS1-DGBo6Q4Ttx_Ci-HX7-PJfylCDSk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBYhpY9LaZM-tk-VPm7u6um1Ai2EtGHTJHtoE8hNkewx2ZB6l90NxZf-qf7BjmQ73RwCgRKwLzaWhWY08430aYaQd5l2RhWFTrw0GQYoOk1cBnniCq9Umea5iTum-6N0eKi-HemjFfKnOwsTaJWt7W9serTW7ZN-O5r96Xjc_8Eyw9F9GhHSCBnVMSt3of6Fcdv8084XFPJ7Iba_HmwNk7a0QJIrZRaJBCaLAYINEK4ExGyZLrgaFK7Mcy9F6Q0YSD0oXmgpwBfc-FwFy8GY8zKsgqLdv6XQXISyCR9_86UU5bF8duhdErp3h7z9RyorZwBhjzwercfoVPCYYlWqq9ziVbA3ur_tB-R-i1vpZjM0D8kKVGtkfbPCmP1nTT_QyCSNS_Rr5HZT4LJeJyffm1L3KHw6KeloVgrqazo9mczxntXNqw26tcTppgijaZMbKigQDZ43NuCqgi4dF6PjJTL8I3J4IwJ4TFarSQVPCWWa8VIAapYBxbKBY2A8Z5AiWNHOyR7Z6IbW5m3i81B_48x2DLdTe0kuNsjFMomX6hF18fG0yf9xvc8-dzK0l9TZoqe6XgNvOslbnPBhF8dVMDmfW8SsmTYYeYoeedKoxEXPpAz5_jh_9r-_f03uDg_29-zezmj3ObkX3gTKhGAvyOpidg4vEYkt_Kuo-ZQc3_RU-wsnAEn3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulation+of+Nrf2+by+phosphorylation%3A+Consequences+for+biological+function+and+therapeutic+implications&rft.jtitle=Free+radical+biology+%26+medicine&rft.au=Liu%2C+Tian&rft.au=Lv%2C+Yi-Fei&rft.au=Zhao%2C+Jing-Long&rft.au=You%2C+Qi-Dong&rft.date=2021-05-20&rft.pub=Elsevier+Inc&rft.issn=0891-5849&rft.eissn=1873-4596&rft.volume=168&rft.spage=129&rft.epage=141&rft_id=info:doi/10.1016%2Fj.freeradbiomed.2021.03.034&rft.externalDocID=S0891584921001945
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0891-5849&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0891-5849&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0891-5849&client=summon