An inward and outward natural gas hydrates growth shell model considering intrinsic kinetics, mass and heat transfer
► The natural gas hydrates formation and growth were studied in the flow loop at three water cuts. ► The gas consumption value increased with increment of water cut. ► The total water conversion rates depended on water cut, amount of dissolved gas and surface/volume ratio of particles. ► An inward a...
Saved in:
Published in | Chemical engineering journal (Lausanne, Switzerland : 1996) Vol. 171; no. 3; pp. 1308 - 1316 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier B.V
15.07.2011
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ► The natural gas hydrates formation and growth were studied in the flow loop at three water cuts. ► The gas consumption value increased with increment of water cut. ► The total water conversion rates depended on water cut, amount of dissolved gas and surface/volume ratio of particles. ► An inward and outward natural gas hydrates growth shell model was proposed, considered intrinsic kinetics, mass and heat transfer. ► The simulated results fitted the experimental data well.
The natural gas hydrates formation and growth at 2
MPa and 277.15
K were studied at different water cuts for water-in-condensate oil emulsions in the flow loop unit. The variations of gas consumption with time at different water cuts were obtained. The experimental results showed that the gas consumption value increased with the rise of water cut. The total water conversion rates not only depended on the water cuts, but also related to several other factors, two of which were the amount of the dissolved gas and the surface/volume ratio of the particles. No more natural gas transformed into hydrates after 3
h, which was likely caused by intrinsic kinetics, mass transfer and heat transfer limitations. An inward and outward natural gas hydrates growth shell model was proposed considering all the three limitations to simulate the gas and water consumptions to form natural gas hydrates. |
---|---|
AbstractList | ► The natural gas hydrates formation and growth were studied in the flow loop at three water cuts. ► The gas consumption value increased with increment of water cut. ► The total water conversion rates depended on water cut, amount of dissolved gas and surface/volume ratio of particles. ► An inward and outward natural gas hydrates growth shell model was proposed, considered intrinsic kinetics, mass and heat transfer. ► The simulated results fitted the experimental data well.
The natural gas hydrates formation and growth at 2
MPa and 277.15
K were studied at different water cuts for water-in-condensate oil emulsions in the flow loop unit. The variations of gas consumption with time at different water cuts were obtained. The experimental results showed that the gas consumption value increased with the rise of water cut. The total water conversion rates not only depended on the water cuts, but also related to several other factors, two of which were the amount of the dissolved gas and the surface/volume ratio of the particles. No more natural gas transformed into hydrates after 3
h, which was likely caused by intrinsic kinetics, mass transfer and heat transfer limitations. An inward and outward natural gas hydrates growth shell model was proposed considering all the three limitations to simulate the gas and water consumptions to form natural gas hydrates. The natural gas hydrates formation and growth at 2 MPa and 277.15 K were studied at different water cuts for water-in-condensate oil emulsions in the flow loop unit. The variations of gas consumption with time at different water cuts were obtained. The experimental results showed that the gas consumption value increased with the rise of water cut. The total water conversion rates not only depended on the water cuts, but also related to several other factors, two of which were the amount of the dissolved gas and the surface/volume ratio of the particles. No more natural gas transformed into hydrates after 3 h, which was likely caused by intrinsic kinetics, mass transfer and heat transfer limitations. An inward and outward natural gas hydrates growth shell model was proposed considering all the three limitations to simulate the gas and water consumptions to form natural gas hydrates. The natural gas hydrates formation and growth at 2MPa and 277.15K were studied at different water cuts for water-in-condensate oil emulsions in the flow loop unit. The variations of gas consumption with time at different water cuts were obtained. The experimental results showed that the gas consumption value increased with the rise of water cut. The total water conversion rates not only depended on the water cuts, but also related to several other factors, two of which were the amount of the dissolved gas and the surface/volume ratio of the particles. No more natural gas transformed into hydrates after 3h, which was likely caused by intrinsic kinetics, mass transfer and heat transfer limitations. An inward and outward natural gas hydrates growth shell model was proposed considering all the three limitations to simulate the gas and water consumptions to form natural gas hydrates. |
Author | Ding, Yao Gong, Jing Sun, Chang-Yu Chen, Guang-Jin Shi, Bo-Hui Zhao, Jian-Kui |
Author_xml | – sequence: 1 givenname: Bo-Hui surname: Shi fullname: Shi, Bo-Hui organization: Beijing Key Laboratory of Urban Oil and Gas Distribution Technology, Department of Oil & Gas Storage and Transportation Engineering, China University of Petroleum, Beijing 102249, China – sequence: 2 givenname: Jing surname: Gong fullname: Gong, Jing email: ydgj@cup.edu.cn organization: Beijing Key Laboratory of Urban Oil and Gas Distribution Technology, Department of Oil & Gas Storage and Transportation Engineering, China University of Petroleum, Beijing 102249, China – sequence: 3 givenname: Chang-Yu surname: Sun fullname: Sun, Chang-Yu email: cysun@cup.edu.cn organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China – sequence: 4 givenname: Jian-Kui surname: Zhao fullname: Zhao, Jian-Kui organization: Beijing Key Laboratory of Urban Oil and Gas Distribution Technology, Department of Oil & Gas Storage and Transportation Engineering, China University of Petroleum, Beijing 102249, China – sequence: 5 givenname: Yao surname: Ding fullname: Ding, Yao organization: Beijing Key Laboratory of Urban Oil and Gas Distribution Technology, Department of Oil & Gas Storage and Transportation Engineering, China University of Petroleum, Beijing 102249, China – sequence: 6 givenname: Guang-Jin surname: Chen fullname: Chen, Guang-Jin organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24363058$$DView record in Pascal Francis |
BookMark | eNqFkTFvFDEQhVcoSCQHP4AKNwiK7DHe9a5tUUURBKRIFJDamrNn73zs2cH2EeXf4-QiCoqj8Uzxvac3fmfNSYiBmuY1hyUHPn7YLi1tlx1wvoRhCZ1-1pxyJfu273h3UvdeDa3SQr5oznLeAsCouT5tykVgPtxhcgyDY3FfHveAZZ9wZmvMbHPvEhbKbJ3iXdmwvKF5ZrvoaGY2huwdJR_W1abUmb1lP32g4m0-ZzvM-dF4Q1hYSRjyROll83zCOdOrp7lobj5_-nH5pb3-dvX18uK6tULo0nJlJaderlwPqgPnFAisqeU4DZK44KRodOBWjoTg4zAh8BWOvVTdoAe16hfNu4PvbYq_9pSL2flsa3oMFPfZ6PpzulOgK_n-KMmllKC7Guv_6Dj2Y8-H-iyat08oZovzVM-3Ppvb5HeY7k0nKgODqhw_cDbFnBNNfxEO5qFeszW1XvNQr4HB1HqrRv6jsb5g8bG2gH4-qnxzUE4YDa5TTXTzvQIDAAfBRVeJjweCajm_PSWTradgyflEthgX_RH_Pyuqyjs |
CitedBy_id | crossref_primary_10_1021_acs_energyfuels_1c03203 crossref_primary_10_1002_aic_15722 crossref_primary_10_1016_j_cjche_2019_07_024 crossref_primary_10_1016_j_cej_2022_137247 crossref_primary_10_1016_j_petrol_2021_109756 crossref_primary_10_1016_j_molliq_2024_125660 crossref_primary_10_1016_j_energy_2023_126985 crossref_primary_10_1016_j_fuel_2024_131723 crossref_primary_10_1177_1468678320901622 crossref_primary_10_1016_j_ces_2021_116831 crossref_primary_10_1016_j_ces_2021_117249 crossref_primary_10_1016_j_fuel_2020_118066 crossref_primary_10_1021_acs_iecr_1c04723 crossref_primary_10_1021_acs_energyfuels_1c03691 crossref_primary_10_1016_j_ces_2025_121290 crossref_primary_10_1016_j_cej_2017_08_105 crossref_primary_10_1016_j_cej_2020_125369 crossref_primary_10_1021_acs_energyfuels_8b01323 crossref_primary_10_1021_ef401648r crossref_primary_10_1002_aic_15436 crossref_primary_10_1021_acs_energyfuels_0c03977 crossref_primary_10_1039_D1RA03501K crossref_primary_10_1016_j_ces_2015_01_057 crossref_primary_10_1021_acs_jpcc_0c03009 crossref_primary_10_1021_acs_iecr_6b02717 crossref_primary_10_1016_j_ces_2014_09_039 crossref_primary_10_1016_j_ijheatmasstransfer_2018_06_015 crossref_primary_10_1002_cjce_23462 crossref_primary_10_1016_j_cej_2021_132626 crossref_primary_10_3389_fenrg_2022_986901 crossref_primary_10_1016_j_cej_2023_142020 crossref_primary_10_1016_j_ces_2021_116608 crossref_primary_10_1016_j_cjche_2019_03_022 crossref_primary_10_1016_j_fuel_2022_126190 crossref_primary_10_1021_acs_energyfuels_4c00265 crossref_primary_10_1021_acs_energyfuels_4c01357 crossref_primary_10_1021_acsomega_2c00892 crossref_primary_10_1021_acs_energyfuels_4c00940 crossref_primary_10_1016_j_molliq_2024_124347 crossref_primary_10_1080_10916466_2018_1531023 crossref_primary_10_1016_j_ces_2012_08_030 crossref_primary_10_1016_j_fuel_2019_05_052 crossref_primary_10_1016_j_ijheatmasstransfer_2018_10_025 crossref_primary_10_1016_j_petrol_2020_108003 crossref_primary_10_1134_S003602442002017X crossref_primary_10_1016_j_fuel_2022_125546 crossref_primary_10_1016_j_colsurfa_2024_133873 crossref_primary_10_1021_acs_iecr_9b01841 crossref_primary_10_2118_195586_PA crossref_primary_10_1016_j_ces_2013_11_015 crossref_primary_10_1016_j_fuel_2019_116963 crossref_primary_10_1016_j_applthermaleng_2023_120095 crossref_primary_10_1021_acs_energyfuels_0c04290 crossref_primary_10_1002_aic_16192 crossref_primary_10_1016_j_ces_2017_12_034 crossref_primary_10_1021_acs_energyfuels_7b03530 crossref_primary_10_3390_en10081105 crossref_primary_10_1016_j_ces_2019_06_004 crossref_primary_10_1021_acs_energyfuels_4c04239 crossref_primary_10_1016_j_ces_2016_02_040 crossref_primary_10_1016_j_jclepro_2019_05_240 crossref_primary_10_1016_j_colsurfa_2025_136264 crossref_primary_10_1021_acs_energyfuels_1c01173 crossref_primary_10_2139_ssrn_4144519 crossref_primary_10_1021_ef502366u crossref_primary_10_1021_acs_energyfuels_0c04209 crossref_primary_10_3389_feart_2022_987594 crossref_primary_10_1016_j_ces_2022_118002 crossref_primary_10_1021_acsomega_9b03395 crossref_primary_10_1016_j_fuel_2018_06_054 crossref_primary_10_1021_acsomega_3c02549 crossref_primary_10_1016_j_fuel_2019_02_014 crossref_primary_10_1021_acs_langmuir_4c00192 crossref_primary_10_3390_en18051116 crossref_primary_10_1016_j_fuel_2016_07_113 crossref_primary_10_1039_D4GC00390J crossref_primary_10_1016_j_rser_2022_112221 crossref_primary_10_1016_j_apenergy_2019_114373 crossref_primary_10_1016_j_ijheatmasstransfer_2017_10_045 crossref_primary_10_1016_j_molliq_2021_115888 crossref_primary_10_1016_j_fluid_2016_06_049 crossref_primary_10_1021_acs_jpcc_3c02134 crossref_primary_10_1016_j_oceaneng_2015_12_002 crossref_primary_10_1021_acs_energyfuels_9b00132 crossref_primary_10_1002_aic_17666 crossref_primary_10_1021_acs_langmuir_1c01734 crossref_primary_10_1063_5_0200516 crossref_primary_10_1016_j_molliq_2021_118374 crossref_primary_10_1016_j_solener_2020_09_035 crossref_primary_10_1515_jnet_2019_0062 crossref_primary_10_1016_j_apenergy_2022_119339 crossref_primary_10_1115_1_4040932 crossref_primary_10_1155_2017_9846507 crossref_primary_10_1016_j_jngse_2018_10_021 crossref_primary_10_1021_acs_jpcc_9b03843 crossref_primary_10_1016_j_ces_2022_117971 crossref_primary_10_1039_C8RA07571A crossref_primary_10_1016_j_ces_2014_01_035 crossref_primary_10_1021_acs_energyfuels_4c01592 crossref_primary_10_1016_j_petlm_2021_11_003 crossref_primary_10_1016_j_desal_2023_117279 crossref_primary_10_1016_j_jclepro_2023_139632 crossref_primary_10_1016_j_energy_2023_126815 crossref_primary_10_1021_acs_energyfuels_8b01713 crossref_primary_10_1021_acsomega_0c04708 crossref_primary_10_3390_pr13030725 crossref_primary_10_2118_199367_PA crossref_primary_10_1021_acs_energyfuels_0c02248 crossref_primary_10_1021_acs_jpclett_0c01224 crossref_primary_10_1016_j_ces_2024_121118 crossref_primary_10_1016_j_fuel_2022_125501 crossref_primary_10_1016_j_ijhydene_2024_01_167 crossref_primary_10_1016_j_cej_2018_12_143 crossref_primary_10_1021_acs_langmuir_0c02818 crossref_primary_10_1021_acs_energyfuels_9b01643 crossref_primary_10_1039_D0RA08184A crossref_primary_10_2118_158597_PA crossref_primary_10_1021_ef400147j crossref_primary_10_1021_acsomega_4c11316 crossref_primary_10_1016_j_ces_2024_121134 crossref_primary_10_3390_jmse11112206 crossref_primary_10_1021_ef5028923 crossref_primary_10_1016_j_cej_2024_156575 crossref_primary_10_1016_j_energy_2022_124313 crossref_primary_10_1016_j_cej_2024_157422 crossref_primary_10_1021_acs_iecr_9b04245 crossref_primary_10_1021_ie3028526 crossref_primary_10_1016_j_ces_2017_07_040 crossref_primary_10_1002_aic_16667 |
Cites_doi | 10.1016/0009-2509(87)87015-X 10.1016/S0025-326X(01)00086-8 10.1016/j.jcrysgro.2007.05.037 10.1016/0009-2509(87)87016-1 10.1016/0009-2509(94)85085-2 10.1016/S0022-0248(01)00614-5 10.1016/j.ces.2009.08.013 10.1016/j.jcrysgro.2006.01.036 10.1021/jp074606m 10.1016/S0022-0248(01)01822-X 10.1016/S0009-2509(97)00169-3 10.1016/j.ces.2005.05.014 10.1016/S0022-0248(99)00178-5 10.1021/ie50296a010 10.1360/03yb0057 10.1016/S0009-2509(98)00078-5 10.1016/j.ces.2009.05.051 10.1016/0920-4105(91)90051-N 10.1021/i160057a011 10.1016/j.ces.2005.03.003 10.1016/S1385-8947(98)00126-0 10.1016/S0378-3812(01)00457-5 10.1021/jp0473220 10.1016/j.fluid.2003.08.005 10.2516/ogst:2004005 10.1016/S1003-9953(09)60062-1 |
ContentType | Journal Article |
Copyright | 2011 Elsevier B.V. 2015 INIST-CNRS |
Copyright_xml | – notice: 2011 Elsevier B.V. – notice: 2015 INIST-CNRS |
DBID | FBQ AAYXX CITATION IQODW 7S9 L.6 7SR 7SU 8FD C1K FR3 JG9 7ST SOI |
DOI | 10.1016/j.cej.2011.05.029 |
DatabaseName | AGRIS CrossRef Pascal-Francis AGRICOLA AGRICOLA - Academic Engineered Materials Abstracts Environmental Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Materials Research Database Environment Abstracts Environment Abstracts |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic Materials Research Database Engineered Materials Abstracts Engineering Research Database Technology Research Database Environmental Engineering Abstracts Environmental Sciences and Pollution Management Environment Abstracts |
DatabaseTitleList | Materials Research Database AGRICOLA Environment Abstracts |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1873-3212 |
EndPage | 1316 |
ExternalDocumentID | 24363058 10_1016_j_cej_2011_05_029 US201500104142 S1385894711005857 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABLST ABMAC ABNUV ABTAH ABUDA ABXDB ABYKQ ACDAQ ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BKOMP BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SSG SSJ SSZ T5K ZY4 ~G- ABPIF ABPTK FBQ AATTM AAXKI AAYWO AAYXX ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW 7S9 L.6 7SR 7SU 8FD C1K FR3 JG9 7ST SOI |
ID | FETCH-LOGICAL-c449t-18c71e37bd30820dd804a91976f57e141e8e6d0dbde44165fa01ba637825958b3 |
IEDL.DBID | .~1 |
ISSN | 1385-8947 |
IngestDate | Fri Jul 11 01:37:10 EDT 2025 Tue Aug 05 11:09:38 EDT 2025 Fri Jul 11 08:04:31 EDT 2025 Mon Jul 21 09:15:44 EDT 2025 Thu Apr 24 23:09:11 EDT 2025 Tue Jul 01 01:09:36 EDT 2025 Wed Dec 27 19:27:03 EST 2023 Fri Feb 23 02:31:09 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Natural gas hydrates Kinetics Diffusion Mass transfer Heat transfer Fluid flows Conversion rate Modeling Emulsion Dissolved gas Water consumption Gas hydrates Natural gas |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c449t-18c71e37bd30820dd804a91976f57e141e8e6d0dbde44165fa01ba637825958b3 |
Notes | http://dx.doi.org/10.1016/j.cej.2011.05.029 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1663631536 |
PQPubID | 24069 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_901692809 proquest_miscellaneous_1777092449 proquest_miscellaneous_1663631536 pascalfrancis_primary_24363058 crossref_primary_10_1016_j_cej_2011_05_029 crossref_citationtrail_10_1016_j_cej_2011_05_029 fao_agris_US201500104142 elsevier_sciencedirect_doi_10_1016_j_cej_2011_05_029 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-07-15 |
PublicationDateYYYYMMDD | 2011-07-15 |
PublicationDate_xml | – month: 07 year: 2011 text: 2011-07-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Chemical engineering journal (Lausanne, Switzerland : 1996) |
PublicationYear | 2011 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Freer, Selim, Sloan (bib0070) 2001; 185 Gudmundsson (bib0015) 2002 Zhang, Chen, Sun, Fan, Ding, Wang, Yang (bib0175) 2005; 60 Uchida, Takao, Jun’ichi, Hideo (bib0060) 1999; 204 Hirata, Mori (bib0180) 1998; 53 Jamaluddin, Kalogerakis, Bishnoi (bib0105) 1991; 5 Gong, Shi, Zhao (bib0115) 2010; 19 Makogon (bib0190) 1981 Hammerschmidt (bib0005) 1934; 26 Ballard, Sloan (bib0030) 2004; 218 Mori, Mochizuki (bib0055) 1997; 52 Uchida, Ikuko, Satoshi, Takao, Jiro, Hideo (bib0065) 2002; 237 Sloan, Koh (bib0010) 2007 Sinquin, Palermo, Peysson (bib0135) 2004; 59 Turner, Kleehammer, Miller, Koh, Sloan (bib0110) 2005 Peng, Robinson (bib0130) 1976; 15 Moudrakovski, McLaurin, Ratcliffe, Ripmeester (bib0170) 2004; 108 Englezos, Kalogerakis, Dholabhai, Bishnoi (bib0040) 1987; 42 Sun, Chen, Ma, Huang, Luo, Li (bib0050) 2007; 306 Englezos, Kalogerakis, Dholabhai, Bishnoi (bib0035) 1987; 42 Mochizuki, Mori (bib0090) 2008 Lee, Susilo, Englezos (bib0165) 2005; 60 Chen, Sun, Ma (bib0145) 2007 Sun, Chen, Wang, Wang (bib0125) 2005 Mori (bib0075) 2001; 223 Yapa, Zheng, Chen (bib0185) 2001; 43 Chen, Guo (bib0025) 1998; 71 Skovborg, Rasmussen (bib0045) 1993; 49 C.Y. Sun, The kinetics of hydrate formation/dissociation and related topics, Ph.D. thesis, China University of Petroleum, Beijing, 2001. Peng, Dandekar, Sun, Luo, Ma, Pang, Chen (bib0085) 2007; 111 Makogon (bib0140) 1997 Pauchard, Darbouret, Palerma, Peytavy (bib0150) 2007 Turner, Miller, Sloan (bib0100) 2009; 64 Mochizuki, Mori (bib0080) 2006; 290 J.K. Zhao, Study on Flow Properties of Hydrate Slurry in Multiphase Pipeline, Ph.D. thesis, China University of Petroleum, Beijing, 2009. Turner, Talley (bib0020) 2008 Turner, Miller, Sloan (bib0095) 2009; 64 Sun, Chen, Guo (bib0120) 2003; 46 Makogon (10.1016/j.cej.2011.05.029_bib0190) 1981 Jamaluddin (10.1016/j.cej.2011.05.029_bib0105) 1991; 5 Freer (10.1016/j.cej.2011.05.029_bib0070) 2001; 185 Uchida (10.1016/j.cej.2011.05.029_bib0060) 1999; 204 Yapa (10.1016/j.cej.2011.05.029_bib0185) 2001; 43 Gong (10.1016/j.cej.2011.05.029_bib0115) 2010; 19 10.1016/j.cej.2011.05.029_bib0160 Moudrakovski (10.1016/j.cej.2011.05.029_bib0170) 2004; 108 Sun (10.1016/j.cej.2011.05.029_bib0120) 2003; 46 Sun (10.1016/j.cej.2011.05.029_bib0125) 2005 Hirata (10.1016/j.cej.2011.05.029_bib0180) 1998; 53 Lee (10.1016/j.cej.2011.05.029_bib0165) 2005; 60 Sinquin (10.1016/j.cej.2011.05.029_bib0135) 2004; 59 Pauchard (10.1016/j.cej.2011.05.029_bib0150) 2007 Mochizuki (10.1016/j.cej.2011.05.029_bib0080) 2006; 290 Turner (10.1016/j.cej.2011.05.029_bib0100) 2009; 64 Turner (10.1016/j.cej.2011.05.029_bib0095) 2009; 64 Englezos (10.1016/j.cej.2011.05.029_bib0040) 1987; 42 Sun (10.1016/j.cej.2011.05.029_bib0050) 2007; 306 Mori (10.1016/j.cej.2011.05.029_bib0055) 1997; 52 Mori (10.1016/j.cej.2011.05.029_bib0075) 2001; 223 Chen (10.1016/j.cej.2011.05.029_bib0025) 1998; 71 Peng (10.1016/j.cej.2011.05.029_bib0085) 2007; 111 Mochizuki (10.1016/j.cej.2011.05.029_bib0090) 2008 Gudmundsson (10.1016/j.cej.2011.05.029_bib0015) 2002 Chen (10.1016/j.cej.2011.05.029_bib0145) 2007 Makogon (10.1016/j.cej.2011.05.029_bib0140) 1997 10.1016/j.cej.2011.05.029_bib0155 Hammerschmidt (10.1016/j.cej.2011.05.029_bib0005) 1934; 26 Englezos (10.1016/j.cej.2011.05.029_bib0035) 1987; 42 Turner (10.1016/j.cej.2011.05.029_bib0110) 2005 Sloan (10.1016/j.cej.2011.05.029_bib0010) 2007 Peng (10.1016/j.cej.2011.05.029_bib0130) 1976; 15 Zhang (10.1016/j.cej.2011.05.029_bib0175) 2005; 60 Turner (10.1016/j.cej.2011.05.029_bib0020) 2008 Skovborg (10.1016/j.cej.2011.05.029_bib0045) 1993; 49 Uchida (10.1016/j.cej.2011.05.029_bib0065) 2002; 237 Ballard (10.1016/j.cej.2011.05.029_bib0030) 2004; 218 |
References_xml | – year: 2008 ident: bib0020 article-title: Hydrate inhibition via cold flow-no chemicals or insulation publication-title: Proc. 6th International Conference on Gas Hydrate – volume: 49 start-page: 1131 year: 1993 end-page: 1143 ident: bib0045 article-title: A mass transport limited model for the growth of methane and ethane gas hydrates publication-title: Chem. Eng. Sci. – volume: 111 start-page: 12485 year: 2007 end-page: 12493 ident: bib0085 article-title: Hydrate film grow on the surface of a gas bubble suspended in water publication-title: J. Phys. Chem. B – year: 2007 ident: bib0145 article-title: Science and Technology of Gas hydrates – volume: 5 start-page: 323 year: 1991 end-page: 335 ident: bib0105 article-title: Hydrate plugging problems in undersea natural gas pipelines under shutdown conditions publication-title: J. Pet. Sci. Eng. – year: 1997 ident: bib0140 article-title: Hydrates of Hydrocarbons – volume: 19 start-page: 261 year: 2010 end-page: 266 ident: bib0115 article-title: Natural gas hydrate shell model in gas-slurry pipeline flow publication-title: J. Nat. Gas Chem. – start-page: 912 year: 2002 end-page: 916 ident: bib0015 article-title: Cold flow hydrate technology publication-title: Proc. 4th International Conference on Gas Hydrate – volume: 64 start-page: 5066 year: 2009 end-page: 5072 ident: bib0100 article-title: Direct conversion of water droplet to methane hydrate in crude oil publication-title: Chem. Eng. Sci. – volume: 60 start-page: 4203 year: 2005 end-page: 4212 ident: bib0165 article-title: Methane-ethane and methane-propane hydrate formation and decomposition on water droplets publication-title: Chem. Eng. Sci. – volume: 43 start-page: 234 year: 2001 end-page: 241 ident: bib0185 article-title: A model for deepwater oil/gas blowouts publication-title: Mar. Pollut. Bull. – year: 2007 ident: bib0150 article-title: Gas hydrate slurry flow in a black oil Prediction of gas hydrate particles agglomeration and linear pressure drop publication-title: Proc. 13th International Conference on Multiphase Production Technology – start-page: 1116 year: 2005 end-page: 1125 ident: bib0110 article-title: Formation of hydrate obstructions in pipelines: hydrate particle development and slurry flow publication-title: Proc. 5th International Conference on Gas Hydrate, Volume 4 – volume: 71 start-page: 145 year: 1998 end-page: 151 ident: bib0025 article-title: A new approach to gas hydrate modeling publication-title: Chem. Eng. J. – volume: 60 start-page: 5356 year: 2005 end-page: 5362 ident: bib0175 article-title: The partition coefficients of ethylene between hydrate and vapor for methane publication-title: Chem. Eng. Sci. – volume: 42 start-page: 2647 year: 1987 end-page: 2658 ident: bib0035 article-title: Kinetics of formation of methane and ethane gas hydrates publication-title: Chem. Eng. Sci. – volume: 26 start-page: 851 year: 1934 end-page: 855 ident: bib0005 article-title: Formation of gas hydrates in natural gas transmission lines publication-title: Ind. Eng. Chem. – reference: C.Y. Sun, The kinetics of hydrate formation/dissociation and related topics, Ph.D. thesis, China University of Petroleum, Beijing, 2001. – volume: 185 start-page: 65 year: 2001 end-page: 75 ident: bib0070 article-title: Methane hydrate film growth kinetics publication-title: Fluid Phase Equilib. – reference: J.K. Zhao, Study on Flow Properties of Hydrate Slurry in Multiphase Pipeline, Ph.D. thesis, China University of Petroleum, Beijing, 2009. – volume: 59 start-page: 41 year: 2004 end-page: 57 ident: bib0135 article-title: Rheological and flow properties of gas hydrate suspensions publication-title: Oil Gas Sci. Technol. - Rev. IFP – volume: 223 start-page: 206 year: 2001 end-page: 212 ident: bib0075 article-title: Estimating the thickness of hydrate films from their lateral growth rates: application of a simplified heat transfer model publication-title: J. Cryst. Growth – volume: 290 start-page: 642 year: 2006 end-page: 652 ident: bib0080 article-title: Clathrate-hydrate film growth along water/hydrate-former phase boundaries-numerical heat-transfer study publication-title: J. Cryst. Growth – volume: 64 start-page: 3996 year: 2009 end-page: 4004 ident: bib0095 article-title: Methane hydrate formation and an inward growing shell model in water-in-oil dispersions publication-title: Chem. Eng. Sci. – volume: 52 start-page: 3613 year: 1997 end-page: 3616 ident: bib0055 article-title: Mass transport across clathrate hydrate films-a capillary permeation model publication-title: Chem. Eng. Sci. – volume: 237 start-page: 383 year: 2002 end-page: 387 ident: bib0065 article-title: CO publication-title: J. Cryst. Growth – year: 2005 ident: bib0125 article-title: The experimental evaluation for controlling hydrate plug in oil-gas-water multiphase pipeline publication-title: Proc. 2nd Chinese National Chemical and Biochemical Engineering Annual Meeting – volume: 15 start-page: 59 year: 1976 end-page: 64 ident: bib0130 article-title: A new two-constant equation of state publication-title: Ind. Eng. Chem. Fundament. – year: 2007 ident: bib0010 article-title: Clathrate Hydrates of Natural Gases – volume: 218 start-page: 15 year: 2004 end-page: 31 ident: bib0030 article-title: The next generation of hydrate prediction III: Gibbs energy minimization formation publication-title: Fluid Phase Equilib. – volume: 306 start-page: 491 year: 2007 end-page: 499 ident: bib0050 article-title: The growth kinetics of hydrate film on the surface of gas bubble suspended in water or aqueous surfactant solution publication-title: J. Cryst. Growth – volume: 53 start-page: 2641 year: 1998 end-page: 2643 ident: bib0180 article-title: How liquids wet clathrate hydrates: some macroscopic observations publication-title: Chem. Eng. Sci. – year: 1981 ident: bib0190 article-title: Hydrates of Natural Gas – volume: 42 start-page: 2659 year: 1987 end-page: 2666 ident: bib0040 article-title: Kinetics of hydrate formation form mixtures of methane and ethane publication-title: Chem. Eng. Sci. – volume: 46 start-page: 487 year: 2003 end-page: 494 ident: bib0120 article-title: R12 hydrate formation kinetics based on laser light scattering technique publication-title: Sci. China. Ser. B – volume: 204 start-page: 348 year: 1999 end-page: 356 ident: bib0060 article-title: Microscopic observation of formation processes of clathrate-hydrate films at an interface between water and carbon dioxide publication-title: J. Cryst. Growth – volume: 108 start-page: 17591 year: 2004 end-page: 17595 ident: bib0170 article-title: Methane and carbon dioxide hydrate formation in water droplets: spatially resolved measurements from magnetic resonance microimaging publication-title: J. Phys. Chem. B – year: 2008 ident: bib0090 article-title: Clathrate-hydrate film growth along water/hydrate-former phase boundaries: numerical analyses of mass and heat transfer to/from a hydrate film in relation to its growth publication-title: Proc. 6th International Conference on Gas Hydrate – year: 2008 ident: 10.1016/j.cej.2011.05.029_bib0020 article-title: Hydrate inhibition via cold flow-no chemicals or insulation – volume: 42 start-page: 2647 year: 1987 ident: 10.1016/j.cej.2011.05.029_bib0035 article-title: Kinetics of formation of methane and ethane gas hydrates publication-title: Chem. Eng. Sci. doi: 10.1016/0009-2509(87)87015-X – ident: 10.1016/j.cej.2011.05.029_bib0160 – volume: 43 start-page: 234 year: 2001 ident: 10.1016/j.cej.2011.05.029_bib0185 article-title: A model for deepwater oil/gas blowouts publication-title: Mar. Pollut. Bull. doi: 10.1016/S0025-326X(01)00086-8 – volume: 306 start-page: 491 year: 2007 ident: 10.1016/j.cej.2011.05.029_bib0050 article-title: The growth kinetics of hydrate film on the surface of gas bubble suspended in water or aqueous surfactant solution publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2007.05.037 – volume: 42 start-page: 2659 year: 1987 ident: 10.1016/j.cej.2011.05.029_bib0040 article-title: Kinetics of hydrate formation form mixtures of methane and ethane publication-title: Chem. Eng. Sci. doi: 10.1016/0009-2509(87)87016-1 – volume: 49 start-page: 1131 year: 1993 ident: 10.1016/j.cej.2011.05.029_bib0045 article-title: A mass transport limited model for the growth of methane and ethane gas hydrates publication-title: Chem. Eng. Sci. doi: 10.1016/0009-2509(94)85085-2 – year: 1997 ident: 10.1016/j.cej.2011.05.029_bib0140 – ident: 10.1016/j.cej.2011.05.029_bib0155 – volume: 223 start-page: 206 year: 2001 ident: 10.1016/j.cej.2011.05.029_bib0075 article-title: Estimating the thickness of hydrate films from their lateral growth rates: application of a simplified heat transfer model publication-title: J. Cryst. Growth doi: 10.1016/S0022-0248(01)00614-5 – volume: 64 start-page: 5066 year: 2009 ident: 10.1016/j.cej.2011.05.029_bib0100 article-title: Direct conversion of water droplet to methane hydrate in crude oil publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2009.08.013 – volume: 290 start-page: 642 year: 2006 ident: 10.1016/j.cej.2011.05.029_bib0080 article-title: Clathrate-hydrate film growth along water/hydrate-former phase boundaries-numerical heat-transfer study publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2006.01.036 – year: 2007 ident: 10.1016/j.cej.2011.05.029_bib0150 article-title: Gas hydrate slurry flow in a black oil Prediction of gas hydrate particles agglomeration and linear pressure drop – volume: 111 start-page: 12485 year: 2007 ident: 10.1016/j.cej.2011.05.029_bib0085 article-title: Hydrate film grow on the surface of a gas bubble suspended in water publication-title: J. Phys. Chem. B doi: 10.1021/jp074606m – volume: 237 start-page: 383 year: 2002 ident: 10.1016/j.cej.2011.05.029_bib0065 article-title: CO2 hydrate film formation at the boundary between CO2 and water: effects of temperature, pressure and additives on the formation rate publication-title: J. Cryst. Growth doi: 10.1016/S0022-0248(01)01822-X – volume: 52 start-page: 3613 year: 1997 ident: 10.1016/j.cej.2011.05.029_bib0055 article-title: Mass transport across clathrate hydrate films-a capillary permeation model publication-title: Chem. Eng. Sci. doi: 10.1016/S0009-2509(97)00169-3 – year: 2007 ident: 10.1016/j.cej.2011.05.029_bib0010 – volume: 60 start-page: 5356 year: 2005 ident: 10.1016/j.cej.2011.05.029_bib0175 article-title: The partition coefficients of ethylene between hydrate and vapor for methane+ethylene+water and methane+ethylene+SDS+water systems publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2005.05.014 – volume: 204 start-page: 348 year: 1999 ident: 10.1016/j.cej.2011.05.029_bib0060 article-title: Microscopic observation of formation processes of clathrate-hydrate films at an interface between water and carbon dioxide publication-title: J. Cryst. Growth doi: 10.1016/S0022-0248(99)00178-5 – year: 2005 ident: 10.1016/j.cej.2011.05.029_bib0125 article-title: The experimental evaluation for controlling hydrate plug in oil-gas-water multiphase pipeline publication-title: Proc. 2nd Chinese National Chemical and Biochemical Engineering Annual Meeting – volume: 26 start-page: 851 year: 1934 ident: 10.1016/j.cej.2011.05.029_bib0005 article-title: Formation of gas hydrates in natural gas transmission lines publication-title: Ind. Eng. Chem. doi: 10.1021/ie50296a010 – volume: 46 start-page: 487 year: 2003 ident: 10.1016/j.cej.2011.05.029_bib0120 article-title: R12 hydrate formation kinetics based on laser light scattering technique publication-title: Sci. China. Ser. B doi: 10.1360/03yb0057 – volume: 53 start-page: 2641 year: 1998 ident: 10.1016/j.cej.2011.05.029_bib0180 article-title: How liquids wet clathrate hydrates: some macroscopic observations publication-title: Chem. Eng. Sci. doi: 10.1016/S0009-2509(98)00078-5 – volume: 64 start-page: 3996 year: 2009 ident: 10.1016/j.cej.2011.05.029_bib0095 article-title: Methane hydrate formation and an inward growing shell model in water-in-oil dispersions publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2009.05.051 – volume: 5 start-page: 323 year: 1991 ident: 10.1016/j.cej.2011.05.029_bib0105 article-title: Hydrate plugging problems in undersea natural gas pipelines under shutdown conditions publication-title: J. Pet. Sci. Eng. doi: 10.1016/0920-4105(91)90051-N – volume: 15 start-page: 59 year: 1976 ident: 10.1016/j.cej.2011.05.029_bib0130 article-title: A new two-constant equation of state publication-title: Ind. Eng. Chem. Fundament. doi: 10.1021/i160057a011 – volume: 60 start-page: 4203 year: 2005 ident: 10.1016/j.cej.2011.05.029_bib0165 article-title: Methane-ethane and methane-propane hydrate formation and decomposition on water droplets publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2005.03.003 – year: 1981 ident: 10.1016/j.cej.2011.05.029_bib0190 – start-page: 1116 year: 2005 ident: 10.1016/j.cej.2011.05.029_bib0110 article-title: Formation of hydrate obstructions in pipelines: hydrate particle development and slurry flow – volume: 71 start-page: 145 year: 1998 ident: 10.1016/j.cej.2011.05.029_bib0025 article-title: A new approach to gas hydrate modeling publication-title: Chem. Eng. J. doi: 10.1016/S1385-8947(98)00126-0 – year: 2008 ident: 10.1016/j.cej.2011.05.029_bib0090 article-title: Clathrate-hydrate film growth along water/hydrate-former phase boundaries: numerical analyses of mass and heat transfer to/from a hydrate film in relation to its growth – volume: 185 start-page: 65 year: 2001 ident: 10.1016/j.cej.2011.05.029_bib0070 article-title: Methane hydrate film growth kinetics publication-title: Fluid Phase Equilib. doi: 10.1016/S0378-3812(01)00457-5 – volume: 108 start-page: 17591 year: 2004 ident: 10.1016/j.cej.2011.05.029_bib0170 article-title: Methane and carbon dioxide hydrate formation in water droplets: spatially resolved measurements from magnetic resonance microimaging publication-title: J. Phys. Chem. B doi: 10.1021/jp0473220 – volume: 218 start-page: 15 year: 2004 ident: 10.1016/j.cej.2011.05.029_bib0030 article-title: The next generation of hydrate prediction III: Gibbs energy minimization formation publication-title: Fluid Phase Equilib. doi: 10.1016/j.fluid.2003.08.005 – year: 2007 ident: 10.1016/j.cej.2011.05.029_bib0145 – volume: 59 start-page: 41 year: 2004 ident: 10.1016/j.cej.2011.05.029_bib0135 article-title: Rheological and flow properties of gas hydrate suspensions publication-title: Oil Gas Sci. Technol. - Rev. IFP doi: 10.2516/ogst:2004005 – start-page: 912 year: 2002 ident: 10.1016/j.cej.2011.05.029_bib0015 article-title: Cold flow hydrate technology – volume: 19 start-page: 261 year: 2010 ident: 10.1016/j.cej.2011.05.029_bib0115 article-title: Natural gas hydrate shell model in gas-slurry pipeline flow publication-title: J. Nat. Gas Chem. doi: 10.1016/S1003-9953(09)60062-1 |
SSID | ssj0006919 |
Score | 2.3964415 |
Snippet | ► The natural gas hydrates formation and growth were studied in the flow loop at three water cuts. ► The gas consumption value increased with increment of... The natural gas hydrates formation and growth at 2MPa and 277.15K were studied at different water cuts for water-in-condensate oil emulsions in the flow loop... The natural gas hydrates formation and growth at 2 MPa and 277.15 K were studied at different water cuts for water-in-condensate oil emulsions in the flow loop... |
SourceID | proquest pascalfrancis crossref fao elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1308 |
SubjectTerms | Applied sciences Chemical engineering Conversion Diffusion emulsions Exact sciences and technology Fluid flows Heat and mass transfer. Packings, plates Heat transfer Hydrates Kinetics Mass transfer Natural gas Natural gas hydrates oils Shells Water consumption |
Title | An inward and outward natural gas hydrates growth shell model considering intrinsic kinetics, mass and heat transfer |
URI | https://dx.doi.org/10.1016/j.cej.2011.05.029 https://www.proquest.com/docview/1663631536 https://www.proquest.com/docview/1777092449 https://www.proquest.com/docview/901692809 |
Volume | 171 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKucABlZe60K6MxAmRrp04fhxXFdXCih4oK3qznNjZboFs1WQPXPjtnXGSQgXsgUsSRWPL8TjfjO3xN4S8RkIRBbifoD1NhPQuMS7oJINrQHpwJ_C888dTOVuID-f5-Q45Hs7CYFhlj_0dpke07t9M-t6cXK1WkzOOe1oGwJVjbrwcT5QLoXCUH_38FeYhTUzugcIJSg87mzHGqwyXPYtnfsSil_lX23SvcmsMmnQN9FvVJbz4A7ujQTrZI496T5JOu8Y-JjuhfkIe_sYv-JS005quaoyLpa72dL1p43Mk84SiS9fQix8eySIauoT5eHtBGwwMpTE_Di37ZJ5QF1TTwh1USr9C_cjt_JZ-B8c7VoyATtvoAofrZ2Rx8u7z8Szp0ywkpRCmTbguFQ-ZKjxS1zDvNRMOek3JKleBCx50kJ75wgfwnWReOcYLJzPwLXKT6yJ7TnbrdR32Ca14mhbK-VR7LgI8mVClrDQcTHGmZTUibOhgW_Yc5JgK45sdgs0uLejEok4syy3oZETe3Ba56gg4tgmLQWv2ziiyYCC2FdsHDVu3BFy1i7MUV4FwnspFOiLjO2q_bUMqMglYqUfk1TAOLPyZuN3i6rDeNJaDMyczsChyi4xSisEUWEAb6D9kDBLmpJqZF__3dS_Jg24hXCU8PyC77fUmHIIn1Rbj-KuMyf3p-_nsFO_zT1_mN8vGHUQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbacgAOFU916QMjcUK4ayd-JMeqolqg7aVdqTfLiZ3tFshWTfbApb-9M05SqIA9cEmsaGw5HvubcTz5hpD3SChiAPcZ2lMmtXcsdyFjKVwD0oM7if87n5zqyVR-uVAXa-Rw-BcGwyp77O8wPaJ1_2Tcj-b4ej4fnwk808oBXAXmxlNmnTySsHwxjcH-7a84D53H7B4ozVB8ONqMQV5luOppPNU-j27mX43TeuUWGDXpGhi4qst48Qd4R4t09Ixs9q4kPeh6-5yshfoFefobweBL0h7UdF5jYCx1taeLZRvLkc0Tqs5cQy9_emSLaOgMNuTtJW0wMpTGBDm07LN5QlvQTAt30Cn9Bu0jufNH-gM879gwIjptow8cbl6R6dGn88MJ6_MssFLKvGUiK40IqSk8ctdw7zMuHYya0ZUyQUgRsqA994UP4DxpVTkuCqdTcC5UrrIifU026kUdtgitRJIUxvkk80IGKOWhSniZC7DFaaarEeHDANuyJyHHXBjf7RBtdmVBJxZ1YrmyoJMR-XBf5bpj4FglLAet2QfTyIKFWFVtCzRs3QyA1U7PEvwMhBtVIZMR2Xug9vs-JDLVAJbZiLwb5oGFpYnnLa4Oi2VjBXhzOgWTolfIGGM47IEl9IH-QyZHxpwk4_mb_3u7t-Tx5Pzk2B5_Pv26TZ50X8UNE2qHbLQ3y7ALblVb7MVlcwcy1B0v |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+inward+and+outward+natural+gas+hydrates+growth+shell+model+considering+intrinsic+kinetics%2C+mass+and+heat+transfer&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Shi%2C+Bo-Hui&rft.au=Gong%2C+Jing&rft.au=Sun%2C+Chang-Yu&rft.au=Zhao%2C+Jian-Kui&rft.date=2011-07-15&rft.issn=1385-8947&rft.volume=171&rft.issue=3&rft.spage=1308&rft.epage=1316&rft_id=info:doi/10.1016%2Fj.cej.2011.05.029&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cej_2011_05_029 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon |