3D microstructure modeling of compressed fiber-based materials

A novel parametrized model that describes the 3D microstructure of compressed fiber-based materials is introduced. It allows to virtually generate the microstructure of realistically compressed gas-diffusion layers (GDL). Given the input of a 3D microstructure of some fiber-based material, the model...

Full description

Saved in:
Bibliographic Details
Published inJournal of power sources Vol. 257; pp. 52 - 64
Main Authors Gaiselmann, Gerd, Tötzke, Christian, Manke, Ingo, Lehnert, Werner, Schmidt, Volker
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.07.2014
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A novel parametrized model that describes the 3D microstructure of compressed fiber-based materials is introduced. It allows to virtually generate the microstructure of realistically compressed gas-diffusion layers (GDL). Given the input of a 3D microstructure of some fiber-based material, the model compresses the system of fibers in a uniaxial direction for arbitrary compression rates. The basic idea is to translate the fibers in the direction of compression according to a vector field which depends on the rate of compression and on the locations of fibers within the material. In order to apply the model to experimental 3D image data of fiber-based materials given for several compression states, an optimal vector field is estimated by simulated annealing. The model is applied to 3D image data of non-woven GDL in PEMFC gained by synchrotron tomography for different compression rates. The compression model is validated by comparing structural characteristics computed for experimentally compressed and virtually compressed microstructures, where two kinds of compression – using a flat stamp and a stamp with a flow-field profile – are applied. For both stamps types, a good agreement is found. Furthermore, the compression model is combined with a stochastic 3D microstructure model for uncompressed fiber-based materials. This allows to efficiently generate compressed fiber-based microstructures in arbitrary volumes. •Introduction of model describing uniaxially compressed fiber-based materials.•It allows to virtually generate realistically compressed gas-diffusion layers (GDL).•Compression model is combined with a model for uncompressed non-woven GDL.•This allows to efficiently generate compressed GDL in arbitrary 3D volumes.
AbstractList A novel parametrized model that describes the 3D microstructure of compressed fiber-based materials is introduced. It allows to virtually generate the microstructure of realistically compressed gas-diffusion layers (GDL). Given the input of a 3D microstructure of some fiber-based material, the model compresses the system of fibers in a uniaxial direction for arbitrary compression rates. The basic idea is to translate the fibers in the direction of compression according to a vector field which depends on the rate of compression and on the locations of fibers within the material. In order to apply the model to experimental 3D image data of fiber-based materials given for several compression states, an optimal vector field is estimated by simulated annealing. The model is applied to 3D image data of non-woven GDL in PEMFC gained by synchrotron tomography for different compression rates. The compression model is validated by comparing structural characteristics computed for experimentally compressed and virtually compressed microstructures, where two kinds of compression - using a flat stamp and a stamp with a flow-field profile - are applied. For both stamps types, a good agreement is found. Furthermore, the compression model is combined with a stochastic 3D microstructure model for uncompressed fiber-based materials. This allows to efficiently generate compressed fiber-based microstructures in arbitrary volumes.
A novel parametrized model that describes the 3D microstructure of compressed fiber-based materials is introduced. It allows to virtually generate the microstructure of realistically compressed gas-diffusion layers (GDL). Given the input of a 3D microstructure of some fiber-based material, the model compresses the system of fibers in a uniaxial direction for arbitrary compression rates. The basic idea is to translate the fibers in the direction of compression according to a vector field which depends on the rate of compression and on the locations of fibers within the material. In order to apply the model to experimental 3D image data of fiber-based materials given for several compression states, an optimal vector field is estimated by simulated annealing. The model is applied to 3D image data of non-woven GDL in PEMFC gained by synchrotron tomography for different compression rates. The compression model is validated by comparing structural characteristics computed for experimentally compressed and virtually compressed microstructures, where two kinds of compression – using a flat stamp and a stamp with a flow-field profile – are applied. For both stamps types, a good agreement is found. Furthermore, the compression model is combined with a stochastic 3D microstructure model for uncompressed fiber-based materials. This allows to efficiently generate compressed fiber-based microstructures in arbitrary volumes. •Introduction of model describing uniaxially compressed fiber-based materials.•It allows to virtually generate realistically compressed gas-diffusion layers (GDL).•Compression model is combined with a model for uncompressed non-woven GDL.•This allows to efficiently generate compressed GDL in arbitrary 3D volumes.
Author Lehnert, Werner
Gaiselmann, Gerd
Schmidt, Volker
Tötzke, Christian
Manke, Ingo
Author_xml – sequence: 1
  givenname: Gerd
  orcidid: 0000-0002-0315-5126
  surname: Gaiselmann
  fullname: Gaiselmann, Gerd
  email: gerd.gaiselmann@uni-ulm.de, gerdga@gmx.de
  organization: Institute of Stochastics, Ulm University, 89069 Ulm, Germany
– sequence: 2
  givenname: Christian
  surname: Tötzke
  fullname: Tötzke, Christian
  organization: Institute of Applied Materials, Helmholtz Centre Berlin for Materials and Energy (HZB), 14109 Berlin, Germany
– sequence: 3
  givenname: Ingo
  surname: Manke
  fullname: Manke, Ingo
  organization: Institute of Applied Materials, Helmholtz Centre Berlin for Materials and Energy (HZB), 14109 Berlin, Germany
– sequence: 4
  givenname: Werner
  surname: Lehnert
  fullname: Lehnert, Werner
  organization: Institute of Energy and Climate Research, IEK-3: Electrochemical Process Engineering, Forschungszentrum Jülich, 52425 Jülich, Germany
– sequence: 5
  givenname: Volker
  surname: Schmidt
  fullname: Schmidt, Volker
  organization: Institute of Stochastics, Ulm University, 89069 Ulm, Germany
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28306325$$DView record in Pascal Francis
BookMark eNqFkMtOwzAQRS1UJErhF1A2SGwS7PiZDQKVp1SJDawt154gV0lc7ATE35OohW1XM4tz52rOKZp1oQOELgguCCbielNstuE7hSEWJSaswKTAFT9Cc6IkzUvJ-QzNMZUql5LTE3Sa0gZjTIjEc3RD77PW2xhSHwfbDxGyNjhofPeRhTqzod1GSAlcVvs1xHxtpr01PURvmnSGjutxwPl-LtD748Pb8jlfvT69LO9WuWWs6nNK-boGJStCBSkllWAUMOqccNYRbBiUa6bAgaVKlgBSCVGB4xxoTZmo6QJd7e5uY_gcIPW69clC05gOwpA0EVJWWDJSHkY5ZxWnisgRFTt0-j9FqPU2-tbEH02wntzqjf5zqye3GhM9uh2Dl_sOk6xp6mg669N_ulQUC1pO3O2Og9HNl4eok_XQWXA-gu21C_5Q1S-ScZTr
CODEN JPSODZ
CitedBy_id crossref_primary_10_1016_j_pmatsci_2018_02_003
crossref_primary_10_1149_2_0751412jes
crossref_primary_10_3139_120_110783
crossref_primary_10_1016_j_cma_2022_115001
crossref_primary_10_1016_j_jpowsour_2016_07_094
crossref_primary_10_3390_polym15244727
crossref_primary_10_1149_2_0291806jes
crossref_primary_10_1016_j_rser_2021_111777
crossref_primary_10_1016_j_ijhydene_2016_06_147
crossref_primary_10_1016_j_seppur_2018_10_018
crossref_primary_10_1149_2_0421906jes
crossref_primary_10_1016_j_apsusc_2021_149147
crossref_primary_10_1016_j_ijhydene_2021_02_142
crossref_primary_10_1016_j_est_2019_101003
crossref_primary_10_1016_j_est_2020_101782
crossref_primary_10_1016_j_jpowsour_2016_10_039
crossref_primary_10_1016_j_mattod_2019_05_019
crossref_primary_10_1016_j_energy_2016_02_075
crossref_primary_10_1016_j_jpowsour_2015_02_111
crossref_primary_10_1016_j_jpowsour_2016_05_118
crossref_primary_10_1149_1945_7111_abdc60
crossref_primary_10_3390_ma7064455
crossref_primary_10_1016_j_rser_2021_111660
crossref_primary_10_1016_j_compscitech_2023_110262
crossref_primary_10_3139_120_110611
crossref_primary_10_1016_j_apenergy_2016_08_010
crossref_primary_10_1063_1_5097170
crossref_primary_10_1016_j_ijhydene_2020_02_136
crossref_primary_10_1016_j_apenergy_2018_01_047
crossref_primary_10_1080_10426914_2016_1140193
crossref_primary_10_1016_j_jpowsour_2016_04_112
crossref_primary_10_1016_j_jpowsour_2016_02_001
crossref_primary_10_1016_j_jpowsour_2016_04_110
crossref_primary_10_1088_1757_899X_274_1_012059
crossref_primary_10_1002_fuce_201500088
crossref_primary_10_1016_j_jpowsour_2016_10_057
crossref_primary_10_1002_adem_202201034
crossref_primary_10_1111_nph_17282
crossref_primary_10_1149_1945_7111_aba4e3
crossref_primary_10_1016_j_ces_2022_117500
crossref_primary_10_1016_j_energy_2016_10_061
crossref_primary_10_1149_2_0291608jes
crossref_primary_10_1016_j_jpowsour_2016_03_102
crossref_primary_10_1063_1_4918291
crossref_primary_10_1177_1528083717699369
crossref_primary_10_1016_j_jpowsour_2018_12_072
crossref_primary_10_1016_j_rser_2021_111049
crossref_primary_10_1002_ente_201700005
crossref_primary_10_1002_aic_14686
crossref_primary_10_1016_j_ijhydene_2017_04_269
crossref_primary_10_1007_s10999_021_09587_1
crossref_primary_10_1016_j_compstruct_2018_05_079
crossref_primary_10_1016_j_ijhydene_2022_04_143
crossref_primary_10_1016_j_jpowsour_2022_231515
Cites_doi 10.1016/j.jpowsour.2010.12.090
10.1016/j.pecs.2012.07.002
10.1016/j.jpowsour.2005.11.069
10.1149/1.2203307
10.3139/146.110382
10.1146/annurev.ms.22.080192.001005
10.5566/ias.v32.p57-63
10.1021/cr020718s
10.1016/j.elecom.2011.06.023
10.1149/1.2472547
10.1016/j.pecs.2010.06.002
10.1016/j.ijhydene.2013.04.144
10.1016/j.jpowsour.2013.12.062
10.1115/1.4006796
10.1149/1.3176876
10.1103/PhysRevE.83.041804
10.1016/j.electacta.2013.04.071
10.1016/j.jpowsour.2013.01.085
10.1016/S0168-9002(01)00466-1
10.1115/1.3177451
10.1016/j.jpowsour.2005.03.199
10.1115/1.4006475
ContentType Journal Article
Copyright 2014 Elsevier B.V.
2015 INIST-CNRS
Copyright_xml – notice: 2014 Elsevier B.V.
– notice: 2015 INIST-CNRS
DBID IQODW
AAYXX
CITATION
7ST
C1K
SOI
7SP
7SU
7TB
8FD
FR3
KR7
L7M
DOI 10.1016/j.jpowsour.2014.01.095
DatabaseName Pascal-Francis
CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
Electronics & Communications Abstracts
Environmental Engineering Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Environmental Engineering Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Civil Engineering Abstracts
Environment Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1873-2755
EndPage 64
ExternalDocumentID 10_1016_j_jpowsour_2014_01_095
28306325
S0378775314001207
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABFNM
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LX7
LY6
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
XPP
ZMT
~G-
29L
AALMO
AAQXK
ABPIF
ABPTK
ACNNM
ADALY
AI.
ASPBG
AVWKF
AZFZN
BBWZM
EJD
FEDTE
FGOYB
G-2
HLY
HVGLF
HZ~
IPNFZ
IQODW
NDZJH
R2-
SAC
SCB
SCE
SEW
T9H
VH1
VOH
WUQ
AAXKI
AAYXX
ADMUD
AKRWK
CITATION
7ST
C1K
SOI
7SP
7SU
7TB
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c449t-335bfe87913612737ea8e43dd6dcd10a4e2b48edec3872ee78669ed55e3f346f3
IEDL.DBID .~1
ISSN 0378-7753
IngestDate Fri Aug 16 07:07:22 EDT 2024
Fri Aug 16 05:10:03 EDT 2024
Thu Sep 12 19:03:03 EDT 2024
Fri Nov 25 06:03:45 EST 2022
Fri Feb 23 02:27:53 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Fiber-based materials
PEMFC
Stochastic modeling
Compression model
Gas-diffusion layer
Simulated annealing
Stochastic model
Compression
Polymer electrolytes
Polymer solid electrolyte
Diffusion layer
Modeling
Microstructure
Proton exchange membrane fuel cells
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c449t-335bfe87913612737ea8e43dd6dcd10a4e2b48edec3872ee78669ed55e3f346f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0315-5126
PQID 1554953817
PQPubID 23462
PageCount 13
ParticipantIDs proquest_miscellaneous_1677907412
proquest_miscellaneous_1554953817
crossref_primary_10_1016_j_jpowsour_2014_01_095
pascalfrancis_primary_28306325
elsevier_sciencedirect_doi_10_1016_j_jpowsour_2014_01_095
PublicationCentury 2000
PublicationDate 2014-07-01
PublicationDateYYYYMMDD 2014-07-01
PublicationDate_xml – month: 07
  year: 2014
  text: 2014-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Journal of power sources
PublicationYear 2014
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Markötter, Manke, Krüger, Arlt, Haussmann, Klages, Riesemeier, Hartnig, Scholta, Banhart (bib11) 2011; 13
Gaiselmann, Froning, Tötzke, Quick, Manke, Lehnert, Schmidt (bib22) 2013; 38
Tötzke, Gaiselmann, Osenberg, Bohner, Arlt, Markötter, Hilger, Wieder, Kupsch, Müller, Hentschel, Banhart, Schmidt, Lehnert, Manke (bib23) 2014; 253
Jia, Li (bib4) 2011; 37
Alink, Haußmann, Markötter, Schwager, Manke, Gerteisen (bib12) 2013; 233
Williams, Hilger, Kardjilov, Manke, Strobl, Douissard, Martin, Riesemeier, Banhart (bib27) 2012; 7
Sinha, Halleck, Wang (bib10) 2006; 9
Schulz, Becker, Wiegmann, Mukherjee, Wang (bib20) 2007; 154
(bib2) 2012
(bib8) 2003
Hartnig, Jörissen, Kerres, Lehnert, Scholta (bib1) 2008
Olesen, Berning, Kær (bib15) 2012; 9
Becker, Flückiger, Reum, Büchi, Marone, Stampanonic (bib18) 2009; 156
Zamel, Li (bib7) 2013; 39
Froning, Brinkmann, Reimer, Schmidt, Lehnert, Stolten (bib19) 2013; 110
Chang, Lin, Chang, Shiu, Chang, Tsau (bib13) 2011; 196
(bib30) 2013
Mathias, Roth, Fleming, Lehnert (bib5) 2003
Gao, Zhang, Rama, Chen, Ostadi, Jiang (bib17) 2012; 9
Hartnig, Jörissen, Kerres, Lehnert, Scholta (bib3) 2008
Bates, Watts (bib29) 1988
Altendorf, Jeulin (bib28) 2011; 83
Gaiselmann, Manke, Lehnert, Schmidt (bib21) 2013; 32
Görner, Hentschel, Müller, Riesemeier, Krumrey, Ulm, Diete, Klein, Frahm (bib24) 2001; 467–468
Kinney, Nichols (bib26) 1992; 22
Laarhoven, Aarts (bib31) 1987
Shi, Wang, Guessous (bib16) 2010; 7
Litster, Sinton, Djilali (bib9) 2006; 154
Banhart, Borbely, Dzieciol, Garcia-Moreno, Manke, Kardjilov, Kaysser-Pyzalla, Strobl, Treimer (bib25) 2010; 101
Ge, Higier, Lui (bib14) 2006; 156
Wang (bib6) 2004; 104
Litster (10.1016/j.jpowsour.2014.01.095_bib9) 2006; 154
Gaiselmann (10.1016/j.jpowsour.2014.01.095_bib22) 2013; 38
Gao (10.1016/j.jpowsour.2014.01.095_bib17) 2012; 9
Becker (10.1016/j.jpowsour.2014.01.095_bib18) 2009; 156
Froning (10.1016/j.jpowsour.2014.01.095_bib19) 2013; 110
Ge (10.1016/j.jpowsour.2014.01.095_bib14) 2006; 156
Laarhoven (10.1016/j.jpowsour.2014.01.095_bib31) 1987
Wang (10.1016/j.jpowsour.2014.01.095_bib6) 2004; 104
Kinney (10.1016/j.jpowsour.2014.01.095_bib26) 1992; 22
Hartnig (10.1016/j.jpowsour.2014.01.095_bib1) 2008
Hartnig (10.1016/j.jpowsour.2014.01.095_bib3) 2008
Tötzke (10.1016/j.jpowsour.2014.01.095_bib23) 2014; 253
Görner (10.1016/j.jpowsour.2014.01.095_bib24) 2001; 467–468
(10.1016/j.jpowsour.2014.01.095_bib2) 2012
Sinha (10.1016/j.jpowsour.2014.01.095_bib10) 2006; 9
Markötter (10.1016/j.jpowsour.2014.01.095_bib11) 2011; 13
(10.1016/j.jpowsour.2014.01.095_bib8) 2003
(10.1016/j.jpowsour.2014.01.095_bib30) 2013
Bates (10.1016/j.jpowsour.2014.01.095_bib29) 1988
Gaiselmann (10.1016/j.jpowsour.2014.01.095_bib21) 2013; 32
Olesen (10.1016/j.jpowsour.2014.01.095_bib15) 2012; 9
Jia (10.1016/j.jpowsour.2014.01.095_bib4) 2011; 37
Shi (10.1016/j.jpowsour.2014.01.095_bib16) 2010; 7
Mathias (10.1016/j.jpowsour.2014.01.095_bib5) 2003
Alink (10.1016/j.jpowsour.2014.01.095_bib12) 2013; 233
Chang (10.1016/j.jpowsour.2014.01.095_bib13) 2011; 196
Schulz (10.1016/j.jpowsour.2014.01.095_bib20) 2007; 154
Altendorf (10.1016/j.jpowsour.2014.01.095_bib28) 2011; 83
Zamel (10.1016/j.jpowsour.2014.01.095_bib7) 2013; 39
Banhart (10.1016/j.jpowsour.2014.01.095_bib25) 2010; 101
Williams (10.1016/j.jpowsour.2014.01.095_bib27) 2012; 7
References_xml – volume: 467–468
  start-page: 703
  year: 2001
  end-page: 706
  ident: bib24
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A
  contributor:
    fullname: Frahm
– volume: 39
  start-page: 111
  year: 2013
  end-page: 146
  ident: bib7
  publication-title: Prog. Energy Combust. Sci.
  contributor:
    fullname: Li
– volume: 156
  start-page: 922
  year: 2006
  end-page: 927
  ident: bib14
  publication-title: J. Power Sources
  contributor:
    fullname: Lui
– volume: 154
  start-page: 95
  year: 2006
  end-page: 105
  ident: bib9
  publication-title: J. Power Sources
  contributor:
    fullname: Djilali
– volume: 7
  start-page: 021012
  year: 2010
  end-page: 021021
  ident: bib16
  publication-title: J. Fuel Cell Sci. Technol.
  contributor:
    fullname: Guessous
– volume: 22
  start-page: 121
  year: 1992
  end-page: 152
  ident: bib26
  publication-title: Annu. Rev. Mater. Sci.
  contributor:
    fullname: Nichols
– volume: 154
  start-page: B419
  year: 2007
  end-page: B426
  ident: bib20
  publication-title: J. Electrochem. Soc.
  contributor:
    fullname: Wang
– volume: 233
  start-page: 358
  year: 2013
  end-page: 368
  ident: bib12
  publication-title: J. Power Sources
  contributor:
    fullname: Gerteisen
– volume: 110
  start-page: 325
  year: 2013
  end-page: 334
  ident: bib19
  publication-title: Electrochim. Acta
  contributor:
    fullname: Stolten
– volume: 7
  start-page: P02014
  year: 2012
  ident: bib27
  publication-title: J. Instrum.
  contributor:
    fullname: Banhart
– year: 1987
  ident: bib31
  article-title: 3D Simulated Annealing: Theory and Applications
  contributor:
    fullname: Aarts
– volume: 38
  start-page: 8448
  year: 2013
  end-page: 8460
  ident: bib22
  publication-title: Int. J. Hydrogen Energy
  contributor:
    fullname: Schmidt
– volume: 9
  start-page: 041010
  year: 2012
  end-page: 041011
  ident: bib17
  publication-title: J. Fuel Cell Sci. Technol.
  contributor:
    fullname: Jiang
– volume: 101
  start-page: 1069
  year: 2010
  end-page: 1079
  ident: bib25
  publication-title: Int. J. Mater. Res.
  contributor:
    fullname: Treimer
– year: 2012
  ident: bib2
  publication-title: Fuel Cell Technology Handbook
– volume: 37
  start-page: 221
  year: 2011
  end-page: 291
  ident: bib4
  publication-title: Prog. Energy Combust. Sci.
  contributor:
    fullname: Li
– volume: 83
  start-page: 041804
  year: 2011
  ident: bib28
  publication-title: Phys. Rev. E
  contributor:
    fullname: Jeulin
– volume: 196
  start-page: 3773
  year: 2011
  end-page: 3780
  ident: bib13
  publication-title: J. Power Sources
  contributor:
    fullname: Tsau
– year: 2013
  ident: bib30
  publication-title: Matlab Works
– volume: 32
  start-page: 57
  year: 2013
  end-page: 63
  ident: bib21
  publication-title: Image Anal. Stereol.
  contributor:
    fullname: Schmidt
– year: 2003
  ident: bib8
  publication-title: Handbook of Fuel Cells – Fundamentals, Technology and Applications
– volume: 9
  start-page: 031010
  year: 2012
  end-page: 031011
  ident: bib15
  publication-title: J. Fuel Cell Sci. Technol.
  contributor:
    fullname: Kær
– start-page: 101
  year: 2008
  end-page: 184
  ident: bib1
  publication-title: Materials for Fuel Cells
  contributor:
    fullname: Scholta
– volume: 104
  start-page: 4727
  year: 2004
  end-page: 4766
  ident: bib6
  publication-title: Chem. Rev.
  contributor:
    fullname: Wang
– volume: 13
  start-page: 1001
  year: 2011
  end-page: 1004
  ident: bib11
  publication-title: Electrochem. Commun.
  contributor:
    fullname: Banhart
– volume: 156
  start-page: B1175
  year: 2009
  end-page: B1181
  ident: bib18
  publication-title: J. Electrochem. Soc.
  contributor:
    fullname: Stampanonic
– volume: 253
  start-page: 123
  year: 2014
  end-page: 131
  ident: bib23
  publication-title: J. Power Sources
  contributor:
    fullname: Manke
– start-page: 517
  year: 2003
  end-page: 537
  ident: bib5
  publication-title: Handbook of Fuel Cells
  contributor:
    fullname: Lehnert
– year: 1988
  ident: bib29
  article-title: Nonlinear Regression Analysis and its Applications
  contributor:
    fullname: Watts
– start-page: 101
  year: 2008
  end-page: 184
  ident: bib3
  publication-title: Materials for Fuel Cells
  contributor:
    fullname: Scholta
– volume: 9
  start-page: A344
  year: 2006
  end-page: A348
  ident: bib10
  publication-title: Electrochem. Solid-State Lett.
  contributor:
    fullname: Wang
– volume: 196
  start-page: 3773
  year: 2011
  ident: 10.1016/j.jpowsour.2014.01.095_bib13
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.12.090
  contributor:
    fullname: Chang
– volume: 39
  start-page: 111
  year: 2013
  ident: 10.1016/j.jpowsour.2014.01.095_bib7
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2012.07.002
  contributor:
    fullname: Zamel
– year: 1988
  ident: 10.1016/j.jpowsour.2014.01.095_bib29
  contributor:
    fullname: Bates
– volume: 156
  start-page: 922
  year: 2006
  ident: 10.1016/j.jpowsour.2014.01.095_bib14
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2005.11.069
  contributor:
    fullname: Ge
– volume: 9
  start-page: A344
  year: 2006
  ident: 10.1016/j.jpowsour.2014.01.095_bib10
  publication-title: Electrochem. Solid-State Lett.
  doi: 10.1149/1.2203307
  contributor:
    fullname: Sinha
– volume: 101
  start-page: 1069
  year: 2010
  ident: 10.1016/j.jpowsour.2014.01.095_bib25
  publication-title: Int. J. Mater. Res.
  doi: 10.3139/146.110382
  contributor:
    fullname: Banhart
– year: 2012
  ident: 10.1016/j.jpowsour.2014.01.095_bib2
– start-page: 101
  year: 2008
  ident: 10.1016/j.jpowsour.2014.01.095_bib1
  contributor:
    fullname: Hartnig
– volume: 22
  start-page: 121
  year: 1992
  ident: 10.1016/j.jpowsour.2014.01.095_bib26
  publication-title: Annu. Rev. Mater. Sci.
  doi: 10.1146/annurev.ms.22.080192.001005
  contributor:
    fullname: Kinney
– volume: 32
  start-page: 57
  year: 2013
  ident: 10.1016/j.jpowsour.2014.01.095_bib21
  publication-title: Image Anal. Stereol.
  doi: 10.5566/ias.v32.p57-63
  contributor:
    fullname: Gaiselmann
– volume: 104
  start-page: 4727
  year: 2004
  ident: 10.1016/j.jpowsour.2014.01.095_bib6
  publication-title: Chem. Rev.
  doi: 10.1021/cr020718s
  contributor:
    fullname: Wang
– start-page: 517
  year: 2003
  ident: 10.1016/j.jpowsour.2014.01.095_bib5
  contributor:
    fullname: Mathias
– volume: 7
  start-page: P02014
  year: 2012
  ident: 10.1016/j.jpowsour.2014.01.095_bib27
  publication-title: J. Instrum.
  contributor:
    fullname: Williams
– volume: 13
  start-page: 1001
  year: 2011
  ident: 10.1016/j.jpowsour.2014.01.095_bib11
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2011.06.023
  contributor:
    fullname: Markötter
– volume: 154
  start-page: B419
  year: 2007
  ident: 10.1016/j.jpowsour.2014.01.095_bib20
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2472547
  contributor:
    fullname: Schulz
– volume: 37
  start-page: 221
  year: 2011
  ident: 10.1016/j.jpowsour.2014.01.095_bib4
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2010.06.002
  contributor:
    fullname: Jia
– volume: 38
  start-page: 8448
  year: 2013
  ident: 10.1016/j.jpowsour.2014.01.095_bib22
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.04.144
  contributor:
    fullname: Gaiselmann
– volume: 253
  start-page: 123
  year: 2014
  ident: 10.1016/j.jpowsour.2014.01.095_bib23
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.12.062
  contributor:
    fullname: Tötzke
– volume: 9
  start-page: 041010
  year: 2012
  ident: 10.1016/j.jpowsour.2014.01.095_bib17
  publication-title: J. Fuel Cell Sci. Technol.
  doi: 10.1115/1.4006796
  contributor:
    fullname: Gao
– volume: 156
  start-page: B1175
  year: 2009
  ident: 10.1016/j.jpowsour.2014.01.095_bib18
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3176876
  contributor:
    fullname: Becker
– volume: 83
  start-page: 041804
  year: 2011
  ident: 10.1016/j.jpowsour.2014.01.095_bib28
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.83.041804
  contributor:
    fullname: Altendorf
– volume: 110
  start-page: 325
  year: 2013
  ident: 10.1016/j.jpowsour.2014.01.095_bib19
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2013.04.071
  contributor:
    fullname: Froning
– volume: 233
  start-page: 358
  year: 2013
  ident: 10.1016/j.jpowsour.2014.01.095_bib12
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.01.085
  contributor:
    fullname: Alink
– year: 1987
  ident: 10.1016/j.jpowsour.2014.01.095_bib31
  contributor:
    fullname: Laarhoven
– volume: 467–468
  start-page: 703
  issue: Part 1
  year: 2001
  ident: 10.1016/j.jpowsour.2014.01.095_bib24
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A
  doi: 10.1016/S0168-9002(01)00466-1
  contributor:
    fullname: Görner
– start-page: 101
  year: 2008
  ident: 10.1016/j.jpowsour.2014.01.095_bib3
  contributor:
    fullname: Hartnig
– volume: 7
  start-page: 021012
  year: 2010
  ident: 10.1016/j.jpowsour.2014.01.095_bib16
  publication-title: J. Fuel Cell Sci. Technol.
  doi: 10.1115/1.3177451
  contributor:
    fullname: Shi
– year: 2013
  ident: 10.1016/j.jpowsour.2014.01.095_bib30
– year: 2003
  ident: 10.1016/j.jpowsour.2014.01.095_bib8
– volume: 154
  start-page: 95
  year: 2006
  ident: 10.1016/j.jpowsour.2014.01.095_bib9
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2005.03.199
  contributor:
    fullname: Litster
– volume: 9
  start-page: 031010
  year: 2012
  ident: 10.1016/j.jpowsour.2014.01.095_bib15
  publication-title: J. Fuel Cell Sci. Technol.
  doi: 10.1115/1.4006475
  contributor:
    fullname: Olesen
SSID ssj0001170
Score 2.430153
Snippet A novel parametrized model that describes the 3D microstructure of compressed fiber-based materials is introduced. It allows to virtually generate the...
SourceID proquest
crossref
pascalfrancis
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 52
SubjectTerms Applied sciences
Compressed
Compressing
Compression model
Direct energy conversion and energy accumulation
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
Energy
Energy. Thermal use of fuels
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Fiber-based materials
Fibers
Fuel cells
Gas-diffusion layer
Mathematical models
Microstructure
PEMFC
Simulated annealing
Stochastic modeling
Three dimensional
Three dimensional models
Title 3D microstructure modeling of compressed fiber-based materials
URI https://dx.doi.org/10.1016/j.jpowsour.2014.01.095
https://search.proquest.com/docview/1554953817
https://search.proquest.com/docview/1677907412
Volume 257
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvSgiPrE-SgSvaZPsJtm9CKVaqkIvWuhtSbKz0IJtsS3e_O3O5KEtih48JtmQ8M1kZjb77TeMXXsqMypW6LxSGVeACd0kNr5rw0yGUWIDaXK2xSDqD8XDKBzVWLfaC0O0yjL2FzE9j9blmXaJZns-HrefPI7OhtU2ThFoByjtKBeYjNCnW-9fNA_qrJKvJOBsiUav7RKetCbz2Rv9JCeKl8jlO6nPxM8JaneeLBA2W_S7-Ba683zU22d7ZSHpdIp3PWA1mB6ynTV5wSN2w2-dFyLcFSKxq1dw8sY3eNGZWYfY5Ll0uHEs8UZcymjGwRK28MpjNuzdPXf7btkvwc2EUEuX8zC1IGPlc6xbYh5DIkFw6hmVGd9LBASpkGAg4zIOAGIZRQqtEwK3XESWn7D6dDaFU-YoPw0tzow8noLIskwayW0SxWARUOMlDdauQNLzQhZDV3yxia5g1QSr9nyNsDaYqrDUGwbWGLv_vLe5Af7nI0m9LOIBDriqrKHx86A1j2QKs9VCU7mkQpIh_GVMRKKLWFoFZ_94yXO2TUcFlfeC1dGycIkFyzJt5h7ZZFud-8f-4ANhoOzq
link.rule.ids 315,786,790,4521,24144,27957,27958,45620,45714
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVYDoAQYhVlDRLX0CR2YvuChFhU1gut1JuVxGOJSrQVpeLGtzOTBVqB4MA1dpTojTN-jp_fMHYc6NxqqXHwKm19ATb2U2lD38W5ipPURcoWaouHpNURN924O8PO67MwJKuscn-Z04tsXV1pVmg2h09PzceA42BDto1LBDoBKmfZPNF5qt9w8v6l86DSKsVWAi6XqPvEMeHeSW84eKO_5KTxEoV_JxWa-HmGWh6mI8TNlQUvvuXuYkK6WmUrFZP0zsqXXWMz0F9nSxP-ghvslF94z6S4K11ixy_gFZVvsNEbOI_k5IV3uPUcCUd8mtKshxy2HJabrHN12T5v-VXBBD8XQr_6nMeZAyV1yJG4SC4hVSA4FY3KbRikAqJMKLCQcyUjAKmSRGN4YuCOi8TxLTbXH_Rhm3k6zGKHS6OAZyDyPFdWcZcmEhwCaoO0wZo1SGZY-mKYWjDWMzWshmA1QWgQ1gbTNZZmKsIGk_ef9x5Mgf_5SLIvS3iEHY7qaBj8PmjTI-3DYDwyxJd0TD6Ev_RJyHURuVW084-XPGQLrfb9nbm7frjdZYvUUup699gcRhn2kb28ZgfF6PwA3dTufA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+microstructure+modeling+of+compressed+fiber-based+materials&rft.jtitle=Journal+of+power+sources&rft.au=Gaiselmann%2C+Gerd&rft.au=T%C3%B6tzke%2C+Christian&rft.au=Manke%2C+Ingo&rft.au=Lehnert%2C+Werner&rft.date=2014-07-01&rft.issn=0378-7753&rft.volume=257&rft.spage=52&rft.epage=64&rft_id=info:doi/10.1016%2Fj.jpowsour.2014.01.095&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jpowsour_2014_01_095
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7753&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7753&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7753&client=summon