Quality Reporting of Radiomics Analysis in Mild Cognitive Impairment and Alzheimer's Disease: A Roadmap for Moving Forward
To evaluate radiomics analysis in studies on mild cognitive impairment (MCI) and Alzheimer's disease (AD) using a radiomics quality score (RQS) system to establish a roadmap for further improvement in clinical use. PubMed MEDLINE and EMBASE were searched using the terms 'cognitive impairme...
Saved in:
Published in | Korean journal of radiology Vol. 21; no. 12; pp. 1345 - 1354 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Korea (South)
The Korean Society of Radiology
01.12.2020
대한영상의학회 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To evaluate radiomics analysis in studies on mild cognitive impairment (MCI) and Alzheimer's disease (AD) using a radiomics quality score (RQS) system to establish a roadmap for further improvement in clinical use.
PubMed MEDLINE and EMBASE were searched using the terms 'cognitive impairment' or 'Alzheimer' or 'dementia' and 'radiomic' or 'texture' or 'radiogenomic' for articles published until March 2020. From 258 articles, 26 relevant original research articles were selected. Two neuroradiologists assessed the quality of the methodology according to the RQS. Adherence rates for the following six key domains were evaluated: image protocol and reproducibility, feature reduction and validation, biologic/clinical utility, performance index, high level of evidence, and open science.
The hippocampus was the most frequently analyzed (46.2%) anatomical structure. Of the 26 studies, 16 (61.5%) used an open source database (14 from Alzheimer's Disease Neuroimaging Initiative and 2 from Open Access Series of Imaging Studies). The mean RQS was 3.6 out of 36 (9.9%), and the basic adherence rate was 27.6%. Only one study (3.8%) performed external validation. The adherence rate was relatively high for reporting the imaging protocol (96.2%), multiple segmentation (76.9%), discrimination statistics (69.2%), and open science and data (65.4%) but low for conducting test-retest analysis (7.7%) and biologic correlation (3.8%). None of the studies stated potential clinical utility, conducted a phantom study, performed cut-off analysis or calibration statistics, was a prospective study, or conducted cost-effectiveness analysis, resulting in a low level of evidence.
The quality of radiomics reporting in MCI and AD studies is suboptimal. Validation is necessary using external dataset, and improvements need to be made to feature reproducibility, feature selection, clinical utility, model performance index, and pursuits of a higher level of evidence. |
---|---|
AbstractList | Objective: To evaluate radiomics analysis in studies on mild cognitive impairment (MCI) and Alzheimer’s disease (AD) using a radiomics quality score (RQS) system to establish a roadmap for further improvement in clinical use.
Materials and Methods: PubMed MEDLINE and EMBASE were searched using the terms ‘cognitive impairment’ or ‘Alzheimer’ or ‘dementia’ and ‘radiomic’ or ‘texture’ or ‘radiogenomic’ for articles published until March 2020. From 258 articles, 26 relevant original research articles were selected. Two neuroradiologists assessed the quality of the methodology according to the RQS. Adherence rates for the following six key domains were evaluated: image protocol and reproducibility, feature reduction and validation, biologic/clinical utility, performance index, high level of evidence, and open science.
Results: The hippocampus was the most frequently analyzed (46.2%) anatomical structure. Of the 26 studies, 16 (61.5%) used an open source database (14 from Alzheimer’s Disease Neuroimaging Initiative and 2 from Open Access Series of Imaging Studies). The mean RQS was 3.6 out of 36 (9.9%), and the basic adherence rate was 27.6%. Only one study (3.8%) performed external validation. The adherence rate was relatively high for reporting the imaging protocol (96.2%), multiple segmentation (76.9%), discrimination statistics (69.2%), and open science and data (65.4%) but low for conducting test-retest analysis (7.7%) and biologic correlation (3.8%). None of the studies stated potential clinical utility, conducted a phantom study, performed cut-off analysis or calibration statistics, was a prospective study, or conducted cost-effectiveness analysis, resulting in a low level of evidence.
Conclusion: The quality of radiomics reporting in MCI and AD studies is suboptimal. Validation is necessary using external dataset, and improvements need to be made to feature reproducibility, feature selection, clinical utility, model performance index, and pursuits of a higher level of evidence. KCI Citation Count: 0 Objective To evaluate radiomics analysis in studies on mild cognitive impairment (MCI) and Alzheimer's disease (AD) using a radiomics quality score (RQS) system to establish a roadmap for further improvement in clinical use. Materials and Methods PubMed MEDLINE and EMBASE were searched using the terms ‘cognitive impairment’ or ‘Alzheimer’ or ‘dementia’ and ‘radiomic’ or ‘texture’ or ‘radiogenomic’ for articles published until March 2020. From 258 articles, 26 relevant original research articles were selected. Two neuroradiologists assessed the quality of the methodology according to the RQS. Adherence rates for the following six key domains were evaluated: image protocol and reproducibility, feature reduction and validation, biologic/clinical utility, performance index, high level of evidence, and open science. Results The hippocampus was the most frequently analyzed (46.2%) anatomical structure. Of the 26 studies, 16 (61.5%) used an open source database (14 from Alzheimer's Disease Neuroimaging Initiative and 2 from Open Access Series of Imaging Studies). The mean RQS was 3.6 out of 36 (9.9%), and the basic adherence rate was 27.6%. Only one study (3.8%) performed external validation. The adherence rate was relatively high for reporting the imaging protocol (96.2%), multiple segmentation (76.9%), discrimination statistics (69.2%), and open science and data (65.4%) but low for conducting test-retest analysis (7.7%) and biologic correlation (3.8%). None of the studies stated potential clinical utility, conducted a phantom study, performed cut-off analysis or calibration statistics, was a prospective study, or conducted cost-effectiveness analysis, resulting in a low level of evidence. Conclusion The quality of radiomics reporting in MCI and AD studies is suboptimal. Validation is necessary using external dataset, and improvements need to be made to feature reproducibility, feature selection, clinical utility, model performance index, and pursuits of a higher level of evidence. To evaluate radiomics analysis in studies on mild cognitive impairment (MCI) and Alzheimer's disease (AD) using a radiomics quality score (RQS) system to establish a roadmap for further improvement in clinical use.OBJECTIVETo evaluate radiomics analysis in studies on mild cognitive impairment (MCI) and Alzheimer's disease (AD) using a radiomics quality score (RQS) system to establish a roadmap for further improvement in clinical use.PubMed MEDLINE and EMBASE were searched using the terms 'cognitive impairment' or 'Alzheimer' or 'dementia' and 'radiomic' or 'texture' or 'radiogenomic' for articles published until March 2020. From 258 articles, 26 relevant original research articles were selected. Two neuroradiologists assessed the quality of the methodology according to the RQS. Adherence rates for the following six key domains were evaluated: image protocol and reproducibility, feature reduction and validation, biologic/clinical utility, performance index, high level of evidence, and open science.MATERIALS AND METHODSPubMed MEDLINE and EMBASE were searched using the terms 'cognitive impairment' or 'Alzheimer' or 'dementia' and 'radiomic' or 'texture' or 'radiogenomic' for articles published until March 2020. From 258 articles, 26 relevant original research articles were selected. Two neuroradiologists assessed the quality of the methodology according to the RQS. Adherence rates for the following six key domains were evaluated: image protocol and reproducibility, feature reduction and validation, biologic/clinical utility, performance index, high level of evidence, and open science.The hippocampus was the most frequently analyzed (46.2%) anatomical structure. Of the 26 studies, 16 (61.5%) used an open source database (14 from Alzheimer's Disease Neuroimaging Initiative and 2 from Open Access Series of Imaging Studies). The mean RQS was 3.6 out of 36 (9.9%), and the basic adherence rate was 27.6%. Only one study (3.8%) performed external validation. The adherence rate was relatively high for reporting the imaging protocol (96.2%), multiple segmentation (76.9%), discrimination statistics (69.2%), and open science and data (65.4%) but low for conducting test-retest analysis (7.7%) and biologic correlation (3.8%). None of the studies stated potential clinical utility, conducted a phantom study, performed cut-off analysis or calibration statistics, was a prospective study, or conducted cost-effectiveness analysis, resulting in a low level of evidence.RESULTSThe hippocampus was the most frequently analyzed (46.2%) anatomical structure. Of the 26 studies, 16 (61.5%) used an open source database (14 from Alzheimer's Disease Neuroimaging Initiative and 2 from Open Access Series of Imaging Studies). The mean RQS was 3.6 out of 36 (9.9%), and the basic adherence rate was 27.6%. Only one study (3.8%) performed external validation. The adherence rate was relatively high for reporting the imaging protocol (96.2%), multiple segmentation (76.9%), discrimination statistics (69.2%), and open science and data (65.4%) but low for conducting test-retest analysis (7.7%) and biologic correlation (3.8%). None of the studies stated potential clinical utility, conducted a phantom study, performed cut-off analysis or calibration statistics, was a prospective study, or conducted cost-effectiveness analysis, resulting in a low level of evidence.The quality of radiomics reporting in MCI and AD studies is suboptimal. Validation is necessary using external dataset, and improvements need to be made to feature reproducibility, feature selection, clinical utility, model performance index, and pursuits of a higher level of evidence.CONCLUSIONThe quality of radiomics reporting in MCI and AD studies is suboptimal. Validation is necessary using external dataset, and improvements need to be made to feature reproducibility, feature selection, clinical utility, model performance index, and pursuits of a higher level of evidence. To evaluate radiomics analysis in studies on mild cognitive impairment (MCI) and Alzheimer's disease (AD) using a radiomics quality score (RQS) system to establish a roadmap for further improvement in clinical use. PubMed MEDLINE and EMBASE were searched using the terms 'cognitive impairment' or 'Alzheimer' or 'dementia' and 'radiomic' or 'texture' or 'radiogenomic' for articles published until March 2020. From 258 articles, 26 relevant original research articles were selected. Two neuroradiologists assessed the quality of the methodology according to the RQS. Adherence rates for the following six key domains were evaluated: image protocol and reproducibility, feature reduction and validation, biologic/clinical utility, performance index, high level of evidence, and open science. The hippocampus was the most frequently analyzed (46.2%) anatomical structure. Of the 26 studies, 16 (61.5%) used an open source database (14 from Alzheimer's Disease Neuroimaging Initiative and 2 from Open Access Series of Imaging Studies). The mean RQS was 3.6 out of 36 (9.9%), and the basic adherence rate was 27.6%. Only one study (3.8%) performed external validation. The adherence rate was relatively high for reporting the imaging protocol (96.2%), multiple segmentation (76.9%), discrimination statistics (69.2%), and open science and data (65.4%) but low for conducting test-retest analysis (7.7%) and biologic correlation (3.8%). None of the studies stated potential clinical utility, conducted a phantom study, performed cut-off analysis or calibration statistics, was a prospective study, or conducted cost-effectiveness analysis, resulting in a low level of evidence. The quality of radiomics reporting in MCI and AD studies is suboptimal. Validation is necessary using external dataset, and improvements need to be made to feature reproducibility, feature selection, clinical utility, model performance index, and pursuits of a higher level of evidence. |
Author | Kim, Jinna Lee, Seung-Koo Park, Yae Won Won, So Yeon Park, Mina Ahn, Sung Soo |
AuthorAffiliation | 1 Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea 2 Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea |
AuthorAffiliation_xml | – name: 1 Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea – name: 2 Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea |
Author_xml | – sequence: 1 givenname: So Yeon orcidid: 0000-0003-0570-3365 surname: Won fullname: Won, So Yeon organization: Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea – sequence: 2 givenname: Yae Won orcidid: 0000-0001-8907-5401 surname: Park fullname: Park, Yae Won organization: Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea – sequence: 3 givenname: Mina orcidid: 0000-0002-2005-7560 surname: Park fullname: Park, Mina organization: Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea – sequence: 4 givenname: Sung Soo orcidid: 0000-0002-0503-5558 surname: Ahn fullname: Ahn, Sung Soo organization: Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea – sequence: 5 givenname: Jinna orcidid: 0000-0002-9978-4356 surname: Kim fullname: Kim, Jinna organization: Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea – sequence: 6 givenname: Seung-Koo orcidid: 0000-0001-5646-4072 surname: Lee fullname: Lee, Seung-Koo organization: Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33169553$$D View this record in MEDLINE/PubMed https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002647981$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNptkk1vEzEYhC1URNPCkSuyxAE4bPC31xyQopRCpFaIqJwtZ9ebOtm1F3sTlP76OkmLoOL0HvzMeF57zsCJD94C8BqjMaWs_LhexTFBBI2RxPwZGBGEeFFSik7ACBOiCqGIOgVnKa0QIgqV7AU4pRQLxTkdgbsfG9O6YQfntg9xcH4JQwPnpnahc1WCE2_aXXIJOg-vXVvDaVh6N7ithbOuNy521g_Q-BpO2rtb6zob3yV44ZI1yX6CEzgPpu5MD5sQ4XXY7i-4DPG3ifVL8LwxbbKvHuY5-Hn55Wb6rbj6_nU2nVwVFWNqKAg3trS8ZpRLVpNSLSxjBjNCS95wKaiSUjBqGBHWMqWwWJR4oWop6kZUFNNz8OHo62Oj15XTwbjDXAa9jnoyv5lpJZBQB_bzke03i87WVV4umlb30XUm7g7Kf0-8u80-Wy1FqTBT2eD9g0EMvzY2DbpzqbJta7wNm6QJ44pmTpYZffsEXYVNzO-dKUlKzCWRPFNv_k70J8rjF2aAHoEqhpSibXTlBjO4sA_oWo2R3hdF56LofVH0vihZVTxRPRr_n78H1PC-zA |
CitedBy_id | crossref_primary_10_1007_s00330_024_10594_x crossref_primary_10_1093_braincomms_fcad195 crossref_primary_10_3390_brainsci13020367 crossref_primary_10_1007_s00330_023_09708_8 crossref_primary_10_1007_s00330_021_08429_0 crossref_primary_10_1186_s12880_022_00892_5 crossref_primary_10_1186_s13244_022_01277_6 crossref_primary_10_1186_s13244_022_01279_4 crossref_primary_10_1016_j_jpsychires_2023_01_024 crossref_primary_10_28982_josam_990310 crossref_primary_10_1371_journal_pone_0256152 crossref_primary_10_3390_s22145205 crossref_primary_10_1007_s00330_022_09187_3 crossref_primary_10_14309_ctg_0000000000000802 crossref_primary_10_1007_s00330_022_08587_9 crossref_primary_10_1259_bjr_20220401 crossref_primary_10_1259_bjr_20211211 crossref_primary_10_1161_STROKEAHA_122_039732 crossref_primary_10_1016_j_ejrad_2021_109673 crossref_primary_10_3348_kjr_2020_1429 crossref_primary_10_1016_j_acra_2022_12_033 crossref_primary_10_13104_imri_2021_25_4_266 crossref_primary_10_3348_kjr_2021_0421 crossref_primary_10_1038_s43856_022_00133_4 crossref_primary_10_1016_j_ifacol_2024_11_041 crossref_primary_10_3348_kjr_2021_0963 crossref_primary_10_1016_j_ejrad_2022_110497 |
Cites_doi | 10.1016/j.neurobiolaging.2019.05.007 10.1109/42.712137 10.1007/s11682-018-9833-0 10.1212/WNL.55.1.134 10.1016/j.cmpb.2019.03.003 10.1002/hbm.23091 10.3348/kjr.2018.0070 10.1093/neuonc/noy021 10.1016/j.neurobiolaging.2017.01.021 10.1212/WNL.59.5.746 10.3389/fnins.2018.01045 10.3389/fnagi.2019.00323 10.1176/appi.neuropsych.17120366 10.1007/s11011-018-0296-1 10.1148/radiol.2015151169 10.1038/nrclinonc.2017.141 10.1016/j.jalz.2018.08.005 10.1155/2015/572567 10.1016/j.jneumeth.2019.01.011 10.1016/j.jalz.2019.02.007 10.1007/s00330-019-06360-z 10.1371/journal.pone.0117759 10.1118/1.4958959 10.1148/radiol.2016160845 10.3389/fneur.2018.00618 10.3390/diagnostics8030047 10.1016/S1474-4422(09)70299-6 10.1002/jmri.21049 10.1016/j.ejca.2011.11.037 10.1093/ije/20.3.736 10.1016/S1474-4422(07)70178-3 10.3348/kjr.2018.0814 10.1186/s12885-019-6504-5 10.3174/ajnr.A2232 10.3174/ajnr.A5569 10.1016/j.radonc.2018.03.033 10.1016/S1474-4422(14)70090-0 10.1016/j.jalz.2018.02.018 10.1109/ACCESS.2018.2871977 10.1007/s11682-011-9142-3 10.1117/1.JMI.1.3.031005 10.1016/j.jalz.2015.05.009 10.3389/fnagi.2018.00290 10.1161/STROKEAHA.117.019970 10.1503/jpn.180171 10.1016/j.compmedimag.2018.08.002 |
ContentType | Journal Article |
Copyright | Copyright © 2020 The Korean Society of Radiology. 2020. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2020 The Korean Society of Radiology 2020 The Korean Society of Radiology |
Copyright_xml | – notice: Copyright © 2020 The Korean Society of Radiology. – notice: 2020. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2020 The Korean Society of Radiology 2020 The Korean Society of Radiology |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. KB0 M0S M1P NAPCQ PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM ACYCR |
DOI | 10.3348/kjr.2020.0715 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Health & Medical Collection Medical Database Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Korean Citation Index |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2005-8330 |
EndPage | 1354 |
ExternalDocumentID | oai_kci_go_kr_ARTI_9606931 PMC7689149 33169553 10_3348_kjr_2020_0715 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: ; grantid: 2020R1I1A1A01071648 |
GroupedDBID | --- 29L 2WC 5-W 53G 5GY 7RV 7X7 88E 8FI 8FJ 8JR 8XY 9ZL AAYXX ABUWG ADBBV ADRAZ AENEX AFKRA ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BENPR CCPQU CITATION CS3 DIK DU5 E3Z EBD EF. EMOBN F5P FRP FYUFA GX1 HMCUK HYE KQ8 M1P M48 NAPCQ O5R O5S OK1 OVT P6G PGMZT PHGZM PHGZT PIMPY PSQYO RNS RPM SV3 TR2 UKHRP W2D WH7 XSB CGR CUY CVF ECM EIF M~E NPM 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM ACYCR |
ID | FETCH-LOGICAL-c449t-25ae8e5d43574d289be44a142385f5763977643a426ee49916b81b9d76df6c313 |
IEDL.DBID | M48 |
ISSN | 1229-6929 2005-8330 |
IngestDate | Tue Nov 21 21:43:08 EST 2023 Thu Aug 21 18:27:37 EDT 2025 Fri Jul 11 10:41:54 EDT 2025 Fri Jul 25 09:57:27 EDT 2025 Thu Jan 02 22:57:16 EST 2025 Tue Jul 01 01:26:18 EDT 2025 Thu Apr 24 23:00:56 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 12 |
Keywords | Radiomics, Radiomics quality score Mild cognitive impairment Alzheimer's disease Dementia |
Language | English |
License | Copyright © 2020 The Korean Society of Radiology. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c449t-25ae8e5d43574d289be44a142385f5763977643a426ee49916b81b9d76df6c313 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 https://doi.org/10.3348/kjr.2020.0715 |
ORCID | 0000-0001-8907-5401 0000-0002-2005-7560 0000-0002-9978-4356 0000-0001-5646-4072 0000-0002-0503-5558 0000-0003-0570-3365 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3348/kjr.2020.0715 |
PMID | 33169553 |
PQID | 2728157275 |
PQPubID | 5474425 |
PageCount | 10 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_9606931 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7689149 proquest_miscellaneous_2459349378 proquest_journals_2728157275 pubmed_primary_33169553 crossref_citationtrail_10_3348_kjr_2020_0715 crossref_primary_10_3348_kjr_2020_0715 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-12-01 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Korea (South) |
PublicationPlace_xml | – name: Korea (South) – name: Seoul |
PublicationTitle | Korean journal of radiology |
PublicationTitleAlternate | Korean J Radiol |
PublicationYear | 2020 |
Publisher | The Korean Society of Radiology 대한영상의학회 |
Publisher_xml | – name: The Korean Society of Radiology – name: 대한영상의학회 |
References | Lambin (10.3348/kjr.2020.0715_ref22) 2017; 14 Li (10.3348/kjr.2020.0715_ref20) 2019; 15 Kang (10.3348/kjr.2020.0715_ref8) 2018; 20 Park (10.3348/kjr.2020.0715_ref48) 2019; 20 Cai (10.3348/kjr.2020.0715_ref18) 2020 Hett (10.3348/kjr.2020.0715_ref31) 2018; 70 Feng (10.3348/kjr.2020.0715_ref17) 2018; 9 Gillies (10.3348/kjr.2020.0715_ref7) 2016; 278 Jack (10.3348/kjr.2020.0715_ref44) 2008; 27 Freeborough (10.3348/kjr.2020.0715_ref16) 1998; 17 Veitch (10.3348/kjr.2020.0715_ref2) 2019; 15 Park (10.3348/kjr.2020.0715_ref11) 2018; 39 Park (10.3348/kjr.2020.0715_ref25) 2020; 30 Waterton (10.3348/kjr.2020.0715_ref23) 2012; 48 Park (10.3348/kjr.2020.0715_ref26) 2020; 20 Rohini (10.3348/kjr.2020.0715_ref32) 2019; 173 Kickingereder (10.3348/kjr.2020.0715_ref9) 2016; 280 Ranjbar (10.3348/kjr.2020.0715_ref28) 2019; 31 Sanduleanu (10.3348/kjr.2020.0715_ref24) 2018; 127 Chaddad (10.3348/kjr.2020.0715_ref12) 2018; 6 Jack (10.3348/kjr.2020.0715_ref5) 2018; 14 Martinez-Torteya (10.3348/kjr.2020.0715_ref39) 2014; 1 Rajeesh (10.3348/kjr.2020.0715_ref15) 2012; 6 Feng (10.3348/kjr.2020.0715_ref37) 2018; 10 Zhang (10.3348/kjr.2020.0715_ref14) 2012; 6 Vaithinathan (10.3348/kjr.2020.0715_ref41) 2019; 318 Maani (10.3348/kjr.2020.0715_ref13) 2015; 10 De Oliveira (10.3348/kjr.2020.0715_ref34) 2011; 32 Hwang (10.3348/kjr.2020.0715_ref36) 2016; 43 Saykin (10.3348/kjr.2020.0715_ref45) 2015; 11 Zhou (10.3348/kjr.2020.0715_ref19) 2019; 12 Boccardi (10.3348/kjr.2020.0715_ref49) 2017; 52 Gao (10.3348/kjr.2020.0715_ref38) 2018; 33 Den Heijer (10.3348/kjr.2020.0715_ref46) 2002; 59 López-Gómez (10.3348/kjr.2020.0715_ref35) 2018; 8 Feng (10.3348/kjr.2020.0715_ref40) 2019; 11 Jack (10.3348/kjr.2020.0715_ref6) 2010; 9 Park (10.3348/kjr.2020.0715_ref10) 2019; 20 Achterberg (10.3348/kjr.2020.0715_ref43) 2019; 81 Li (10.3348/kjr.2020.0715_ref42) 2019; 12 Tozer (10.3348/kjr.2020.0715_ref33) 2018; 49 Hofman (10.3348/kjr.2020.0715_ref1) 1991; 20 Sørensen (10.3348/kjr.2020.0715_ref29) 2016; 37 Oppedal (10.3348/kjr.2020.0715_ref27) 2015; 2015 Moffat (10.3348/kjr.2020.0715_ref47) 2000; 55 Dubois (10.3348/kjr.2020.0715_ref3) 2007; 6 Ben Bouallègue (10.3348/kjr.2020.0715_ref30) 2019; 13 Dubois (10.3348/kjr.2020.0715_ref4) 2014; 13 Lee (10.3348/kjr.2020.0715_ref21) 2020; 45 |
References_xml | – volume: 81 start-page: 58 year: 2019 ident: 10.3348/kjr.2020.0715_ref43 publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2019.05.007 – volume: 17 start-page: 475 year: 1998 ident: 10.3348/kjr.2020.0715_ref16 publication-title: IEEE Trans Med Imaging doi: 10.1109/42.712137 – volume: 13 start-page: 111 year: 2019 ident: 10.3348/kjr.2020.0715_ref30 publication-title: Brain Imaging Behav doi: 10.1007/s11682-018-9833-0 – volume: 55 start-page: 134 year: 2000 ident: 10.3348/kjr.2020.0715_ref47 publication-title: Neurology doi: 10.1212/WNL.55.1.134 – volume: 173 start-page: 147 year: 2019 ident: 10.3348/kjr.2020.0715_ref32 publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2019.03.003 – year: 2020 ident: 10.3348/kjr.2020.0715_ref18 publication-title: Acad Radiol – volume: 37 start-page: 1148 year: 2016 ident: 10.3348/kjr.2020.0715_ref29 publication-title: Hum Brain Mapp doi: 10.1002/hbm.23091 – volume: 20 start-page: 1124 year: 2019 ident: 10.3348/kjr.2020.0715_ref48 publication-title: Korean J Radiol doi: 10.3348/kjr.2018.0070 – volume: 20 start-page: 1251 year: 2018 ident: 10.3348/kjr.2020.0715_ref8 publication-title: Neuro Oncol doi: 10.1093/neuonc/noy021 – volume: 52 start-page: 141 year: 2017 ident: 10.3348/kjr.2020.0715_ref49 publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2017.01.021 – volume: 59 start-page: 746 year: 2002 ident: 10.3348/kjr.2020.0715_ref46 publication-title: Neurology doi: 10.1212/WNL.59.5.746 – volume: 12 start-page: 1045 year: 2019 ident: 10.3348/kjr.2020.0715_ref19 publication-title: Front Neurosci doi: 10.3389/fnins.2018.01045 – volume: 11 start-page: 323 year: 2019 ident: 10.3348/kjr.2020.0715_ref40 publication-title: Front Aging Neurosci doi: 10.3389/fnagi.2019.00323 – volume: 31 start-page: 210 year: 2019 ident: 10.3348/kjr.2020.0715_ref28 publication-title: J Neuropsychiatry Clin Neurosci doi: 10.1176/appi.neuropsych.17120366 – volume: 33 start-page: 1899 year: 2018 ident: 10.3348/kjr.2020.0715_ref38 publication-title: Metab Brain Dis doi: 10.1007/s11011-018-0296-1 – volume: 278 start-page: 563 year: 2016 ident: 10.3348/kjr.2020.0715_ref7 publication-title: Radiology doi: 10.1148/radiol.2015151169 – volume: 14 start-page: 749 year: 2017 ident: 10.3348/kjr.2020.0715_ref22 publication-title: Nat Rev Clin Oncol doi: 10.1038/nrclinonc.2017.141 – volume: 15 start-page: 106 year: 2019 ident: 10.3348/kjr.2020.0715_ref2 publication-title: Alzheimers Dement doi: 10.1016/j.jalz.2018.08.005 – volume: 2015 start-page: 572567 year: 2015 ident: 10.3348/kjr.2020.0715_ref27 publication-title: Int J Biomed Imaging doi: 10.1155/2015/572567 – volume: 318 start-page: 84 year: 2019 ident: 10.3348/kjr.2020.0715_ref41 publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2019.01.011 – volume: 15 start-page: 1059 year: 2019 ident: 10.3348/kjr.2020.0715_ref20 publication-title: Alzheimers Dement doi: 10.1016/j.jalz.2019.02.007 – volume: 30 start-page: 523 year: 2020 ident: 10.3348/kjr.2020.0715_ref25 publication-title: Eur Radiol doi: 10.1007/s00330-019-06360-z – volume: 10 start-page: e0117759 year: 2015 ident: 10.3348/kjr.2020.0715_ref13 publication-title: PLoS One doi: 10.1371/journal.pone.0117759 – volume: 43 start-page: 4718 year: 2016 ident: 10.3348/kjr.2020.0715_ref36 publication-title: Med Phys doi: 10.1118/1.4958959 – volume: 280 start-page: 880 year: 2016 ident: 10.3348/kjr.2020.0715_ref9 publication-title: Radiology doi: 10.1148/radiol.2016160845 – volume: 9 start-page: 618 year: 2018 ident: 10.3348/kjr.2020.0715_ref17 publication-title: Front Neurol doi: 10.3389/fneur.2018.00618 – volume: 8 start-page: 47 year: 2018 ident: 10.3348/kjr.2020.0715_ref35 publication-title: Diagnostics (Basel) doi: 10.3390/diagnostics8030047 – volume: 9 start-page: 119 year: 2010 ident: 10.3348/kjr.2020.0715_ref6 publication-title: Lancet Neurol doi: 10.1016/S1474-4422(09)70299-6 – volume: 27 start-page: 685 year: 2008 ident: 10.3348/kjr.2020.0715_ref44 publication-title: J Magn Reson Imaging doi: 10.1002/jmri.21049 – volume: 48 start-page: 409 year: 2012 ident: 10.3348/kjr.2020.0715_ref23 publication-title: Eur J Cancer doi: 10.1016/j.ejca.2011.11.037 – volume: 20 start-page: 736 year: 1991 ident: 10.3348/kjr.2020.0715_ref1 publication-title: Int J Epidemiol doi: 10.1093/ije/20.3.736 – volume: 6 start-page: 734 year: 2007 ident: 10.3348/kjr.2020.0715_ref3 publication-title: Lancet Neurol doi: 10.1016/S1474-4422(07)70178-3 – volume: 20 start-page: 1381 year: 2019 ident: 10.3348/kjr.2020.0715_ref10 publication-title: Korean J Radiol doi: 10.3348/kjr.2018.0814 – volume: 6 start-page: 87 year: 2012 ident: 10.3348/kjr.2020.0715_ref15 publication-title: Asian Biomedicine – volume: 20 start-page: 29 year: 2020 ident: 10.3348/kjr.2020.0715_ref26 publication-title: BMC Cancer doi: 10.1186/s12885-019-6504-5 – volume: 12 start-page: 1756286419838682 year: 2019 ident: 10.3348/kjr.2020.0715_ref42 publication-title: Ther Adv Neurol Disord – volume: 32 start-page: 60 year: 2011 ident: 10.3348/kjr.2020.0715_ref34 publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A2232 – volume: 39 start-page: 693 year: 2018 ident: 10.3348/kjr.2020.0715_ref11 publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A5569 – volume: 127 start-page: 349 year: 2018 ident: 10.3348/kjr.2020.0715_ref24 publication-title: Radiother Oncol doi: 10.1016/j.radonc.2018.03.033 – volume: 13 start-page: 614 year: 2014 ident: 10.3348/kjr.2020.0715_ref4 publication-title: Lancet Neurol doi: 10.1016/S1474-4422(14)70090-0 – volume: 14 start-page: 535 year: 2018 ident: 10.3348/kjr.2020.0715_ref5 publication-title: Alzheimers Dement doi: 10.1016/j.jalz.2018.02.018 – volume: 6 start-page: 58213 year: 2018 ident: 10.3348/kjr.2020.0715_ref12 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2871977 – volume: 6 start-page: 61 year: 2012 ident: 10.3348/kjr.2020.0715_ref14 publication-title: Brain Imaging Behav doi: 10.1007/s11682-011-9142-3 – volume: 1 start-page: 031005 year: 2014 ident: 10.3348/kjr.2020.0715_ref39 publication-title: J Med Imaging (Bellingham) doi: 10.1117/1.JMI.1.3.031005 – volume: 11 start-page: 792 year: 2015 ident: 10.3348/kjr.2020.0715_ref45 publication-title: Alzheimers Dement doi: 10.1016/j.jalz.2015.05.009 – volume: 10 start-page: 290 year: 2018 ident: 10.3348/kjr.2020.0715_ref37 publication-title: Front Aging Neurosci doi: 10.3389/fnagi.2018.00290 – volume: 49 start-page: 1656 year: 2018 ident: 10.3348/kjr.2020.0715_ref33 publication-title: Stroke doi: 10.1161/STROKEAHA.117.019970 – volume: 45 start-page: 7 year: 2020 ident: 10.3348/kjr.2020.0715_ref21 publication-title: J Psychiatry Neurosci doi: 10.1503/jpn.180171 – volume: 70 start-page: 8 year: 2018 ident: 10.3348/kjr.2020.0715_ref31 publication-title: Comput Med Imaging Graph doi: 10.1016/j.compmedimag.2018.08.002 |
SSID | ssj0029084 |
Score | 2.3807926 |
Snippet | To evaluate radiomics analysis in studies on mild cognitive impairment (MCI) and Alzheimer's disease (AD) using a radiomics quality score (RQS) system to... Objective To evaluate radiomics analysis in studies on mild cognitive impairment (MCI) and Alzheimer's disease (AD) using a radiomics quality score (RQS)... Objective: To evaluate radiomics analysis in studies on mild cognitive impairment (MCI) and Alzheimer’s disease (AD) using a radiomics quality score (RQS)... |
SourceID | nrf pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1345 |
SubjectTerms | Aged Alzheimer Disease - diagnosis Alzheimer Disease - diagnostic imaging Alzheimer's disease Biomarkers Brain research Cognitive ability Cognitive Dysfunction - diagnosis Cognitive Dysfunction - diagnostic imaging Databases, Factual Datasets Dementia Hippocampus - anatomy & histology Hippocampus - diagnostic imaging Humans Medical imaging Neuroimaging Neuroimaging - methods Neuroimaging and Head & Neck Oncology Quality standards 방사선과학 |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZokRAXRHkGWmQQggtR17Edx71Uq8KqRVoOFZX2Zjm2Q8NukyW7PdBfz0weWxYBpxzsSE5m7Pnm4W8IeesAI6e5FjHPZRqLXKVx5qyOGdO-YAVYPNuyfX5JTy_E55mc9QG3VV9WOZyJ7UHta4cx8sNEJRmTYG3l8fJHjF2jMLvat9DYIXeRugy1Ws1uHS49ajsOswRLPAAHdBybePf0cP4dyUCTERL0yS2btFM1xd_g5p9Vk7-ZoclD8qDHj3TcCXyP3AnVI3Jv2mfIH5ObjhTjJ-2QNRgmWhf03PoSrx-v6EBCQsuKTsuFpydD_RA9g5OhbDBaSG3l6XhxcxnKq9C8X9GPXRrniI7peW39lV1SALt02oYj6KRusPb2CbmYfPp6chr3_RViJ4Rex4m0IQvSA2JSwoPnlQchLAOAlckC_BDEhgBYLBjxEAQCyRxArvYq9UXqOONPyW5VV-E5ocEpy7UsuONK2FxpqQK8Cvim0JkdpRH5MPxh43ryceyBsTDghKBADAjEoEAMCiQi7zbTlx3rxr8mvgFxmbkrDfJk4_NbbeaNAW_gzKB3pjmLyP4gTdPv0JW51aeIvN4Mw97ChImtQn0Nc4TUXACAyyLyrBP-Zjmcs1RLySOittRiMwHXsz1SlZctfzd4eBoc0xf_X9ZLch8_syud2Se76-Y6HAAAWuevWi3_BZ5TA4o priority: 102 providerName: ProQuest |
Title | Quality Reporting of Radiomics Analysis in Mild Cognitive Impairment and Alzheimer's Disease: A Roadmap for Moving Forward |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33169553 https://www.proquest.com/docview/2728157275 https://www.proquest.com/docview/2459349378 https://pubmed.ncbi.nlm.nih.gov/PMC7689149 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002647981 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Korean Journal of Radiology, 2020, 21(12), , pp.1345-1354 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELboJiFeEL8JjMogBC8E6tiOYySEyli1IXVCFZX6ZjmJw0K7ZKSdxPbXc5dfUBgST3mIHTk-O_d9vst3hDxPACOHsRY-j2Xoi1iFfpRY7TOm04xl4PFsrfZ5HB7OxaeFXPySFGoncH0ltcN6UvNq9frH94v3sOHfIePkInqz_IbCnsEIxfbkgOyCU1JYzGAq-oBCoEd18WEWYLYHQIJGbvPv7lvuaVBU2VXI888Eyt880uQWudlCSTpubH-bXHPFHXJ92gbL75LLRh_jgjYgG3wULTM6s2mOfyKvaadHQvOCTvNVSve7VCJ6BB-JvMKDQ2qLlI5XlycuP3XVyzX92ER03tIxnZU2PbVnFHAvndYnE3RSVpiGe4_MJwdf9g_9ttSCnwihN34grYucTAE8KZECCYudEJYB1opkBpQEYSJgFwv-3DmBmDIGvKtTFaZZmHDG75OdoizcQ0JdoizXMuMJV8LGSkvloCtAnUxHdhR65FU3wyZpdcixHMbKAB9BgxgwiEGDGDSIR170zc8aAY5_NXwG5jLLJDcomY3Xr6VZVgaIwZFBoqY588heZ03TrTUTqCBiEoAcPONpfxu2GcZObOHKc2gjpOYCsFzkkQeN8fvhcM5CLSX3iNpaFn0DHM_2nSI_qaW8gexp4KiP_mfsj8kNfNkml2aP7Gyqc_cEENEmHpKBWqgh2f1wcPx5NqxX_k_eKQq8 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED5tQwJeEL_JGGAQP16I1sR2EiMhVG1ULVv3MG1S34yTOCxrl5S0E9r-KP5G7pKmowh421Me4kSO7-L7Pvv8HcDrBDFyECvh8lgGrojDwI0So1zPU2nmZRjxTK32eRD0j8WXkRytwc_2LAylVbZzYj1Rp2VCa-TbfuhHnsRoKz9Nv7tUNYp2V9sSGo1b7NmLH0jZZh8Hu2jfN77f-3y003cXVQXcRAg1d31pbGRlijghFCnyjdgKYTyEFZHMEH0TIsIwbTB0WSsIPsUI7VQaBmkWJNzj-N51uIGBt0NkLxxdETzVqSscez6llCDuaDQ96azr9viUxEf9DgkCypUYuF5U2d_g7Z9Zmr-Fvd5duLPAq6zbONg9WLPFfbg5XOzIP4DLRoTjgjVIHgMhKzN2aNKcjjvPWCt6wvKCDfNJynbafCU2wJkor2h1kpkiZd3J5YnNz2z1bsZ2m22jD6zLDkuTnpkpQ3DNhvXyB-uVFeX6PoTjaxn5R7BRlIV9AswmoeFKZjzhoTBxqGRo8VHEU5mKTCdw4H07wjpZiJ1TzY2JRtJDBtFoEE0G0WQQB94um08blY9_NXyF5tLjJNeky03Xb6UeVxrZx0ATG1Tcc2CrtaZezAgzfeW_Drxc3sZ_mTZoTGHLc2wjpOICAWPkwOPG-MvucO4FSkruQLjiFssG1J_VO0V-UuuFI6NUSIQ3_9-tF3CrfzTc1_uDg72ncJs-uUnb2YKNeXVunyH4msfPa49n8PW6f7Ffmvk-Ow |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED5tnTTxgvhNxgCD-PFC1CaxkxgJobKuWhmtpopJezNO4rCsXVLSTmj70_jruGuSQhHwtqc8xImc3Nn3ffb5O4AXMWJkP5Lc9iLh2zwKfDuMtbQdRyapk2LE00u1z5F_cMw_noiTDfjRnIWhtMpmTlxO1EkR0xp52w3c0BEYbUU7rdMijnr997NvNlWQop3WppxG5SKH5vI70rf5u0EPbf3Sdfv7n_cO7LrCgB1zLhe2K7QJjUgQMwQ8Qe4RGc61gxAjFCkicUJHGLI1hjFjOEGpCGGeTAI_Sf3Yczx87yZsBcSKWrD1YX90NF7RPdlZ1jt2XEowQRRSKXzSydf25IykSN0OyQOKtYi4mZfp38DunzmbvwXB_i24WaNX1q3c7TZsmPwObA_r_fm7cFVJclyyCtdjWGRFysY6yejw85w1Eigsy9kwmyZsr8leYgOcl7KS1iqZzhPWnV6dmuzclK_nrFdtIr1lXTYudHKuZwyhNhsuF0NYvygp8_ceHF_Lv78PrbzIzUNgJg60J0XqxV7AdRRIERh8FNFVKkPd8S140_xhFdfS51SBY6qQApFBFBpEkUEUGcSCV6vms0rz418Nn6O51CTOFKl00_VroSalQi4yUMQNpedYsNtYU9Xzw1z98mYLnq1u48im7Rqdm-IC23AhPY7wMbTgQWX8VXc8z_GlEJ4FwZpbrBpQf9bv5NnpUj0c-aVEWrzz_249hW0cXurTYHT4CG7QF1c5PLvQWpQX5jEisUX0pHZ5Bl-ue5T9BP5vQ9Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quality+Reporting+of+Radiomics+Analysis+in+Mild+Cognitive+Impairment+and+Alzheimer%27s+Disease%3A+A+Roadmap+for+Moving+Forward&rft.jtitle=Korean+journal+of+radiology&rft.au=Won+So+Yeon&rft.au=Park+Yae+Won&rft.au=Park+Mina&rft.au=Ahn+Sung+Soo&rft.date=2020-12-01&rft.pub=%EB%8C%80%ED%95%9C%EC%98%81%EC%83%81%EC%9D%98%ED%95%99%ED%9A%8C&rft.issn=1229-6929&rft.eissn=2005-8330&rft.spage=1345&rft.epage=1354&rft_id=info:doi/10.3348%2Fkjr.2020.0715&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_9606931 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1229-6929&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1229-6929&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1229-6929&client=summon |