The Wafer-Level Integration of Single-Crystal LiNbO3 on Silicon via Polyimide Material

In situ measurements of sensing signals in space platforms requires that the micro-electro-mechanical system (MEMS) sensors be located directly at the point to be measured and in contact with the subject to be measured. Traditional radiation-tolerant silicon-based MEMS sensors cannot acquire spatial...

Full description

Saved in:
Bibliographic Details
Published inMicromachines (Basel) Vol. 12; no. 1; p. 70
Main Authors Yang, Xiangyu, Geng, Wenping, Bi, Kaixi, Mei, Linyu, Li, Yaqing, He, Jian, Mu, Jiliang, Hou, Xiaojuan, Chou, Xiujian
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.01.2021
MDPI
Subjects
Online AccessGet full text
ISSN2072-666X
2072-666X
DOI10.3390/mi12010070

Cover

Loading…
Abstract In situ measurements of sensing signals in space platforms requires that the micro-electro-mechanical system (MEMS) sensors be located directly at the point to be measured and in contact with the subject to be measured. Traditional radiation-tolerant silicon-based MEMS sensors cannot acquire spatial signals directly. Compared to silicon-based structures, LiNbO3 single crystalline has wide application prospects in the aerospace field owing to its excellent corrosion resistance, low-temperature resistance and radiation resistance. In our work, 4-inch LiNbO3 and LiNbO3/Cr/Au wafers are fabricated to silicon substrate by means of a polyimide bonding method, respectively. The low-temperature bonding process (≤100 °C) is also useful for heterostructure to avoid wafer fragmentation results from a coefficient of thermal expansion (CTE) mismatch. The hydrophilic polyimide surfaces result from the increasing of -OH groups were acquired based on contact angle and X-ray photoelectron spectroscopy characterizations. A tight and defect-free bonding interface was confirmed by scanning electron microscopy. More importantly, benefiting from low-temperature tolerance and radiation-hardened properties of polyimide material, the bonding strength of the heterostructure based on oxygen plasma activation achieved 6.582 MPa and 3.339 MPa corresponding to room temperature and ultra-low temperature (≈ −263.15 °C), which meets the bonding strength requirements of aerospace applications.
AbstractList In situ measurements of sensing signals in space platforms requires that the micro-electro-mechanical system (MEMS) sensors be located directly at the point to be measured and in contact with the subject to be measured. Traditional radiation-tolerant silicon-based MEMS sensors cannot acquire spatial signals directly. Compared to silicon-based structures, LiNbO3 single crystalline has wide application prospects in the aerospace field owing to its excellent corrosion resistance, low-temperature resistance and radiation resistance. In our work, 4-inch LiNbO3 and LiNbO3/Cr/Au wafers are fabricated to silicon substrate by means of a polyimide bonding method, respectively. The low-temperature bonding process ( ≤ ≤ 100 °C) is also useful for heterostructure to avoid wafer fragmentation results from a coefficient of thermal expansion (CTE) mismatch. The hydrophilic polyimide surfaces result from the increasing of -OH groups were acquired based on contact angle and X-ray photoelectron spectroscopy characterizations. A tight and defect-free bonding interface was confirmed by scanning electron microscopy. More importantly, benefiting from low-temperature tolerance and radiation-hardened properties of polyimide material, the bonding strength of the heterostructure based on oxygen plasma activation achieved 6.582 MPa and 3.339 MPa corresponding to room temperature and ultra-low temperature ( ≈ ≈ −263.15 °C), which meets the bonding strength requirements of aerospace applications.
In situ measurements of sensing signals in space platforms requires that the micro-electro-mechanical system (MEMS) sensors be located directly at the point to be measured and in contact with the subject to be measured. Traditional radiation-tolerant silicon-based MEMS sensors cannot acquire spatial signals directly. Compared to silicon-based structures, LiNbO3 single crystalline has wide application prospects in the aerospace field owing to its excellent corrosion resistance, low-temperature resistance and radiation resistance. In our work, 4-inch LiNbO3 and LiNbO3/Cr/Au wafers are fabricated to silicon substrate by means of a polyimide bonding method, respectively. The low-temperature bonding process ( ≤ 100 °C) is also useful for heterostructure to avoid wafer fragmentation results from a coefficient of thermal expansion (CTE) mismatch. The hydrophilic polyimide surfaces result from the increasing of -OH groups were acquired based on contact angle and X-ray photoelectron spectroscopy characterizations. A tight and defect-free bonding interface was confirmed by scanning electron microscopy. More importantly, benefiting from low-temperature tolerance and radiation-hardened properties of polyimide material, the bonding strength of the heterostructure based on oxygen plasma activation achieved 6.582 MPa and 3.339 MPa corresponding to room temperature and ultra-low temperature ( ≈ −263.15 °C), which meets the bonding strength requirements of aerospace applications.
In situ measurements of sensing signals in space platforms requires that the micro-electro-mechanical system (MEMS) sensors be located directly at the point to be measured and in contact with the subject to be measured. Traditional radiation-tolerant silicon-based MEMS sensors cannot acquire spatial signals directly. Compared to silicon-based structures, LiNbO3 single crystalline has wide application prospects in the aerospace field owing to its excellent corrosion resistance, low-temperature resistance and radiation resistance. In our work, 4-inch LiNbO3 and LiNbO3/Cr/Au wafers are fabricated to silicon substrate by means of a polyimide bonding method, respectively. The low-temperature bonding process (≤100 °C) is also useful for heterostructure to avoid wafer fragmentation results from a coefficient of thermal expansion (CTE) mismatch. The hydrophilic polyimide surfaces result from the increasing of -OH groups were acquired based on contact angle and X-ray photoelectron spectroscopy characterizations. A tight and defect-free bonding interface was confirmed by scanning electron microscopy. More importantly, benefiting from low-temperature tolerance and radiation-hardened properties of polyimide material, the bonding strength of the heterostructure based on oxygen plasma activation achieved 6.582 MPa and 3.339 MPa corresponding to room temperature and ultra-low temperature (≈ -263.15 °C), which meets the bonding strength requirements of aerospace applications.In situ measurements of sensing signals in space platforms requires that the micro-electro-mechanical system (MEMS) sensors be located directly at the point to be measured and in contact with the subject to be measured. Traditional radiation-tolerant silicon-based MEMS sensors cannot acquire spatial signals directly. Compared to silicon-based structures, LiNbO3 single crystalline has wide application prospects in the aerospace field owing to its excellent corrosion resistance, low-temperature resistance and radiation resistance. In our work, 4-inch LiNbO3 and LiNbO3/Cr/Au wafers are fabricated to silicon substrate by means of a polyimide bonding method, respectively. The low-temperature bonding process (≤100 °C) is also useful for heterostructure to avoid wafer fragmentation results from a coefficient of thermal expansion (CTE) mismatch. The hydrophilic polyimide surfaces result from the increasing of -OH groups were acquired based on contact angle and X-ray photoelectron spectroscopy characterizations. A tight and defect-free bonding interface was confirmed by scanning electron microscopy. More importantly, benefiting from low-temperature tolerance and radiation-hardened properties of polyimide material, the bonding strength of the heterostructure based on oxygen plasma activation achieved 6.582 MPa and 3.339 MPa corresponding to room temperature and ultra-low temperature (≈ -263.15 °C), which meets the bonding strength requirements of aerospace applications.
In situ measurements of sensing signals in space platforms requires that the micro-electro-mechanical system (MEMS) sensors be located directly at the point to be measured and in contact with the subject to be measured. Traditional radiation-tolerant silicon-based MEMS sensors cannot acquire spatial signals directly. Compared to silicon-based structures, LiNbO 3 single crystalline has wide application prospects in the aerospace field owing to its excellent corrosion resistance, low-temperature resistance and radiation resistance. In our work, 4-inch LiNbO 3 and LiNbO 3 /Cr/Au wafers are fabricated to silicon substrate by means of a polyimide bonding method, respectively. The low-temperature bonding process ( ≤ 100 °C) is also useful for heterostructure to avoid wafer fragmentation results from a coefficient of thermal expansion (CTE) mismatch. The hydrophilic polyimide surfaces result from the increasing of -OH groups were acquired based on contact angle and X-ray photoelectron spectroscopy characterizations. A tight and defect-free bonding interface was confirmed by scanning electron microscopy. More importantly, benefiting from low-temperature tolerance and radiation-hardened properties of polyimide material, the bonding strength of the heterostructure based on oxygen plasma activation achieved 6.582 MPa and 3.339 MPa corresponding to room temperature and ultra-low temperature ( ≈ −263.15 °C), which meets the bonding strength requirements of aerospace applications.
In situ measurements of sensing signals in space platforms requires that the micro-electro-mechanical system (MEMS) sensors be located directly at the point to be measured and in contact with the subject to be measured. Traditional radiation-tolerant silicon-based MEMS sensors cannot acquire spatial signals directly. Compared to silicon-based structures, LiNbO3 single crystalline has wide application prospects in the aerospace field owing to its excellent corrosion resistance, low-temperature resistance and radiation resistance. In our work, 4-inch LiNbO3 and LiNbO3/Cr/Au wafers are fabricated to silicon substrate by means of a polyimide bonding method, respectively. The low-temperature bonding process (≤100 °C) is also useful for heterostructure to avoid wafer fragmentation results from a coefficient of thermal expansion (CTE) mismatch. The hydrophilic polyimide surfaces result from the increasing of -OH groups were acquired based on contact angle and X-ray photoelectron spectroscopy characterizations. A tight and defect-free bonding interface was confirmed by scanning electron microscopy. More importantly, benefiting from low-temperature tolerance and radiation-hardened properties of polyimide material, the bonding strength of the heterostructure based on oxygen plasma activation achieved 6.582 MPa and 3.339 MPa corresponding to room temperature and ultra-low temperature (≈ −263.15 °C), which meets the bonding strength requirements of aerospace applications.
Author Yang, Xiangyu
Bi, Kaixi
Mu, Jiliang
Hou, Xiaojuan
Geng, Wenping
Mei, Linyu
He, Jian
Chou, Xiujian
Li, Yaqing
AuthorAffiliation 1 Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, China; s1806068@st.nuc.edu.cn (X.Y.); bikaixi@nuc.edu.cn (K.B.); s1806120@st.nuc.edu.cn (Y.L.); drhejian@nuc.edu.cn (J.H.); mujiliang@nuc.edu.cn (J.M.); houxiaojuan@nuc.edu.cn (X.H.); chouxiujian@nuc.edu.cn (X.C.)
2 School of Mechanical Engineering, North University of China, Taiyuan 030051, China; mly81@163.com
AuthorAffiliation_xml – name: 1 Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, China; s1806068@st.nuc.edu.cn (X.Y.); bikaixi@nuc.edu.cn (K.B.); s1806120@st.nuc.edu.cn (Y.L.); drhejian@nuc.edu.cn (J.H.); mujiliang@nuc.edu.cn (J.M.); houxiaojuan@nuc.edu.cn (X.H.); chouxiujian@nuc.edu.cn (X.C.)
– name: 2 School of Mechanical Engineering, North University of China, Taiyuan 030051, China; mly81@163.com
Author_xml – sequence: 1
  givenname: Xiangyu
  surname: Yang
  fullname: Yang, Xiangyu
– sequence: 2
  givenname: Wenping
  orcidid: 0000-0002-6324-6193
  surname: Geng
  fullname: Geng, Wenping
– sequence: 3
  givenname: Kaixi
  surname: Bi
  fullname: Bi, Kaixi
– sequence: 4
  givenname: Linyu
  surname: Mei
  fullname: Mei, Linyu
– sequence: 5
  givenname: Yaqing
  surname: Li
  fullname: Li, Yaqing
– sequence: 6
  givenname: Jian
  surname: He
  fullname: He, Jian
– sequence: 7
  givenname: Jiliang
  surname: Mu
  fullname: Mu, Jiliang
– sequence: 8
  givenname: Xiaojuan
  surname: Hou
  fullname: Hou, Xiaojuan
– sequence: 9
  givenname: Xiujian
  surname: Chou
  fullname: Chou, Xiujian
BookMark eNptkd1rFDEQwBep2Fr74l-w4IsIq_naJPsiyOHHwWmFHupbmGQn1xy5TZvdO7j_3vSuqC3mIRMyv_llyDyvToY0YFW9pOQt5x15twmUEUqIIk-qM0YUa6SUv07-OZ9WF-O4JmUp1ZXtWXXKueCt4Pys-rG8xvoneMzNAncY6_kw4SrDFNJQJ19fhWEVsZnl_ThBrBfhm73kdcldhRhcibsA9fcU92ETeqy_woQ5QHxRPfUQR7y4j-fV8tPH5exLs7j8PJ99WDROiG5qqG25AO8l460FaDsJkoO32BEKTgqNvdBaOS6Y1k4o0NK3tLMKPLPW8vNqftT2CdbmJocN5L1JEMzhIuWVgTwFF9Foq5zX1mvfSgG9h07aXlLfUcUtalFc74-um63dYO9wmDLEB9KHmSFcm1XaGaWZbElbBK_vBTndbnGczCaMDmOEAdN2NEwoJTrJ1d1brx6h67TNQ_mpA6UZI4wW6s2RcjmNY0b_pxlKzN3wzd_hF5g8gl2YDmMszYb4v5LfN3GxlQ
CitedBy_id crossref_primary_10_1016_j_matdes_2022_110447
crossref_primary_10_1016_j_jmst_2021_11_040
crossref_primary_10_1021_acsami_4c08823
crossref_primary_10_1007_s10404_022_02579_3
Cites_doi 10.1063/1.2185467
10.1016/j.apsusc.2007.02.112
10.1016/j.apsusc.2009.09.002
10.1016/S0169-4332(00)00739-X
10.1117/1.3152362
10.1016/j.surfcoat.2007.08.046
10.1063/1.4966547
10.1039/C7RA08854J
10.1021/la9001972
10.1016/j.apsusc.2018.09.174
10.1109/23.556915
10.1038/nature12314
10.1002/adma.200502364
10.1149/1.3560510
10.1016/0022-3115(80)90028-8
10.1143/JJAP.45.3822
10.13182/NT77-A31961
10.1016/j.progpolymsci.2012.02.005
10.1016/j.surfcoat.2011.04.016
10.1002/1097-4628(20001031)78:5<979::AID-APP60>3.0.CO;2-U
10.1016/j.snb.2010.06.070
10.1109/TNS.2018.2828300
10.1016/j.nimb.2020.03.007
10.1088/0960-1317/11/4/311
10.1109/TED.2019.2957880
10.1049/el:19870845
10.1016/j.apsusc.2017.10.184
10.1016/j.surfcoat.2005.09.028
10.1364/OL.40.001258
10.1016/S0257-8972(01)01315-9
10.1109/TNS.2008.2001409
10.7567/JJAP.56.088002
10.1002/(SICI)1096-9918(199902)27:2<103::AID-SIA477>3.0.CO;2-1
ContentType Journal Article
Copyright 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
7SP
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
L6V
L7M
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
7X8
5PM
DOA
DOI 10.3390/mi12010070
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
SciTech Premium Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Engineering Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2072-666X
ExternalDocumentID oai_doaj_org_article_8b7cf8bf8f564adfa96bd61f9173be84
PMC7826505
10_3390_mi12010070
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GroupedDBID 53G
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABJCF
ADBBV
ADMLS
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
HYE
IAO
KQ8
L6V
M7S
MM.
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
RPM
TR2
TUS
7SP
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
L7M
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c449t-1b534aff6235baa596a63afbe901ac648ed4887c34288c47a86f519b7af2bbb3
IEDL.DBID DOA
ISSN 2072-666X
IngestDate Wed Aug 27 01:29:03 EDT 2025
Thu Aug 21 18:14:57 EDT 2025
Fri Sep 05 03:02:47 EDT 2025
Fri Jul 25 12:11:51 EDT 2025
Tue Jul 01 03:41:08 EDT 2025
Thu Apr 24 23:10:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c449t-1b534aff6235baa596a63afbe901ac648ed4887c34288c47a86f519b7af2bbb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6324-6193
OpenAccessLink https://doaj.org/article/8b7cf8bf8f564adfa96bd61f9173be84
PMID 33435433
PQID 2477822021
PQPubID 2032359
ParticipantIDs doaj_primary_oai_doaj_org_article_8b7cf8bf8f564adfa96bd61f9173be84
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7826505
proquest_miscellaneous_2477496374
proquest_journals_2477822021
crossref_primary_10_3390_mi12010070
crossref_citationtrail_10_3390_mi12010070
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Micromachines (Basel)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Wu (ref_1) 2010; 150
Shea (ref_8) 2009; 8
Wu (ref_21) 2006; 45
ref_14
Takagi (ref_22) 2001; 11
Kakehi (ref_16) 2001; 169–170
Song (ref_35) 2015; 78
Chaiken (ref_9) 2018; 65
Xie (ref_26) 2011; 206
Bai (ref_23) 2018; 434
Kilburger (ref_17) 2007; 253
Lugscheider (ref_29) 2001; 142–144
Bourdarie (ref_6) 2008; 55
Drummond (ref_13) 1987; 23
Beaulieu (ref_30) 2009; 25
Broomfield (ref_5) 1980; 91
Park (ref_18) 2006; 18
Edon (ref_15) 2009; 256
Du (ref_7) 2019; 465
Pasternak (ref_33) 2018; 8
Zhu (ref_34) 2008; 202
Sha (ref_11) 2020; 472
Chauvet (ref_19) 2015; 40
ref_20
Kaltenbrunner (ref_25) 2013; 499
Tan (ref_32) 2006; 88
Lee (ref_10) 1996; 43
ref_2
ref_28
Wang (ref_36) 2011; 158
Duo (ref_27) 2006; 200
Primak (ref_12) 1977; 36
Li (ref_3) 2020; 67
ref_4
Paynter (ref_31) 2015; 27
Liaw (ref_24) 2012; 37
References_xml – ident: ref_28
– volume: 88
  start-page: 3949
  year: 2006
  ident: ref_32
  article-title: Comparison of medium-vacuum and plasma-activated low-temperature wafer bonding
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2185467
– volume: 253
  start-page: 8263
  year: 2007
  ident: ref_17
  article-title: Growth of LiNbO 3 thin films on sapphire by pulsed-laser deposition for electro-optic modulators
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2007.02.112
– volume: 256
  start-page: 1455
  year: 2009
  ident: ref_15
  article-title: Structural, electrical and piezoelectric properties of LiNbO 3 thin films for surface acoustic wave resonators applications
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2009.09.002
– volume: 169–170
  start-page: 560
  year: 2001
  ident: ref_16
  article-title: Epitaxial growth of LiNbO3 thin films using pulsed laser deposition
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/S0169-4332(00)00739-X
– volume: 8
  start-page: 031303
  year: 2009
  ident: ref_8
  article-title: Radiation sensitivity of microelectromechanical system devices
  publication-title: J. Micro/Nanolithogr. MEMS MOEMS
  doi: 10.1117/1.3152362
– volume: 202
  start-page: 1966
  year: 2008
  ident: ref_34
  article-title: Effect of absorbed moisture on the atmospheric plasma etching of polyamide fibers
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2007.08.046
– ident: ref_2
  doi: 10.1063/1.4966547
– volume: 8
  start-page: 2161
  year: 2018
  ident: ref_33
  article-title: Low-temperature direct bonding of silicon nitride to glass
  publication-title: RSC Adv.
  doi: 10.1039/C7RA08854J
– volume: 25
  start-page: 7169
  year: 2009
  ident: ref_30
  article-title: Oxygen Plasma Treatment of Polystyrene and Zeonor: Substrates for Adhesion of Patterned Cells
  publication-title: Langmuir
  doi: 10.1021/la9001972
– volume: 465
  start-page: 1014
  year: 2019
  ident: ref_7
  article-title: The alleviation of radiation-damage on Nb/MgO film driven by strain gradient in He ion irradiation
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.09.174
– volume: 43
  start-page: 3127
  year: 1996
  ident: ref_10
  article-title: Total dose effects on microelectromechanical systems (MEMS): Accelerometers
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/23.556915
– volume: 499
  start-page: 458
  year: 2013
  ident: ref_25
  article-title: An ultra-lightweight design for imperceptible plastic electronics
  publication-title: Nature
  doi: 10.1038/nature12314
– volume: 18
  start-page: 1533
  year: 2006
  ident: ref_18
  article-title: Integration of single-crystal LiNbO3 thin film on silicon by laser irradiation and ion implantation-induced layer transfer
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200502364
– ident: ref_14
– volume: 158
  start-page: H525
  year: 2011
  ident: ref_36
  article-title: Room-Temperature Direct Bonding Using Fluorine Containing Plasma Activation
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3560510
– volume: 91
  start-page: 23
  year: 1980
  ident: ref_5
  article-title: The effect of low-fluence neutron irradiation on silver-electroded lead-zirconate-titanate piezoelectric ceramics
  publication-title: J. Nucl. Mater.
  doi: 10.1016/0022-3115(80)90028-8
– volume: 45
  start-page: 3822
  year: 2006
  ident: ref_21
  article-title: Thinning Technology for Lithium Niobate Wafer by Surface Activated Bonding and Chemical Mechanical Polishing
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.45.3822
– volume: 36
  start-page: 79
  year: 1977
  ident: ref_12
  article-title: Stability of Lithium Niobate on Irradiation at Elevated Temperature
  publication-title: Nucl. Technol.
  doi: 10.13182/NT77-A31961
– ident: ref_4
– volume: 37
  start-page: 907
  year: 2012
  ident: ref_24
  article-title: Advanced polyimide materials: Syntheses, physical properties and applications
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2012.02.005
– volume: 206
  start-page: 191
  year: 2011
  ident: ref_26
  article-title: Improving carbon fiber adhesion to polyimide with atmospheric pressure plasma treatment
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2011.04.016
– volume: 78
  start-page: 979
  year: 2015
  ident: ref_35
  article-title: Surface modification of polysulfone membranes by low-temperature plasma–graft poly(ethylene glycol) onto polysulfone membranes
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/1097-4628(20001031)78:5<979::AID-APP60>3.0.CO;2-U
– volume: 150
  start-page: 296
  year: 2010
  ident: ref_1
  article-title: Wafer-scale synthesis of graphene by chemical vapor deposition and its application in hydrogen sensing
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2010.06.070
– volume: 65
  start-page: 1147
  year: 2018
  ident: ref_9
  article-title: An Estimation of the Neutron Displacement Damage Cross Section for Ga2O3
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/TNS.2018.2828300
– volume: 472
  start-page: 46
  year: 2020
  ident: ref_11
  article-title: In-situ measurement of irradiation behavior in LiNbO3
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms
  doi: 10.1016/j.nimb.2020.03.007
– volume: 11
  start-page: 348
  year: 2001
  ident: ref_22
  article-title: Room-temperature wafer bonding of Si to LiNbO3, LiTaO3 and Gd3Ga5O12 by Ar-beam surface activation
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/11/4/311
– volume: 67
  start-page: 640
  year: 2020
  ident: ref_3
  article-title: A Micromachined Resonant Differential Pressure Sensor
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2019.2957880
– volume: 23
  start-page: 1214
  year: 1987
  ident: ref_13
  article-title: Resistance of Ti:LiNbO3 devices to ionising radiation
  publication-title: Electron. Lett.
  doi: 10.1049/el:19870845
– volume: 434
  start-page: 569
  year: 2018
  ident: ref_23
  article-title: Surface modifications of crystal-ion-sliced LiNbO_3 thin films by low energy ion irradiations
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.10.184
– volume: 200
  start-page: 6671
  year: 2006
  ident: ref_27
  article-title: Resistance of polyimide/silica hybrid films to atomic oxygen attack
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2005.09.028
– volume: 40
  start-page: 1258
  year: 2015
  ident: ref_19
  article-title: Fast-beam self-trapping in LiNbO_3 films by pyroelectric effect
  publication-title: Opt. Lett.
  doi: 10.1364/OL.40.001258
– volume: 142–144
  start-page: 755
  year: 2001
  ident: ref_29
  article-title: The influence on surface free energy of PVD-coatings
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/S0257-8972(01)01315-9
– volume: 55
  start-page: 1810
  year: 2008
  ident: ref_6
  article-title: The near-Earth space radiation environment
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/TNS.2008.2001409
– ident: ref_20
  doi: 10.7567/JJAP.56.088002
– volume: 27
  start-page: 103
  year: 2015
  ident: ref_31
  article-title: Angle-resolved x-ray photoelectron spectroscopy studies of the evolution of plasma-treated surfaces with time
  publication-title: Surf. Interface Anal.
  doi: 10.1002/(SICI)1096-9918(199902)27:2<103::AID-SIA477>3.0.CO;2-1
SSID ssj0000779007
Score 2.2180037
Snippet In situ measurements of sensing signals in space platforms requires that the micro-electro-mechanical system (MEMS) sensors be located directly at the point to...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 70
SubjectTerms Bonding strength
Contact angle
Corrosion resistance
Curing
Dielectric properties
Gamma rays
Heterostructures
In situ measurement
Interfaces
LiNbO3 single crystalline
Lithium
Lithium niobates
Low temperature resistance
low-temperature bonding
low-temperature tolerance
Mechanical systems
Methods
Microelectromechanical systems
Oxygen plasma
oxygen plasma activation
Photoelectrons
Plasma
polyimide material
Radiation hardening
Radiation tolerance
radiation-hardened properties
Room temperature
Sensors
Silicon substrates
Silicon wafers
Single crystals
Space stations
Thermal expansion
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZge4EDojzEQqmM4MIh6mbjxPYJ0apVi9qlogV6i2YSD0RKk7LdIvXfM068242EeooUj5JoPI9vbOcbIT5goVTiYorAKcsFyoRdCl0cWQO6sLFDG_ufk09m2eF39eUivQgLbtfhWOUyJnaBumwLv0a-M1XaJzNOSZ-u_kS-a5TfXQ0tNB6KDQ7BJh2Jjd392em31SrLxNPpTXTPS5pwfb9zWcV-A3jiuxOvZaKOsH-AModnJNeSzsFT8SSgRfm5n95N8cA1z8TjNQ7B5-IHT7T8CeTm0bE_ACSPAgEEK1y2JM9YqnbR3vyWcWAtj6sZfk0kj51VNVtBI_9WIE_b-ra6rEonT2DR2eQLcX6wf753GIVmCRFr2y6iGNNEARHDmRQBUptBlgCh44QPRaaMK9lXdZFwvWEKpcFkxOgNNdAUEZOXYtS0jXslJGOM0ioEnCryjTgY4SnGJUSOLFAKY_Fxqbe8CETivp9FnXNB4XWc3-l4LN6vZK96-oz_Su169a8kPOV1d6Od_8qDB-UGdUEGyVCaKSgJbIZlFhPXmwk6o8Ziazl5efDD6_zOasbi3WqYPchvi0Dj2pteRnEc0vwIPZj0wQcNR5rqd8fFzU9njJu-vv_lb8Qjf-mXbrbEaDG_cW8ZzCxwO1jsP_vS9yU
  priority: 102
  providerName: ProQuest
Title The Wafer-Level Integration of Single-Crystal LiNbO3 on Silicon via Polyimide Material
URI https://www.proquest.com/docview/2477822021
https://www.proquest.com/docview/2477496374
https://pubmed.ncbi.nlm.nih.gov/PMC7826505
https://doaj.org/article/8b7cf8bf8f564adfa96bd61f9173be84
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BucAB8RQLZWUEFw5RNxsnto-06lJQu1S0QG_RTOIRkdIsWrZI_feMk3RJJCQuXOOR5czD803sfAPwhgqtEx9zhF47KVBmElLk48hZNIWLPbk4_Jx8ssyOvuiPF-nFoNVXuBPW0QN3ituzZAq2xJbTTGPJ6DIqs5ilzEjI25YJVHLeoJhq9-BAozczHR9pInX93mUVh4PfWehKPMhALVH_CF2O70YOks3iAdzvUaJ6163uIdzyzSO4N-AOfAxfxcDqG7JfR8fh4o_60BM_iKLVitWZSNU-OlhfC_6r1XG1pE-JkrGzqhbrN-pXhep0VV9Xl1Xp1QluWl98AueLw_ODo6hvkhCJlt0miilNNDILjEkJMXUZZgkyeUn0WGTa-lJi1BSJ1Bm20AZtxoLayCDPiSh5CjvNqvHPQAm2KJ0mpLnm0IBDkJ0WPMLs2SGnOIG3N3rLi55APPSxqHMpJIKO8z86nsDrreyPjjbjr1L7Qf1biUB13T4QB8h7B8j_5QAT2L0xXt7H3898rk2APgJgJvBqOyyRE45DsPGrq05Gy_5jZAozMvpoQeORpvrecnDL7IJt0-f_4w1ewN2w0u7Dzi7sbNZX_qVAnQ1N4bZdvJ_Cnf3D5ennaevjvwGUagJL
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gAcEE-xUMAIOHCImocTxweEaGm1S3eXii60t2ic2BApTcp2C9ofxX9knMd2IyFuvdojJ5qH5_PrG4DXKuU80J5xUHNJCxSXQkppz5ExilR6WknPPk6eTKPhV_7pNDzdgD_dWxh7rbKbE-uJOqtSu0e-43NhkxmlpPfnPx1bNcqernYlNBq3ONTL37Rku3g3-kj2feP7B_uzvaHTVhVw6LfkwvFUGHA0hvJ-qBBDGWEUoFGaMiOmEY91Rk4t0oCAeZxygXFkCOYogcZXSgU07A3YIpQhKYi2dvenR19WmzquZe9zRUODGgTS3TnLPXve7NpiyGuJr64P0AO1_SuZaznu4C7cacEp-9B40z3Y0OV9uL1GWfgAvpFfsRM0eu6M7X0jNmr5Jsi-rDLsmKQK7ezNlwQ7CzbOp-pzwKjvOC_I6Ur2K0d2VBXL_CzPNJvgog6BhzC7Di0-gs2yKvVjYARpMskVKp8bW_eDACUnGGSMNhJNiAN42-ktSVvecls-o0ho_WJ1nFzpeACvVrLnDVvHP6V2rfpXEpZhu26o5t-TNmCTWInUxMrEJow4ZgZlpLLIM7S8DZSO-QC2O-MlbdhfJFdOOoCXq24KWHsKg6WuLhsZTtOeoCFEz-i9H-r3lPmPmvqbRidIHT75_8dfwM3hbDJOxqPp4VO4ZZuaXaNt2FzML_UzwlEL9bz1XgbJNcfLX7aDNFM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggHiKLQWMgAOHaDeJE8cHhOhj1aXbZUUL9BaNE5tGSpOy3YL2p_HvGOex3UiIW6_2yInm-dkezwC8UQnnvnaNg5pL2qAMyaSUdh0ZoUikq5V07ePko2l48JV_Og1ON-BP-xbGplW2PrFy1GmZ2DPygceFDWYUkgamSYuY7Y0-XPx0bAcpe9PattOoVeRQL3_T9u3y_XiPZP3W80b7J7sHTtNhwKFflAvHVYHP0RjCAIFCDGSIoY9GaYqSmIQ80ikpuEh8AulRwgVGoSHIowQaTynl07K3YFNQUIx6sLmzP519WR3wDG0lv6GoS6L6vhwOzjPX3j0PbWPktSBY9QroANxueuZavBvdh3sNUGUfa816ABu6eAh318oXPoJvpGPsOxo9dyY294iNm9oTJGtWGnZMVLl2dudLgqA5m2RT9dlnNHec5aSABfuVIZuV-TI7z1LNjnBRmcNjOLkJLj6BXlEW-ikwgjep5AqVx43tAULgkhMkMkYbiSbAPrxr-RYnTQ1z20ojj2kvY3kcX_O4D69XtBd15Y5_Uu1Y9q8obLXtaqCc_4gb440jJRITKROZIOSYGpShSkPX0FbXVzrifdhuhRc3LuAyvlbYPrxaTZPx2hsZLHR5VdNwcoGClhAdoXd-qDtTZGdVGXBaneB1sPX_j7-E22Qn8WQ8PXwGd-xIfYC0Db3F_Eo_J0i1UC8a5WUQ37C5_AWhPjh_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Wafer-Level+Integration+of+Single-Crystal+LiNbO3+on+Silicon+via+Polyimide+Material&rft.jtitle=Micromachines+%28Basel%29&rft.au=Yang%2C+Xiangyu&rft.au=Geng%2C+Wenping&rft.au=Bi%2C+Kaixi&rft.au=Mei%2C+Linyu&rft.date=2021-01-01&rft.issn=2072-666X&rft.eissn=2072-666X&rft.volume=12&rft.issue=1&rft.spage=70&rft_id=info:doi/10.3390%2Fmi12010070&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_mi12010070
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-666X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-666X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-666X&client=summon