Prognostic Value of Dynamic Contrast-Enhanced MRI-Derived Pharmacokinetic Variables in Glioblastoma Patients: Analysis of Contrast-Enhancing Lesions and Non-Enhancing T2 High-Signal Intensity Lesions
To evaluate pharmacokinetic variables from contrast-enhancing lesions (CELs) and non-enhancing T2 high signal intensity lesions (NE-T2HSILs) on dynamic contrast-enhanced (DCE) magnetic resonance (MR) imaging for predicting progression-free survival (PFS) in glioblastoma (GBM) patients. Sixty-four GB...
Saved in:
Published in | Korean journal of radiology Vol. 21; no. 6; pp. 707 - 716 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Korea (South)
The Korean Society of Radiology
01.06.2020
대한영상의학회 |
Subjects | |
Online Access | Get full text |
ISSN | 1229-6929 2005-8330 2005-8330 |
DOI | 10.3348/kjr.2019.0629 |
Cover
Abstract | To evaluate pharmacokinetic variables from contrast-enhancing lesions (CELs) and non-enhancing T2 high signal intensity lesions (NE-T2HSILs) on dynamic contrast-enhanced (DCE) magnetic resonance (MR) imaging for predicting progression-free survival (PFS) in glioblastoma (GBM) patients.
Sixty-four GBM patients who had undergone preoperative DCE MR imaging and received standard treatment were retrospectively included. We analyzed the pharmacokinetic variables of the volume transfer constant (Ktrans) and volume fraction of extravascular extracellular space within the CEL and NE-T2HSIL of the entire tumor. Univariate and multivariate Cox regression analyses were performed using preoperative clinical characteristics, pharmacokinetic variables of DCE MR imaging, and postoperative molecular biomarkers to predict PFS.
The increased mean Ktrans of the CEL, increased 95th percentile Ktrans of the CELs, and absence of methylated O⁶-methylguanine-DNA methyltransferase promoter were relevant adverse variables for PFS in the univariate analysis (
= 0.041,
= 0.032, and
= 0.083, respectively). The Kaplan-Meier survival curves demonstrated that PFS was significantly shorter in patients with a mean Ktrans of the CEL > 0.068 and 95th percentile Ktrans of the CEL>0.223 (log-rank
= 0.038 and
= 0.041, respectively). However, only mean Ktrans of the CEL was significantly associated with PFS (
= 0.024; hazard ratio, 553.08; 95% confidence interval, 2.27-134756.74) in the multivariate Cox proportional hazard analysis. None of the pharmacokinetic variables from NE-T2HSILs were significantly related to PFS.
Among the pharmacokinetic variables extracted from CELs and NE-T2HSILs on preoperative DCE MR imaging, the mean Ktrans of CELs exhibits potential as a useful imaging predictor of PFS in GBM patients. |
---|---|
AbstractList | Objective: To evaluate pharmacokinetic variables from contrast-enhancing lesions (CELs) and non-enhancing T2 high signal intensity lesions (NE-T2HSILs) on dynamic contrast-enhanced (DCE) magnetic resonance (MR) imaging for predicting progression-free survival (PFS) in glioblastoma (GBM) patients.
Materials and Methods: Sixty-four GBM patients who had undergone preoperative DCE MR imaging and received standard treatment were retrospectively included. We analyzed the pharmacokinetic variables of the volume transfer constant (Ktrans) and volume fraction of extravascular extracellular space within the CEL and NE-T2HSIL of the entire tumor. Univariate and multivariate Cox regression analyses were performed using preoperative clinical characteristics, pharmacokinetic variables of DCE MR imaging, and postoperative molecular biomarkers to predict PFS.
Results: The increased mean Ktrans of the CEL, increased 95th percentile Ktrans of the CELs, and absence of methylated O6- methylguanine-DNA methyltransferase promoter were relevant adverse variables for PFS in the univariate analysis (p = 0.041, p = 0.032, and p = 0.083, respectively). The Kaplan-Meier survival curves demonstrated that PFS was significantly shorter in patients with a mean Ktrans of the CEL > 0.068 and 95th percentile Ktrans of the CEL > 0.223 (log-rank p = 0.038 and p = 0.041, respectively). However, only mean Ktrans of the CEL was significantly associated with PFS (p = 0.024; hazard ratio, 553.08; 95% confidence interval, 2.27–134756.74) in the multivariate Cox proportional hazard analysis. None of the pharmacokinetic variables from NE-T2HSILs were significantly related to PFS.
Conclusion: Among the pharmacokinetic variables extracted from CELs and NE-T2HSILs on preoperative DCE MR imaging, the mean Ktrans of CELs exhibits potential as a useful imaging predictor of PFS in GBM patients. KCI Citation Count: 0 To evaluate pharmacokinetic variables from contrast-enhancing lesions (CELs) and non-enhancing T2 high signal intensity lesions (NE-T2HSILs) on dynamic contrast-enhanced (DCE) magnetic resonance (MR) imaging for predicting progression-free survival (PFS) in glioblastoma (GBM) patients.OBJECTIVETo evaluate pharmacokinetic variables from contrast-enhancing lesions (CELs) and non-enhancing T2 high signal intensity lesions (NE-T2HSILs) on dynamic contrast-enhanced (DCE) magnetic resonance (MR) imaging for predicting progression-free survival (PFS) in glioblastoma (GBM) patients.Sixty-four GBM patients who had undergone preoperative DCE MR imaging and received standard treatment were retrospectively included. We analyzed the pharmacokinetic variables of the volume transfer constant (Ktrans) and volume fraction of extravascular extracellular space within the CEL and NE-T2HSIL of the entire tumor. Univariate and multivariate Cox regression analyses were performed using preoperative clinical characteristics, pharmacokinetic variables of DCE MR imaging, and postoperative molecular biomarkers to predict PFS.MATERIALS AND METHODSSixty-four GBM patients who had undergone preoperative DCE MR imaging and received standard treatment were retrospectively included. We analyzed the pharmacokinetic variables of the volume transfer constant (Ktrans) and volume fraction of extravascular extracellular space within the CEL and NE-T2HSIL of the entire tumor. Univariate and multivariate Cox regression analyses were performed using preoperative clinical characteristics, pharmacokinetic variables of DCE MR imaging, and postoperative molecular biomarkers to predict PFS.The increased mean Ktrans of the CEL, increased 95th percentile Ktrans of the CELs, and absence of methylated O⁶-methylguanine-DNA methyltransferase promoter were relevant adverse variables for PFS in the univariate analysis (p = 0.041, p = 0.032, and p = 0.083, respectively). The Kaplan-Meier survival curves demonstrated that PFS was significantly shorter in patients with a mean Ktrans of the CEL > 0.068 and 95th percentile Ktrans of the CEL>0.223 (log-rank p = 0.038 and p = 0.041, respectively). However, only mean Ktrans of the CEL was significantly associated with PFS (p = 0.024; hazard ratio, 553.08; 95% confidence interval, 2.27-134756.74) in the multivariate Cox proportional hazard analysis. None of the pharmacokinetic variables from NE-T2HSILs were significantly related to PFS.RESULTSThe increased mean Ktrans of the CEL, increased 95th percentile Ktrans of the CELs, and absence of methylated O⁶-methylguanine-DNA methyltransferase promoter were relevant adverse variables for PFS in the univariate analysis (p = 0.041, p = 0.032, and p = 0.083, respectively). The Kaplan-Meier survival curves demonstrated that PFS was significantly shorter in patients with a mean Ktrans of the CEL > 0.068 and 95th percentile Ktrans of the CEL>0.223 (log-rank p = 0.038 and p = 0.041, respectively). However, only mean Ktrans of the CEL was significantly associated with PFS (p = 0.024; hazard ratio, 553.08; 95% confidence interval, 2.27-134756.74) in the multivariate Cox proportional hazard analysis. None of the pharmacokinetic variables from NE-T2HSILs were significantly related to PFS.Among the pharmacokinetic variables extracted from CELs and NE-T2HSILs on preoperative DCE MR imaging, the mean Ktrans of CELs exhibits potential as a useful imaging predictor of PFS in GBM patients.CONCLUSIONAmong the pharmacokinetic variables extracted from CELs and NE-T2HSILs on preoperative DCE MR imaging, the mean Ktrans of CELs exhibits potential as a useful imaging predictor of PFS in GBM patients. To evaluate pharmacokinetic variables from contrast-enhancing lesions (CELs) and non-enhancing T2 high signal intensity lesions (NE-T2HSILs) on dynamic contrast-enhanced (DCE) magnetic resonance (MR) imaging for predicting progression-free survival (PFS) in glioblastoma (GBM) patients. Sixty-four GBM patients who had undergone preoperative DCE MR imaging and received standard treatment were retrospectively included. We analyzed the pharmacokinetic variables of the volume transfer constant (Ktrans) and volume fraction of extravascular extracellular space within the CEL and NE-T2HSIL of the entire tumor. Univariate and multivariate Cox regression analyses were performed using preoperative clinical characteristics, pharmacokinetic variables of DCE MR imaging, and postoperative molecular biomarkers to predict PFS. The increased mean Ktrans of the CEL, increased 95th percentile Ktrans of the CELs, and absence of methylated O⁶-methylguanine-DNA methyltransferase promoter were relevant adverse variables for PFS in the univariate analysis ( = 0.041, = 0.032, and = 0.083, respectively). The Kaplan-Meier survival curves demonstrated that PFS was significantly shorter in patients with a mean Ktrans of the CEL > 0.068 and 95th percentile Ktrans of the CEL>0.223 (log-rank = 0.038 and = 0.041, respectively). However, only mean Ktrans of the CEL was significantly associated with PFS ( = 0.024; hazard ratio, 553.08; 95% confidence interval, 2.27-134756.74) in the multivariate Cox proportional hazard analysis. None of the pharmacokinetic variables from NE-T2HSILs were significantly related to PFS. Among the pharmacokinetic variables extracted from CELs and NE-T2HSILs on preoperative DCE MR imaging, the mean Ktrans of CELs exhibits potential as a useful imaging predictor of PFS in GBM patients. Objective To evaluate pharmacokinetic variables from contrast-enhancing lesions (CELs) and non-enhancing T2 high signal intensity lesions (NE-T2HSILs) on dynamic contrast-enhanced (DCE) magnetic resonance (MR) imaging for predicting progression-free survival (PFS) in glioblastoma (GBM) patients. Materials and Methods Sixty-four GBM patients who had undergone preoperative DCE MR imaging and received standard treatment were retrospectively included. We analyzed the pharmacokinetic variables of the volume transfer constant (Ktrans) and volume fraction of extravascular extracellular space within the CEL and NE-T2HSIL of the entire tumor. Univariate and multivariate Cox regression analyses were performed using preoperative clinical characteristics, pharmacokinetic variables of DCE MR imaging, and postoperative molecular biomarkers to predict PFS. Results The increased mean Ktrans of the CEL, increased 95th percentile Ktrans of the CELs, and absence of methylated O6-methylguanine-DNA methyltransferase promoter were relevant adverse variables for PFS in the univariate analysis (p = 0.041, p = 0.032, and p = 0.083, respectively). The Kaplan-Meier survival curves demonstrated that PFS was significantly shorter in patients with a mean Ktrans of the CEL > 0.068 and 95th percentile Ktrans of the CEL>0.223 (log-rank p = 0.038 and p = 0.041, respectively). However, only mean Ktrans of the CEL was significantly associated with PFS (p = 0.024; hazard ratio, 553.08; 95% confidence interval, 2.27–134756.74) in the multivariate Cox proportional hazard analysis. None of the pharmacokinetic variables from NE-T2HSILs were significantly related to PFS. Conclusion Among the pharmacokinetic variables extracted from CELs and NE-T2HSILs on preoperative DCE MR imaging, the mean Ktrans of CELs exhibits potential as a useful imaging predictor of PFS in GBM patients. |
Author | Choi, Seung Hong Hong, Eun Kyoung Kang, Koung Mi Park, Sun-Won Yoo, Roh-Eul Kim, Ji-Hoon Kang, Yeonah Yun, Tae Jin Rhim, Jung Hyo Sohn, Chul-Ho |
AuthorAffiliation | 2 Department of Radiology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Korea 3 Department of Radiology, Seoul National University Hospital, Seoul, Korea 1 Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea 4 Department of Radiology, Seoul National University College of Medicine, Seoul, Korea |
AuthorAffiliation_xml | – name: 3 Department of Radiology, Seoul National University Hospital, Seoul, Korea – name: 1 Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea – name: 4 Department of Radiology, Seoul National University College of Medicine, Seoul, Korea – name: 2 Department of Radiology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Korea |
Author_xml | – sequence: 1 givenname: Yeonah orcidid: 0000-0002-5078-3213 surname: Kang fullname: Kang, Yeonah organization: Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea., Department of Radiology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Korea – sequence: 2 givenname: Eun Kyoung orcidid: 0000-0002-5440-0451 surname: Hong fullname: Hong, Eun Kyoung organization: Department of Radiology, Seoul National University Hospital, Seoul, Korea., Department of Radiology, Seoul National University College of Medicine, Seoul, Korea – sequence: 3 givenname: Jung Hyo orcidid: 0000-0001-5822-9770 surname: Rhim fullname: Rhim, Jung Hyo organization: Department of Radiology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Korea., Department of Radiology, Seoul National University College of Medicine, Seoul, Korea – sequence: 4 givenname: Roh-Eul orcidid: 0000-0002-5625-5921 surname: Yoo fullname: Yoo, Roh-Eul organization: Department of Radiology, Seoul National University Hospital, Seoul, Korea., Department of Radiology, Seoul National University College of Medicine, Seoul, Korea – sequence: 5 givenname: Koung Mi orcidid: 0000-0001-9643-2008 surname: Kang fullname: Kang, Koung Mi organization: Department of Radiology, Seoul National University Hospital, Seoul, Korea., Department of Radiology, Seoul National University College of Medicine, Seoul, Korea – sequence: 6 givenname: Tae Jin orcidid: 0000-0001-8441-4574 surname: Yun fullname: Yun, Tae Jin organization: Department of Radiology, Seoul National University Hospital, Seoul, Korea., Department of Radiology, Seoul National University College of Medicine, Seoul, Korea – sequence: 7 givenname: Ji-Hoon orcidid: 0000-0002-6349-6950 surname: Kim fullname: Kim, Ji-Hoon organization: Department of Radiology, Seoul National University Hospital, Seoul, Korea., Department of Radiology, Seoul National University College of Medicine, Seoul, Korea – sequence: 8 givenname: Chul-Ho orcidid: 0000-0003-0039-5746 surname: Sohn fullname: Sohn, Chul-Ho organization: Department of Radiology, Seoul National University Hospital, Seoul, Korea., Department of Radiology, Seoul National University College of Medicine, Seoul, Korea – sequence: 9 givenname: Sun-Won orcidid: 0000-0002-5063-2685 surname: Park fullname: Park, Sun-Won organization: Department of Radiology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Korea., Department of Radiology, Seoul National University College of Medicine, Seoul, Korea – sequence: 10 givenname: Seung Hong orcidid: 0000-0002-0412-2270 surname: Choi fullname: Choi, Seung Hong organization: Department of Radiology, Seoul National University Hospital, Seoul, Korea., Department of Radiology, Seoul National University College of Medicine, Seoul, Korea |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32410409$$D View this record in MEDLINE/PubMed https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002588073$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp1ks1v0zAYxi00xLrBkSuyxAUOKf5qEnOYVHVjq1SgGoWr5ThO6jaxh51M6l_Iv4XTbtOoxOl9Zf-exx_vcwZOrLMagLcYjSll-aftxo8JwnyMUsJfgBFBaJLklKITMMKE8CTlhJ-CsxA2CBGOcvYKnFLCMGKIj8CfpXe1daEzCv6STa-hq-Dlzso2Lsyc7bwMXXJl19IqXcKvt_PkUntzH_vlWvpWKrc1Vh_k3sii0QEaC68b44omal0r4VJ2RtsufIZTK5tdMGE45cjd2BoudDDOBihtCb85-2xnReCNqdfJD1NHCzi3nbbBdLtHyWvwspJN0G8e6jn4-eVqNbtJFt-v57PpIlGM8S6haapKSSaVUhMktSaZJCUhZSXTUmqaK5nnZYErnDGV69iWusoKhlVBeMY5o-fg48HX-kpslRFOmn2tndh6Mb1dzQWnKKNsYC8O7F1ftLpUenhvI-68aaXf7ZX_7lizjj73IiMUpxhHgw8PBt797nXoRGuC0k0jrXZ9EITFITKWpzyi74_Qjet9_KpIZSTHNCcki9S75zd6uspjHiKQHADlXQheV08IRmLIm4h5E0PexJC3yNMjXpkuTns_WtP8R_UXz1Xd4Q |
CitedBy_id | crossref_primary_10_3174_ajnr_A7655 crossref_primary_10_3348_kjr_2020_1272 crossref_primary_10_3390_brainsci12111426 crossref_primary_10_3348_kjr_2021_0579 crossref_primary_10_3390_cancers14051342 crossref_primary_10_1038_s41598_023_41171_9 crossref_primary_10_1038_s41598_024_52841_7 crossref_primary_10_3348_kjr_2022_0249 |
Cites_doi | 10.1007/s11060-008-9745-8 10.1007/s00234-016-1741-7 10.1158/0008-5472.CAN-05-4328 10.1371/journal.pone.0169292 10.3174/ajnr.A4449 10.1148/radiol.09090663 10.1016/j.ajpath.2012.06.030 10.1002/mrm.21358 10.1016/j.mri.2008.02.015 10.1002/jmri.20039 10.3174/ajnr.A4398 10.1002/mrm.10446 10.1007/s00062-014-0328-0 10.1093/neuonc/nos128 10.3171/jns.2001.95.2.0190 10.1007/BF00146086 10.1007/s00234-015-1502-z 10.1002/mrm.1910170208 10.1007/s00330-016-4464-6 10.1056/NEJMoa043330 10.3174/ajnr.A3825 10.1002/nbm.2994 10.3174/ajnr.A5417 10.1109/TMI.2003.815867 10.1200/JCO.2009.26.3541 10.1016/j.jocn.2011.08.030 |
ContentType | Journal Article |
Copyright | Copyright © 2020 The Korean Society of Radiology. 2020. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2020 The Korean Society of Radiology 2020 The Korean Society of Radiology |
Copyright_xml | – notice: Copyright © 2020 The Korean Society of Radiology. – notice: 2020. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2020 The Korean Society of Radiology 2020 The Korean Society of Radiology |
DBID | AAYXX CITATION NPM 3V. 7RV 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. KB0 M0S M1P NAPCQ PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM ACYCR |
DOI | 10.3348/kjr.2019.0629 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Health & Medical Collection Medical Database Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic (New) ProQuest - Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) Korean Citation Index |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2005-8330 |
EndPage | 716 |
ExternalDocumentID | oai_kci_go_kr_ARTI_9307344 PMC7231611 32410409 10_3348_kjr_2019_0629 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Ministry of Health, Welfare and Family Affairs grantid: HI16C1111 – fundername: Seoul National University grantid: IBS-R006-D1 – fundername: National Research Foundation of Korea grantid: 2017R1A2B2006526 – fundername: National Research Foundation of Korea grantid: 2016M3C7A1914002 – fundername: ; grantid: IBS-R006-D1 – fundername: ; grantid: 2016M3C7A1914002; 2017R1A2B2006526 – fundername: ; grantid: HI16C1111 |
GroupedDBID | --- 29L 2WC 5-W 53G 5GY 7RV 7X7 88E 8FI 8FJ 8JR 8XY 9ZL AAYXX ABUWG ADBBV ADRAZ AENEX AFKRA ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BENPR CCPQU CITATION CS3 DIK DU5 E3Z EBD EF. EMOBN F5P FRP FYUFA GX1 HMCUK HYE KQ8 M1P M48 NAPCQ O5R O5S OK1 OVT P6G PGMZT PHGZM PHGZT PIMPY PSQYO RNS RPM SV3 TR2 UKHRP W2D WH7 XSB NPM PJZUB PPXIY 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQQKQ PQUKI 7X8 PUEGO 5PM ACYCR M~E |
ID | FETCH-LOGICAL-c449t-366cda25fcc50aee27a2d22dfa6dae38ca88db1f174c8e8dbdef7b41cb2979943 |
IEDL.DBID | M48 |
ISSN | 1229-6929 2005-8330 |
IngestDate | Tue Nov 21 21:31:38 EST 2023 Thu Aug 21 17:59:53 EDT 2025 Fri Sep 05 09:25:03 EDT 2025 Fri Jul 25 09:55:55 EDT 2025 Mon Jul 21 05:23:35 EDT 2025 Tue Jul 01 01:26:17 EDT 2025 Thu Apr 24 22:51:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 6 |
Keywords | Parameter imaging Preoperative analysis Prognosis prediction Glioblastoma multiforme Dynamic contrast-enhanced MR imaging |
Language | English |
License | Copyright © 2020 The Korean Society of Radiology. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c449t-366cda25fcc50aee27a2d22dfa6dae38ca88db1f174c8e8dbdef7b41cb2979943 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. https://doi.org/10.3348/kjr.2019.0629 |
ORCID | 0000-0002-5078-3213 0000-0002-0412-2270 0000-0001-9643-2008 0000-0002-5063-2685 0000-0002-6349-6950 0000-0002-5440-0451 0000-0001-5822-9770 0000-0001-8441-4574 0000-0003-0039-5746 0000-0002-5625-5921 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3348/kjr.2019.0629 |
PMID | 32410409 |
PQID | 2728138227 |
PQPubID | 5474425 |
PageCount | 10 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_9307344 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7231611 proquest_miscellaneous_2404044869 proquest_journals_2728138227 pubmed_primary_32410409 crossref_primary_10_3348_kjr_2019_0629 crossref_citationtrail_10_3348_kjr_2019_0629 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-01 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Korea (South) |
PublicationPlace_xml | – name: Korea (South) – name: Seoul |
PublicationTitle | Korean journal of radiology |
PublicationTitleAlternate | Korean J Radiol |
PublicationYear | 2020 |
Publisher | The Korean Society of Radiology 대한영상의학회 |
Publisher_xml | – name: The Korean Society of Radiology – name: 대한영상의학회 |
References | Nam (10.3348/kjr.2019.0629_ref15) 2017; 38 Wen (10.3348/kjr.2019.0629_ref6) 2010; 28 Jung (10.3348/kjr.2019.0629_ref11) 2014; 35 Ulyte (10.3348/kjr.2019.0629_ref13) 2016; 58 Cha (10.3348/kjr.2019.0629_ref23) 2003; 49 Jia (10.3348/kjr.2019.0629_ref10) 2012; 19 Eidel (10.3348/kjr.2019.0629_ref1) 2017; 12 Tofts (10.3348/kjr.2019.0629_ref18) 1991; 17 Choi (10.3348/kjr.2019.0629_ref24) 2015; 36 Nguyen (10.3348/kjr.2019.0629_ref27) 2015; 36 Oh (10.3348/kjr.2019.0629_ref3) 2004; 19 Haacke (10.3348/kjr.2019.0629_ref17) 2007; 58 Pluim (10.3348/kjr.2019.0629_ref20) 2003; 22 Norden (10.3348/kjr.2019.0629_ref7) 2009; 92 Sundar (10.3348/kjr.2019.0629_ref19) 2007; 10 Lacroix (10.3348/kjr.2019.0629_ref21) 2001; 95 Hardee (10.3348/kjr.2019.0629_ref8) 2012; 181 Tietze (10.3348/kjr.2019.0629_ref16) 2015; 57 Kim (10.3348/kjr.2019.0629_ref14) 2017; 27 Jain (10.3348/kjr.2019.0629_ref9) 2013; 26 Hammoud (10.3348/kjr.2019.0629_ref22) 1996; 27 Aref (10.3348/kjr.2019.0629_ref25) 2008; 26 Cao (10.3348/kjr.2019.0629_ref12) 2006; 66 Stupp (10.3348/kjr.2019.0629_ref4) 2005; 352 Albert (10.3348/kjr.2019.0629_ref5) 1994; 34 Barajas (10.3348/kjr.2019.0629_ref2) 2012; 14 Bisdas (10.3348/kjr.2019.0629_ref26) 2016; 26 Barajas (10.3348/kjr.2019.0629_ref28) 2010; 254 |
References_xml | – volume: 92 start-page: 149 year: 2009 ident: 10.3348/kjr.2019.0629_ref7 publication-title: J Neurooncol doi: 10.1007/s11060-008-9745-8 – volume: 58 start-page: 1197 year: 2016 ident: 10.3348/kjr.2019.0629_ref13 publication-title: Neuroradiology doi: 10.1007/s00234-016-1741-7 – volume: 66 start-page: 8912 year: 2006 ident: 10.3348/kjr.2019.0629_ref12 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-05-4328 – volume: 12 start-page: e0169292 year: 2017 ident: 10.3348/kjr.2019.0629_ref1 publication-title: PLoS One doi: 10.1371/journal.pone.0169292 – volume: 36 start-page: 2235 year: 2015 ident: 10.3348/kjr.2019.0629_ref24 publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A4449 – volume: 254 start-page: 564 year: 2010 ident: 10.3348/kjr.2019.0629_ref28 publication-title: Radiology doi: 10.1148/radiol.09090663 – volume: 181 start-page: 1126 year: 2012 ident: 10.3348/kjr.2019.0629_ref8 publication-title: Am J Pathol doi: 10.1016/j.ajpath.2012.06.030 – volume: 58 start-page: 463 year: 2007 ident: 10.3348/kjr.2019.0629_ref17 publication-title: Magn Reson Med doi: 10.1002/mrm.21358 – volume: 26 start-page: 1279 year: 2008 ident: 10.3348/kjr.2019.0629_ref25 publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2008.02.015 – volume: 19 start-page: 546 year: 2004 ident: 10.3348/kjr.2019.0629_ref3 publication-title: J Magn Reson Imaging doi: 10.1002/jmri.20039 – volume: 36 start-page: 2017 year: 2015 ident: 10.3348/kjr.2019.0629_ref27 publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A4398 – volume: 49 start-page: 848 year: 2003 ident: 10.3348/kjr.2019.0629_ref23 publication-title: Magn Reson Med doi: 10.1002/mrm.10446 – volume: 26 start-page: 39 year: 2016 ident: 10.3348/kjr.2019.0629_ref26 publication-title: Clin Neuroradiol doi: 10.1007/s00062-014-0328-0 – volume: 14 start-page: 942 year: 2012 ident: 10.3348/kjr.2019.0629_ref2 publication-title: Neuro Oncol doi: 10.1093/neuonc/nos128 – volume: 95 start-page: 190 year: 2001 ident: 10.3348/kjr.2019.0629_ref21 publication-title: J Neurosurg doi: 10.3171/jns.2001.95.2.0190 – volume: 27 start-page: 65 year: 1996 ident: 10.3348/kjr.2019.0629_ref22 publication-title: J Neurooncol doi: 10.1007/BF00146086 – volume: 57 start-page: 561 year: 2015 ident: 10.3348/kjr.2019.0629_ref16 publication-title: Neuroradiology doi: 10.1007/s00234-015-1502-z – volume: 17 start-page: 357 year: 1991 ident: 10.3348/kjr.2019.0629_ref18 publication-title: Magn Reson Med doi: 10.1002/mrm.1910170208 – volume: 27 start-page: 1176 year: 2017 ident: 10.3348/kjr.2019.0629_ref14 publication-title: Eur Radiol doi: 10.1007/s00330-016-4464-6 – volume: 352 start-page: 987 year: 2005 ident: 10.3348/kjr.2019.0629_ref4 publication-title: N Engl J Med doi: 10.1056/NEJMoa043330 – volume: 35 start-page: 1103 year: 2014 ident: 10.3348/kjr.2019.0629_ref11 publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A3825 – volume: 26 start-page: 1042 year: 2013 ident: 10.3348/kjr.2019.0629_ref9 publication-title: NMR Biomed doi: 10.1002/nbm.2994 – volume: 38 start-page: 2243 year: 2017 ident: 10.3348/kjr.2019.0629_ref15 publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A5417 – volume: 22 start-page: 986 year: 2003 ident: 10.3348/kjr.2019.0629_ref20 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2003.815867 – volume: 28 start-page: 1963 year: 2010 ident: 10.3348/kjr.2019.0629_ref6 publication-title: J Clin Oncol doi: 10.1200/JCO.2009.26.3541 – volume: 34 start-page: 45 year: 1994 ident: 10.3348/kjr.2019.0629_ref5 publication-title: Neurosurgery – volume: 10 start-page: 950 issue: Pt 1 year: 2007 ident: 10.3348/kjr.2019.0629_ref19 publication-title: Med Image Comput Comput Assist Interv – volume: 19 start-page: 820 year: 2012 ident: 10.3348/kjr.2019.0629_ref10 publication-title: J Clin Neurosci doi: 10.1016/j.jocn.2011.08.030 |
SSID | ssj0029084 |
Score | 2.2566657 |
Snippet | To evaluate pharmacokinetic variables from contrast-enhancing lesions (CELs) and non-enhancing T2 high signal intensity lesions (NE-T2HSILs) on dynamic... Objective To evaluate pharmacokinetic variables from contrast-enhancing lesions (CELs) and non-enhancing T2 high signal intensity lesions (NE-T2HSILs) on... Objective: To evaluate pharmacokinetic variables from contrast-enhancing lesions (CELs) and non-enhancing T2 high signal intensity lesions (NE-T2HSILs) on... |
SourceID | nrf pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 707 |
SubjectTerms | Brain cancer Medical prognosis Neuroimaging and Head & Neck Patients Permeability Pharmacokinetics Reproducibility Software Tumors Variables 방사선과학 |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZokRAXxLtbCjIIccI0cZyHuSBEW1pEqxW0aG-WYztt2G1SkiwSv5C_xUzi3W0r4LSRxkkczdj-5rHfEPIy1MaFLsqZLFLJRFpETDvLWe5A4VHqAml6ts-jZP9EfJrEEx9wa31Z5WJP7DdqWxuMkW_zlGfIl8fTdxc_GHaNwuyqb6GxRm721GVgz-lk5XDJoO84HHIs8QAcMHBs4n9Pt6ffkQw0lG-CpEeXqzNprWqKv8HN61WTl46hvbvkjseP9P2g8Hvkhqvuk1uHPkP-gPweNzXWzoGYftOzuaN1QXeGtvMUqaga3XZstzrrM__08MsB2wEj_AnXY89iPYUHDbeDceYz19Kyoh9nZZ0D0u7qc03HAxlr-5YuOE3wLdeeDmci_ewwGNdSXVl6VFeXJMecYokJ-1qe4vf4Svru1-KWh-Rkb_f4wz7zzRqYEUJ2LEoSYzWPC2PiQDvHU80t57bQidUuyozOMpuHBXhAJnNwaV2R5iI0OcfMoogekfWqrtwGoS4wgKokuDIuE9rKzHGJuowRj9ogHpHXC3Up45nMsaHGTIFHg9pVoF2F2lWo3RF5tRx-MVB4_GvgC9C9mppSIek2_p7WatoocC0OlMTdUIgR2VqYhvLLvVUr4xyR50sxLFTMvujK1XMYI2C_BGc4gfc8HixpOR1AteAWByBJr9jYcgDO56qkKs96MvAUAHoShpv_n9YTcptjoKAPH22R9a6Zu6eAprr8Wb9k_gBi7yLJ priority: 102 providerName: ProQuest |
Title | Prognostic Value of Dynamic Contrast-Enhanced MRI-Derived Pharmacokinetic Variables in Glioblastoma Patients: Analysis of Contrast-Enhancing Lesions and Non-Enhancing T2 High-Signal Intensity Lesions |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32410409 https://www.proquest.com/docview/2728138227 https://www.proquest.com/docview/2404044869 https://pubmed.ncbi.nlm.nih.gov/PMC7231611 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002588073 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Korean Journal of Radiology, 2020, 21(6), , pp.707-716 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELboJiFeEL8pjMogxBMZiePGMRJCwDo2RKtqrKhvluM4W2hIIE0R-wv5t7hL0rCOIfHUSGcnTu8cf599-o6Qp5421rN-5MhESIeLxHe0jZkTWXC4L6wrTa32OQkOZvzDfDj_IynU_oHLS6kd1pOaldnuz-9nr2HCv0LG6fPwxeILCnt6ctcNmOyRbViUAuRhY94dKDDp1sWHPYbZHgAJGrnNv7tvLE-9vEwuQ54XEyjPrUj7N8j1FkrSN43vb5IrNr9Fro7bw_Lb5Ne0LDCNDsz0s85WlhYJ3Wsq0FNUpSr1snJG-WmdBEDHR4fOHsTjD7ietoLWC7hR0x3iNMrskqY5fZ-lRQSguyq-ajptdFmXL-la3gSfcuHusDzSjxb35ZZU5zGdFPk5yzGjmG3ifEpP8H3apPrqbN3lDpntj47fHTht3QbHcC4rxw8CE2s2TIwZutpaJjSLGYsTHcTa-qHRYRhHXgJkyIQWLmObiIh7JmJ4yMj9u2QrL3J7n1DrGgBYEliNDbmOZWiZRF8OEZrG7rBPnq_dpUwrao61NTIF5Aa9q8C7Cr2r0Lt98qxr_q1R8_hXwyfge7UwqUL9bfw9KdSiVMAyDpXEDyPnfbKzDg21DlzFBAtR15GJPnncmWHO4kGMzm2xgjYcPp3AiwN4zr0mkrrhAMAFhuyCRWzEWNcAx7NpydPTWhdcAFYPPO_B_4z9IbnGcOeg3k_aIVtVubKPAF5V0YD0xFwMyPbb0WR6NKin0W83uSoU |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa2TgJeEHcKAwwCnjBLHDcXJISAdrSsrarRob0Zx3G20pKMJgXtT_E3-Fuck9suAt721EjHcVx9x8fn2MffIeSprbSxjROyIPYCJrzYYcpEnIUGAHc8YwW6YPscu_098XG_s79GftV3YTCtsraJhaGOUo175Fvc4z7y5XHvzdF3hlWj8HS1LqFRqsWOOf4JIVv2etAFfJ9xvt2bvu-zqqoA00IEOXNcV0eKd2KtO5YyhnuKR5xHsXIjZRxfK9-PQjsGV137Bh4jE3uhsHXI8QhMONDvOtkQeKO1RTbe9caT3SbEC6yixrHNMakEPI-S1RNvu27NvyL9qB28tNzCnz1ZBdeTZfw3B_d8nuaphW_7Grlaeaz0bali18maSW6QS6PqTP4m-T1ZppitB2L6WS1WhqYx7ZaF7imSXy1VlrNecljkGtDR7oB1Qe1_wPOk4s2eQ0fl6zAdwoXJ6CyhHxazNATfPk-_KTop6V-zV7RmUcGvnOsdVmE6NLj9l1GVRHScJqckU04xqYV9mh3g_6ly9_Pj-pVbZO9CgLxNWkmamLuEGkuDHxdA8GR8oaLANzxALDvoAUdWp01e1HBJXXGnYwmPhYQYCtGVgK5EdCWi2ybPm-ZHJWnIvxo-AezlXM8k0nzj70Eq50sJwcxABmh_hWiTzVo1ZGVgMnkyHdrkcSMG04DnPSox6QraCLDQEH678J07pSY1wwE_GgJxCyTeGR1rGuB4zkqS2WFBP-5BSODa9r3_D-sRudyfjoZyOBjv3CdXOG5TFJtXm6SVL1fmAfhyefiwmkCUfLnoOfsHttRj8A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa2IU28IO4UBhgEPGGWOHckhBBdWdlWVbBNfTOO7WyhJRlJCtpf4w_wtzgnl3abgLc9JZIdx9G5-Dv2yXcIeWZLZWzjxCxKgoi5QeIwaTRnsQGBO4GxIlWzfY787QP348SbrJBf3b8wmFbZ-cTaUetc4R75Jg94iHx5EKonbVrEuD94e_KdYQUpPGntymk0KrJjTn9C-Fa-GfZB1s85H2ztv99mbYUBplw3qpjj-0pL7iVKeZY0hgeSa851In0tjRMqGYY6thOA7So0cKtNEsSurWKOx2GuA-OukiuBA6gKbCmYLIO9yKqrHdsc00sAgzT8nvjf6-b0KxKR2tEry6-R7XI9XM2K5G9Q92LG5pklcHCdXGuxK33XKNsNsmKym2R9rz2dv0V-j4sc8_agmR7K2dzQPKH9puQ9RRqsQpYV28qO66wDuvdpyPpgAD_gftwyaE9hoOZxMIx4ZkqaZvTDLM1jQPlV_k3ScUMEW76mHZ8KvuXC6LAe012DG4EllZmmozw707LPKaa3sM_pEX5Pm8VfnXaP3CYHlyLGO2QtyzNzj1BjKUB0EYRRJnSljkLDI5Slh1hYW16PvOzEJVTLoo7FPGYCoimUrgDpCpSuQOn2yItF95OGPuRfHZ-C7MVUpQIJv_F6lItpISCsGYoIPbHr9shGpxqidTWlWBpGjzxZNIOTwJMfmZl8Dn1c8NUQiPvwnruNJi2mA4gaQnILWoJzOrbogPM535KlxzUReQDBgW_b9_8_rcdkHSxV7A5HOw_IVY77FfUu1gZZq4q5eQigroof1dZDyZfLNtc_1BBmtw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prognostic+Value+of+Dynamic+Contrast-Enhanced+MRI-Derived+Pharmacokinetic+Variables+in+Glioblastoma+Patients%3A+Analysis+of+Contrast-Enhancing+Lesions+and+Non-Enhancing+T2+High-Signal+Intensity+Lesions&rft.jtitle=Korean+journal+of+radiology&rft.au=Kang+Yeonah&rft.au=Hong+Eun+Kyoung&rft.au=Rhim+Jung+Hyo&rft.au=Yoo+Roh-Eul&rft.date=2020-06-01&rft.pub=%EB%8C%80%ED%95%9C%EC%98%81%EC%83%81%EC%9D%98%ED%95%99%ED%9A%8C&rft.issn=1229-6929&rft.eissn=2005-8330&rft.spage=707&rft.epage=716&rft_id=info:doi/10.3348%2Fkjr.2019.0629&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_9307344 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1229-6929&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1229-6929&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1229-6929&client=summon |