Local-structure-preservation and redundancy-removal-based feature selection method and its application to the identification of biomarkers for schizophrenia

•We propose a new method, LRFS, to identify features with enhanced discriminability.•It preserves sample similarity and enhance independence among features.•It excels over 9 comparison methods across 12 datasets in group differentiation.•It detects crucial features that differentiate schizophrenia (...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 299; p. 120839
Main Authors Xing, Ying, Pearlson, Godfrey D., Kochunov, Peter, Calhoun, Vince D., Du, Yuhui
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.10.2024
Elsevier Limited
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •We propose a new method, LRFS, to identify features with enhanced discriminability.•It preserves sample similarity and enhance independence among features.•It excels over 9 comparison methods across 12 datasets in group differentiation.•It detects crucial features that differentiate schizophrenia (SZ) from healthy controls.•It reveals SZ-related abnormalities that are closely linked to symptoms. Accurate diagnosis of mental disorders is expected to be achieved through the identification of reliable neuroimaging biomarkers with the help of cutting-edge feature selection techniques. However, existing feature selection methods often fall short in capturing the local structural characteristics among samples and effectively eliminating redundant features, resulting in inadequate performance in disorder prediction. To address this gap, we propose a novel supervised method named local-structure-preservation and redundancy-removal-based feature selection (LRFS), and then apply it to the identification of meaningful biomarkers for schizophrenia (SZ). LRFS method leverages graph-based regularization to preserve original sample similarity relationships during data transformation, thus retaining crucial local structure information. Additionally, it introduces redundancy-removal regularization based on interrelationships among features to exclude similar and redundant features from high-dimensional data. Moreover, LRFS method incorporates l2,1 sparse regularization that enables selecting a sparse and noise-robust feature subset. Experimental evaluations on eight public datasets with diverse properties demonstrate the superior performance of our method over nine popular feature selection methods in identifying discriminative features, with average classification accuracy gains ranging from 1.30 % to 9.11 %. Furthermore, the LRFS method demonstrates superior discriminability in four functional magnetic resonance imaging (fMRI) datasets from 708 healthy controls (HCs) and 537 SZ patients, with an average increase in classification accuracy ranging from 1.89 % to 9.24 % compared to other nine methods. Notably, our method reveals reproducible and significant changes in SZ patients relative to HCs across the four datasets, predominantly in the thalamus-related functional network connectivity, which exhibit a significant correlation with clinical symptoms. Convergence analysis, parameter sensitivity analysis, and ablation studies further demonstrate the effectiveness and robustness of our method. In short, our proposed feature selection method effectively identifies discriminative and reliable features that hold the potential to be biomarkers, paving the way for the elucidation of brain abnormalities and the advancement of precise diagnosis of mental disorders.
AbstractList Accurate diagnosis of mental disorders is expected to be achieved through the identification of reliable neuroimaging biomarkers with the help of cutting-edge feature selection techniques. However, existing feature selection methods often fall short in capturing the local structural characteristics among samples and effectively eliminating redundant features, resulting in inadequate performance in disorder prediction. To address this gap, we propose a novel supervised method named local-structure-preservation and redundancy-removal-based feature selection (LRFS), and then apply it to the identification of meaningful biomarkers for schizophrenia (SZ). LRFS method leverages graph-based regularization to preserve original sample similarity relationships during data transformation, thus retaining crucial local structure information. Additionally, it introduces redundancy-removal regularization based on interrelationships among features to exclude similar and redundant features from high-dimensional data. Moreover, LRFS method incorporates l sparse regularization that enables selecting a sparse and noise-robust feature subset. Experimental evaluations on eight public datasets with diverse properties demonstrate the superior performance of our method over nine popular feature selection methods in identifying discriminative features, with average classification accuracy gains ranging from 1.30% to 9.11%. Furthermore, the LRFS method demonstrates superior discriminability in four functional magnetic resonance imaging (fMRI) datasets from 708 healthy controls (HCs) and 537 SZ patients, with an average increase in classification accuracy ranging from 1.89% to 9.24% compared to other nine methods. Notably, our method reveals reproducible and significant changes in SZ patients relative to HCs across the four datasets, predominantly in the thalamus-related functional network connectivity, which exhibit a significant correlation with clinical symptoms. Convergence analysis, parameter sensitivity analysis, and ablation studies further demonstrate the effectiveness and robustness of our method. In short, our proposed feature selection method effectively identifies discriminative and reliable features that hold the potential to be biomarkers, paving the way for the elucidation of brain abnormalities and the advancement of precise diagnosis of mental disorders.
Accurate diagnosis of mental disorders is expected to be achieved through the identification of reliable neuroimaging biomarkers with the help of cutting-edge feature selection techniques. However, existing feature selection methods often fall short in capturing the local structural characteristics among samples and effectively eliminating redundant features, resulting in inadequate performance in disorder prediction. To address this gap, we propose a novel supervised method named local-structure-preservation and redundancy-removal-based feature selection (LRFS), and then apply it to the identification of meaningful biomarkers for schizophrenia (SZ). LRFS method leverages graph-based regularization to preserve original sample similarity relationships during data transformation, thus retaining crucial local structure information. Additionally, it introduces redundancy-removal regularization based on interrelationships among features to exclude similar and redundant features from high-dimensional data. Moreover, LRFS method incorporates l2,1 sparse regularization that enables selecting a sparse and noise-robust feature subset. Experimental evaluations on eight public datasets with diverse properties demonstrate the superior performance of our method over nine popular feature selection methods in identifying discriminative features, with average classification accuracy gains ranging from 1.30 % to 9.11 %. Furthermore, the LRFS method demonstrates superior discriminability in four functional magnetic resonance imaging (fMRI) datasets from 708 healthy controls (HCs) and 537 SZ patients, with an average increase in classification accuracy ranging from 1.89 % to 9.24 % compared to other nine methods. Notably, our method reveals reproducible and significant changes in SZ patients relative to HCs across the four datasets, predominantly in the thalamus-related functional network connectivity, which exhibit a significant correlation with clinical symptoms. Convergence analysis, parameter sensitivity analysis, and ablation studies further demonstrate the effectiveness and robustness of our method. In short, our proposed feature selection method effectively identifies discriminative and reliable features that hold the potential to be biomarkers, paving the way for the elucidation of brain abnormalities and the advancement of precise diagnosis of mental disorders.
Accurate diagnosis of mental disorders is expected to be achieved through the identification of reliable neuroimaging biomarkers with the help of cutting-edge feature selection techniques. However, existing feature selection methods often fall short in capturing the local structural characteristics among samples and effectively eliminating redundant features, resulting in inadequate performance in disorder prediction. To address this gap, we propose a novel supervised method named local-structure-preservation and redundancy-removal-based feature selection (LRFS), and then apply it to the identification of meaningful biomarkers for schizophrenia (SZ). LRFS method leverages graph-based regularization to preserve original sample similarity relationships during data transformation, thus retaining crucial local structure information. Additionally, it introduces redundancy-removal regularization based on interrelationships among features to exclude similar and redundant features from high-dimensional data. Moreover, LRFS method incorporates l2,1 sparse regularization that enables selecting a sparse and noise-robust feature subset. Experimental evaluations on eight public datasets with diverse properties demonstrate the superior performance of our method over nine popular feature selection methods in identifying discriminative features, with average classification accuracy gains ranging from 1.30 % to 9.11 %. Furthermore, the LRFS method demonstrates superior discriminability in four functional magnetic resonance imaging (fMRI) datasets from 708 healthy controls (HCs) and 537 SZ patients, with an average increase in classification accuracy ranging from 1.89 % to 9.24 % compared to other nine methods. Notably, our method reveals reproducible and significant changes in SZ patients relative to HCs across the four datasets, predominantly in the thalamus-related functional network connectivity, which exhibit a significant correlation with clinical symptoms. Convergence analysis, parameter sensitivity analysis, and ablation studies further demonstrate the effectiveness and robustness of our method. In short, our proposed feature selection method effectively identifies discriminative and reliable features that hold the potential to be biomarkers, paving the way for the elucidation of brain abnormalities and the advancement of precise diagnosis of mental disorders.Accurate diagnosis of mental disorders is expected to be achieved through the identification of reliable neuroimaging biomarkers with the help of cutting-edge feature selection techniques. However, existing feature selection methods often fall short in capturing the local structural characteristics among samples and effectively eliminating redundant features, resulting in inadequate performance in disorder prediction. To address this gap, we propose a novel supervised method named local-structure-preservation and redundancy-removal-based feature selection (LRFS), and then apply it to the identification of meaningful biomarkers for schizophrenia (SZ). LRFS method leverages graph-based regularization to preserve original sample similarity relationships during data transformation, thus retaining crucial local structure information. Additionally, it introduces redundancy-removal regularization based on interrelationships among features to exclude similar and redundant features from high-dimensional data. Moreover, LRFS method incorporates l2,1 sparse regularization that enables selecting a sparse and noise-robust feature subset. Experimental evaluations on eight public datasets with diverse properties demonstrate the superior performance of our method over nine popular feature selection methods in identifying discriminative features, with average classification accuracy gains ranging from 1.30 % to 9.11 %. Furthermore, the LRFS method demonstrates superior discriminability in four functional magnetic resonance imaging (fMRI) datasets from 708 healthy controls (HCs) and 537 SZ patients, with an average increase in classification accuracy ranging from 1.89 % to 9.24 % compared to other nine methods. Notably, our method reveals reproducible and significant changes in SZ patients relative to HCs across the four datasets, predominantly in the thalamus-related functional network connectivity, which exhibit a significant correlation with clinical symptoms. Convergence analysis, parameter sensitivity analysis, and ablation studies further demonstrate the effectiveness and robustness of our method. In short, our proposed feature selection method effectively identifies discriminative and reliable features that hold the potential to be biomarkers, paving the way for the elucidation of brain abnormalities and the advancement of precise diagnosis of mental disorders.
•We propose a new method, LRFS, to identify features with enhanced discriminability.•It preserves sample similarity and enhance independence among features.•It excels over 9 comparison methods across 12 datasets in group differentiation.•It detects crucial features that differentiate schizophrenia (SZ) from healthy controls.•It reveals SZ-related abnormalities that are closely linked to symptoms. Accurate diagnosis of mental disorders is expected to be achieved through the identification of reliable neuroimaging biomarkers with the help of cutting-edge feature selection techniques. However, existing feature selection methods often fall short in capturing the local structural characteristics among samples and effectively eliminating redundant features, resulting in inadequate performance in disorder prediction. To address this gap, we propose a novel supervised method named local-structure-preservation and redundancy-removal-based feature selection (LRFS), and then apply it to the identification of meaningful biomarkers for schizophrenia (SZ). LRFS method leverages graph-based regularization to preserve original sample similarity relationships during data transformation, thus retaining crucial local structure information. Additionally, it introduces redundancy-removal regularization based on interrelationships among features to exclude similar and redundant features from high-dimensional data. Moreover, LRFS method incorporates l2,1 sparse regularization that enables selecting a sparse and noise-robust feature subset. Experimental evaluations on eight public datasets with diverse properties demonstrate the superior performance of our method over nine popular feature selection methods in identifying discriminative features, with average classification accuracy gains ranging from 1.30 % to 9.11 %. Furthermore, the LRFS method demonstrates superior discriminability in four functional magnetic resonance imaging (fMRI) datasets from 708 healthy controls (HCs) and 537 SZ patients, with an average increase in classification accuracy ranging from 1.89 % to 9.24 % compared to other nine methods. Notably, our method reveals reproducible and significant changes in SZ patients relative to HCs across the four datasets, predominantly in the thalamus-related functional network connectivity, which exhibit a significant correlation with clinical symptoms. Convergence analysis, parameter sensitivity analysis, and ablation studies further demonstrate the effectiveness and robustness of our method. In short, our proposed feature selection method effectively identifies discriminative and reliable features that hold the potential to be biomarkers, paving the way for the elucidation of brain abnormalities and the advancement of precise diagnosis of mental disorders.
Accurate diagnosis of mental disorders is expected to be achieved through the identification of reliable neuroimaging biomarkers with the help of cutting-edge feature selection techniques. However, existing feature selection methods often fall short in capturing the local structural characteristics among samples and effectively eliminating redundant features, resulting in inadequate performance in disorder prediction. To address this gap, we propose a novel supervised method named local-structure-preservation and redundancy-removal-based feature selection (LRFS), and then apply it to the identification of meaningful biomarkers for schizophrenia (SZ). LRFS method leverages graph-based regularization to preserve original sample similarity relationships during data transformation, thus retaining crucial local structure information. Additionally, it introduces redundancy-removal regularization based on interrelationships among features to exclude similar and redundant features from high-dimensional data. Moreover, LRFS method incorporates l 2 , 1 sparse regularization that enables selecting a sparse and noise-robust feature subset. Experimental evaluations on eight public datasets with diverse properties demonstrate the superior performance of our method over nine popular feature selection methods in identifying discriminative features, with average classification accuracy gains ranging from 1.30 % to 9.11 %. Furthermore, the LRFS method demonstrates superior discriminability in four functional magnetic resonance imaging (fMRI) datasets from 708 healthy controls (HCs) and 537 SZ patients, with an average increase in classification accuracy ranging from 1.89 % to 9.24 % compared to other nine methods. Notably, our method reveals reproducible and significant changes in SZ patients relative to HCs across the four datasets, predominantly in the thalamus-related functional network connectivity, which exhibit a significant correlation with clinical symptoms. Convergence analysis, parameter sensitivity analysis, and ablation studies further demonstrate the effectiveness and robustness of our method. In short, our proposed feature selection method effectively identifies discriminative and reliable features that hold the potential to be biomarkers, paving the way for the elucidation of brain abnormalities and the advancement of precise diagnosis of mental disorders.
ArticleNumber 120839
Author Xing, Ying
Du, Yuhui
Pearlson, Godfrey D.
Calhoun, Vince D.
Kochunov, Peter
AuthorAffiliation a School of Computer and Information Technology, Shanxi University, Taiyuan, China
b Departments of Psychiatry and Neurobiology, Yale University, New Haven, CT, USA
d Tri-Institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
c Maryland Psychiatric Research Center and Department of Psychiatry, University of Maryland, School of Medicine, Baltimore, MD, USA
AuthorAffiliation_xml – name: b Departments of Psychiatry and Neurobiology, Yale University, New Haven, CT, USA
– name: a School of Computer and Information Technology, Shanxi University, Taiyuan, China
– name: d Tri-Institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
– name: c Maryland Psychiatric Research Center and Department of Psychiatry, University of Maryland, School of Medicine, Baltimore, MD, USA
Author_xml – sequence: 1
  givenname: Ying
  orcidid: 0000-0002-4479-686X
  surname: Xing
  fullname: Xing, Ying
  organization: School of Computer and Information Technology, Shanxi University, Taiyuan, China
– sequence: 2
  givenname: Godfrey D.
  surname: Pearlson
  fullname: Pearlson, Godfrey D.
  organization: Departments of Psychiatry and Neurobiology, Yale University, New Haven, CT, USA
– sequence: 3
  givenname: Peter
  surname: Kochunov
  fullname: Kochunov, Peter
  organization: Maryland Psychiatric Research Center and Department of Psychiatry, University of Maryland, School of Medicine, Baltimore, MD, USA
– sequence: 4
  givenname: Vince D.
  orcidid: 0000-0001-9058-0747
  surname: Calhoun
  fullname: Calhoun, Vince D.
  organization: Tri-Institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
– sequence: 5
  givenname: Yuhui
  orcidid: 0000-0002-0079-8177
  surname: Du
  fullname: Du, Yuhui
  email: duyuhui@sxu.edu.cn
  organization: School of Computer and Information Technology, Shanxi University, Taiyuan, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39251116$$D View this record in MEDLINE/PubMed
BookMark eNqFksuO1DAQRSM0iHnAL6BIbNik8SNO4hWCEY-RWmIDa6vaLne7SezGTloavoWPxenMDAwbVrbsc2_ZVfeyOPPBY1GUlKwooc2b_crjFIMbYIsrRli9oox0XD4pLiiRopKiZWfzXvCqo1SeF5cp7Qkhktbds-KcSyYopc1F8WsdNPRVGuOkxylidYiYMB5hdMGX4E0Z0UzegNe3VcQhHDO9gYSmtAizokzYoz7hA467YE4qN6YSDofe6cVpDOW4w9IZ9KOz96fBlhsXBojfMabShlgmvXM_w2EX0Tt4Xjy10Cd8cbdeFd8-fvh6_blaf_l0c_1uXem6lmNF0XYdEdpoZpBRSYG3rdCyaSkYYIJpwaCVkmnSdtxsWEt0wy1w7LRlQvCr4mbxNQH26hBzX-OtCuDU6SDErYI4Ot2jsjaLoIFaGFNvZNt1uuWCWcFzeY4ke71dvA7TZkCj838j9I9MH994t1PbcFSU1jKPZH7N6zuHGH5MmEY1uKSx78FjmJLiNA-8kUKwjL76B92HKfrcq5lqeCMaSTPVLZSOIaWI9uE1lKg5T2qv_uRJzXlSS56y9OXfv3kQ3gcoA-8XAPN8jg6jStqh12hczKnIDXT_r_Ib3YLoUA
Cites_doi 10.1016/j.asoc.2023.110240
10.1503/jpn.230120
10.3390/ijms24032597
10.3390/healthcare10040643
10.1109/JBHI.2022.3212479
10.1109/TKDE.2023.3303425
10.1109/TNNLS.2013.2287275
10.1016/j.nicl.2020.102348
10.1023/A:1008280620621
10.1007/s12559-021-09981-z
10.1007/s00406-022-01433-5
10.1109/TCYB.2021.3139898
10.1109/TKDE.2017.2763618
10.1016/j.schres.2016.02.039
10.1016/j.patcog.2023.110072
10.1109/TNNLS.2020.3009209
10.1109/TCYB.2022.3160244
10.1016/j.neuroimage.2024.120580
10.1016/j.patcog.2015.12.008
10.1088/1361-6579/acb03c
10.1007/s10489-019-01597-z
10.1002/jmri.28650
10.1111/j.2517-6161.1996.tb02080.x
10.1001/jamapsychiatry.2023.1576
10.1016/j.patcog.2020.107663
10.1016/j.jneumeth.2017.12.005
10.1002/wps.21078
10.1093/schbul/13.2.261
10.1109/TPAMI.2019.2961877
10.1007/s10489-021-02550-9
10.1016/S2215-0366(15)00361-2
10.1007/s10994-012-5284-9
10.1016/j.neuroimage.2019.116456
10.1038/s42003-021-02592-2
10.1186/s12916-023-02941-4
10.1145/3369870
10.1001/jamapsychiatry.2015.0484
10.3389/fnins.2018.00525
10.1016/j.nicl.2020.102375
10.1038/s41583-023-00701-0
10.1016/j.nicl.2022.103135
10.1016/j.isci.2024.109319
10.1016/j.inffus.2020.01.005
10.1038/s41380-022-01635-2
ContentType Journal Article
Copyright 2024 The Authors
Copyright © 2024. Published by Elsevier Inc.
2024. The Authors
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2024 The Authors
– notice: Copyright © 2024. Published by Elsevier Inc.
– notice: 2024. The Authors
– notice: Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
NPM
AAYXX
CITATION
7TK
8FD
FR3
K9.
P64
RC3
7X8
5PM
DOA
DOI 10.1016/j.neuroimage.2024.120839
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
PubMed
CrossRef
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
ProQuest Health & Medical Complete (Alumni)
Genetics Abstracts
Engineering Research Database
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic


ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 120839
ExternalDocumentID oai_doaj_org_article_ffe8ca6a45dd4b9788c7352f53cdc3e0
10_1016_j_neuroimage_2024_120839
39251116
S1053811924003367
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
0SF
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
6I.
7-5
71M
7X7
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAXKI
AAXLA
AAXUO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ACDAQ
ACGFO
ACGFS
ACPRK
ACRLP
ADBBV
ADEZE
ADFRT
ADVLN
AEBSH
AEFWE
AEKER
AENEX
AFJKZ
AFKWA
AFRHN
AFTJW
AFXIZ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIKHN
AITUG
AJOXV
AJRQY
AJUYK
AKRWK
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AXJTR
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
C45
CS3
DM4
DU5
EBS
EFBJH
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GROUPED_DOAJ
HCIFZ
HMQ
IHE
J1W
KOM
M2M
M7P
MO0
MOBAO
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SNS
SSH
SSN
SSZ
T5K
TEORI
UV1
YK3
Z5R
ZU3
~G-
LG5
LX8
M29
M2V
M41
NPM
29N
3V.
53G
88E
8AO
8FE
8FH
8FI
8FJ
AAQFI
AAQXK
AAYXX
ABUWG
ABXDB
ADFGL
ADMUD
AFKRA
AGHFR
AKRLJ
ASPBG
AVWKF
AZFZN
AZQEC
BBNVY
BPHCQ
BVXVI
CAG
CCPQU
CITATION
COF
DWQXO
EJD
FEDTE
FGOYB
FYUFA
G-2
GNUQQ
HDW
HEI
HMK
HMO
HVGLF
HZ~
LK8
M1P
PQQKQ
PROAC
PSQYO
PSYQQ
R2-
ROL
WUQ
XPP
ZMT
7TK
8FD
FR3
K9.
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c449t-1ef8805cdc2de2191a3775c9671ada252c52a7992c0783db270c63fa3e8cf2553
IEDL.DBID AIKHN
ISSN 1053-8119
1095-9572
IngestDate Tue Oct 22 15:12:08 EDT 2024
Mon Oct 21 05:26:44 EDT 2024
Sat Oct 26 01:47:13 EDT 2024
Thu Oct 10 21:14:16 EDT 2024
Wed Oct 02 14:36:37 EDT 2024
Sat Nov 02 12:31:07 EDT 2024
Sat Sep 28 15:53:05 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Neuroimaging
Mental disorder
Similarity
Redundancy
Regularization
Classification
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2024. Published by Elsevier Inc.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c449t-1ef8805cdc2de2191a3775c9671ada252c52a7992c0783db270c63fa3e8cf2553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0079-8177
0000-0002-4479-686X
0000-0001-9058-0747
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1053811924003367
PMID 39251116
PQID 3106365691
PQPubID 2031077
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_ffe8ca6a45dd4b9788c7352f53cdc3e0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11491165
proquest_miscellaneous_3102469552
proquest_journals_3106365691
crossref_primary_10_1016_j_neuroimage_2024_120839
pubmed_primary_39251116
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2024_120839
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2024
Publisher Elsevier Inc
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Elsevier
References Gao, Hu, Zhang (bib0022) 2020; 50
Gu, Han (bib0033) 2015
Huang, Liu, Zhu, Tan (bib0002) 2022
Wang, Nie, Tian, Wang, Li (bib0026) 2020
Nie, Wang, Wang, Wang, Li (bib0025) 2019; 43
Du, Fu, Xing, Lin, Pearlson, Kochunov, Hong, Qi, Salman, Abrol (bib0046) 2021; 4
Lim, Kim (bib0042) 2021; 111
Zhang, Fan, Wang, Zhou, Tao (bib0017) 2020; 32
Du, Fu, Sui, Gao, Xing, Lin, Salman, Abrol, Rahaman, Chen (bib0045) 2020; 28
Zhu, Zhang, Hu, Zhu (bib0036) 2017; 30
Du, Fu, Calhoun (bib0003) 2018; 12
Abi-Dargham, Moeller, Ali, DeLorenzo, Domschke, Horga, Jutla, Kotov, Paulus, Rubio (bib0040) 2023; 22
Li, Dong, Gai, Che, Ma, Zhao, Chu, Mao, Wang (bib0031) 2023
Han, Kim (bib0041) 2015
Nie, Huang, Cai, Ding (bib0032) 2010; 23
Liu, Wang, Zhang, Yin, Liu (bib0035) 2014; 25
Tasci, Tasci, Ayyildiz, Kamath, Barua, Tuncer, Dogan, Ciaccio, Chakraborty, Acharya (bib0014) 2023
Ayesha, Hanif, Talib (bib0016) 2020; 59
Chen, Jiang, Cao, Men, Wang (bib0051) 2024; 147
Chen, Hu, Liu, Becker, Eickhoff, Miao, Gu, Tang, Dai, Li (bib0013) 2023; 21
Li, Cheng, Wang, Morstatter, Trevino, Tang, Liu (bib0021) 2017; 50
Palaniyappan (bib0055) 2023; 48
Demšar (bib0050) 2006; 7
Xing, Kochunov, van Erp, Ma, Calhoun, Du (bib0044) 2022; 27
Xing, van Erp, Pearlson, Kochunov, Calhoun, Du (bib0001) 2024; 27
Zhou, Chen, Du, Li (bib0018) 2023; 53
Kononenko, Šimec, Robnik-Šikonja (bib0023) 1997; 7
Nie, Wang, Wang, Wang, Li (bib0034) 2020; 14
Stephan, Bach, Fletcher, Flint, Frank, Friston, Heinz, Huys, Owen, Binder (bib0004) 2016; 3
Bachli, Sedeño, Ochab, Piguet, Kumfor, Reyes, Torralva, Roca, Cardona, Campo (bib0005) 2020; 208
Baygin, Barua, Chakraborty, Tuncer, Dogan, Palmer, Tuncer, Kamath, Ciaccio, Acharya (bib0010) 2023; 44
Das, Naik, Behera (bib0019) 2022; 34
Ye, Xie (bib0039) 2012; 87
Arkin, Ruiz-Betancourt, Jamerson, Smith, Strauss, Klim, Javitt, Patel (bib0056) 2020; 27
Zhou, Xu, Cheng, Fang, Pedrycz (bib0037) 2016; 53
Dhal, Azad (bib0020) 2022; 52
Kay, Fiszbein, Opler (bib0048) 1987; 13
Ramírez, Górriz, Ortiz, Martínez-Murcia, Segovia, Salas-Gonzalez, Castillo-Barnes, Illán, Puntonet (bib0029) 2018; 302
Aydemir, Dogan, Baygin, Ooi, Barua, Tuncer, Acharya (bib0009) 2022; 10
Cao, Chen, Xing, Liang (bib0049) 2023; 36
Yang, Wu, Kong, Luo, Xie, Pan, Quan, Hu, Li, Wu (bib0008) 2024; 290
Terpou, Shaw, Théberge, Férat, Michel, McKinnon, Lanius, Ros (bib0024) 2022; 35
Wang, Li, Ruiz (bib0027) 2022; 53
Ferdinandov, Kostov, Hadzhieva, Shivarov, Petrov, Bussarsky, Pashov (bib0028) 2023; 24
He, Cai, Niyogi (bib0038) 2005; 18
Woodward, Cascio (bib0006) 2015; 72
Cui, Liu, Li, Wang, Guo, Tian, Wu, Guo, Liu, Xi (bib0054) 2016; 173
Saadatmand, MR Akbarzadeh (bib0047) 2023; 142
Shine, Lewis, Garrett, Hwang (bib0053) 2023; 24
Ranjan, Zhang, Boley (bib0043) 2014
Laumann, Zorumski, Dosenbach (bib0007) 2023; 80
Bayrakçı, Zorlu, Karakılıç, Gülyüksel, Yalınçetin, Oral, Gelal, Bora (bib0052) 2023; 273
Tejavibulya, Rolison, Gao, Liang, Peterson, Dadashkarimi, Farruggia, Hahn, Noble, Lichenstein (bib0011) 2022; 27
Omuya, Okeyo, Kimwele (bib0015) 2021; 174
Tibshirani (bib0030) 1996; 58
Zhang, Feng, Han, Gong, Duan (bib0012) 2023; 15
Aydemir (10.1016/j.neuroimage.2024.120839_bib0009) 2022; 10
Gu (10.1016/j.neuroimage.2024.120839_bib0033) 2015
Ferdinandov (10.1016/j.neuroimage.2024.120839_bib0028) 2023; 24
Ranjan (10.1016/j.neuroimage.2024.120839_bib0043) 2014
Dhal (10.1016/j.neuroimage.2024.120839_bib0020) 2022; 52
Stephan (10.1016/j.neuroimage.2024.120839_bib0004) 2016; 3
Tejavibulya (10.1016/j.neuroimage.2024.120839_bib0011) 2022; 27
Palaniyappan (10.1016/j.neuroimage.2024.120839_bib0055) 2023; 48
Zhang (10.1016/j.neuroimage.2024.120839_bib0017) 2020; 32
Han (10.1016/j.neuroimage.2024.120839_bib0041) 2015
Liu (10.1016/j.neuroimage.2024.120839_bib0035) 2014; 25
Nie (10.1016/j.neuroimage.2024.120839_bib0032) 2010; 23
Terpou (10.1016/j.neuroimage.2024.120839_bib0024) 2022; 35
Nie (10.1016/j.neuroimage.2024.120839_bib0034) 2020; 14
Du (10.1016/j.neuroimage.2024.120839_bib0003) 2018; 12
Kay (10.1016/j.neuroimage.2024.120839_bib0048) 1987; 13
He (10.1016/j.neuroimage.2024.120839_bib0038) 2005; 18
Ye (10.1016/j.neuroimage.2024.120839_bib0039) 2012; 87
Das (10.1016/j.neuroimage.2024.120839_bib0019) 2022; 34
Li (10.1016/j.neuroimage.2024.120839_bib0031) 2023
Woodward (10.1016/j.neuroimage.2024.120839_bib0006) 2015; 72
Baygin (10.1016/j.neuroimage.2024.120839_bib0010) 2023; 44
Kononenko (10.1016/j.neuroimage.2024.120839_bib0023) 1997; 7
Cui (10.1016/j.neuroimage.2024.120839_bib0054) 2016; 173
Shine (10.1016/j.neuroimage.2024.120839_bib0053) 2023; 24
Zhu (10.1016/j.neuroimage.2024.120839_bib0036) 2017; 30
Laumann (10.1016/j.neuroimage.2024.120839_bib0007) 2023; 80
Du (10.1016/j.neuroimage.2024.120839_bib0045) 2020; 28
Huang (10.1016/j.neuroimage.2024.120839_bib0002) 2022
Nie (10.1016/j.neuroimage.2024.120839_bib0025) 2019; 43
Yang (10.1016/j.neuroimage.2024.120839_bib0008) 2024; 290
Ayesha (10.1016/j.neuroimage.2024.120839_bib0016) 2020; 59
Zhou (10.1016/j.neuroimage.2024.120839_bib0037) 2016; 53
Ramírez (10.1016/j.neuroimage.2024.120839_bib0029) 2018; 302
Gao (10.1016/j.neuroimage.2024.120839_bib0022) 2020; 50
Xing (10.1016/j.neuroimage.2024.120839_bib0044) 2022; 27
Zhang (10.1016/j.neuroimage.2024.120839_bib0012) 2023; 15
Bayrakçı (10.1016/j.neuroimage.2024.120839_bib0052) 2023; 273
Wang (10.1016/j.neuroimage.2024.120839_bib0026) 2020
Demšar (10.1016/j.neuroimage.2024.120839_bib0050) 2006; 7
Abi-Dargham (10.1016/j.neuroimage.2024.120839_bib0040) 2023; 22
Li (10.1016/j.neuroimage.2024.120839_bib0021) 2017; 50
Wang (10.1016/j.neuroimage.2024.120839_bib0027) 2022; 53
Arkin (10.1016/j.neuroimage.2024.120839_bib0056) 2020; 27
Omuya (10.1016/j.neuroimage.2024.120839_bib0015) 2021; 174
Du (10.1016/j.neuroimage.2024.120839_bib0046) 2021; 4
Cao (10.1016/j.neuroimage.2024.120839_bib0049) 2023; 36
Chen (10.1016/j.neuroimage.2024.120839_bib0013) 2023; 21
Chen (10.1016/j.neuroimage.2024.120839_bib0051) 2024; 147
Tasci (10.1016/j.neuroimage.2024.120839_bib0014) 2023
Xing (10.1016/j.neuroimage.2024.120839_bib0001) 2024; 27
Saadatmand (10.1016/j.neuroimage.2024.120839_bib0047) 2023; 142
Bachli (10.1016/j.neuroimage.2024.120839_bib0005) 2020; 208
Lim (10.1016/j.neuroimage.2024.120839_bib0042) 2021; 111
Zhou (10.1016/j.neuroimage.2024.120839_bib0018) 2023; 53
Tibshirani (10.1016/j.neuroimage.2024.120839_bib0030) 1996; 58
References_xml – volume: 59
  start-page: 44
  year: 2020
  end-page: 58
  ident: bib0016
  article-title: Overview and comparative study of dimensionality reduction techniques for high dimensional data
  publication-title: Inform. Fusion
  contributor:
    fullname: Talib
– volume: 302
  start-page: 47
  year: 2018
  end-page: 57
  ident: bib0029
  article-title: AsDN Initiative, Ensemble of random forests One vs. rest classifiers for MCI and AD prediction using ANOVA cortical and subcortical feature selection and partial least squares
  publication-title: J. Neurosci. Methods.
  contributor:
    fullname: Puntonet
– volume: 35
  year: 2022
  ident: bib0024
  article-title: Spectral decomposition of EEG microstates in post-traumatic stress disorder
  publication-title: NeuroImage Clin.
  contributor:
    fullname: Ros
– volume: 50
  start-page: 1272
  year: 2020
  end-page: 1288
  ident: bib0022
  article-title: Feature redundancy term variation for mutual information-based feature selection
  publication-title: Appl. Intell.
  contributor:
    fullname: Zhang
– volume: 43
  start-page: 2086
  year: 2019
  end-page: 2100
  ident: bib0025
  article-title: Towards robust discriminative projections learning via non-greedy ℓ2, 1-norm minmax
  publication-title: IEEE Trans Pattern Anal. Mach. Intell.
  contributor:
    fullname: Li
– volume: 174
  year: 2021
  ident: bib0015
  article-title: Feature selection for classification using principal component analysis and information gain
  publication-title: Expert Syst. Appl.
  contributor:
    fullname: Kimwele
– start-page: 3009
  year: 2020
  end-page: 3015
  ident: bib0026
  article-title: Discriminative feature selection via a structured sparse subspace learning module
  publication-title: Twenty-ninth International Joint Conference on Artificial Intelligence
  contributor:
    fullname: Li
– volume: 4
  start-page: 1073
  year: 2021
  ident: bib0046
  article-title: Evidence of shared and distinct functional and structural brain signatures in schizophrenia and autism spectrum disorder
  publication-title: Commun. Biol.
  contributor:
    fullname: Abrol
– volume: 21
  start-page: 241
  year: 2023
  ident: bib0013
  article-title: Sampling inequalities affect generalization of neuroimaging-based diagnostic classifiers in psychiatry
  publication-title: BMC Med.
  contributor:
    fullname: Li
– volume: 52
  start-page: 4543
  year: 2022
  end-page: 4581
  ident: bib0020
  article-title: A comprehensive survey on feature selection in the various fields of machine learning
  publication-title: Appl. Intell.
  contributor:
    fullname: Azad
– year: 2023
  ident: bib0031
  article-title: Diagnosis of major depressive disorder using machine learning based on multisequence MRI neuroimaging features
  publication-title: J. Magn. Reson. Imaging
  contributor:
    fullname: Wang
– volume: 142
  year: 2023
  ident: bib0047
  article-title: Set-based integer-coded fuzzy granular evolutionary algorithms for high-dimensional feature selection
  publication-title: Appl. Soft Comput.
  contributor:
    fullname: MR Akbarzadeh
– volume: 24
  start-page: 416
  year: 2023
  end-page: 430
  ident: bib0053
  article-title: The impact of the human thalamus on brain-wide information processing
  publication-title: Nat. Rev. Neurosci.
  contributor:
    fullname: Hwang
– volume: 111
  year: 2021
  ident: bib0042
  article-title: Pairwise dependence-based unsupervised feature selection
  publication-title: Pattern Recognit.
  contributor:
    fullname: Kim
– volume: 22
  start-page: 236
  year: 2023
  end-page: 262
  ident: bib0040
  article-title: Candidate biomarkers in psychiatric disorders: state of the field
  publication-title: World Psychiatry
  contributor:
    fullname: Rubio
– volume: 34
  start-page: 3851
  year: 2022
  end-page: 3863
  ident: bib0019
  article-title: A Jaya algorithm based wrapper method for optimal feature selection in supervised classification
  publication-title: J. King Saud Univ. Comp. Info. Sci.
  contributor:
    fullname: Behera
– volume: 27
  start-page: 3129
  year: 2022
  end-page: 3137
  ident: bib0011
  article-title: Predicting the future of neuroimaging predictive models in mental health
  publication-title: Mol. Psychiatry
  contributor:
    fullname: Lichenstein
– volume: 290
  year: 2024
  ident: bib0008
  article-title: Precise detection of awareness in disorders of consciousness using deep learning framework
  publication-title: Neuroimage
  contributor:
    fullname: Wu
– volume: 23
  start-page: 1813
  year: 2010
  end-page: 1821
  ident: bib0032
  article-title: Efficient and robust feature selection via joint ℓ2, 1-norms minimization
  publication-title: Advances in Neural Information Processing Systems
  contributor:
    fullname: Ding
– volume: 48
  start-page: E325
  year: 2023
  ident: bib0055
  article-title: Clusters of psychosis: compensation as a contributor to the heterogeneity of schizophrenia
  publication-title: J. Psychiatry Neurosci. JPN
  contributor:
    fullname: Palaniyappan
– volume: 208
  year: 2020
  ident: bib0005
  article-title: Evaluating the reliability of neurocognitive biomarkers of neurodegenerative diseases across countries: a machine learning approach
  publication-title: Neuroimage
  contributor:
    fullname: Campo
– volume: 18
  year: 2005
  ident: bib0038
  article-title: Laplacian score for feature selection
  publication-title: Adv. Neural Inf. Process. Syst.
  contributor:
    fullname: Niyogi
– volume: 32
  start-page: 3005
  year: 2020
  end-page: 3019
  ident: bib0017
  article-title: Top-k feature selection framework using robust 0-1 integer programming
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  contributor:
    fullname: Tao
– volume: 7
  start-page: 39
  year: 1997
  end-page: 55
  ident: bib0023
  article-title: Overcoming the myopia of inductive learning algorithms with RELIEFF
  publication-title: Appl. Intell.
  contributor:
    fullname: Robnik-Šikonja
– volume: 147
  year: 2024
  ident: bib0051
  article-title: A general elevating framework for label noise filters
  publication-title: Pattern Recognit.
  contributor:
    fullname: Wang
– start-page: 5016
  year: 2015
  end-page: 5023
  ident: bib0041
  article-title: Unsupervised simultaneous orthogonal basis clustering feature selection
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
  contributor:
    fullname: Kim
– volume: 44
  year: 2023
  ident: bib0010
  article-title: CCPNet136: automated detection of schizophrenia using carbon chain pattern and iterative TQWT technique with EEG signals
  publication-title: Physiol. Meas.
  contributor:
    fullname: Acharya
– volume: 12
  start-page: 525
  year: 2018
  ident: bib0003
  article-title: Classification and prediction of brain disorders using functional connectivity: promising but challenging
  publication-title: Front. Neurosci.
  contributor:
    fullname: Calhoun
– volume: 87
  start-page: 303
  year: 2012
  end-page: 355
  ident: bib0039
  article-title: Learning sparse gradients for variable selection and dimension reduction
  publication-title: Mach. Learn.
  contributor:
    fullname: Xie
– volume: 53
  start-page: 87
  year: 2016
  end-page: 101
  ident: bib0037
  article-title: Global and local structure preserving sparse subspace learning: an iterative approach to unsupervised feature selection
  publication-title: Pattern Recognit.
  contributor:
    fullname: Pedrycz
– volume: 28
  year: 2020
  ident: bib0045
  article-title: NeuroMark: an automated and adaptive ICA based pipeline to identify reproducible fMRI markers of brain disorders
  publication-title: NeuroImage Clin.
  contributor:
    fullname: Chen
– start-page: 1
  year: 2022
  end-page: 15
  ident: bib0002
  article-title: Multitask learning for joint diagnosis of multiple mental disorders in resting-state fMRI
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  contributor:
    fullname: Tan
– volume: 53
  start-page: 707
  year: 2022
  end-page: 717
  ident: bib0027
  article-title: Feature selection with maximal relevance and minimal supervised redundancy
  publication-title: IEEE Trans. Cybern.
  contributor:
    fullname: Ruiz
– volume: 25
  start-page: 1083
  year: 2014
  end-page: 1095
  ident: bib0035
  article-title: Global and local structure preservation for feature selection
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  contributor:
    fullname: Liu
– volume: 27
  year: 2024
  ident: bib0001
  article-title: More reliable biomarkers and more accurate prediction for mental disorders using a label-noise filtering-based dimensional prediction method
  publication-title: iScience
  contributor:
    fullname: Du
– volume: 24
  start-page: 2597
  year: 2023
  ident: bib0028
  article-title: Reactivity graph yields interpretable IgM repertoire signatures as potential tumor biomarkers
  publication-title: Int. J. Mol. Sci.
  contributor:
    fullname: Pashov
– volume: 72
  start-page: 743
  year: 2015
  end-page: 744
  ident: bib0006
  article-title: Resting-state functional connectivity in psychiatric disorders
  publication-title: JAMA Psychiatry
  contributor:
    fullname: Cascio
– volume: 173
  start-page: 13
  year: 2016
  end-page: 22
  ident: bib0054
  article-title: Putamen-related regional and network functional deficits in first-episode schizophrenia with auditory verbal hallucinations
  publication-title: Schizophr. Res.
  contributor:
    fullname: Xi
– start-page: 1175
  year: 2015
  end-page: 1184
  ident: bib0033
  article-title: Towards feature selection in network
  publication-title: Proceedings of the 20th ACM international conference on Information and knowledge management
  contributor:
    fullname: Han
– volume: 50
  start-page: 1
  year: 2017
  end-page: 45
  ident: bib0021
  article-title: Feature selection: a data perspective
  publication-title: ACM Comput. Surv.
  contributor:
    fullname: Liu
– volume: 14
  start-page: 1
  year: 2020
  end-page: 19
  ident: bib0034
  article-title: Adaptive local linear discriminant analysis
  publication-title: ACM Trans. Knowl. Discov. Data
  contributor:
    fullname: Li
– year: 2023
  ident: bib0014
  article-title: Automated schizophrenia detection model using blood sample scattergram images and local binary pattern
  publication-title: Multimedia Tools and Applications
  contributor:
    fullname: Acharya
– volume: 15
  start-page: 1106
  year: 2023
  end-page: 1117
  ident: bib0012
  article-title: Detection of autism spectrum disorder using fMRI functional connectivity with feature selection and deep learning
  publication-title: Cognit. Comput.
  contributor:
    fullname: Duan
– volume: 30
  start-page: 517
  year: 2017
  end-page: 529
  ident: bib0036
  article-title: Local and global structure preservation for robust unsupervised spectral feature selection
  publication-title: IEEE Trans. Knowl. Data Eng.
  contributor:
    fullname: Zhu
– volume: 273
  start-page: 565
  year: 2023
  end-page: 574
  ident: bib0052
  article-title: Negative symptoms are associated with modularity and thalamic connectivity in schizophrenia
  publication-title: Eur. Arch. Psychiatry Clin. Neurosci.
  contributor:
    fullname: Bora
– volume: 7
  start-page: 1
  year: 2006
  end-page: 30
  ident: bib0050
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: Demšar
– volume: 3
  start-page: 77
  year: 2016
  end-page: 83
  ident: bib0004
  article-title: Charting the landscape of priority problems in psychiatry, part 1: classification and diagnosis
  publication-title: Lancet Psychiatry
  contributor:
    fullname: Binder
– volume: 13
  start-page: 261
  year: 1987
  end-page: 276
  ident: bib0048
  article-title: The positive and negative syndrome scale (PANSS) for schizophrenia
  publication-title: Schizophr. Bull.
  contributor:
    fullname: Opler
– volume: 53
  start-page: 4232
  year: 2023
  end-page: 4244
  ident: bib0018
  article-title: Balanced spectral feature selection
  publication-title: IEEE Trans. Cybern.
  contributor:
    fullname: Li
– volume: 10
  year: 2022
  ident: bib0009
  article-title: CGP17Pat: automated schizophrenia detection based on a cyclic group of prime order patterns using EEG signals
  publication-title: Healthcare
  contributor:
    fullname: Acharya
– start-page: 729
  year: 2014
  end-page: 749
  ident: bib0043
  article-title: Incremental computation of pseudo-inverse of laplacian
  publication-title: International Conference on Combinatorial Optimization and Applications
  contributor:
    fullname: Boley
– volume: 80
  start-page: 763
  year: 2023
  end-page: 764
  ident: bib0007
  article-title: Precision neuroimaging for localization-related psychiatry
  publication-title: JAMA Psychiatry
  contributor:
    fullname: Dosenbach
– volume: 27
  start-page: 215
  year: 2022
  end-page: 226
  ident: bib0044
  article-title: A novel neighborhood rough set-based feature selection method and its application to biomarker identification of schizophrenia
  publication-title: IEEE J. Biomed. Health Inform.
  contributor:
    fullname: Du
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: bib0030
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Stat. Soc. Ser. B (Method.)
  contributor:
    fullname: Tibshirani
– volume: 27
  year: 2020
  ident: bib0056
  article-title: Deficits and compensation: attentional control cortical networks in schizophrenia
  publication-title: NeuroImage Clin.
  contributor:
    fullname: Patel
– volume: 36
  start-page: 1084
  year: 2023
  end-page: 1098
  ident: bib0049
  article-title: Efficient classification by removing bayesian confusing samples
  publication-title: IEEE Trans. Knowl. Data Eng.
  contributor:
    fullname: Liang
– volume: 142
  year: 2023
  ident: 10.1016/j.neuroimage.2024.120839_bib0047
  article-title: Set-based integer-coded fuzzy granular evolutionary algorithms for high-dimensional feature selection
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2023.110240
  contributor:
    fullname: Saadatmand
– volume: 48
  start-page: E325
  year: 2023
  ident: 10.1016/j.neuroimage.2024.120839_bib0055
  article-title: Clusters of psychosis: compensation as a contributor to the heterogeneity of schizophrenia
  publication-title: J. Psychiatry Neurosci. JPN
  doi: 10.1503/jpn.230120
  contributor:
    fullname: Palaniyappan
– start-page: 3009
  year: 2020
  ident: 10.1016/j.neuroimage.2024.120839_bib0026
  article-title: Discriminative feature selection via a structured sparse subspace learning module
  contributor:
    fullname: Wang
– volume: 24
  start-page: 2597
  year: 2023
  ident: 10.1016/j.neuroimage.2024.120839_bib0028
  article-title: Reactivity graph yields interpretable IgM repertoire signatures as potential tumor biomarkers
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms24032597
  contributor:
    fullname: Ferdinandov
– volume: 10
  year: 2022
  ident: 10.1016/j.neuroimage.2024.120839_bib0009
  article-title: CGP17Pat: automated schizophrenia detection based on a cyclic group of prime order patterns using EEG signals
  publication-title: Healthcare
  doi: 10.3390/healthcare10040643
  contributor:
    fullname: Aydemir
– volume: 27
  start-page: 215
  year: 2022
  ident: 10.1016/j.neuroimage.2024.120839_bib0044
  article-title: A novel neighborhood rough set-based feature selection method and its application to biomarker identification of schizophrenia
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2022.3212479
  contributor:
    fullname: Xing
– volume: 36
  start-page: 1084
  year: 2023
  ident: 10.1016/j.neuroimage.2024.120839_bib0049
  article-title: Efficient classification by removing bayesian confusing samples
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2023.3303425
  contributor:
    fullname: Cao
– volume: 25
  start-page: 1083
  year: 2014
  ident: 10.1016/j.neuroimage.2024.120839_bib0035
  article-title: Global and local structure preservation for feature selection
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2013.2287275
  contributor:
    fullname: Liu
– volume: 27
  year: 2020
  ident: 10.1016/j.neuroimage.2024.120839_bib0056
  article-title: Deficits and compensation: attentional control cortical networks in schizophrenia
  publication-title: NeuroImage Clin.
  doi: 10.1016/j.nicl.2020.102348
  contributor:
    fullname: Arkin
– volume: 7
  start-page: 39
  year: 1997
  ident: 10.1016/j.neuroimage.2024.120839_bib0023
  article-title: Overcoming the myopia of inductive learning algorithms with RELIEFF
  publication-title: Appl. Intell.
  doi: 10.1023/A:1008280620621
  contributor:
    fullname: Kononenko
– volume: 15
  start-page: 1106
  year: 2023
  ident: 10.1016/j.neuroimage.2024.120839_bib0012
  article-title: Detection of autism spectrum disorder using fMRI functional connectivity with feature selection and deep learning
  publication-title: Cognit. Comput.
  doi: 10.1007/s12559-021-09981-z
  contributor:
    fullname: Zhang
– volume: 273
  start-page: 565
  year: 2023
  ident: 10.1016/j.neuroimage.2024.120839_bib0052
  article-title: Negative symptoms are associated with modularity and thalamic connectivity in schizophrenia
  publication-title: Eur. Arch. Psychiatry Clin. Neurosci.
  doi: 10.1007/s00406-022-01433-5
  contributor:
    fullname: Bayrakçı
– volume: 53
  start-page: 707
  year: 2022
  ident: 10.1016/j.neuroimage.2024.120839_bib0027
  article-title: Feature selection with maximal relevance and minimal supervised redundancy
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2021.3139898
  contributor:
    fullname: Wang
– volume: 30
  start-page: 517
  year: 2017
  ident: 10.1016/j.neuroimage.2024.120839_bib0036
  article-title: Local and global structure preservation for robust unsupervised spectral feature selection
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2017.2763618
  contributor:
    fullname: Zhu
– volume: 173
  start-page: 13
  year: 2016
  ident: 10.1016/j.neuroimage.2024.120839_bib0054
  article-title: Putamen-related regional and network functional deficits in first-episode schizophrenia with auditory verbal hallucinations
  publication-title: Schizophr. Res.
  doi: 10.1016/j.schres.2016.02.039
  contributor:
    fullname: Cui
– volume: 147
  year: 2024
  ident: 10.1016/j.neuroimage.2024.120839_bib0051
  article-title: A general elevating framework for label noise filters
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2023.110072
  contributor:
    fullname: Chen
– volume: 32
  start-page: 3005
  year: 2020
  ident: 10.1016/j.neuroimage.2024.120839_bib0017
  article-title: Top-k feature selection framework using robust 0-1 integer programming
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.3009209
  contributor:
    fullname: Zhang
– volume: 53
  start-page: 4232
  year: 2023
  ident: 10.1016/j.neuroimage.2024.120839_bib0018
  article-title: Balanced spectral feature selection
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2022.3160244
  contributor:
    fullname: Zhou
– start-page: 5016
  year: 2015
  ident: 10.1016/j.neuroimage.2024.120839_bib0041
  article-title: Unsupervised simultaneous orthogonal basis clustering feature selection
  contributor:
    fullname: Han
– volume: 34
  start-page: 3851
  year: 2022
  ident: 10.1016/j.neuroimage.2024.120839_bib0019
  article-title: A Jaya algorithm based wrapper method for optimal feature selection in supervised classification
  publication-title: J. King Saud Univ. Comp. Info. Sci.
  contributor:
    fullname: Das
– volume: 290
  year: 2024
  ident: 10.1016/j.neuroimage.2024.120839_bib0008
  article-title: Precise detection of awareness in disorders of consciousness using deep learning framework
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2024.120580
  contributor:
    fullname: Yang
– volume: 53
  start-page: 87
  year: 2016
  ident: 10.1016/j.neuroimage.2024.120839_bib0037
  article-title: Global and local structure preserving sparse subspace learning: an iterative approach to unsupervised feature selection
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2015.12.008
  contributor:
    fullname: Zhou
– volume: 44
  year: 2023
  ident: 10.1016/j.neuroimage.2024.120839_bib0010
  article-title: CCPNet136: automated detection of schizophrenia using carbon chain pattern and iterative TQWT technique with EEG signals
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/acb03c
  contributor:
    fullname: Baygin
– volume: 50
  start-page: 1272
  year: 2020
  ident: 10.1016/j.neuroimage.2024.120839_bib0022
  article-title: Feature redundancy term variation for mutual information-based feature selection
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-019-01597-z
  contributor:
    fullname: Gao
– year: 2023
  ident: 10.1016/j.neuroimage.2024.120839_bib0031
  article-title: Diagnosis of major depressive disorder using machine learning based on multisequence MRI neuroimaging features
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.28650
  contributor:
    fullname: Li
– volume: 58
  start-page: 267
  year: 1996
  ident: 10.1016/j.neuroimage.2024.120839_bib0030
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Stat. Soc. Ser. B (Method.)
  doi: 10.1111/j.2517-6161.1996.tb02080.x
  contributor:
    fullname: Tibshirani
– volume: 80
  start-page: 763
  year: 2023
  ident: 10.1016/j.neuroimage.2024.120839_bib0007
  article-title: Precision neuroimaging for localization-related psychiatry
  publication-title: JAMA Psychiatry
  doi: 10.1001/jamapsychiatry.2023.1576
  contributor:
    fullname: Laumann
– start-page: 729
  year: 2014
  ident: 10.1016/j.neuroimage.2024.120839_bib0043
  article-title: Incremental computation of pseudo-inverse of laplacian
  contributor:
    fullname: Ranjan
– volume: 111
  year: 2021
  ident: 10.1016/j.neuroimage.2024.120839_bib0042
  article-title: Pairwise dependence-based unsupervised feature selection
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107663
  contributor:
    fullname: Lim
– start-page: 1
  year: 2022
  ident: 10.1016/j.neuroimage.2024.120839_bib0002
  article-title: Multitask learning for joint diagnosis of multiple mental disorders in resting-state fMRI
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  contributor:
    fullname: Huang
– volume: 302
  start-page: 47
  year: 2018
  ident: 10.1016/j.neuroimage.2024.120839_bib0029
  article-title: AsDN Initiative, Ensemble of random forests One vs. rest classifiers for MCI and AD prediction using ANOVA cortical and subcortical feature selection and partial least squares
  publication-title: J. Neurosci. Methods.
  doi: 10.1016/j.jneumeth.2017.12.005
  contributor:
    fullname: Ramírez
– volume: 22
  start-page: 236
  year: 2023
  ident: 10.1016/j.neuroimage.2024.120839_bib0040
  article-title: Candidate biomarkers in psychiatric disorders: state of the field
  publication-title: World Psychiatry
  doi: 10.1002/wps.21078
  contributor:
    fullname: Abi-Dargham
– volume: 13
  start-page: 261
  year: 1987
  ident: 10.1016/j.neuroimage.2024.120839_bib0048
  article-title: The positive and negative syndrome scale (PANSS) for schizophrenia
  publication-title: Schizophr. Bull.
  doi: 10.1093/schbul/13.2.261
  contributor:
    fullname: Kay
– volume: 43
  start-page: 2086
  year: 2019
  ident: 10.1016/j.neuroimage.2024.120839_bib0025
  article-title: Towards robust discriminative projections learning via non-greedy ℓ2, 1-norm minmax
  publication-title: IEEE Trans Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2019.2961877
  contributor:
    fullname: Nie
– start-page: 1175
  year: 2015
  ident: 10.1016/j.neuroimage.2024.120839_bib0033
  article-title: Towards feature selection in network
  contributor:
    fullname: Gu
– volume: 52
  start-page: 4543
  year: 2022
  ident: 10.1016/j.neuroimage.2024.120839_bib0020
  article-title: A comprehensive survey on feature selection in the various fields of machine learning
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-021-02550-9
  contributor:
    fullname: Dhal
– year: 2023
  ident: 10.1016/j.neuroimage.2024.120839_bib0014
  article-title: Automated schizophrenia detection model using blood sample scattergram images and local binary pattern
  contributor:
    fullname: Tasci
– volume: 3
  start-page: 77
  year: 2016
  ident: 10.1016/j.neuroimage.2024.120839_bib0004
  article-title: Charting the landscape of priority problems in psychiatry, part 1: classification and diagnosis
  publication-title: Lancet Psychiatry
  doi: 10.1016/S2215-0366(15)00361-2
  contributor:
    fullname: Stephan
– volume: 174
  year: 2021
  ident: 10.1016/j.neuroimage.2024.120839_bib0015
  article-title: Feature selection for classification using principal component analysis and information gain
  publication-title: Expert Syst. Appl.
  contributor:
    fullname: Omuya
– volume: 87
  start-page: 303
  year: 2012
  ident: 10.1016/j.neuroimage.2024.120839_bib0039
  article-title: Learning sparse gradients for variable selection and dimension reduction
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-012-5284-9
  contributor:
    fullname: Ye
– volume: 208
  year: 2020
  ident: 10.1016/j.neuroimage.2024.120839_bib0005
  article-title: Evaluating the reliability of neurocognitive biomarkers of neurodegenerative diseases across countries: a machine learning approach
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.116456
  contributor:
    fullname: Bachli
– volume: 4
  start-page: 1073
  year: 2021
  ident: 10.1016/j.neuroimage.2024.120839_bib0046
  article-title: Evidence of shared and distinct functional and structural brain signatures in schizophrenia and autism spectrum disorder
  publication-title: Commun. Biol.
  doi: 10.1038/s42003-021-02592-2
  contributor:
    fullname: Du
– volume: 21
  start-page: 241
  year: 2023
  ident: 10.1016/j.neuroimage.2024.120839_bib0013
  article-title: Sampling inequalities affect generalization of neuroimaging-based diagnostic classifiers in psychiatry
  publication-title: BMC Med.
  doi: 10.1186/s12916-023-02941-4
  contributor:
    fullname: Chen
– volume: 14
  start-page: 1
  year: 2020
  ident: 10.1016/j.neuroimage.2024.120839_bib0034
  article-title: Adaptive local linear discriminant analysis
  publication-title: ACM Trans. Knowl. Discov. Data
  doi: 10.1145/3369870
  contributor:
    fullname: Nie
– volume: 72
  start-page: 743
  year: 2015
  ident: 10.1016/j.neuroimage.2024.120839_bib0006
  article-title: Resting-state functional connectivity in psychiatric disorders
  publication-title: JAMA Psychiatry
  doi: 10.1001/jamapsychiatry.2015.0484
  contributor:
    fullname: Woodward
– volume: 12
  start-page: 525
  year: 2018
  ident: 10.1016/j.neuroimage.2024.120839_bib0003
  article-title: Classification and prediction of brain disorders using functional connectivity: promising but challenging
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2018.00525
  contributor:
    fullname: Du
– volume: 7
  start-page: 1
  year: 2006
  ident: 10.1016/j.neuroimage.2024.120839_bib0050
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: Demšar
– volume: 28
  year: 2020
  ident: 10.1016/j.neuroimage.2024.120839_bib0045
  article-title: NeuroMark: an automated and adaptive ICA based pipeline to identify reproducible fMRI markers of brain disorders
  publication-title: NeuroImage Clin.
  doi: 10.1016/j.nicl.2020.102375
  contributor:
    fullname: Du
– volume: 24
  start-page: 416
  year: 2023
  ident: 10.1016/j.neuroimage.2024.120839_bib0053
  article-title: The impact of the human thalamus on brain-wide information processing
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/s41583-023-00701-0
  contributor:
    fullname: Shine
– volume: 18
  year: 2005
  ident: 10.1016/j.neuroimage.2024.120839_bib0038
  article-title: Laplacian score for feature selection
  publication-title: Adv. Neural Inf. Process. Syst.
  contributor:
    fullname: He
– volume: 50
  start-page: 1
  year: 2017
  ident: 10.1016/j.neuroimage.2024.120839_bib0021
  article-title: Feature selection: a data perspective
  publication-title: ACM Comput. Surv.
  contributor:
    fullname: Li
– volume: 35
  year: 2022
  ident: 10.1016/j.neuroimage.2024.120839_bib0024
  article-title: Spectral decomposition of EEG microstates in post-traumatic stress disorder
  publication-title: NeuroImage Clin.
  doi: 10.1016/j.nicl.2022.103135
  contributor:
    fullname: Terpou
– volume: 23
  start-page: 1813
  year: 2010
  ident: 10.1016/j.neuroimage.2024.120839_bib0032
  article-title: Efficient and robust feature selection via joint ℓ2, 1-norms minimization
  contributor:
    fullname: Nie
– volume: 27
  year: 2024
  ident: 10.1016/j.neuroimage.2024.120839_bib0001
  article-title: More reliable biomarkers and more accurate prediction for mental disorders using a label-noise filtering-based dimensional prediction method
  publication-title: iScience
  doi: 10.1016/j.isci.2024.109319
  contributor:
    fullname: Xing
– volume: 59
  start-page: 44
  year: 2020
  ident: 10.1016/j.neuroimage.2024.120839_bib0016
  article-title: Overview and comparative study of dimensionality reduction techniques for high dimensional data
  publication-title: Inform. Fusion
  doi: 10.1016/j.inffus.2020.01.005
  contributor:
    fullname: Ayesha
– volume: 27
  start-page: 3129
  year: 2022
  ident: 10.1016/j.neuroimage.2024.120839_bib0011
  article-title: Predicting the future of neuroimaging predictive models in mental health
  publication-title: Mol. Psychiatry
  doi: 10.1038/s41380-022-01635-2
  contributor:
    fullname: Tejavibulya
SSID ssj0009148
Score 2.5018811
Snippet •We propose a new method, LRFS, to identify features with enhanced discriminability.•It preserves sample similarity and enhance independence among features.•It...
Accurate diagnosis of mental disorders is expected to be achieved through the identification of reliable neuroimaging biomarkers with the help of cutting-edge...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 120839
SubjectTerms Biomarkers
Classification
Datasets
Diagnosis
Feature selection
Functional magnetic resonance imaging
Information theory
Magnetic resonance imaging
Medical imaging
Mental disorder
Mental disorders
Methods
Neural networks
Neuroimaging
Pathogenesis
Preservation
Redundancy
Regularization
Schizophrenia
Sensitivity analysis
Similarity
Sparsity
Variance analysis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQD4gL4ptAQUbiaqgd21mLEyCqClFOVOrN8qcIUhO02f4bfiwzdrJs4AAHrrETxZ6x50388oaQlzom73PkLEmOotreMe9MZCploWMnPS8iSeef9dmF_HipLg9KfSEnrMoD14l7nXPaBKedVDFKDznPJnQAGrJqQwxtqtn6iVmSqUVuF1D-zNupbK6iDtlfwRqFnFDIV1wA9jCrYFQ0-1cx6U_M-Tt18iAWnd4ht2cQSd_Wl79LbqThHrl5Ph-T3yc_PmGEYlUb9nqbGLJdl6-v1A2RbhP-PYY7K9umqxHcjWE8izSnovRJp1IfB7vXGtPlrn430YMTb7obKeBH2seZclSvjpniT_3I-9lOFEAxnQ6ZfQ_IxemHL-_P2FyGgQUpzY7xlGGRK5huERNscNy1XaeC0R130QklghKuM0YEPBKMXnQnQbfZtWC4DBlL-5AcDeOQHhMKZvTCSWjftBKAl_exNVjuJAPK8DI0hC_2sN-r2oZdaGjf7C8bWrShrTZsyDs03L4_6mWXC-BFdvYi-zcvasibxex2hh4VUsCj-n94hePFU-y8BUwWcLNuAS0b3pAX-2ZYvHgi44Y0Xpc-QmqjlGjIo-pY-3EAcAUwzHVDNiuXWw103TL0X4tAOOS4BmWVnvyPqXlKbuFQK4HxmByB66ZnAMR2_nlZcz8BohU5vQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Local-structure-preservation and redundancy-removal-based feature selection method and its application to the identification of biomarkers for schizophrenia
URI https://dx.doi.org/10.1016/j.neuroimage.2024.120839
https://www.ncbi.nlm.nih.gov/pubmed/39251116
https://www.proquest.com/docview/3106365691
https://www.proquest.com/docview/3102469552
https://pubmed.ncbi.nlm.nih.gov/PMC11491165
https://doaj.org/article/ffe8ca6a45dd4b9788c7352f53cdc3e0
Volume 299
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELb6kBAXxJtAWRmJq7u1YycbcSoV1fJoL1Cpt8iObRqkJlV2e-WX8GOZsZ3tBi5IHNd2spnMeOabePyZkLeFdcZ4y5mTHEm1jWZGV5Yp50VhS2l4IEk6Oy-WF_LTpbrcISfjXhgsq0y-P_r04K1Tyzy9zflN286_AjKAcIMJBB5IVpS7ZB_CkQDT3j_--Hl5fse9y2XcEadyhhekgp5Y5hVoI9trmLyQLAp5yAWAkmoSpQKZ_yRY_Q1G_6yp3ApSpw_Jg4Qu6XEU4BHZcd1jcu8srZ8_Ib--YOhikTT2dnAMy2DHz7JUd5YODreVoctlg7vuwQ4ZBjpLvQsUoHQVDs7B4fHw6XBVu17RraVwuu4pAEva2lSLFFt7T3G3PxYEDSsKaJmutkv-npKL0w_fTpYsnc_AGimrNePOw-xXjW2EdeD5uM7LUjVVUXJttVCiUUKXVSUaXCu0RpRHTZF7nbtF4yGVyZ-Rva7v3AtCCy2N0BL6F7kERGaMzSs8B8UD_DCyyQgf9VHfRBqOeqxP-1Hf6bBGHdZRhxl5j4rbjEci7dDQD9_rZEm19_AwGv5eWSsNpNSLpgRM6lUOYuXuKCPvRrXXE7uEW7X_8AgHo6XUyTesagDURQ4wuuIZebPphlmNSzW6c_1tGCNkUSklMvI8GtZGDkC0gJJ5kZHFxOQmgk57uvYqMIdD8lsh39LL_5LqFbmPv2JJ4wHZA5t1rwGarc2M7B7-5LM0AWfhA8dv9GxAQA
link.rule.ids 230,315,783,787,867,888,2109,4510,24129,27937,27938,45598,45692
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVKkaAXxDeBAkbi6m7t2MlanKCiWmC3F1qpN8uOnRKkJtXu9tpfwo9lxk62G7ggcbW9ib0znnmOn58JeV_44FztOQuSo6i2s8xZ7ZkKtSh8KR2PIkmLk2J2Jr-eq_MdcjSchUFaZR_7U0yP0bovmfT_5uSqaSbfARlAusEFBF5IVpR3yF2JcuPg1Ac3tzwPzWU6D6dyhs17Ok8ieUXRyOYSpi4sFYU84AIgiR7lqCjlP0pVf0PRPxmVWynq-CF50GNL-jF1_xHZCe1jcm_R754_Ib_mmLhYkoy9XgaGJNjhoyy1rafLgIfKMOCyZbjswAsZpjlP6xAFQOkqXpuDzdPV0_FXzXpFtzbC6bqjACtp43smUirtaopn_ZEOtFxRwMp0tU34e0rOjj-fHs1YfzsDq6TUa8ZDDXNfVb4SPkDc4zYvS1XpouTWW6FEpYQttRYV7hR6J8rDqshrm4dpVcNCJn9GdtuuDS8ILax0wkqon-YS8JhzPtd4C0oN4MPJKiN8sIe5SiIcZmCn_TS3NjRoQ5NsmJFPaLhNe5TRjgXd8sL0fmTqGjpj4fXKe-lgQT2tSkCktcphWHk4zMiHwexm5JXwqOYfurA_eIrpI8PKAJwucgDRmmfk3aYa5jRu1Ng2dNexjZCFVkpk5HlyrM04AM8CRuZFRqYjlxsNdFzTNj-ibjgsfTWqLb38r1G9Jfdnp4u5mX85-faK7GFNIjfuk13w3_AaQNravYmT8Ddv8kAk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Local-structure-preservation+and+redundancy-removal-based+feature+selection+method+and+its+application+to+the+identification+of+biomarkers+for+schizophrenia&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Xing%2C+Ying&rft.au=Pearlson%2C+Godfrey+D.&rft.au=Kochunov%2C+Peter&rft.au=Calhoun%2C+Vince+D.&rft.date=2024-10-01&rft.issn=1053-8119&rft.volume=299&rft.spage=120839&rft_id=info:doi/10.1016%2Fj.neuroimage.2024.120839&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neuroimage_2024_120839
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon