Quality Reporting of Radiomics Analysis in Mild Cognitive Impairment and Alzheimer's Disease: A Roadmap for Moving Forward

To evaluate radiomics analysis in studies on mild cognitive impairment (MCI) and Alzheimer's disease (AD) using a radiomics quality score (RQS) system to establish a roadmap for further improvement in clinical use. PubMed MEDLINE and EMBASE were searched using the terms 'cognitive impairme...

Full description

Saved in:
Bibliographic Details
Published inKorean journal of radiology Vol. 21; no. 12; pp. 1345 - 1354
Main Authors Won, So Yeon, Park, Yae Won, Park, Mina, Ahn, Sung Soo, Kim, Jinna, Lee, Seung-Koo
Format Journal Article
LanguageEnglish
Published Korea (South) The Korean Society of Radiology 01.12.2020
대한영상의학회
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To evaluate radiomics analysis in studies on mild cognitive impairment (MCI) and Alzheimer's disease (AD) using a radiomics quality score (RQS) system to establish a roadmap for further improvement in clinical use. PubMed MEDLINE and EMBASE were searched using the terms 'cognitive impairment' or 'Alzheimer' or 'dementia' and 'radiomic' or 'texture' or 'radiogenomic' for articles published until March 2020. From 258 articles, 26 relevant original research articles were selected. Two neuroradiologists assessed the quality of the methodology according to the RQS. Adherence rates for the following six key domains were evaluated: image protocol and reproducibility, feature reduction and validation, biologic/clinical utility, performance index, high level of evidence, and open science. The hippocampus was the most frequently analyzed (46.2%) anatomical structure. Of the 26 studies, 16 (61.5%) used an open source database (14 from Alzheimer's Disease Neuroimaging Initiative and 2 from Open Access Series of Imaging Studies). The mean RQS was 3.6 out of 36 (9.9%), and the basic adherence rate was 27.6%. Only one study (3.8%) performed external validation. The adherence rate was relatively high for reporting the imaging protocol (96.2%), multiple segmentation (76.9%), discrimination statistics (69.2%), and open science and data (65.4%) but low for conducting test-retest analysis (7.7%) and biologic correlation (3.8%). None of the studies stated potential clinical utility, conducted a phantom study, performed cut-off analysis or calibration statistics, was a prospective study, or conducted cost-effectiveness analysis, resulting in a low level of evidence. The quality of radiomics reporting in MCI and AD studies is suboptimal. Validation is necessary using external dataset, and improvements need to be made to feature reproducibility, feature selection, clinical utility, model performance index, and pursuits of a higher level of evidence.
AbstractList Objective: To evaluate radiomics analysis in studies on mild cognitive impairment (MCI) and Alzheimer’s disease (AD) using a radiomics quality score (RQS) system to establish a roadmap for further improvement in clinical use. Materials and Methods: PubMed MEDLINE and EMBASE were searched using the terms ‘cognitive impairment’ or ‘Alzheimer’ or ‘dementia’ and ‘radiomic’ or ‘texture’ or ‘radiogenomic’ for articles published until March 2020. From 258 articles, 26 relevant original research articles were selected. Two neuroradiologists assessed the quality of the methodology according to the RQS. Adherence rates for the following six key domains were evaluated: image protocol and reproducibility, feature reduction and validation, biologic/clinical utility, performance index, high level of evidence, and open science. Results: The hippocampus was the most frequently analyzed (46.2%) anatomical structure. Of the 26 studies, 16 (61.5%) used an open source database (14 from Alzheimer’s Disease Neuroimaging Initiative and 2 from Open Access Series of Imaging Studies). The mean RQS was 3.6 out of 36 (9.9%), and the basic adherence rate was 27.6%. Only one study (3.8%) performed external validation. The adherence rate was relatively high for reporting the imaging protocol (96.2%), multiple segmentation (76.9%), discrimination statistics (69.2%), and open science and data (65.4%) but low for conducting test-retest analysis (7.7%) and biologic correlation (3.8%). None of the studies stated potential clinical utility, conducted a phantom study, performed cut-off analysis or calibration statistics, was a prospective study, or conducted cost-effectiveness analysis, resulting in a low level of evidence. Conclusion: The quality of radiomics reporting in MCI and AD studies is suboptimal. Validation is necessary using external dataset, and improvements need to be made to feature reproducibility, feature selection, clinical utility, model performance index, and pursuits of a higher level of evidence. KCI Citation Count: 0
Objective To evaluate radiomics analysis in studies on mild cognitive impairment (MCI) and Alzheimer's disease (AD) using a radiomics quality score (RQS) system to establish a roadmap for further improvement in clinical use. Materials and Methods PubMed MEDLINE and EMBASE were searched using the terms ‘cognitive impairment’ or ‘Alzheimer’ or ‘dementia’ and ‘radiomic’ or ‘texture’ or ‘radiogenomic’ for articles published until March 2020. From 258 articles, 26 relevant original research articles were selected. Two neuroradiologists assessed the quality of the methodology according to the RQS. Adherence rates for the following six key domains were evaluated: image protocol and reproducibility, feature reduction and validation, biologic/clinical utility, performance index, high level of evidence, and open science. Results The hippocampus was the most frequently analyzed (46.2%) anatomical structure. Of the 26 studies, 16 (61.5%) used an open source database (14 from Alzheimer's Disease Neuroimaging Initiative and 2 from Open Access Series of Imaging Studies). The mean RQS was 3.6 out of 36 (9.9%), and the basic adherence rate was 27.6%. Only one study (3.8%) performed external validation. The adherence rate was relatively high for reporting the imaging protocol (96.2%), multiple segmentation (76.9%), discrimination statistics (69.2%), and open science and data (65.4%) but low for conducting test-retest analysis (7.7%) and biologic correlation (3.8%). None of the studies stated potential clinical utility, conducted a phantom study, performed cut-off analysis or calibration statistics, was a prospective study, or conducted cost-effectiveness analysis, resulting in a low level of evidence. Conclusion The quality of radiomics reporting in MCI and AD studies is suboptimal. Validation is necessary using external dataset, and improvements need to be made to feature reproducibility, feature selection, clinical utility, model performance index, and pursuits of a higher level of evidence.
To evaluate radiomics analysis in studies on mild cognitive impairment (MCI) and Alzheimer's disease (AD) using a radiomics quality score (RQS) system to establish a roadmap for further improvement in clinical use.OBJECTIVETo evaluate radiomics analysis in studies on mild cognitive impairment (MCI) and Alzheimer's disease (AD) using a radiomics quality score (RQS) system to establish a roadmap for further improvement in clinical use.PubMed MEDLINE and EMBASE were searched using the terms 'cognitive impairment' or 'Alzheimer' or 'dementia' and 'radiomic' or 'texture' or 'radiogenomic' for articles published until March 2020. From 258 articles, 26 relevant original research articles were selected. Two neuroradiologists assessed the quality of the methodology according to the RQS. Adherence rates for the following six key domains were evaluated: image protocol and reproducibility, feature reduction and validation, biologic/clinical utility, performance index, high level of evidence, and open science.MATERIALS AND METHODSPubMed MEDLINE and EMBASE were searched using the terms 'cognitive impairment' or 'Alzheimer' or 'dementia' and 'radiomic' or 'texture' or 'radiogenomic' for articles published until March 2020. From 258 articles, 26 relevant original research articles were selected. Two neuroradiologists assessed the quality of the methodology according to the RQS. Adherence rates for the following six key domains were evaluated: image protocol and reproducibility, feature reduction and validation, biologic/clinical utility, performance index, high level of evidence, and open science.The hippocampus was the most frequently analyzed (46.2%) anatomical structure. Of the 26 studies, 16 (61.5%) used an open source database (14 from Alzheimer's Disease Neuroimaging Initiative and 2 from Open Access Series of Imaging Studies). The mean RQS was 3.6 out of 36 (9.9%), and the basic adherence rate was 27.6%. Only one study (3.8%) performed external validation. The adherence rate was relatively high for reporting the imaging protocol (96.2%), multiple segmentation (76.9%), discrimination statistics (69.2%), and open science and data (65.4%) but low for conducting test-retest analysis (7.7%) and biologic correlation (3.8%). None of the studies stated potential clinical utility, conducted a phantom study, performed cut-off analysis or calibration statistics, was a prospective study, or conducted cost-effectiveness analysis, resulting in a low level of evidence.RESULTSThe hippocampus was the most frequently analyzed (46.2%) anatomical structure. Of the 26 studies, 16 (61.5%) used an open source database (14 from Alzheimer's Disease Neuroimaging Initiative and 2 from Open Access Series of Imaging Studies). The mean RQS was 3.6 out of 36 (9.9%), and the basic adherence rate was 27.6%. Only one study (3.8%) performed external validation. The adherence rate was relatively high for reporting the imaging protocol (96.2%), multiple segmentation (76.9%), discrimination statistics (69.2%), and open science and data (65.4%) but low for conducting test-retest analysis (7.7%) and biologic correlation (3.8%). None of the studies stated potential clinical utility, conducted a phantom study, performed cut-off analysis or calibration statistics, was a prospective study, or conducted cost-effectiveness analysis, resulting in a low level of evidence.The quality of radiomics reporting in MCI and AD studies is suboptimal. Validation is necessary using external dataset, and improvements need to be made to feature reproducibility, feature selection, clinical utility, model performance index, and pursuits of a higher level of evidence.CONCLUSIONThe quality of radiomics reporting in MCI and AD studies is suboptimal. Validation is necessary using external dataset, and improvements need to be made to feature reproducibility, feature selection, clinical utility, model performance index, and pursuits of a higher level of evidence.
To evaluate radiomics analysis in studies on mild cognitive impairment (MCI) and Alzheimer's disease (AD) using a radiomics quality score (RQS) system to establish a roadmap for further improvement in clinical use. PubMed MEDLINE and EMBASE were searched using the terms 'cognitive impairment' or 'Alzheimer' or 'dementia' and 'radiomic' or 'texture' or 'radiogenomic' for articles published until March 2020. From 258 articles, 26 relevant original research articles were selected. Two neuroradiologists assessed the quality of the methodology according to the RQS. Adherence rates for the following six key domains were evaluated: image protocol and reproducibility, feature reduction and validation, biologic/clinical utility, performance index, high level of evidence, and open science. The hippocampus was the most frequently analyzed (46.2%) anatomical structure. Of the 26 studies, 16 (61.5%) used an open source database (14 from Alzheimer's Disease Neuroimaging Initiative and 2 from Open Access Series of Imaging Studies). The mean RQS was 3.6 out of 36 (9.9%), and the basic adherence rate was 27.6%. Only one study (3.8%) performed external validation. The adherence rate was relatively high for reporting the imaging protocol (96.2%), multiple segmentation (76.9%), discrimination statistics (69.2%), and open science and data (65.4%) but low for conducting test-retest analysis (7.7%) and biologic correlation (3.8%). None of the studies stated potential clinical utility, conducted a phantom study, performed cut-off analysis or calibration statistics, was a prospective study, or conducted cost-effectiveness analysis, resulting in a low level of evidence. The quality of radiomics reporting in MCI and AD studies is suboptimal. Validation is necessary using external dataset, and improvements need to be made to feature reproducibility, feature selection, clinical utility, model performance index, and pursuits of a higher level of evidence.
Author Kim, Jinna
Lee, Seung-Koo
Park, Yae Won
Won, So Yeon
Park, Mina
Ahn, Sung Soo
AuthorAffiliation 1 Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
2 Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
AuthorAffiliation_xml – name: 1 Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
– name: 2 Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
Author_xml – sequence: 1
  givenname: So Yeon
  orcidid: 0000-0003-0570-3365
  surname: Won
  fullname: Won, So Yeon
  organization: Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
– sequence: 2
  givenname: Yae Won
  orcidid: 0000-0001-8907-5401
  surname: Park
  fullname: Park, Yae Won
  organization: Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
– sequence: 3
  givenname: Mina
  orcidid: 0000-0002-2005-7560
  surname: Park
  fullname: Park, Mina
  organization: Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
– sequence: 4
  givenname: Sung Soo
  orcidid: 0000-0002-0503-5558
  surname: Ahn
  fullname: Ahn, Sung Soo
  organization: Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
– sequence: 5
  givenname: Jinna
  orcidid: 0000-0002-9978-4356
  surname: Kim
  fullname: Kim, Jinna
  organization: Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
– sequence: 6
  givenname: Seung-Koo
  orcidid: 0000-0001-5646-4072
  surname: Lee
  fullname: Lee, Seung-Koo
  organization: Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33169553$$D View this record in MEDLINE/PubMed
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002647981$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNptkk1vEzEYhC1URNPCkSuyxAE4bPC31xyQopRCpFaIqJwtZ9ebOtm1F3sTlP76OkmLoOL0HvzMeF57zsCJD94C8BqjMaWs_LhexTFBBI2RxPwZGBGEeFFSik7ACBOiCqGIOgVnKa0QIgqV7AU4pRQLxTkdgbsfG9O6YQfntg9xcH4JQwPnpnahc1WCE2_aXXIJOg-vXVvDaVh6N7ithbOuNy521g_Q-BpO2rtb6zob3yV44ZI1yX6CEzgPpu5MD5sQ4XXY7i-4DPG3ifVL8LwxbbKvHuY5-Hn55Wb6rbj6_nU2nVwVFWNqKAg3trS8ZpRLVpNSLSxjBjNCS95wKaiSUjBqGBHWMqWwWJR4oWop6kZUFNNz8OHo62Oj15XTwbjDXAa9jnoyv5lpJZBQB_bzke03i87WVV4umlb30XUm7g7Kf0-8u80-Wy1FqTBT2eD9g0EMvzY2DbpzqbJta7wNm6QJ44pmTpYZffsEXYVNzO-dKUlKzCWRPFNv_k70J8rjF2aAHoEqhpSibXTlBjO4sA_oWo2R3hdF56LofVH0vihZVTxRPRr_n78H1PC-zA
CitedBy_id crossref_primary_10_1007_s00330_024_10594_x
crossref_primary_10_1093_braincomms_fcad195
crossref_primary_10_3390_brainsci13020367
crossref_primary_10_1007_s00330_023_09708_8
crossref_primary_10_1007_s00330_021_08429_0
crossref_primary_10_1186_s12880_022_00892_5
crossref_primary_10_1186_s13244_022_01277_6
crossref_primary_10_1186_s13244_022_01279_4
crossref_primary_10_1016_j_jpsychires_2023_01_024
crossref_primary_10_28982_josam_990310
crossref_primary_10_1371_journal_pone_0256152
crossref_primary_10_3390_s22145205
crossref_primary_10_1007_s00330_022_09187_3
crossref_primary_10_14309_ctg_0000000000000802
crossref_primary_10_1007_s00330_022_08587_9
crossref_primary_10_1259_bjr_20220401
crossref_primary_10_1259_bjr_20211211
crossref_primary_10_1161_STROKEAHA_122_039732
crossref_primary_10_1016_j_ejrad_2021_109673
crossref_primary_10_3348_kjr_2020_1429
crossref_primary_10_1016_j_acra_2022_12_033
crossref_primary_10_13104_imri_2021_25_4_266
crossref_primary_10_3348_kjr_2021_0421
crossref_primary_10_1038_s43856_022_00133_4
crossref_primary_10_1016_j_ifacol_2024_11_041
crossref_primary_10_3348_kjr_2021_0963
crossref_primary_10_1016_j_ejrad_2022_110497
Cites_doi 10.1016/j.neurobiolaging.2019.05.007
10.1109/42.712137
10.1007/s11682-018-9833-0
10.1212/WNL.55.1.134
10.1016/j.cmpb.2019.03.003
10.1002/hbm.23091
10.3348/kjr.2018.0070
10.1093/neuonc/noy021
10.1016/j.neurobiolaging.2017.01.021
10.1212/WNL.59.5.746
10.3389/fnins.2018.01045
10.3389/fnagi.2019.00323
10.1176/appi.neuropsych.17120366
10.1007/s11011-018-0296-1
10.1148/radiol.2015151169
10.1038/nrclinonc.2017.141
10.1016/j.jalz.2018.08.005
10.1155/2015/572567
10.1016/j.jneumeth.2019.01.011
10.1016/j.jalz.2019.02.007
10.1007/s00330-019-06360-z
10.1371/journal.pone.0117759
10.1118/1.4958959
10.1148/radiol.2016160845
10.3389/fneur.2018.00618
10.3390/diagnostics8030047
10.1016/S1474-4422(09)70299-6
10.1002/jmri.21049
10.1016/j.ejca.2011.11.037
10.1093/ije/20.3.736
10.1016/S1474-4422(07)70178-3
10.3348/kjr.2018.0814
10.1186/s12885-019-6504-5
10.3174/ajnr.A2232
10.3174/ajnr.A5569
10.1016/j.radonc.2018.03.033
10.1016/S1474-4422(14)70090-0
10.1016/j.jalz.2018.02.018
10.1109/ACCESS.2018.2871977
10.1007/s11682-011-9142-3
10.1117/1.JMI.1.3.031005
10.1016/j.jalz.2015.05.009
10.3389/fnagi.2018.00290
10.1161/STROKEAHA.117.019970
10.1503/jpn.180171
10.1016/j.compmedimag.2018.08.002
ContentType Journal Article
Copyright Copyright © 2020 The Korean Society of Radiology.
2020. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2020 The Korean Society of Radiology 2020 The Korean Society of Radiology
Copyright_xml – notice: Copyright © 2020 The Korean Society of Radiology.
– notice: 2020. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2020 The Korean Society of Radiology 2020 The Korean Society of Radiology
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
KB0
M0S
M1P
NAPCQ
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ACYCR
DOI 10.3348/kjr.2020.0715
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Health & Medical Collection
Medical Database
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Korean Citation Index
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2005-8330
EndPage 1354
ExternalDocumentID oai_kci_go_kr_ARTI_9606931
PMC7689149
33169553
10_3348_kjr_2020_0715
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ;
  grantid: 2020R1I1A1A01071648
GroupedDBID ---
29L
2WC
5-W
53G
5GY
7RV
7X7
88E
8FI
8FJ
8JR
8XY
9ZL
AAYXX
ABUWG
ADBBV
ADRAZ
AENEX
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BENPR
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EBD
EF.
EMOBN
F5P
FRP
FYUFA
GX1
HMCUK
HYE
KQ8
M1P
M48
NAPCQ
O5R
O5S
OK1
OVT
P6G
PGMZT
PHGZM
PHGZT
PIMPY
PSQYO
RNS
RPM
SV3
TR2
UKHRP
W2D
WH7
XSB
CGR
CUY
CVF
ECM
EIF
M~E
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ACYCR
ID FETCH-LOGICAL-c449t-25ae8e5d43574d289be44a142385f5763977643a426ee49916b81b9d76df6c313
IEDL.DBID M48
ISSN 1229-6929
2005-8330
IngestDate Tue Nov 21 21:43:08 EST 2023
Thu Aug 21 18:27:37 EDT 2025
Fri Jul 11 10:41:54 EDT 2025
Fri Jul 25 09:57:27 EDT 2025
Thu Jan 02 22:57:16 EST 2025
Tue Jul 01 01:26:18 EDT 2025
Thu Apr 24 23:00:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 12
Keywords Radiomics, Radiomics quality score
Mild cognitive impairment
Alzheimer's disease
Dementia
Language English
License Copyright © 2020 The Korean Society of Radiology.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c449t-25ae8e5d43574d289be44a142385f5763977643a426ee49916b81b9d76df6c313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
https://doi.org/10.3348/kjr.2020.0715
ORCID 0000-0001-8907-5401
0000-0002-2005-7560
0000-0002-9978-4356
0000-0001-5646-4072
0000-0002-0503-5558
0000-0003-0570-3365
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3348/kjr.2020.0715
PMID 33169553
PQID 2728157275
PQPubID 5474425
PageCount 10
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_9606931
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7689149
proquest_miscellaneous_2459349378
proquest_journals_2728157275
pubmed_primary_33169553
crossref_citationtrail_10_3348_kjr_2020_0715
crossref_primary_10_3348_kjr_2020_0715
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Korea (South)
PublicationPlace_xml – name: Korea (South)
– name: Seoul
PublicationTitle Korean journal of radiology
PublicationTitleAlternate Korean J Radiol
PublicationYear 2020
Publisher The Korean Society of Radiology
대한영상의학회
Publisher_xml – name: The Korean Society of Radiology
– name: 대한영상의학회
References Lambin (10.3348/kjr.2020.0715_ref22) 2017; 14
Li (10.3348/kjr.2020.0715_ref20) 2019; 15
Kang (10.3348/kjr.2020.0715_ref8) 2018; 20
Park (10.3348/kjr.2020.0715_ref48) 2019; 20
Cai (10.3348/kjr.2020.0715_ref18) 2020
Hett (10.3348/kjr.2020.0715_ref31) 2018; 70
Feng (10.3348/kjr.2020.0715_ref17) 2018; 9
Gillies (10.3348/kjr.2020.0715_ref7) 2016; 278
Jack (10.3348/kjr.2020.0715_ref44) 2008; 27
Freeborough (10.3348/kjr.2020.0715_ref16) 1998; 17
Veitch (10.3348/kjr.2020.0715_ref2) 2019; 15
Park (10.3348/kjr.2020.0715_ref11) 2018; 39
Park (10.3348/kjr.2020.0715_ref25) 2020; 30
Waterton (10.3348/kjr.2020.0715_ref23) 2012; 48
Park (10.3348/kjr.2020.0715_ref26) 2020; 20
Rohini (10.3348/kjr.2020.0715_ref32) 2019; 173
Kickingereder (10.3348/kjr.2020.0715_ref9) 2016; 280
Ranjbar (10.3348/kjr.2020.0715_ref28) 2019; 31
Sanduleanu (10.3348/kjr.2020.0715_ref24) 2018; 127
Chaddad (10.3348/kjr.2020.0715_ref12) 2018; 6
Jack (10.3348/kjr.2020.0715_ref5) 2018; 14
Martinez-Torteya (10.3348/kjr.2020.0715_ref39) 2014; 1
Rajeesh (10.3348/kjr.2020.0715_ref15) 2012; 6
Feng (10.3348/kjr.2020.0715_ref37) 2018; 10
Zhang (10.3348/kjr.2020.0715_ref14) 2012; 6
Vaithinathan (10.3348/kjr.2020.0715_ref41) 2019; 318
Maani (10.3348/kjr.2020.0715_ref13) 2015; 10
De Oliveira (10.3348/kjr.2020.0715_ref34) 2011; 32
Hwang (10.3348/kjr.2020.0715_ref36) 2016; 43
Saykin (10.3348/kjr.2020.0715_ref45) 2015; 11
Zhou (10.3348/kjr.2020.0715_ref19) 2019; 12
Boccardi (10.3348/kjr.2020.0715_ref49) 2017; 52
Gao (10.3348/kjr.2020.0715_ref38) 2018; 33
Den Heijer (10.3348/kjr.2020.0715_ref46) 2002; 59
López-Gómez (10.3348/kjr.2020.0715_ref35) 2018; 8
Feng (10.3348/kjr.2020.0715_ref40) 2019; 11
Jack (10.3348/kjr.2020.0715_ref6) 2010; 9
Park (10.3348/kjr.2020.0715_ref10) 2019; 20
Achterberg (10.3348/kjr.2020.0715_ref43) 2019; 81
Li (10.3348/kjr.2020.0715_ref42) 2019; 12
Tozer (10.3348/kjr.2020.0715_ref33) 2018; 49
Hofman (10.3348/kjr.2020.0715_ref1) 1991; 20
Sørensen (10.3348/kjr.2020.0715_ref29) 2016; 37
Oppedal (10.3348/kjr.2020.0715_ref27) 2015; 2015
Moffat (10.3348/kjr.2020.0715_ref47) 2000; 55
Dubois (10.3348/kjr.2020.0715_ref3) 2007; 6
Ben Bouallègue (10.3348/kjr.2020.0715_ref30) 2019; 13
Dubois (10.3348/kjr.2020.0715_ref4) 2014; 13
Lee (10.3348/kjr.2020.0715_ref21) 2020; 45
References_xml – volume: 81
  start-page: 58
  year: 2019
  ident: 10.3348/kjr.2020.0715_ref43
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2019.05.007
– volume: 17
  start-page: 475
  year: 1998
  ident: 10.3348/kjr.2020.0715_ref16
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/42.712137
– volume: 13
  start-page: 111
  year: 2019
  ident: 10.3348/kjr.2020.0715_ref30
  publication-title: Brain Imaging Behav
  doi: 10.1007/s11682-018-9833-0
– volume: 55
  start-page: 134
  year: 2000
  ident: 10.3348/kjr.2020.0715_ref47
  publication-title: Neurology
  doi: 10.1212/WNL.55.1.134
– volume: 173
  start-page: 147
  year: 2019
  ident: 10.3348/kjr.2020.0715_ref32
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2019.03.003
– year: 2020
  ident: 10.3348/kjr.2020.0715_ref18
  publication-title: Acad Radiol
– volume: 37
  start-page: 1148
  year: 2016
  ident: 10.3348/kjr.2020.0715_ref29
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.23091
– volume: 20
  start-page: 1124
  year: 2019
  ident: 10.3348/kjr.2020.0715_ref48
  publication-title: Korean J Radiol
  doi: 10.3348/kjr.2018.0070
– volume: 20
  start-page: 1251
  year: 2018
  ident: 10.3348/kjr.2020.0715_ref8
  publication-title: Neuro Oncol
  doi: 10.1093/neuonc/noy021
– volume: 52
  start-page: 141
  year: 2017
  ident: 10.3348/kjr.2020.0715_ref49
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2017.01.021
– volume: 59
  start-page: 746
  year: 2002
  ident: 10.3348/kjr.2020.0715_ref46
  publication-title: Neurology
  doi: 10.1212/WNL.59.5.746
– volume: 12
  start-page: 1045
  year: 2019
  ident: 10.3348/kjr.2020.0715_ref19
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2018.01045
– volume: 11
  start-page: 323
  year: 2019
  ident: 10.3348/kjr.2020.0715_ref40
  publication-title: Front Aging Neurosci
  doi: 10.3389/fnagi.2019.00323
– volume: 31
  start-page: 210
  year: 2019
  ident: 10.3348/kjr.2020.0715_ref28
  publication-title: J Neuropsychiatry Clin Neurosci
  doi: 10.1176/appi.neuropsych.17120366
– volume: 33
  start-page: 1899
  year: 2018
  ident: 10.3348/kjr.2020.0715_ref38
  publication-title: Metab Brain Dis
  doi: 10.1007/s11011-018-0296-1
– volume: 278
  start-page: 563
  year: 2016
  ident: 10.3348/kjr.2020.0715_ref7
  publication-title: Radiology
  doi: 10.1148/radiol.2015151169
– volume: 14
  start-page: 749
  year: 2017
  ident: 10.3348/kjr.2020.0715_ref22
  publication-title: Nat Rev Clin Oncol
  doi: 10.1038/nrclinonc.2017.141
– volume: 15
  start-page: 106
  year: 2019
  ident: 10.3348/kjr.2020.0715_ref2
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2018.08.005
– volume: 2015
  start-page: 572567
  year: 2015
  ident: 10.3348/kjr.2020.0715_ref27
  publication-title: Int J Biomed Imaging
  doi: 10.1155/2015/572567
– volume: 318
  start-page: 84
  year: 2019
  ident: 10.3348/kjr.2020.0715_ref41
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2019.01.011
– volume: 15
  start-page: 1059
  year: 2019
  ident: 10.3348/kjr.2020.0715_ref20
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2019.02.007
– volume: 30
  start-page: 523
  year: 2020
  ident: 10.3348/kjr.2020.0715_ref25
  publication-title: Eur Radiol
  doi: 10.1007/s00330-019-06360-z
– volume: 10
  start-page: e0117759
  year: 2015
  ident: 10.3348/kjr.2020.0715_ref13
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0117759
– volume: 43
  start-page: 4718
  year: 2016
  ident: 10.3348/kjr.2020.0715_ref36
  publication-title: Med Phys
  doi: 10.1118/1.4958959
– volume: 280
  start-page: 880
  year: 2016
  ident: 10.3348/kjr.2020.0715_ref9
  publication-title: Radiology
  doi: 10.1148/radiol.2016160845
– volume: 9
  start-page: 618
  year: 2018
  ident: 10.3348/kjr.2020.0715_ref17
  publication-title: Front Neurol
  doi: 10.3389/fneur.2018.00618
– volume: 8
  start-page: 47
  year: 2018
  ident: 10.3348/kjr.2020.0715_ref35
  publication-title: Diagnostics (Basel)
  doi: 10.3390/diagnostics8030047
– volume: 9
  start-page: 119
  year: 2010
  ident: 10.3348/kjr.2020.0715_ref6
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(09)70299-6
– volume: 27
  start-page: 685
  year: 2008
  ident: 10.3348/kjr.2020.0715_ref44
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.21049
– volume: 48
  start-page: 409
  year: 2012
  ident: 10.3348/kjr.2020.0715_ref23
  publication-title: Eur J Cancer
  doi: 10.1016/j.ejca.2011.11.037
– volume: 20
  start-page: 736
  year: 1991
  ident: 10.3348/kjr.2020.0715_ref1
  publication-title: Int J Epidemiol
  doi: 10.1093/ije/20.3.736
– volume: 6
  start-page: 734
  year: 2007
  ident: 10.3348/kjr.2020.0715_ref3
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(07)70178-3
– volume: 20
  start-page: 1381
  year: 2019
  ident: 10.3348/kjr.2020.0715_ref10
  publication-title: Korean J Radiol
  doi: 10.3348/kjr.2018.0814
– volume: 6
  start-page: 87
  year: 2012
  ident: 10.3348/kjr.2020.0715_ref15
  publication-title: Asian Biomedicine
– volume: 20
  start-page: 29
  year: 2020
  ident: 10.3348/kjr.2020.0715_ref26
  publication-title: BMC Cancer
  doi: 10.1186/s12885-019-6504-5
– volume: 12
  start-page: 1756286419838682
  year: 2019
  ident: 10.3348/kjr.2020.0715_ref42
  publication-title: Ther Adv Neurol Disord
– volume: 32
  start-page: 60
  year: 2011
  ident: 10.3348/kjr.2020.0715_ref34
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A2232
– volume: 39
  start-page: 693
  year: 2018
  ident: 10.3348/kjr.2020.0715_ref11
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A5569
– volume: 127
  start-page: 349
  year: 2018
  ident: 10.3348/kjr.2020.0715_ref24
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2018.03.033
– volume: 13
  start-page: 614
  year: 2014
  ident: 10.3348/kjr.2020.0715_ref4
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(14)70090-0
– volume: 14
  start-page: 535
  year: 2018
  ident: 10.3348/kjr.2020.0715_ref5
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2018.02.018
– volume: 6
  start-page: 58213
  year: 2018
  ident: 10.3348/kjr.2020.0715_ref12
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2871977
– volume: 6
  start-page: 61
  year: 2012
  ident: 10.3348/kjr.2020.0715_ref14
  publication-title: Brain Imaging Behav
  doi: 10.1007/s11682-011-9142-3
– volume: 1
  start-page: 031005
  year: 2014
  ident: 10.3348/kjr.2020.0715_ref39
  publication-title: J Med Imaging (Bellingham)
  doi: 10.1117/1.JMI.1.3.031005
– volume: 11
  start-page: 792
  year: 2015
  ident: 10.3348/kjr.2020.0715_ref45
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2015.05.009
– volume: 10
  start-page: 290
  year: 2018
  ident: 10.3348/kjr.2020.0715_ref37
  publication-title: Front Aging Neurosci
  doi: 10.3389/fnagi.2018.00290
– volume: 49
  start-page: 1656
  year: 2018
  ident: 10.3348/kjr.2020.0715_ref33
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.117.019970
– volume: 45
  start-page: 7
  year: 2020
  ident: 10.3348/kjr.2020.0715_ref21
  publication-title: J Psychiatry Neurosci
  doi: 10.1503/jpn.180171
– volume: 70
  start-page: 8
  year: 2018
  ident: 10.3348/kjr.2020.0715_ref31
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2018.08.002
SSID ssj0029084
Score 2.3807926
Snippet To evaluate radiomics analysis in studies on mild cognitive impairment (MCI) and Alzheimer's disease (AD) using a radiomics quality score (RQS) system to...
Objective To evaluate radiomics analysis in studies on mild cognitive impairment (MCI) and Alzheimer's disease (AD) using a radiomics quality score (RQS)...
Objective: To evaluate radiomics analysis in studies on mild cognitive impairment (MCI) and Alzheimer’s disease (AD) using a radiomics quality score (RQS)...
SourceID nrf
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1345
SubjectTerms Aged
Alzheimer Disease - diagnosis
Alzheimer Disease - diagnostic imaging
Alzheimer's disease
Biomarkers
Brain research
Cognitive ability
Cognitive Dysfunction - diagnosis
Cognitive Dysfunction - diagnostic imaging
Databases, Factual
Datasets
Dementia
Hippocampus - anatomy & histology
Hippocampus - diagnostic imaging
Humans
Medical imaging
Neuroimaging
Neuroimaging - methods
Neuroimaging and Head & Neck
Oncology
Quality standards
방사선과학
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZokRAXRHkGWmQQggtR17Edx71Uq8KqRVoOFZX2Zjm2Q8NukyW7PdBfz0weWxYBpxzsSE5m7Pnm4W8IeesAI6e5FjHPZRqLXKVx5qyOGdO-YAVYPNuyfX5JTy_E55mc9QG3VV9WOZyJ7UHta4cx8sNEJRmTYG3l8fJHjF2jMLvat9DYIXeRugy1Ws1uHS49ajsOswRLPAAHdBybePf0cP4dyUCTERL0yS2btFM1xd_g5p9Vk7-ZoclD8qDHj3TcCXyP3AnVI3Jv2mfIH5ObjhTjJ-2QNRgmWhf03PoSrx-v6EBCQsuKTsuFpydD_RA9g5OhbDBaSG3l6XhxcxnKq9C8X9GPXRrniI7peW39lV1SALt02oYj6KRusPb2CbmYfPp6chr3_RViJ4Rex4m0IQvSA2JSwoPnlQchLAOAlckC_BDEhgBYLBjxEAQCyRxArvYq9UXqOONPyW5VV-E5ocEpy7UsuONK2FxpqQK8Cvim0JkdpRH5MPxh43ryceyBsTDghKBADAjEoEAMCiQi7zbTlx3rxr8mvgFxmbkrDfJk4_NbbeaNAW_gzKB3pjmLyP4gTdPv0JW51aeIvN4Mw97ChImtQn0Nc4TUXACAyyLyrBP-Zjmcs1RLySOittRiMwHXsz1SlZctfzd4eBoc0xf_X9ZLch8_syud2Se76-Y6HAAAWuevWi3_BZ5TA4o
  priority: 102
  providerName: ProQuest
Title Quality Reporting of Radiomics Analysis in Mild Cognitive Impairment and Alzheimer's Disease: A Roadmap for Moving Forward
URI https://www.ncbi.nlm.nih.gov/pubmed/33169553
https://www.proquest.com/docview/2728157275
https://www.proquest.com/docview/2459349378
https://pubmed.ncbi.nlm.nih.gov/PMC7689149
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002647981
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Korean Journal of Radiology, 2020, 21(12), , pp.1345-1354
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELboJiFeEL8JjMogBC8E6tiOYySEyli1IXVCFZX6ZjmJw0K7ZKSdxPbXc5dfUBgST3mIHTk-O_d9vst3hDxPACOHsRY-j2Xoi1iFfpRY7TOm04xl4PFsrfZ5HB7OxaeFXPySFGoncH0ltcN6UvNq9frH94v3sOHfIePkInqz_IbCnsEIxfbkgOyCU1JYzGAq-oBCoEd18WEWYLYHQIJGbvPv7lvuaVBU2VXI888Eyt880uQWudlCSTpubH-bXHPFHXJ92gbL75LLRh_jgjYgG3wULTM6s2mOfyKvaadHQvOCTvNVSve7VCJ6BB-JvMKDQ2qLlI5XlycuP3XVyzX92ER03tIxnZU2PbVnFHAvndYnE3RSVpiGe4_MJwdf9g_9ttSCnwihN34grYucTAE8KZECCYudEJYB1opkBpQEYSJgFwv-3DmBmDIGvKtTFaZZmHDG75OdoizcQ0JdoizXMuMJV8LGSkvloCtAnUxHdhR65FU3wyZpdcixHMbKAB9BgxgwiEGDGDSIR170zc8aAY5_NXwG5jLLJDcomY3Xr6VZVgaIwZFBoqY588heZ03TrTUTqCBiEoAcPONpfxu2GcZObOHKc2gjpOYCsFzkkQeN8fvhcM5CLSX3iNpaFn0DHM_2nSI_qaW8gexp4KiP_mfsj8kNfNkml2aP7Gyqc_cEENEmHpKBWqgh2f1wcPx5NqxX_k_eKQq8
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED5tQwJeEL_JGGAQP16I1sR2EiMhVG1ULVv3MG1S34yTOCxrl5S0E9r-KP5G7pKmowh421Me4kSO7-L7Pvv8HcDrBDFyECvh8lgGrojDwI0So1zPU2nmZRjxTK32eRD0j8WXkRytwc_2LAylVbZzYj1Rp2VCa-TbfuhHnsRoKz9Nv7tUNYp2V9sSGo1b7NmLH0jZZh8Hu2jfN77f-3y003cXVQXcRAg1d31pbGRlijghFCnyjdgKYTyEFZHMEH0TIsIwbTB0WSsIPsUI7VQaBmkWJNzj-N51uIGBt0NkLxxdETzVqSscez6llCDuaDQ96azr9viUxEf9DgkCypUYuF5U2d_g7Z9Zmr-Fvd5duLPAq6zbONg9WLPFfbg5XOzIP4DLRoTjgjVIHgMhKzN2aNKcjjvPWCt6wvKCDfNJynbafCU2wJkor2h1kpkiZd3J5YnNz2z1bsZ2m22jD6zLDkuTnpkpQ3DNhvXyB-uVFeX6PoTjaxn5R7BRlIV9AswmoeFKZjzhoTBxqGRo8VHEU5mKTCdw4H07wjpZiJ1TzY2JRtJDBtFoEE0G0WQQB94um08blY9_NXyF5tLjJNeky03Xb6UeVxrZx0ATG1Tcc2CrtaZezAgzfeW_Drxc3sZ_mTZoTGHLc2wjpOICAWPkwOPG-MvucO4FSkruQLjiFssG1J_VO0V-UuuFI6NUSIQ3_9-tF3CrfzTc1_uDg72ncJs-uUnb2YKNeXVunyH4msfPa49n8PW6f7Ffmvk-Ow
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED5tnTTxgvhNxgCD-PFC1CaxkxgJobKuWhmtpopJezNO4rCsXVLSTmj70_jruGuSQhHwtqc8xImc3Nn3ffb5O4AXMWJkP5Lc9iLh2zwKfDuMtbQdRyapk2LE00u1z5F_cMw_noiTDfjRnIWhtMpmTlxO1EkR0xp52w3c0BEYbUU7rdMijnr997NvNlWQop3WppxG5SKH5vI70rf5u0EPbf3Sdfv7n_cO7LrCgB1zLhe2K7QJjUgQMwQ8Qe4RGc61gxAjFCkicUJHGLI1hjFjOEGpCGGeTAI_Sf3Yczx87yZsBcSKWrD1YX90NF7RPdlZ1jt2XEowQRRSKXzSydf25IykSN0OyQOKtYi4mZfp38DunzmbvwXB_i24WaNX1q3c7TZsmPwObA_r_fm7cFVJclyyCtdjWGRFysY6yejw85w1Eigsy9kwmyZsr8leYgOcl7KS1iqZzhPWnV6dmuzclK_nrFdtIr1lXTYudHKuZwyhNhsuF0NYvygp8_ceHF_Lv78PrbzIzUNgJg60J0XqxV7AdRRIERh8FNFVKkPd8S140_xhFdfS51SBY6qQApFBFBpEkUEUGcSCV6vms0rz418Nn6O51CTOFKl00_VroSalQi4yUMQNpedYsNtYU9Xzw1z98mYLnq1u48im7Rqdm-IC23AhPY7wMbTgQWX8VXc8z_GlEJ4FwZpbrBpQf9bv5NnpUj0c-aVEWrzz_249hW0cXurTYHT4CG7QF1c5PLvQWpQX5jEisUX0pHZ5Bl-ue5T9BP5vQ9Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quality+Reporting+of+Radiomics+Analysis+in+Mild+Cognitive+Impairment+and+Alzheimer%27s+Disease%3A+A+Roadmap+for+Moving+Forward&rft.jtitle=Korean+journal+of+radiology&rft.au=Won+So+Yeon&rft.au=Park+Yae+Won&rft.au=Park+Mina&rft.au=Ahn+Sung+Soo&rft.date=2020-12-01&rft.pub=%EB%8C%80%ED%95%9C%EC%98%81%EC%83%81%EC%9D%98%ED%95%99%ED%9A%8C&rft.issn=1229-6929&rft.eissn=2005-8330&rft.spage=1345&rft.epage=1354&rft_id=info:doi/10.3348%2Fkjr.2020.0715&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_9606931
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1229-6929&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1229-6929&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1229-6929&client=summon